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ABSTRACT

A kinematic chain in three-dimensional Euclidean space consists of n links that are connected by
spherical joints. Such a chain is said to be within a closed configuration when its links form a
closed polygonal chain in three dimensions. We investigate the space of configurations, described
in terms of joint angles of its spherical joints, that satisfy the loop closure constraint, meaning that
the kinematic chain is closed. In special cases, we can find a new set of parameters that describe
the diagonal lengths (the distance of the joints from the origin) of the configuration space by a
simple domain, namely a cube of dimension n− 3. We expect that the new findings can be applied
to various problems such as motion planning for closed kinematic chains or singularity analysis of
their configuration spaces. To demonstrate the practical feasibility of the new method, we present
numerical examples.
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1. Introduction

This study is the natural further development of [32] in which closed configurations of a two-dimensional
kinematic chain (KC) in terms of its joint angles were considered. As a generalization, we study the
configuration spaces of a three-dimensional closed kinematic chain (CKC) with n links in terms of the
joint angles of its spherical joints. Closed configurations can be described as links that are connected by
spherical joints that form a closed polygonal chain. In many applied scientific fields such as robotics, physics,
computational biology, protein kinematics, and computer graphics CKCs naturally appear [20], which is why
understanding their configuration spaces is extremely important.

For example, the knowledge of the configuration spaces of CKCs is important in robotics, since a robot is often
required to form a closed polygonal chain while performing tasks. An example that is not so often considered
appears in physics. If n force vectors acting on a point are intended to cancel each other out, this is exactly the
case if they form a closed polygonal chain when they are attached to each other. A practical example of such
a situation in two dimensions would be a continuous version of the balanced centrifuge problem [1]. In all
applications the closedness condition is typically described by nonlinear equations defining the configuration
space of the CKC under consideration.

The configuration space defined by those equations is a manifold [24] up to points that correspond to
singular positions of the CKC. If additional constraints like obstacles, link-link avoidance, or limited joint
angles are considered, the configuration space is even more complicated. To deal with the complex nature
of configuration spaces, three main strategies that are either based on probabilistic, algebraic or geometric
methods have been developed so far. Recently, also analytic methods exploiting the Moore-Penrose pseudo-
inverse were used to obtain solutions of the inverse kinematic problem for redundant CKCs [28, 25]. We will
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briefly describe the three main strategies and then present our approach.

Algebraic methods have a long tradition in the inverse kinematics of mechanisms. They rely on the fact
that the forward kinematics of a chain can be described by means of successive execution of elements of
the special Euclidean group. Conversely, if one requires the KC to reach a certain endpoint with prescribed
orientation, one obtains trigonometric equations that are typically algebraized by the half tangent substitution
[13, 12]. Other innovative approaches use the fact that the special Euclidean motion group can be algebraically
modeled by the so called study quadric. This description subsequently turns out to be useful for the inverse
kinematic of mechanisms in a variety of problems. [2, 9, 11]

Probabilistic or randomized methods have proven to be extremely successful for motion planning in the case
of situations with many practical constraints. Besides the closed-loop constraint, certain joint angles may
not be possible if obstacle or link-link collisions have to be avoided. These methods are especially important
for highly redundant KCs with many joints that have high dimensional configuration spaces. Typically,
when applying probabilistic methods, a random configuration is generated and then it is checked if the
desired constraints are satisfied. By repeating this process, a discrete version of the configuration space can be
sampled. The sampled points can then be interpolated, yielding an approximate version of the configuration
space that is very useful in applications. Without further knowledge about the structure of the configuration
spaces, their sampling can prove to be a difficult task. Nevertheless, probabilistic methods have been applied
in different situations, which can be found in [5, 29, 17, 30, 4, 6, 14, 31, 3].

The structure of configuration spaces is in itself an interesting and rich field of research and has therefore
attracted the attention of many researchers. Their insight about the global geometry of configuration spaces
is very important in applications and can for example be applied to improved sampling [16, 8]. In their
fundamental work, Kapovitch and Milgram [16] established important results about the geometry of KCs,
which led to novel path planning algorithms. Further, in [24, 27] it is shown that if a CKC has three long links
its configuration space has a particularly simple structure since in this case it is diffeomorphic to the disjoint
union of two tori. Also, for the more difficult situation when CKCs do not have three long links, algorithms
were derived in [24, 27]. Further, they developed path planners in the case of p point obstacles in the plane
[26, 22]. Also cohomology, homology groups and singularities of configuration spaces have been investigated
in [8, 15, 7, 10]. Another approach using geometric methods was developed by Han, Rudolph and Blumenthal.
They discovered that it is advantageous to describe the configuration space of a CKC not by joint angles but
by its diagonal lengths Li, where the Li are the length of the segment connecting the origin 0 and the i-th joint
of the CKC, see [20, 18, 19]. It turns out that the lengths of possible diagonals of a CKC with n links can be
computed as the solution of a system of linear inequalities and as such form a convex polytope of dimension
n− 3. This polytope can be treated with methods from linear programming [23]. In dimension three, feasible
diagonal lengths Li correspond to infinitely many configurations of the CKC, since any configuration of a CKC
can be rotated around its diagonals [19]. Because of the convex structure of the space of feasible diagonals
the proposed approach is very useful in applications. It has, for example, been applied to the task of motion
planning very successfully in two and three dimensions, see e.g. [18, 20], where paths between CKCs with
1000 links are computed very efficiently.

Contribution: We develop a new method that explicitly computes configurations of a CKC with n linkages
in term of the joint angles of its spherical joints. The new method presented is closely related to the one in
[19, 18]. In our approach, the inequalities for the diagonal lengths naturally appear by manipulation of a
trigonometric equation, which describes the loop closure condition for a KC. To be more precise, it turns out
that this equation allows a kind of backward substitution, which is an unexpected and new mathematical
insight. Another contribution is that, unlike [19, 20], we investigate the linear inequalities for the diagonal
lengths in our context even further. While the system of inequalities was previously handled by using linear
programming methods, we are able to describe its solution set by a sampling procedure that determines the
intervals of diagonals in each step by very intuitive conditions. Moreover, for the special class of CKCs that
have three long links we are able to describe the diagonal lengths of such CKCs by a map that is defined on
an n− 3 dimensional cube In−3. A byproduct of our explicit computations also yields a new proof for the
connectedness of the configuration space for three-dimensional CKCs. Furthermore, once diagonal lengths
are determined, our calculations allow to explicitly calculate the joint angles of the spherical joints of a CKC.
More precisely, our method parameterizes intersecting circles of spheres, which arise when a configuration
is geometrically constructed from its diagonal lengths. Our theoretical results are confirmed by numerical
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examples. We are able to calculate a configuration of a CKC with a length of one million links. To our
knowledge, this has not yet been achieved in the literature so far.

Outline of this text: In section 2 we give a mathematical description of a CKC and its configuration space.
Then the basic algorithm that explicitly describes how configurations of a CKC can be computed is developed
in section 3. In section 4 we describe the set of new parameters and show how they can be used to compute a
vector of joint angles of a CKC. Then in section 4 a special class of CKCs is considered, for which the diagonal
space can be explicitly parameterized. Finally, we present numerical examples that show the validity of the
developed results.

