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Introduction 

Let F be a global field (i.e. either a number field or a function field in one 
variable over a finite field) and let oo be the set of its archimedean places. Let 
G be a finite non-empty set of places of F containing oo. Let o = o ( ~ )  denote 
the ring of G-integers of F. Let A(~) denote the ring of G-adeles i.e. the 
restricted direct product of the completions F v for r eG.  Let f# be an absolutely 
simple*, simply connected subgroup of SL, defined over F. Recall that a 
subgroup F of C#(F) is an G-arithmetic subgroup if FnSL(n, o) has finite index 

in F as well as in ~(o):=fY(F)c~SL(n,o). An G-arithmetic subgroup F is a ~-  
congruence subgroup if there exists a non-zero ideal a in o (=  o(G)) such that 

F ~ {xeff(o)lx - 1 (mod a)}. 

The family of G-arithmetic (resp. G-congruence) subgroups is a fundamental 
system of neighbourhoods of the identity for a topological group structure on 
~(F). We denote the respective completions by ~(~)  and ~(G). There is 
evidently a (surjective) homomorphism 

The kernel, denoted C(G, f#) in the sequel, will be referred to as the congruence 
subgroup kernel. The determination of this kernel is the congruence subgroup 
problem. Long before this formulation (due to J-P. Serre) of the problem, R. 
Fricke and F. Klein, had exhibited examples of non-congruence subgroups in 
SL2(Z ). Later T. Kubota showed that (for G=oo )  in SL z over a totally 
imaginary number field again non-congruence subgroups exist. The first com- 
putation of C(G,f#) was carried out by Mennicke and Bass-Lazard-Serre, 
independently, for f f=SL,/Q, n>3 and G =  oo; in this case C(G, fr is trivial 
(or, equivalently, every arithmetic subgroup is a congruence subgroup). Later 

* A connected algebraic group is said to be absolutely simple if it is semi-simple and it contains 
no proper connected normal subgroup defined over the algebraic closure of F 
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for the split groups SL, and SP2n, C(~,(ff) was determined by Bass-Milnor- 
Serre [3]. Matsumoto [14] then extended these results to cover all split groups 
using the work of Calvin Moore [20]. Deodhar [8] handles the case of quasi- 
split groups (using the centrality of C(~, (#) proved in Raghunathan [24]). 

The general strategy for the determination of C(~,~)  has been the follow- 
ing. One first shows that C(~,f#) is central in ~(~). Once this is done, 
Hom(C(~,N),R/Z)  is shown (cf. Theorem2.9 below) to be isomorphic to the 
metaplectic kernel M(~, ~) viz. to the kernel of the restriction homomorphism: 

H 2 (ff(A(~)), R/Z) - .  H 2 (if(F), R/Z), 

where fq(A(~)) is equipped with the usual adelic topology and 
H2(ff(A(~)),R/Z) is the second cohomology of ~#(A(~)), with coefficients in 
R/Z, defined in terms of Borel measurable cochains, while Hz(fg(F), R/Z) is the 
usual second cohomology (with coefficients in R/Z) of the abstract group ~(F). 

The centrality of C(~,aJ) is known to hold under the following conditions: 

isotropic over F and y'  Fv-rank f# > 2. 
v E ~  

This was proved by Bass-Milnor-Serre for SL, and SP2n, by Serre for SL2, by 
Matsumoto for all split groups, by Vaserstein for classical groups and by 
Raghunathan for all isotropic groups. 

Kneser [13] has recently proved the centrality of C(~, ~) for Spin groups 
of anisotropic quadratic forms over number fields. 

The precise determination of C(~,f#) has been carried hitherto only for the 
split groups (Bass-Milnor-Serre, C. Moore and Matsumoto) and for quasi-split 
groups (Deodhar). Raghunathan ([24]) showed that C(~,aJ) is finite if F- 
rank f# > 2, for F a number field. In the present work we prove the finiteness by 
an entirely different argument which covers also the groups over function 
fields. The main thrust of the paper, however, is a precise determination of the 
metaplectic kernel M(~,  ~4) (which, as we shall see, is closely related to the 
congruence subgroup kernel). One of the main results we prove is the follow- 
ing for F-isotropic f# : 

M(~, ~) is trivial if ~ contains a nonarchimedean place; otherwise M(~, ~#) 
is isomorphic to a subgroup of the Pontrjagin dual fi(F)=Hom(t~(F), R/Z) of 
the group/2(F) of roots of unity in F. 