2. Configuration space

For a CKC with link lengths a1, . . . , an we introduce Cartesian coordinates in three-dimensional Euclidean
space. Moreover, we place one of the links of the CKC so that it is lying on the positive x-axis and that
one of its ends coincides with the origin. Without loss of generality we can assume that the link an of the
chain is fixed in the described manner, see Figure 1. For 1 ≤ k ≤ n denote by ϕk := (ϕ1, . . . , ϕk) ∈ [0, 2π)k

and ϑk := (ϑ1, . . . , ϑk) ∈ [0, π]k vectors of angles and by an := (a1, . . . , an) ∈ Rn a vector of link lengths. We
set Mk := [0, 2π)k × [0, π]k and denote by

fan,k : Mk → R3, fan,k
(
ϕk, ϑk

)
=

k∑
j=1

aj

sin(ϑj) cos(ϕj)
sin(ϑj) sin(ϕj)

cos(ϑj)

 . (2.1)

the k-th endpoint map that attaches the first k links of the KC with prescribed direction together. We will
refer to the set of locations fan,k

(
Mk
)

that can be reached by it as its workspace. We will call (ϕn−1, ϑn−1) a
configuration of the CKC with link lengths a1, . . . , an if it satisfies the (loop) closure condition, which means
that it is contained in the set

Conf(an) =

(ϕn−1, ϑn−1) ∈Mn−1 : fan,n−1
(
ϕn−1, ϑn−1

)
=

an0
0

 = f−1an,n−1 (an, 0, 0) , (2.2)

which we will refer to as the configuration space of the CKC with link lengths a1, . . . , an. If no restrictions
on the endpoint map are imposed,

(
ϕn−1, ϑn−1

)
∈Mn−1 will just be called a configuration of the kinematic

chain (KC) with n− 1 links. Note that in our case the configuration space of a CKC is described in terms of its
absolute joint angles. Other definitions describe configurations of a CKC as a real algebraic variety given by

Conf
alg (an) :=

{
p = (p1, . . . , pn) ∈

(
R3
)n

: p1 = (0, 0, 0)T , pn = (an, 0, 0)T , ||pj − pj+1|| = aj , 1 ≤ j ≤ n− 1
}
.

Here ‖ · ‖2 denotes the Euclidean norm. We point out that these two definitions are equivalent, since a
configuration described by joint angles obviously can be used to compute a p ∈ Conf

alg (an) and vice versa.

The analysis carried out in this work uses the observation that it is sufficient to understand the space of
spherical configurations, denoted by

SConf(an) =
{(
αn−1, βn−1

)
∈Mn−1 : ‖fan,n−1

(
αn−1, βn−1

)
‖22 = a2n

}
, (2.3)

in order to describe Conf(an). From the definition of SConf(an) it is clear that for any
(
αn−1, βn−1

)
∈ SConf(an)

its endpoint satisfies

fan,n−1
(
αn−1, βn−1

)
∈ San ,

where San is the sphere that is centred at the origin and has radius an. We will refer to such a configuration(
αn−1, βn−1

)
as a spherical configuration of a CKC. For the sake of clarity, different notations for spherical

configurations and configurations of a CKC are used here. Suppose that fa,n−1
(
αn−1, βn−1

)
is the endpoint of

a spherical configuration
(
αn−1, βn−1

)
that has spherical coordinates (λ, µ) on San . Then there is a rotation Rλ,µ
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Figure 1. Left: A three-dimensional CKC with n = 5 five links. Spherical joints are illustrated as small spheres. The first joint of the chain is the origin and link a5
is supported on the positive x-axis. The transparent ball indicates all the possible locations of the endpoint of spherical configurations. Right: The diagonal lengths
of CKC are depicted. Since their definition is the same for any dimension, for simplicity a configuration of a CKC in two dimensions is depicted.

such that,

Rλ,µ · fan,n−1
(
αn−1, βn−1

)
=

an0
0

 .

The latter expression can be used to obtain (ϕn−1, ϑn−1) ∈ Conf
a from a spherical configuration. This

argumentation shows that an efficient method for calculating solutions to the implicit equation

L2
n−1(αn−1, βn−1) := ‖fan,n−1

(
αn−1, βn−1

)
‖22 = a2n, (2.4)

also leads to an efficient method to determine configurations in Conf(an). Here Ln−1 is a diagonal of the CKC,
see Figure 1 and also section 2.1.

Summarizing, we obtain configurations of a CKC by the following two step algorithm:

(i) Compute a spherical configuration
(
αn−1, βn−1

)
∈ SConf(an)

(ii) Determine (λ, µ) and Rλ,µ and compute the closed configuration
(
ϕn−1, ϑn−1

)
∈ Conf(an).

Since step (ii) is a rather easy task once a spherical configuration is obtained we will focus on step (i). In this step
we are concerned with describing the solutions of the trigonometric equation (2.4), which is in its expanded
form given by (

n−1∑
j=1

aj sin(βj) cos(αj)

)2

+

(
n−1∑
j=1

aj sin(βj) sin(αj)

)2

+

(
n−1∑
j=1

aj cos(βj)

)2

= a2n. (2.5)

Rearranging and simplifying according to trigonometric addition formulas gives

n−1∑
i=1

a2i + 2

n−1∑
i<j

aiaj sin (βi) sin (βj) cos(αi − αj) + 2

n−1∑
i<j

aiaj cos(βi) cos(βj) = a2n. (2.6)

Consider the map g : Mn−1 → R with g
(
αn−1, βn−1

)
:= ‖fan,n−1

(
αn−1, βn−1

)
‖22. Then SConf

a = g−1(a2n) and by
the preimage theorem we know that the set SConf

a of all spherical configurations is a sub-manifold of Mn−1

of dimension 2n− 3, whenever a2n is a regular value of the map g. In all other cases the space SConf
a may

have singular points. Although the geometry of this space might be complicated it turns out solutions to
the trigonometric equation 2.6 can be obtained by a kind of backward substitution. These computations are
outlined in detail in section 3 after we introduce notations and state necessary mathematical tools to do so in
section 2.1.
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Figure 2. The function arg gives the oriented angle between the x-axis and the vector from the origin to P (a|b).

2.1. Mathematical tools and notations

Surprisingly, the trigonometric equation (2.6) can be rearranged into an equation of the same type but with one
joint less appearing on its left hand side, which will be done in Section 3. For the necessary computations to
show this fact, we will use the addition theorem for a linear combination of sine and cosine functions:

a sin (t) + b cos (t) = c sin (t+ arg(a, b)) , (2.7)

where c =
√
a2 + b2 and arg (a, b) is the function described in Figure 2. In order to achieve a compact

presentation of the results that will follow it is important to introduce several abbreviations and notations.
These abbreviations are motivated by an equivalent form of equation (2.6) that is obtained by taking the
summand of index n− 1 out of the sum, applying trigonometric addition formulas and rearranging the
remaining terms. The resulting form is given by

cos(αn−1) sin(βn−1) 2

n−2∑
j=1

an−1aj sin(βj) cos(αj) + sin(αn−1) sin(βn−1) 2

n−2∑
j=1

an−1aj sin(βj) sin(αj)+

2

n−2∑
i<j

aiaj sin(βj) sin(βi) cos(αi − αj) + an−1 cos(βn−1) 2

n−2∑
j=1

aj cos(βj) + 2

n−2∑
i<j

aiaj cos(βi) cos(βj) + Sn−1 = a2n,

(2.8)

where Sn−1 :=
∑n−1

i=1 a
2
i and accordingly Sn−k :=

∑n−k
i=1 a

2
i for 1 ≤ k ≤ n− 2.

For a vector of link lengths an and
(
αn−1, βn−1

)
∈Mn−1 we define for 1 ≤ k ≤ n− 1 the following

abbreviations: First denote by Xn−k
(
αn−k, βn−k

)
, Yn−k

(
αn−k, βn−k

)
and Zn−k

(
αn−k, βn−k

)
the x-, y- and z-

component of fan,n−k
(
αn−k, βn−k

)
, that is,

Xn−k
(
αn−k, βn−k

)
:=

n−k∑
j=1

aj sin(βj) cos(αj),

Yn−k
(
αn−k, βn−k

)
:=

n−k∑
j=1

aj sin(βj) sin(αj)

Zn−k
(
αn−k, βn−k

)
:=

n−k∑
j=1

aj cos(βj).

Furthermore, for a (spherical) configuration
(
αn−1, βn−1

)
we will refer to the values

Ln−k
(
αn−k, βn−k

)
:=
∥∥fan,n−k (αn−k, βn−k)∥∥ (2.9)

as its diagonal lengths, for 2 ≤ k ≤ n− 1. For a closed configuration we denote by

Ln−3 := (L2, · · · , Ln−2) ∈ Rn−3 (2.10)
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its vector of (variable) diagonal lengths, where the we point out that the diagonals are not included in this
definition since L1 = a1 and Ln−1 = an are fixed values. In this context, a configuration of a KC with links
a1, . . . , an−1 is a spherical configuration if Ln−1 = an. With the introduced notation we have that

L2
n−k

(
αn−k, βn−k

)
= Xn−k

(
αn−k, βn−k

)2
+ Yn−k

(
αn−k, βn−k

)2
+ Zn−k

(
αn−k, βn−k

)2
= 2

n−k∑
i<j

aiaj sin(βj) sin(βi) cos(αi − αj) + 2

n−k∑
i<j

aiaj cos(βi) cos(βj) + Sn−k,

where the second equality follows from the addition formula for the cosine function in the same way as (2.6)
was derived. Finally, we denote by

Φn−k
(
αn−k, βn−k

)
:= arg

(
n−k∑
j=1

aj sin (βj) sin(αj)︸ ︷︷ ︸
Yn−k(αn−k,βn−k)

,

n−k∑
j=1

aj sin (βj) cos(αj)︸ ︷︷ ︸
Xn−k(αn−k,βn−k)

)
(2.11)

Ψn−k
(
αn−k, βn−k−1

)
:= arg

(
sin
(
αn−k + Φn−k−1

(
αn−k−1, βn−k−1

))
C
(
αn−k−1, βn−k−1

)
,

n−k−1∑
j=1

aj cos(βj)︸ ︷︷ ︸
Zn−k−1(αn−k−1,βn−k−1)

)
,

(2.12)

with C
(
αn−k−1, βn−k−1

)
:=

√
Xn−k−1 (αn−k−1, βn−k−1)

2
+ Yn−k−1 (αn−k−1, βn−k−1)

2

(2.13)

In calculations we will often omit the arguments
(
αn−k−1, βn−k−1

)
for readability. We point out that in its

second argument, Φn−k depends on the β-angle components up to βn−k whereas Ψn−k only depends on those
up to βn−k−1.

3. Sampling the space of spherical configurations

Spherical configurations are implicitly given as solutions of the trigonometric equation (2.6). Although such
an equation is useful to determine whether a configuration (αn−1, βn−1) satisfies the closedness condition or
not, a more explicit description of the configuration space is highly desirable. It turns out that the desired
description can be obtained by manipulating equation (2.6). This results in an algorithm to systematically
determine solutions to (2.6), which is outlined in Corollary 3.3. For the reader’s better comprehensibility we
included a preparatory section.

3.1. Mathematical prerequisites

Equation (2.6) can be compactly written as L2
n−1 = a2n. Since our goal is to manipulate this equation, we write

it as

2

n−1∑
i<j

aiaj sin (βi) sin (βj) cos(αi − αj) + 2

n−1∑
i<j

aiaj cos(βi) cos(βj) + Sn−1 = a2n.

Our reduction step of the equation L2
n−1 = a2n is now based on a trick that brings the diagonal length Ln−2

into play. This can be achieved by fixing the element with index n− 1 in the sums and applying the addition
formula for the cosine function to cos(αi − αn−1) and using the notation from the last section to rewrite (2.8) as

cos(αn−1) sin(βn−1)an−12Xn−2 + sin(αn−1) sin(βn−1)an−12Yn−2

+ an−1 cos(βn−1)2Zn−2 + L2
n−2 = L2

n−1 − a2n−1, (3.1)

where we used that Ln−1 = an. The original equation (2.4) is equivalent to the latter equation. However, in this
transformed version of the equation the diagonal length of the mechanism reduced by one link Ln−2 appears.
Moreover, one recognizes that it is already tempting to apply (2.7) for the angle αn−1. This observation will be
the basis of Theorem 3.1.
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3.2. Computation and sampling of spherical configurations

In order to achieve a description of the configuration space, we show that the trigonometric equation (2.6)
allows for a kind of backward substitution, see Theorem 3.1. Subsequently, this property can then be exploited
to determine configurations by a successive procedure. The approach is similar to the one in [32], but the
presentation is more mature and clearer in this follow-up work. We introduce a definition before we state the
main result of the chapter.

Definition 3.1 (Diagonal Space). For a CKC with link lengths a1, . . . , an, recall that Ln−3 ∈ Rn−3≥0 denotes its
vector of fixed diagonals. We denote the diagonal space of the CKC as the set

DS(an) :=
{
Ln−3 : Ln−k−1 ∈

[
|Ln−k − an−k| , Ln−k + an−k

]
∩
[
0 ∨ Rmin

n−k−1,R
max
n−k−1

]
, 1 ≤ k ≤ n− 3

}
, (3.2)

where we use the notation

Rmin
k := max

1≤i≤k

(
2ai −

k∑
j=1

aj

)
and Rmax

k :=

k∑
j=1

aj for 1 ≤ i ≤ k. (3.3)

Moreover we use the abbreviation 0 ∨ Rmin
k := max

{
0,Rmin

k

}
.

Note that the quantities Rmin
k and Rmax

k also play an important role in [27]. We state our main result about
CKCs.

Theorem 3.1 (Chain reduction). Suppose
(
αn−1, βn−1

)
∈Mn−1 is a configuration of a KC for a given vector of

link lengths an. Then
(
αn−1, βn−1

)
∈ SConf(an) if and only if its diagonal vector Ln−3 = (L2, . . . , Ln−2) is an element

of DS(an). Furthermore, the angles αn−k, βn−k are related to the remaining vector of angles αn−k−1, βn−k−1 of the
spherical configuration, for 1 ≤ k ≤ n− 2, by the equation (that is analogue to (3.1))

cos(αn−k) sin(βn−k)an−k2Xn−k−1 + sin(αn−k) sin(βn−k)an−k2Yn−k−1

+ an−k cos(βn−k)2Zn−k−1 + L2
n−k−1 = L2

n−k − a2n−k, (3.4)

which is equivalent to

2an−k sin (βn−k + Ψn−k)
[
sin (αn−k + Φn−k−1)

2 (
X2
n−k−1 + Y 2

n−k−1
)

+ Z2
n−k−1

] 1
2

+ L2
n−k−1

= L2
n−k − a2n−k, (3.5)

whenever all expressions therein are defined. The latter equality explains the name of the theorem, since it explicitly relates
sub-chains with n− k and n− k − 1 links of the CKC.

Proof. Assume a spherical configuration (αn−1, βn−1) is given. We will manipulate equation (3.1) to show
that its diagonal lengths are indeed in DS(an). We show the result for the diagonal Ln−2. For the remaining
diagonals, the argument then follows inductively by repeatedly applying the same arguments.