(Actually our main theorem (Theorem 3.4) gives a more precise information 
in case ~ contains a real place, but the formulation requires notation in- 
troduced in the main body of the paper.) 

This work makes crucial use of the results we have obtained in [23] on 
topological central extensions of semi-simple groups over local fields and the 
results of Moore [20] o n  SL 2. 

The results of this paper formed the topic of a course given by the first 
named author in the Summer of 1980 at the Universit~it Bielefeld, and he 
would like to thank A. Bak and Ulf Rehmann for their hospitality. At that 
time he learnt from Bak and Rehmann that they have independently and 
almost simultaneously computed C(~,~)  for ~=SL,,,o, n>3 and D a central 
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division algebra over a global field, using K-theoretic techniques (see [2]). 
Subsequently, Bak [1] announced (without proof) similar results for classical 
groups of F-rank > 2, based on his work [-2] with Rehmann. 

We would like to thank Madhav Nori for hepful conversations. 

w 1. A Review of the Local Results 

1.1. Let k be a local (i.e., locally compact, nondiscrete) field. Let G be an 
absolutely simple, simply connected group defined and isotropic over k. We 
shall let G(k) denote the group of k-rational points of G with the locally 
compact topology induced by the topology on k. 

For  a topological group H, HZ(H,R/Z) and H2(H,Q/Z) will denote the 
second cohomology groups of H, defined in terms of the Borel measurable 
cochains, with coefficients in the trivial H-module R/Z and Q/Z respectively; 
here, as well as in the sequel, R/Z is assumed to carry the usual compact 
topology, and Q/Z the discrete topology. If on a group H no topology is 
prescribed, then for the purpose of defining H2(H,R/Z) and HZ(H,Q/Z), we 
shall assume H endowed with the discrete topology. 

We note that according to a result of D. Wigner ([30: Theorem 1]) if H is 
zero-dimensional, in particular for the group of rational points of an algebraic 
group over a nonarchimedean field, the cohomology groups based on con- 
tinuous cochains and the cohomology groups defined in terms of Borel 
measurable cochains are identical. 

In case H is a real analytic semisimple group with fundamental group 
n l(H ), then it is well known that Ha(H, R/Z)~  Hom(nl(H),  R/Z). 

Let ~b be the (k-)root system of G with respect to a maximal k-split torus, 
and let d be the dominant (or the highest) root with respect to a fixed ordering 
on 4~. Let Ga be the subgroup of G generated by the root subgroups U a and 
U d. Then G d is an absolutely simple, simply connected k-subgroup of G of k- 
rank 1 (see w167 3.1 and 3.2 below). Let a be a long k-root i.e. a k-root of length 
equal to that of d. Then a is conjugate to d under an element of the k-Weyl 
group. Let G, be the subgroup of G generated by the root subgroups U, and 
U a. Then G a is conjugate to G a under an element of G(k). 

1.2. Theorem. The restriction homomorphism HZ(G(k),R/Z)-+HE(Gd(k),R/Z) is 
injective. Therefore, the restriction H2(G(k), R/Z)~HE(G~(k), R/Z) is injective for 
any long k-root a. 

In case k is nonarchimedean, this theorem is Theorem9.5 of Prasad- 
Raghunathan [23]. On the other hand, if k = R ,  then it is known (and can be 
proved, for example, by a case-by-case check using classification) that the map 

1 (Gd(R)) ~ ~z 1 (G(R)), induced by the inclusion Ga (R) ~ G(R), is surjective. Now 
since H2(G(R), R/Z) = Hom(~ ~ (G(R)), R/Z) and HE(Ga (R), R/Z) 

=Hom(~zl(Gd(R)), R/Z), the assertion of the theorem follows. If k =C, then both 
G(C) and Gd(C ) are simply connected and hence, HE(G(C),R/Z) as well as 
H2(Gd(C), R/Z) is trivial. 

We shall now in the rest of this section assume that k is nonarchimedean. 
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In the sequel /~(k) will denote the Pontrjagin dual Hom(p(k),R/Z) of the 
group p(k) of roots of unity in k. Both p(k) and/~(k) are finite cyclic groups. 

The following theorem was proved by C. Moore ([-20]) for groups which 
split over k and then later by V. Deodhar ([-8]) for quasi-split groups. 