First consider the case when Xn−2 = Yn−2 = 0 and Zn−2 6= 0. Then the value of αn−1 does not play a role in
(3.4). (That is, if conversely a vector of diagonals Ln−3 is given, αn−1 can be chosen arbitrarily in [0, 2π].) We see
that |Zn−2| = Ln−2 holds and get that

2an−1 cos(βn−1)Zn−2 + Z2
n−2 = L2

n−1 − a2n−1.

The latter equation can be solved for βn−1 ∈ [0, π] iff the inequalities

−an−1 ≤
L2
n−1 − a2n−1 − L2

n−2
2Zn−2

≤ an−1,

are satisfied, or equivalently if the diagonal lengths satisfy the inequality 4a2n−1L
2
n−2 ≥

(
L2
n−1 − a2n−1 − L2

n−2
)2.

showing that Ln−2 satisfies Ln−2 ∈
[
|Ln−1 − an−1|, Ln−1 + an−1

]
. Furthermore, since (αn−1, βn−1) is a spherical
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configuration the diagonal Ln−2 must also be reachable by the remaining links of the CKC, see 3.1. Therefore
Ln−2 ∈

[
Rmin
n−1,R

max
n−1

]
has to be satisfied and in this case we can conclude that

Ln−2 ∈
[
|Ln−1 − an−1|, Ln−1 + an−1

]
∩
[
Rmin
n−1,R

max
n−1

]
. (3.6)

We mention that also in the trivial case when Xn−2 = Yn−2 = Zn−2 = 0, this condition is trivially satisfied and
Ln−1 = an = an−1 must hold.

After having dealt with the special cases, we can assume that (Xn−2, Yn−2) 6= (0, 0). Then applying formula
(2.7) to equation (3.1) gives

2an−1 sin (αn−1 + Φn−2) sin(βn−1)
[
X2
n−2 + Y 2

n−2
]1/2

+ 2an−1 cos(βn−1)Zn−2 + L2
n−2 = L2

n−1 − a2n−1. (3.7)

Note that we can apply formula (2.7) again to equation (3.7) for βn−1 and obtain

2an−1 sin (βn−1 + Ψn−1)
[
sin (αn−1 + Φn−2)

2 (
X2
n−2 + Y 2

n−2
)

+ Z2
n−2

] 1
2

+ L2
n−2 = L2

n−1 − a2n−1 (3.8)

provided that the expression in the square brackets is not zero. If so, Zn−2 must vanish and we conclude that
sin(αn−1 + Φn−2) = 0 and therefore αn−1 = 2π − Φn−2 or αn−1 = π − Φn−2, whereas regardless of the choice for
αn−1 the angle βn−1 can be chosen arbitrarily in [0, π]. Note that also in these cases (3.6) is satisfied. Finally, as
sin (αn−1 + Φn−2)

2 (
X2
n−2 + Y 2

n−2
)

+ Z2
n−2 6= 0, solving (3.8) for βn−1 is only possible if and only if the chain of

inequalities

−an−1 ≤
L2
n−1 − a2n−1 − L2

n−2

2
[
sin (αn−1 + Φn−2)

2 (
X2
n−2 + Y 2

n−2
)

+ Z2
n−2

] 1
2

≤ an−1

are satisfied and lead immediately to the equivalent inequality(
L2
n−1 − a2n−1 − L2

n−2
)2 ≤ 4a2n−1

(
sin (αn−1 + Φn−2)

2 (
X2
n−2 + Y 2

n−2
)

+ Z2
n−2

)
. (3.9)

Further rearranging gives

4a2n−1 sin (αn−1 + Φn−2)
2 ≥

(
L2
n−1 − a2n−1 − L2

n−2
)2 − 4a2n−1Z

2
n−2

X2
n−2 + Y 2

n−2
. (3.10)

If αn−1 is given, a fortiori, it follows that

4a2n−1 ≥
(
L2
n−1 − a2n−1 − L2

n−2
)2 − 4a2n−1Z

2
n−2

X2
n−2 + Y 2

n−2
. (3.11)

Since X2
n−2 + Y 2

n−2 + Z2
n−2 = L2

n−2, this gives(
L2
n−1 − a2n−1 − L2

n−2
)2 ≤ 4a2n−1L

2
n−2, (3.12)

which means that (3.6) holds for Ln−2 and hence the diagonal length is feasible. Interpreting the original
equation (2.6) as Ln−1 = an, we can proceed in an iterative manner by solving an equation of the form
Ln−2 = a, where a is an element in the interval (3.6). This shows that a spherical configuration yields a vector of
lengths Ln−3 ∈ DS(an) and the relation (3.5) holds. Conversely, assume that Ln−3 ∈ DS(an) is given. By simple
equivalency transformations of the conditions in the definition ofDS(an), (3.12) follows. So does (3.11) and this
inequality yields a range for the angle αn−1 such that (3.10) holds. From there, going upwards by equivalency
transformations assuming all terms exist, we are guaranteed that (3.5) is solvable and we can use it to compute
a spherical configuration (αn−1, βn−1). The special cases, where not all terms are well-defined are similar but
easier to treat.

It is interesting to consider some special cases to reflect on the results of the last theorem.
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Remark 3.1 (First step k = 1). For simplicity, we assume in the following consideration that the links are ordered
according to their length, i.e. an ≤ · · · ≤ a1 applies. We have a closer look on the conditions for Ln−k−1 if k = 1.
Written in its expanded form we have

Ln−2 ∈
[
an − an−1, an + an−1

]
∩

[
0 ∨ an−2 −

n−3∑
j=1

aj ,

n−2∑
j=1

aj

]
.

This can be interpreted in the following way: Assume that we split the spherical configuration at the point
connecting the links an−1 and an−2 and divide it into two parts in this way. The diagonal Ln−2 is the basis
of the triangle with the remaining sides an and an−1. Therefore satisfies Ln−2 ≤ an + an−1, see Figure 3.
However, the length Ln−2 is also the base of the remaining part of the chain and must therefore also be
a value that can be taken on by ||fan,n−2(αn−2, βn−2)||. This implies that Ln−2 ≤

∑n−2
j=1 aj . Likewise, it is

clear that Ln−2 ≥ an − an−1 and also, since the remaining chain must be able to reconnect with its first part
Ln−2 ≥ 0 ∨ an−2 −

∑n−3
j=1 aj has to hold.

an−2

a n
−
3

a n
−
1

an
a1

L n−
2

L
n−

2

Figure 3. After breaking the CKC up the diagonal appears in both parts.

By the definition of the space DS(an) the entries of its elements Ln−3 can be obtained recursively, resulting in
a sampling strategy for the whole space. Theorem 3.1 ensures that the angles that can be obtained from Ln−3

satisfy the loop closure condition. We shortly summarize this in more detail in order to emphasize the progress
of this work in comparison with the existing literature:

• Sampling of the space DS(an) is an advance over its description by a system of linear inequalities as
in [18, 20], since this requires the application of methods from linear programming. Furthermore, our
theorem shows that DS(an) can be written as the intersection of a polytope and a cuboid. More precisely,
if

P(an) :=
{

(L2, . . . , Ln−2) ∈ Rn−3≥0 : Ln−k−1 ∈
[
|Ln−k − an−k| , Ln−k + an−k

]}
, (3.13)

denotes the polytope defined by nested intervals, then

DS(an) = P(an) ∩Q(an), with Q(an) :=
∏

1≤k≤n−3

[
0 ∨ Rmin

n−k−1,R
max
n−k−1

]
. (3.14)

• Equation (3.5) explicitly shows how joint angles of the CKC are related to its diagonals, which ultimately
leads to a representation of the joint angles and thus also of Conf

alg (an) by the known set DS(an). Such an
explicit relation has been doubted in literature [27, page 774].