1.3. Theorem. Let G be either split or quasi-split over k. Then H2(G(k),R/Z) is 
isomorphic to a subgroup of ~(k). 

1.4. Remark. If G splits over k, then the above theorem combined with a result 
of H. Matsumoto [,14: Th6or6me 12.1] gives that H2(G(k), R/Z) is actually 
isomorphic to /~(k). The same holds also for quasi-split groups in view of an 
unpublished observation of P. Deligne (see Prasad-Raghunathan [-23:w 5.10]). 

The following theorem and two propositions (1.5, 1.6 and 1.8) are proved in 
Prasad-Raghunathan [-23: w167 9, 10]. 

1.5. Theorem. Let G be an absolutely simple, simply connected group defined and 
isotropic over k. Then G(k) admits a universal topological central extension and 
its topological fundamental group ga(G(k)) is isomorphic to a quotient of p(k). 
Moreover, H2(G(k), R/Z)  is isomorphic to Hom(~l(G(k)), R/Z). 

1.6. Proposition. Let G=SLn,o, where D is a central division algebra over k. Let 

K be an unramified extension of k of degree=degree D / k = ~  contained in 
D. Let H be the k-subgroup SL,, K of SL,, D (H is k-isomorphic to RK/k(SL,) ). Then 
G(k) = SL,(D), H(k) = SLn(K), and the restriction 

H2(SL.(D), R/Z)  --, HE(SL,(K), R/Z) is injective. 

1.7. Let D be a quaternion division algebra over k. Let K be a fixed unramified 
quadratic extension of k contained in D. Let x~- - ,~=Trdx -x  be the standard 
involution of D. Let ~ be an element of D such that for xeK,  ~ x ~  -1 =ft. Then 
since rt6K and nz commutes with K, we conclude that rc2ek and hence, ~=  
-rc. For x~D, let ~r(x)=Tt~rc -1. Then a is an involution of D; the space D" of 
elements fixed under cr is of dimension 3 and it contains K. Let X = e_ 1 �9 D 
+ e  1.D be a right vector space over D of dimension 2 and let q~ be the 
hyperbolic a-antihermitian form on X defined by: 

~o(e 1, e_ 1) =0=qg(el, el), 
~o(e 1 ,e l )= 1 = -~o(el, e_ 1). 

Let G=SU(q)). Then G is the simply connected k-rank 1 form of type C 2. We 

use the basis {e_ 1, el} to identify G with a k-subgroup of SL2, D. It is easily 
checked that SLE(K ) c G(k)(c  SLE(D)). Let H be the k-subgroup of G such that 

H(k) = SL2(K) ( ~ G(k)). 

Then H is k-isomorphic to RK/k(SL2). Now with these notation we have: 

1.8. Proposition. The restriction homomorphism H2(G(k), R/Z)--~ H2(H(k), R/Z) is 
injective. 
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1.9. Proposition. Let k be a nonarchimedean local field of characteristic zero. Let 
Q be a quadratic space over k and R be a nondegenerate subspace. We assume 
that the Witt index of R is at least 2. Let G and H be the spin groups associated 
with Q and R respectively. We identify H with a k-subgroup of G. Then 
HZ(G(k),R/Z) is isomorphic to ~(k) and the restriction homomorphism 
HZ(G(k), R/Z)--, HZ(H(k),R/Z) is injective. 

Proof. It is obvious that to prove the proposition we may (and we shall) 
replace R by a quadratic subspace which is isomorphic to the orthogonal 
direct sum of two hyperbolic planes. Now let R • be the orthogonal complement 
of R in Q, and let V be the orthogonal direct sum R O R • 1 7 4 1 7 7  where - R  x 
is the quadratic space with same underlying k-vector space as R • but whose 
quadratic form is the negative of the quadratic form on R • Then V is 
hyperbolic (i.e. it is the orthogonal direct sum of hyperbolic planes), and so the 
associated spin group c~ is a k-split form of type D. It is easy to see that in the 
root system of (#, with respect to a suitable maximal k-split torus, there is a 
root such that the corresponding S L  2 is contained in H. Hence, according to 
a result of Moore (i.e. Theorem 1.2 for k-split groups), the restriction 

H2(fg(k), R/Z)--, HZ(H(k), R/Z) 

is injective. We also know (from 1.3, 1.4 above) that H2(ff(k), R/Z) is isomor- 
phic to (the finite group) fi(k), whereas H2(G(k),R/Z) is isomorphic to a 
subgroup of fi(k) (Theorem 1.5). Therefore, from the following commutative 
triangle (in which all the maps are natural restrictions): 

H2(ff(k), R / Z ) - - ~  H2(H(k), R/Z) 

H2(C(k), R/Z/ 

we conclude that H2(N(k),R/Z)--,H2(G(k),R/Z) is an isomorphism; hence, 
we conclude that H2(G(k),R/Z) is isomorphic to ~(k) and the 
restriction HZ(G(k), R /Z)~H2(H(k) ,  R/Z) is injective. This proves the proposition. 

w 2. Finiteness of the Metaplectic Kernel 

2.1. Let F be a global field, o its ring of integers. For a place v of F, F~ will 
denote the completion of F at v, and in case v is nonarchimedean, ~, wilt 
denote the ring of integers of F v,p. the unique maximum ideal of o,, ~ the 
residue field o~,/p~, and p, the characteristic of ~v. 

A will denote the F-algebra of adeles of F, and for a finite set ~ of places 
of F, A(~) will denote the F-algebra of ~-adeles i.e. the restricted direct 
product of the completions F v for vr 

Let (r be a connected, absolutely simple, simply connected F-subgroup of 
SL,, v. In the following, we shall denote the schematic closure of f# in the 
standard special linear o-group scheme 5P2,e,.o again by (9. 



26 G. Prasad and M.S. Raghunathan 

~q(A) (resp. aJ(A(~))) is obviously a restricted direct product of ~q(F~), v 
varying over all the places of F (resp. all vr with respect to the compact- 
open subgroups K v =ad(ov). 

2.2. It is well known that for almost all places v, (~ is quasi-split over Fv, and 
~| reduces, modp~, to a smooth simply connected semi-simple group 
scheme G~(=~| over the finite field ~v. According to the results of Stein- 
berg [26] and Griess [10], the Schur multipliers of Gv(f~) is a pv-group (for a 
generators-and-relations-free proof of this result see Prasad [22]). Now as the 
homomorphism (q(o~)~ G~(f,) is surjective for almost all v, and its kernel is a 
pro-p v group, we conclude from the Hochschild-Serre spectral sequence that 
(for almost all v) every element of Hz(c~(Ov),R/Z) is of order a finite power of 
p,. On the other hand, since F is absolutely unramified at almost all places, for 
almost all v, the completion F v contains no nontrivial p~-th root of unity and 
hence the finite group Hz(~(F~),R/Z) has no p~-torsion (cf. 1.5). Therefore, the 
restriction homomorphism: 

H2((q(Fv), R/Z) -~ H 2 (~q(o~), R/Z) 

is trivial for almost all v. 

2.3. We shall now show that for almost all v, K~=~(o,) is perfect, i.e., K~= 
(Kv, K,). For this purpose, let 6 be a finite set of places of F containing all 
the archimedean places, and all the nonarchimedean places v such that ~q is 

anisotropic over F~, and such that ~ F~-rank ff > 2. Let K = [ I  K,. Then K is a 

compact-open subgroup of ad(A(~)). As ~q is simply connected, for all v, the 
commutator subgroup (K~, K~) is an open (and hence also closed) subgroup of 
K~ (Borel-Tits [5: 9.4(iii)]). 

Now let F=~q(F)c~ K. Then F is an Q-arithmetic (in fact, an ~-congruence) 
subgroup. Since N(F) is dense in ~(A(~)) ("Strong approximation", see Prasad 
[21: Theorem A] or Margulis [15: Theorem 4]), and K is an open subgroup of 

~q(A(~)), F is a dense subgroup of K. Since ~ Fv-rank~r according to a 

theorem of Margulis ([16, 17]), which completes the earlier results of Kazhdan 
[9] and Bernstein-Kazhdan, the commutator subgroup (F,F) is of finite index 

in F. Hence (K, K)= I-I(K~, Kv), which is a closed subgroup of K containing 

(F,F), is of finite index in K. This proves that for almost all v,(K~, Kv)= K,, for 

otherwise (K, K)= [ I  (K~, K~) would be a subgroup of K of infinite index. 

Let ~ be an arbitrary finite set of places of F. Since (K~, K~) is an open 
subgroup of Kv for all v, we now conclude that (K, K) is an open subgroup of 
K. This implies that the commutator subgroup (N(A(~)),N(A(~))) is an open 
and hence closed subgroup of ~q(A(~)). For any place v such that either ~ is 
isotropic over F v or v is arcbimedean, ~(F,) is perfect ([23: w therefore if 
for every nonarchimedean place vr  ~ is isotropic over F~, then ~(A(~)) is 
perfect. 