The description of DS(an) by the sampling procedure is already very useful. Nevertheless, we will further
investigateDS(an) in section 4. For the moment, however, we would like to focus on the relationship ofDS(an)
with the work of [19] and state one of its main result for convenience.
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Theorem 3.2 (Feasible values for the diagonal lengths Ln−k, Section 2.3 of [19]). Let
(
αn−1, βn−1

)
∈Mn−1 be a

configuration of a KC. Then
(
αn−1, βn−1

)
is a spherical configuration if and only if its diagonals L1, . . . , Ln−1 ∈ R≥0

satisfy the following (in)equalities:
a1 = L1

|Lk−1 − ak| ≤ Lk ≤ Lk−1 + ak, 2 ≤ k ≤ n− 1,
ak ≤ Lk + Lk−1, 2 ≤ k ≤ n− 1,
an = Ln−1

(3.15)

Since every configuration yields diagonal lengths that are contained in DS(an) and vice versa, we get the
following result as a direct consequence of Theorem 3.1.

Corollary 3.1 (Equivalent system). Let L1 . . . , Ln−1 ∈ R≥0 with L1 = a1 and Ln−1 = an−1 satisfy the following
system of inequalities: {

|Lk − ak| ≤ Lk−1 ≤ Lk + ak, 3 ≤ k ≤ n− 1,
0 ∨ Rmin

k ≤ Lk ≤ Rmax
k 2 ≤ k ≤ n− 1

(3.16)

Then any solution to system (3.16) is also a solution to (3.15), which means that the systems of inequalities are equivalent.

The following example illustrates the diagonal space for simple CKCs and also confirms the statement in the
corollary.

Example 3.1 (Five bar mechanisms). We consider two CKCs with five links, also called five bar mechanisms.
The first mechanism has link lengths that are all equal to one, i.e. a5 = (1, 1, 1, 1, 1). In this case we have

P
(
a5
)

= {(L2, L3) : 0 ≤ L3 ≤ 2, |L3 − 1| ≤ L2 ≤ L3 + 1} andQ
(
a5
)

= [−1, 3]× [0, 2]

and DS
(
a5
)

is the intersection of trapezoidal and a rectangle as depicted in Figure 4. The second mechanism
has link lengths b5 = (2, 3, 4, 2, 3). For this mechanism we obtain DS(b5) as the intersection of

P
(
b5
)

= {(L2, L3) : 1 ≤ L3 ≤ 5, |L3 − 4| ≤ L2 ≤ L3 + 4} andQ
(
b5
)

= [0, 9]× [1, 5].

Consistently, also the inequalities in [20] give the same domain.

As soon as one obtains a feasible diagonal vector of length Ln−3, one can already geometrically construct a
configuration of a CKC from it by intersecting spheres, see Figure 5. In the sequel, we determine the joint angles
of the CKC from Ln−3. As expected, these parametrize the intersection circles which occur in the geometrical
construction. This is numerically demonstrated in section 5.

L3

L2

P

Q

1

1 P ∩Q

L3

L2

P

Q

1

1

P ∩Q

Figure 4. Left: The Domain DS(an) for a CKC with five links of length one as intersection of a trapezoidal domain (all configurations without loop closure
constraint) with a rectangle. Right: The diagonal space of the CKC with links (2, 3, 4, 2, 3). The same domain is shown in [21].

Theorem 3.3 (Spherical configurations from diagonals). A spherical configuration (αn−1, βn−1) ∈ SConf (an), that
is a configuration satisfying the equation (2.4), can be obtained by the following procedure:
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x

y

z

a1 = L
1

a 2

a
3

L2

L
3

Figure 5. Process of constructing a configuration of a CKC from a set of feasible diagonals: At the endpoint of the link a2 a sphere of radius a3 is centered and
intersected by a sphere of radiusL3 centered on the origin. The link a3 connects the endpoint of link a2 with a point on the intersection, which is a circle. According
to this construction the endpoint of a3 hast distanceL3 from the origin. Our approach computes the parametrization of the intersection circles in terms of the joint
angles of the CKC.

1. Compute Rmin
k , Rmax

k for 2 ≤ k ≤ n− 1. Then construct a vector with n− 3 entries

Ln−3 = (L2, . . . , Ln−2) ∈ DS(an)

of feasible diagonal lengths iteratively, starting from L1 := a1 and Ln−1 := an and continuing by choosing Ln−k−1
in [|Ln−k − an−k|, Ln−k + an−k] ∩

[
0 ∨Rmin

n−k−1, R
max
n−k−1

]
, for k = 1, · · · , n− 2.

2. For 2 ≤ k ≤ n− 1 assume (αk−1, βk−1) and the remaining angles (αk−2, βk−2) (for k ≥ 3) are already related
according to equation (3.5) with k replaced by n− k + 1. Moreover, we can assume that Xk−1, Yk−1, Zk−1, Φk−1
and Ψk−1 (when this is possible for Φk−1 and Ψk−1) are already computed. Based on the angles already determined
(including an arbitrary starting angle (α1, β1) in [0, 2π)× [0, π]), we now distinguish the following cases in the
calculation of αk and βk, which are in turn divided into subcases:

(i) Return to the origin: X2
k−1 + Y 2

k−1 + Z2
k−1 = 0⇔ (Xk−1, Yk−1, Zk−1) = 0. Then (αk, βk) can be

arbitrarily chosen from [0, 2π)× [0, π]. If this occurs, the configuration of the CKC loops that return to the
origin. Such cases have also been studied in [20, Section 2.2].
Solutions: (αk, βk) ∈ [0, 2π)× [0, π].

(ii) Right angled triangle: This is the case when L2
k−1 + a2k = L2

k. If it happens, equation (3.5), with k replaced
by n− k, reduces to exactly this equation L2

k−1 + a2k = L2
k, which means that Lk−1, Lk and ak form a right-

angled triangle (we exclude the already treated possibility ofX2
k−1 + Y 2

k−1 + Z2
k−1 = 0). It follows, that in this

case

sin (βk + Ψk)
[
sin (αk + Φk−1)

2 (
X2
k−1 + Y 2

k−1
)

+ Z2
k−1

] 1
2

= 0 (3.17)

(if all terms are defined) has to hold. This case leads to the following possibilities, all describing great circles
on the unit sphere:

(a) (X2
k−1 + Y 2

k−1 = 0) ∧ Z2
k−1 6= 0. Then L2

k−1 = Z2
k−1. According to (3.4), (replacing k by n− k), αk is

arbitrary in [0, 2π) and βk = π
2 . So the solution is the equator circle in the (x, y)-plane.

Solutions: (αk, βk) ∈ [0, 2π)×
{
π
2

}
.

(b) (X2
k−1 + Y 2

k−1 6= 0) ∧ (Z2
k−1 = 0) ∧

(
sin(αk + Φk−1)2 = 0

)
. If (X2

k−1 + Y 2
k−1 6= 0) then it is possible

to compute Φk−1. Now sin(αk + Φk−1)2 = 0, meaning that αk ∈ {2π − Φk−1, π − Φk−1}( mod 2π).
Again βk is arbitrary in [0, π]. The obtained solution set forms a longitudinal circle.
Solutions: (αk, βk) ∈ ({2π − Φk−1, π − Φk−1} × [0, π]) .
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(c) sin (αk + Φk−1)
2 (
X2
k−1 + Y 2

k−1
)

+ Z2
k−1 6= 0: In this case we choose αk ∈ [0, 2π) arbitrarily, compute

Ψk and since sin (βk + Ψk) = 0 we have that

βk = Ψ̃k :=

{
π −Ψk, Ψk ∈ [0, π),

2π −Ψk, Ψk ∈ (π, 2π].