Now in view of the observations in 2.2 and 2.3, we conclude from Theo- 
rem 1.5 and a theorem of Moore ([20: Theorem 12.1]) the following at once: 
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2.4. Theorem. Let G be a finite set of places of F. Assume that for every 
nonarchimedean place v(~G of F, ff is isotropic over F v. Then t (A(G))  admits a 
universal topological central extension, the topological fundamental group 
nl(t(A(G))) of f(A(G)) is discrete and is isomorphic to the direct sum of the 
n 1 (l(Fv)), v q~ G; where n 1 (ff(F~)) is the topological fundamental group of ff(F~). 

As a consequence, H2(ff(A(G)),R/Z) is isomorphic to the direct product of the 
Homz(n 1 (ff(F~)), R/Z) = H2(t(F~), R/Z), v ~ G. 

2.5. Now let G be a finite set of places of F containing all the archimedean 
places. On if(F) we introduce two topologies: The G-congruence subgroup 
topology in which the family of G-congruence subgroups form a fundamental 
system of neighbourhoods of the identity; the completion of if(F) with respect 
to this topology shall be denoted by f~(G). The other topology on if(F) is the 
G-arithmetic subgroup topology in which the family of G-arithmetic subgroups 
form a fundamental system of neighbourhoods of the identity; the completion 
of if(F) with respect to this topology shall be denoted by a](G). Since every G- 
congruence subgroup is G-arithmetic, the second topology is finer than the 
first, and hence there is a continuous surjective homomorphism f#(G)-~(G) .  
The kernel of this homomorphism is called the G-congruence subgroup kernel 
and shall be denoted by C(G,t) .  It is known that C(G, ff) is a second 
countable profinite (and hence compact) group; see Raghunathan [24]. The 
congruence subgroup problem is the problem of determination of C(G, if) for a 
given G and t .  

Let Z be the closure in C(G, ff) of the subgroup (if(F), C(G,t) )  generated 
by { x y x - l y  - l l xc t (F) , y~C(G, i ) } .  Then since i (F )  is dense in f#(G), Z is a 
closed normal subgroup of if(G). Let ~ ( G , i ) =  C(G,~)/Z and c~(G)---c~(G)/Z. 
Then clearly c~(G, i )  is contained in the center of (~(G). 

We shall henceforth assume that ~ contains all the archimedean p/aces of 

F, and l-I i(Fv) is non-compact (or, equivalently, ~ F~-ranki=>l). Then from 
w ~  v ~  

the strong approximation (Prasad [21: TheoremA] or Margulis [15: 
Theorem4]) it is immediate that f~(G)=i(A(G)). Thus we have a central 
extension: 

( + )  1 --,~e(G, i )  ~ ~ ( G ) - - , i ( A ( G ) )  ~ 1 

of i (A(G))  by ~ ( G , t ) =  C(G, ff)/Z. Moreover, the natural imbedding of f~(F) 
in ~(A(G)) and ~(G) gives a splitting of the above extension over 
i (F )  (~  i(A(G))). We shall view i (F )  as a subgroup of ~(G) using this splitting. 

2.6. Theorem. Assume that for every place v~G ofF,  i is isotropic over F~, and 

Fv- rank i>2 .  Then cg( G, ff) is finite. 
ve@ 

Proof According to Theorem 2.4, i(A(G)) admits a universal topological cen- 
tral extension: 

(,) 1 ~ C , E ~ - ~  if(A(G)) -~ 1, 

and its topological fundamental group C is discrete. Now as 

( + ) 1 --~ cd(G, if) --~(G) ~, if(A(G)) --~ 1 
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is a topological central extension of fC(A(G)), there exists a homomorphism 
~o: E ~ ( G )  which makes the following diagram commutative: 

1 , C , E ~ ~ ( A ( G ) ) - - ~  1 

1 ~ ~(G,  ~r - - ~  ~(G)  , ~r , 1 .  

We claim that q~(E) is a closed subgroup of ~(G) of finite index. Assuming the 
claim for a moment, it follows that (0(C) is a closed subgroup of ~(~,N) of 
finite index, and hence (by Aren's lemma, see Bourbaki [7]) ~o(C), as a 
topological group, is a quotient of the discrete group C. But as any quotient of 
a discrete group is discrete and C(G, N), and so also cg(G, N), is compact, we 
conclude that q~(C) is finite. Now since ~o(C) is of finite index in cg(G, N), cg(G, N) 
is also finite. 