The solution yields a great circle on the unit sphere which is neither the equator nor a longitudinal circle.
Solutions: (αk, βk) ∈

{(
γ, ψ̃

)
: γ ∈ [0, 2π), ψ = arg(γ + Φk−1, Zk−1)

}
.

(iii) General triangle: In this case we have to deal with full extent of equation (3.4) or – if Φ and Ψ are defined –
equation (3.5) (with n− k replaced by k). We check again all appearing sub-cases.

(a) (X2
k−1 + Y 2

k−1 = 0) ∧ (Z2
k−1 6= 0). In this situation we use equation (3.4) (replacing n− k by k). We

conclude that αk ∈ [0, 2π) is arbitrary and obtain βk by

2ak cos(βk)Zk−1 = L2
k − a2k − L2

k−1 ⇔

βk = arccos

(
L2
k − a2k − L2

k−1
2akZk−1

)
.

The existence of the right hand side as a unique real number is guaranteed by the domain [0, π] of βk and
by −1 ≤ L2

k−a
2
k−L

2
k−1

2akZk−1
≤ 1, since Z2

k−1 = L2
k−1 and the lengths Lk, ak, Lk−1 are the sides of a triangle.

The solution set is a circle of latitude.
Solutions: (αk, βk) ∈ [0, 2π)×

{
arccos

(
L2
k−a

2
k−L

2
k−1

2akZk−1

)}
.

(b) In the case of X2
k−1 + Y 2

k−1 6= 0 we infer that also sin (αk + Φk−1)
2 (
X2
k−1 + Y 2

k−1
)

+ Z2
k−1 6= 0, in

particular sin (αk + Φk−1) 6= 0, otherwise we would be in the case L2
k−1 + a2k = L2

k that has already been
checked. Hence, Φk−1 is defined. The value αk can be determined by an inequality analogue to (3.10)
(replacing n− 1 by k and n− 2 by k − 1), giving

sin(αk + Φk−1) ∈
[
−1,−

√
Dk ∨ 0

]
∪
[√

Dk ∨ 0, 1
]
, where Dk :=

(
L2
k − a2k − L2

k−1
)2 − 4a2kZ

2
k−1

4a2k(X2
k−1 + Y 2

k−1)
.

Taking the preimage of sin : [0, 2π)→ [−1, 1] of the above set and shifting it by Φk−1( mod 2π) yields
the range for αk, in general the union of two intervals in [0, 2π). For this αk compute now Ψk, which is
defined in this case. The angle βk is then given by solving

sin(βk + Ψk) =
L2
k − a2k − L2

k−1

2ak

[
sin (αk + Φk−1)

2 (
X2
k−1 + Y 2

k−1
)

+ Z2
k−1

] 1
2

,

which admits exactly one solution for βk because the term on the right side equals to a number in [−1, 1] for
the choice of diagonals and the precomputed quantities. The following set of solutions describe a (generic)
circle on the unit ball.
Solutions:

αk ∈ sin−1
([
−1,−

√
Dk ∨ 0

]
∪
[√

Dk ∨ 0, 1
])
− Φk−1 mod 2π,

and βk = sin−1

 L2
k − a2k − L2

k−1

2ak

[
sin (αk + Φk−1)

2 (
X2
k−1 + Y 2

k−1
)

+ Z2
k−1

] 1
2

−Ψk mod 2π,

if this value βk is contained in [0, π].

With the corollary we can systematically find joint angles of three-dimensional CKCs from their diagonal
spaces that can be effectively sampled.

At this point, we would like to deprive the reader of a direct consequence of our explicit calculations. As
a by-product, we obtain an alternative proof of a well-known fact about the configuration space of three-
dimensional CKCs.
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Corollary 3.2. The configuration space of SConf(an) of a three-dimensional CKC is connected.

Proof. Theorem 3.3 shows that joint angles with the same diagonals are given by circles (or the whole Sphere
for the very first choice), compare with Figure 5, when interpreted as points in the sphere S2. To construct
a particular (αn−1, βn−1) from a given tuple of feasible diagonals Ln−3 we use the continuous operations
described in Theorem 3.3 plus the choice from parameters taken from a circle on the unit sphere in each of
the above algorithm’s step. Identifying the first choice with the unit sphere and all following circles with the
unit circle (which is possible in a homeomorphic way, of course) yields a continuous mapping

Gan : DS(an)× S2 × S1 × · · · × S1 → SConf(an), (Ln−3, λ)→ (αn−1, βn−1),

where λ ∈ S2 × (S1)n−4 are then the parameters to determine the angles. Since DS(an) is connected so is
SConf(an).

4. The diagonal space DS(an) in the case of three long links

In this section, we will further investigate DS(an). For a special class of CKCs we will be able to describe
explicitly their diagonal lengths by a cube of dimension n− 3. The class of CKCs where this is true is related to
the class of CKCs with three long links. We recall the definition in [27, Section 3].

Definition 4.1 (Long links). Let L :=
∑n

i=1 ai be the lengths of a CKC with links an. A subset A of its links
A ⊆ {a1, . . . , an} is referred to as containing long links of the CKC, iff the lengths of every pair of distinct links
in A is strictly greater than L/2.

Note that a CKC can have no more than three long links in which case the set A is unique. We can use a the
notion of three long links to prove the following result for the polytopes P(an) andQ(an) from (3.13) and (3.14).

Theorem 4.1. Assume a mechanism with link lengths a1 ≥ a2 ≥ a3 ≥ · · · ≥ an be such that A = {a1, a2, a3} and for
all a, b ∈ A we have a+ b > L

2 . Then P(an) ⊆ Q(an), and in particular, DS(an) = P(an).

Proof. For P(an) to be contained in Q(an), it is enough to show that all inequalities defining P(an) also satisfy
the restrictions imposed by Q(an). Note that Ln−1 = an and consider

|Lk+1 − ak+1| ≤ Lk ≤ Lk+1 + ak+1, k = 1, . . . , n− 2. (4.1)

We have to show that
0 ∨ Rmin

k ≤ Lk ≤ Rmax
k , k = 2, . . . , n− 1.

First note, that Rmin
2 = a1 − a2 ≥ 0 and, as a1 is the largest element, thus

[0 ∨ Rmin
2 ,Rmax

2 ] = [a1 − a2, a1 + a2]

and for all k ≥ 3,

[0 ∨ Rmin
k ,Rmax

k ] =

[
0,

k∑
i=1

ai

]
,

since always two of the largest elements become subtracted when computing Rmin
k . The lower bound is thus

never a problem for k ≥ 3. For the upper bound, the highest possible value for Lk that may be reached by
using the nested inequalities (4.1), starting from Ln−1 = an and going only down to k, is

∑n
i=k+1 ai. In this case,

Rmax
k =

∑k
i=1 ai >

∑n
i=k+1 ai as the first sum always contains at least a1 and a2. Hence, Lk ∈ [0 ∨ Rmin

k ,Rmax
k ] is

always satisfied for k ≥ 3. It remains to check the range of L2. For the upper bound, L2 ≤ Rmax
2 follows by the

exactly same argument as for k ≥ 3. In case of the lower bound, the nested inequalities yield L2 ≥ |L3 − a3|. By
assumption, we know that a2 + a3 ≥ L

2 , i.e. a2 + a3 ≥ a1 +
∑n

i=4 ai. Equivalently, a3 ≥
∑n

i=4 ai + (a1 − a2) and
a fortiori, a3 ≥

∑n
i=4 ai. Knowing from the upper bound argument before that L3 ≤

∑n
i=4 ai, we have in any

case a3 > L3. Thus the absolute |L3 − a3| turns to a3 − L3. But this means,

|L3 − a3| = a3 − L3 ≥ a1 − a2 ⇔ a3 + a2 ≥ a1 + L3,

which is true since L3 is bounded by
∑n

i=4 ai. Therefore L2 ≥ |L3 − a3| ≥ a1 − a2 = Rmax
2 . Thus all inequalities

defining Q(an) are satisfied (L1 is trivially set to a1), concluding the proof.
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Remark 4.1 (Generalization). We would like to point out that the statement of Theorem 4.1 is still true when
a+ b ≥ L/2 holds. For ordered CKCs, the result therefore applies to a slightly larger class than those of CKCs
with three long links.

The configuration space of a CKC described in terms of its joint angles does not depend on the ordering of
its links (up to homeomorphisms) [24, Remark 1.2]. However, the property exhibited in Theorem 4.1 and the
diagonal space DS(an) does, as will be illustrated in the example below.

Example 4.1. We consider the diagonal spaces of the CKCs with the link lengths a5 = (6, 5, 4, 1, 1) and ã5 =
(4, 1, 6, 5, 1). In both cases the CKCs have three long links. In the ordered case the polytope P(a5) is contained
within the cuboid a5. For the two CKCs we obtain

DS(a5) : L3 ∈ [0, 2] ∩ [0, 15], L2 ∈ [|L3 − 4|, L3 + 4] ∩ [1, 11]

DS(ã5) : L3 ∈ [4, 6] ∩ [0, 11], L2 ∈ [|L3 − 6|, L3 + 6] ∩ [3, 5]

The diagonal spaces are depicted in Figure 6.

L3

L2

P

Q

2

4

L3

L2

P

Q

P ∩Q

6

Figure 6. Left: The diagonal space for the CKC with links a5 = (6, 5, 4, 1, 1). The polytope is clearly contained withinQ(a5). Right: The diagonal space for the
CKC with links ã5 = (4, 1, 6, 5, 1). Diagonal space consists of the square that is the intersection of the trapezoidal and the rectangular domain. Interestingly the
areas of both diagonal spaces are the same. Note that the dependence of the spaces on the link lengths is omitted in the notation in the pictures.

Under the conditions of Theorem 4.1, it is certain that P(an) lies in Q(an). This result is so interesting for us
because we are able to obtain a map, defined on a cube of dimension n− 3, whose image is the polytope P(an).
A key ingredient to obtain this parametrization is the following transformation of variables.

Theorem 4.2 (Transformation of variables). Let P(an) be given as in (3.13). Define new variables U2, . . . , Un−2
according to the equation

L2
n−k−1 = Un−k−1 + a2n−k + L2

n−k, 1 ≤ k ≤ n− 3. (4.2)

Then, for 1 ≤ k ≤ n− 3, the Uk satisfy the following system of inequalities:

|Un−k−1| ≤ Tn−k(Un−k, . . . , Un−2) := 2an−k

√√√√ n−2∑
j=n−k

Uj +

n∑
j=n−k+1

a2j (4.3)

Note that for k = 1 the value of the empty sum is zero and Tn−1 = 2anan−1.

Proof. The inequalities defining P(an) are equivalent to

(Ln−k − an−k)
2 ≤ L2

n−k−1 ≤ (Ln−k + an−k)
2
,

which is equivalent to

−2Ln−kan−k ≤ Un−k−1 ≤ 2Ln−kan−k (4.4)

For all n, system (4.3) can now be obtained by inductively applying substitution (4.2) to equation (4.4),
exploiting that Ln−1 = an.
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Analogously to Definition 3.1 we define the

Definition 4.2. We define the transformed polytope space as the set

PU(an) =
{
Un−3 = (U2, . . . , Un−2) ∈ Rn−3 : the entries of Un−3 satisfy (4.3)

}
Obviously, the space PU(an) can be transformed to P(an) by a transformation F that can be obtained by using
equation (4.2). The next example illustrates this transformation in more detail:

Example 4.2 (The spacePU(an) for a five bar mechanism). We consider the mechanism with five members an =
(a1, . . . , a5) by which we want to illustrate the above theorem by performing the coordinate transformation
explicitly. In this case the defining equations of P(an) in their squared form are given by

(a5 − a4)2 ≤ L2
3 ≤ (a5 + a4)2, (L3 − a3)2 ≤ L2

2 ≤ (L3 + a3)2.

Expanding the squares and using the substitutions L2
2 = U2 + a23 + L2

3 and L2
3 = U3 + a24 + a25 we obtain

−2a5a4 ≤ U3 ≤ 2a5a4, −2L3a3 ≤ U2 ≤ 2L3a3,

where the right and left side for U2 depend on L2. In order to obtain inequalities in U2, U3 only, we express L3

in terms of U3 and obtain the inequalities for P(an) in U space, that is

−2a5a4 ≤ U3 ≤ 2a4a5, −2a3

√
U3 + a24 + a25 ≤ U2 ≤ 2a3

√
U3 + a24 + a25.

In the case of CKCs with three long links we have by Theorem 4.1 that DS(an) = P(an) and the polytope
can be described by a new set of variables. More precisely, for CKCs with three long links we have that
F (PU(an)) = DS(an). The main contribution in this situation is that PU(an) can be explicitly parameterized
by a map Γ. This map is defined on a particularly simple domain, namely on a cube of dimension n− 3.

Theorem 4.3. For a CKC with three long links the space PU(an) can described by parameters sn−3 = (s2, . . . , sn−2)
that are contained in the unit cube In−3 = [−1, 1]n−3. More precisely, the space PU(an) is given as the image of the map

Γ: In−3 → PU(an), sn−3 7→


Γn−2(sn−2)
Γn−3(sn−3, sn−2)
...
Γ2(s2, . . . , sn−2)


where the components for 1 ≤ k ≤ n− 3 are recursively defined by

Γn−k−1(sn−k−1, . . . , sn−2) = sn−k−1Tn−k(Γn−k(sn−k, . . . , sn−2), · · · ,Γn−2(sn−2)).

Proof. We have to show that the components of Γ
(
sn−3

)
satisfy system (4.3) for sn−3 = In−3. For this purpose

set Un−k = Γn−k(sn−k, . . . , sn−2) for 1 ≤ k ≤ n− 3. Then we have to show that

|Un−k−1| ≤ Tn−k(Un−k, . . . , Un−2)

Plugging in the recursively defined entries of Γ(sn−3) gives

|Γn−k−1(sn−k−1, . . . , sn−2)| = |sn−k−1|Tn−k (Γn−k(sn−k, . . . , sn−2), . . . ,Γn−2(sn−2))

≤ Tn−k(Γn−k(sn−k, . . . , sn−2), · · · ,Γn−2(sn−2)).

One recognizes that both sides of the inequality contain the same term Tn−k. The inequalities are therefore in
any case fulfilled for sn−k−1 ∈ [−1, 1].

Remark 4.2. The description of PU(an) by parameters from In−3 is in general not a parametrization in the
differential geometric sense, since the Jacobian of the map Γ will not have full rank, if one of the terms Tn−k
vanishes. It is an interesting line of future research to investigate if this can happen in the case when a CKC has
three long links.

We give an example that demonstrates the latter result:
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Example 4.3 (Six bar mechanism). Suppose a CKC has three long links and let its link lengths be given by a6.
In this situation the image of the map Γ: I3 → PU(a6) from Theorem 4.3 is given by Γ4(s4)

Γ3(s4, s3)
Γ2(s4, s3, s2)

 =

 s4T5
s3T4(Γ4(s4))
s2T4(Γ3(s3, s4),Γ4(s4))

 =

 2s4a5a6
2s3a4

√
Γ4(s4) + a25 + a26

2s2a3
√

Γ4(s4) + Γ3(s3, s4) + a25 + a24 + a26

 .

Once the components of Γ are computed, the map F : PU(a6)→ P(a6) = DS(a6) according to (4.2) is given by Γ4(s4)
Γ3(s4, s3)
Γ2(s4, s3, s2)

 7→
 L4(s4)

L3(s3, s4)
L2(s2, s3, s4)

 =


√

Γ4(s4) + a25 + a26√
Γ3(s4, s3) + a24 + L2

4√
Γ2(s4, s3, s2) + a23 + L2

3

 .

Remark 4.3 (Generalizability of Theorem 4.3 to unordered CKCs). Example 4.1 shows that the diagonal space
depends on the order of its links. Also Theorem 4.3 requires the links lengths to be given in descending order to
guarantee that P(an) ⊂ Q(an). This may seem restrictive at first, but we can easily generalize the result of 4.3 to
CKCs with arbitrarily arranged links. For a permutation σ : {1, . . . , n} → {1, . . . , n} denote by a = (a1, . . . , an)
and aσ = (aσ(1), . . . , aσ(n)) two vectors of link lengths that coincide up to the order entries and let DS(an),
DS(anσ) be their diagonal spaces. Then a one to one map S : DS(an)→ DS(anσ) between the diagonal spaces can
be constructed in the following manner:

• Uniquely assign angles to given feasible diagonals Ln−3 ∈ DS(an):

(Ln−3, λ) 7→ (αn−1, βn−1) ∈ SConf(an)

• Reorder the CKC in the joint angle space. To represent this rearrangement in terms of σ, we augment
(αn, βn) to (αn−1, βn−1), where (αn, βn) is chosen in such a manner that the link an, when attached to the
end of link an−1, reaches back to the origin. Then reordering in joint angle space results in

(α1, β1, α2, β2, . . . , αn, βn) 7→ (αnσ , β
n
σ ) := (ασ(1), βσ(1), ασ(2), βσ(2), . . . , ασ(n), βσ(n)).

Then ||fan,n−1(αn−1, βn−1)|| = an and ||fanσ ,n−1(αn−1σ , βn−1σ )|| = aσ(n) and therefore (αn−1σ , βn−1σ ) ∈
SConf(anσ)

• Use the endpoint map for (αn−1σ , βn−1σ ) to compute Lσ,k := ||fakσ,k(αkσ, β
k
σ)|| for 2 ≤ k ≤ n− 2, which gives

Ln−3σ ∈ DS(anσ) an element in the diagonal space of the reordered chain.

The map S is a bijection between diagonal spaces of CKCs with different link arrangements. Especially, if we
have a parametrization for DS(an) under the assumptions of Theorem 4.3, this leads to a parametrization of
DS(anσ) for an arbitrary arrangement.

5. Numerical simulations

In this section we provide numerical examples that demonstrate the validity of the methods developed in this
work. Firstly, we illustrate the results from Corollary 3.3 that provides us with a procedure for obtaining the
angles of a spherical joint when feasible diagonals are given. The solutions for diagonals corresponding to
different solution cases are plotted, see Figure 7.

In our next numerical examples, we determine some random configurations of CKCs with n ∈ {5, 7, 50, 106}
links. In the presented examples the following sampling strategy is used:

• For 1 ≤ k ≤ n− 3 we choose a sample uniformly at random of

Ln−k−1 ∈ [|Ln−k − an−k|, Ln−k + an−k] .

• For the randomly chosen sample Ln−3 compute D according to Theorem 3.3 and choose, uniformly at
random again,

αk ∈ sin−1
([
−1,−

√
Dk ∨ 0

]
∪
[√

Dk ∨ 0, 1
])
− Φk.
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Figure 7. The angles αk, βk computed according to Corollary 3.3 for a certain choice of the variables already given. The angles are identified with their
corresponding points on the unit sphere. As expected all possible solution values (αk, βk) describe circles on the sphere. In the right angled case these circles are
geodesic circles. Four different cases are depicted.

• Finally compute an angle βk by the formula given in Theorem 3.3.

We note that although in each step diagonals and angles are chosen uniformly at random, the steps are always
interdependent. Also the distribution of the quantity Dk will be different from the distribution of the chosen
diagonals. However, since we only want depict configurations of CKCs based on samples we do not further
discuss how they are chosen. In Figure 8 several configurations are depicted and described in the caption.
Our procedure is also feasible to systematically compute configurations also for very high dimensional CKCs.
Figure 9 depicts a CKC with one million links. To the best knowledge of the authors such an example has
not yet been presented in literature. The structure of this chain is reminiscent of a closed molecule consisting
of a million atoms. Inspired by this examples we also speculate that our consideration of kinematic chains is
relevant to the theory of closed continuous random walks (Brownian bridges).

Configurations of CKCs with equal long links can also be represented graphically by thinking of all the rods
of the CKC as being more attached at the origin. Since the rods are all the same length, we only draw their
endpoints on a sphere with radius one. We find that this is an interesting way to represent a configuration, see
Figure 10.

6. Conclusion and future work

We have developed a new method for computing the diagonal lengths of a closed three-dimensional CKC.
From these, we can then determine the joint angles of the SJ of the CKC. Unlike existing work, our method
does not require the solution of a system of linear inequalities by linear programming, nor does it rely on
probabilistic methods. Numerical examples confirm the validity of the theoretical results of this work. We
expect that our method will be useful for applications in motion planning for CKCs arising in robotics or

dergipark.org.tr/en/pub/iejg 112

https://dergipark.org.tr/en/pub/iejg


G. Zangerl & A. Steinicke

Figure 8. Top left: Ten random configurations of CKCs with n = 5 links of length one are depicted. Note that the endpoint of each configuration lies on the sphere,
which means that it can be connected with a link of length one to the origin. Top right: A single configuration of a CKC with different links lengths is depicted. The
last link reaches a sphere of radius two. Bottom left: A single configuration of a CKC with n = 50 links of length one is depicted. The last link reaches a sphere of
radius one. Bottom right: A configuration of a CKC with n = 50 links. All links but the second last equal to one.

Figure 9. Left: The figure shows a configuration of a CKC with one million links of length one. Right: The same figure zoomed in to the sphere of radius one. The
endpoint of the last link (red) lies on the sphere, which demonstrates that the configuration is closed.

protein kinematics. An interesting line of future work would be a further investigation of the polytopes of
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Figure 10. A a random configuration of a CKC with n = 1000 links of equal length one. The directions of the link segments of this configuration are shown as
dots on the unit sphere. It is interesting to note that although directions are randomly chosen they are balanced due to the loop closure condition.

the CKCs’ diagonal space in more detail. Also a description of the diagonal space and the configuration
space of a CKC with restrictions on the angles seems to be feasible with our method of directly tackling the
closure equation. Since the sampling of configurations with random angles can be seen as a random walk with
constrained probabilities, we believe that our work can also be useful in this context.
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