We shall now prove the claim. As C is discrete, E is locally isomorphic to 
N(A(G)). Let U be a compact-open subgroup of E such that a is injective on 
U. Then a(U) is a compact-open subgroup of ~(A(G)). Let F=~(F)caa(U). 
Then F is an G-arithmetic (in fact, a G-congruence) subgroup of N(F). The 
restriction of a to U is an isomorphism on to a(U), and hence its inverse gives 
a splitting of (,) over a(U), and hence a splitting s on F(ca(U)). The com- 
posite ~0.s may be viewed as another splitting of (+)  over F. Now since the 
splitting ~o.s of (+)  coincides on the commutator subgroup (F,F) with the 
restriction of the natural splitting (see 2.5) of (+)  on N(F), we conclude that 
~p(U) contains (F,F). But q~(U) is a compact subgroup of if(G), so it contains 
also the closure of (F, F). 

According to our hypothesis, ~ Fv-rank~>2,  so a theorem of Margulis 

([16, 17]) implies that the commutator subgroup (F,F) is of finite index in F. 
Therefore, (F,F) is an G-arithmetic subgroup of N(F). But it is obvious from 
the description of the G-arithmetic topology that the closure in ~(G), and so 
also in ~(G), of any G-arithmetic subgroup is open. Hence, ~o(U) is open in 
~(G), and so q~(E) is an open subgroup of ~(~). In particular, q~(E) contains a 
subgroup of finite index of the compact group cg(~,N). On the other hand, 
~o(E) obviously projects on to ~(A(~)), so we conclude that q~(E) is an open 
(and hence also a closed) subgroup of ~(G) of finite index. This completes the 
proof of the theorem. 

2.7. Remark. Under the hypothesis of the preceding theorem, as cg(G,N) is 
finite, ~(G) is locally isomorphic to ~(A(G)), and therefore (see 2.3), the 

commutator subgroup (~(~),~(G)) is an open and hence also a closed sub- 
group of ~(G). 

2.8. Remark. It is known that if ~ is isotropic over F and y'  F~-rank fr > 2, 
v E ~  

then the congruence subgroup kernel C(fi, N) is central in ~(~) (and hence Z 
is trivial, cg(G,~)=C(~,fr and ~(G)=N(G)). This was first proved by Bass- 
Milnor-Serre [3] for the groups SL.,SP:n; then by Matsumoto [14] for all F- 
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split groups and later by Vaserstein for all classical isotropic groups. Raghun- 
athan ([24]) has proved the centrality of C(~,as) for all groups of F-rank > 1, 
by a uniform argument, and has also proven the finiteness of C(~, as) if F is a 
number field ([24]). Recently M. Kneser [13] has proved that C(~,as) is 

central for certain F-anisotropic aS too, provided that ~ Fv-rank as > 2. 

We note that Raghunathan's proof in [24] of finiteness of C(~,as), in case 
F is a number field, is completely different from the proof of Theorem 2.6 given 
above. 

2.9. Theorem. Assume that for every place v ~  ofF, as is isotropic over Fv, and 
Fv-rankas>2. Then the transgression from Hom(Cg(~,as),R/Z) to the metap- 

tectic kernel M(~, as)= Ker(HZ(as(A(~)), R/Z) re~t > H2(as(F) ' R/Z)), induced by 

the central extension: 

( + ) 1 -~  ~ ( ~ ,  as) ~ ~ ( ~ )  - ,  as (A(~))  - ,  1, 

(which splits over as(F)), is surjective. I f  N(F) is perfect, then the transgression is 
bijective. 

Proof According to Theorem 2.4 and Theorem 1.5, N(A(~)) admits a universal 
topological central extension and its topological fundamental group 
~I(as(A(~))) is a direct sum of certain finite cyclic groups with discrete to- 
pology. Hence, for any locally compact second countable topological ~(A(~))- 
module M, with trivial as(A(| action on M, the transgression map: 

Hom0z 1 (as(A(~))), M)--~ H2 (as(A(~)), M) 

is an isomorphism. 
Since ~I(as(A(~))) is a torsion group, the natural inclusion 

Hom (re 1 (as(A(~))), Q/Z) --+ Hom(rcl (as(A(~))), R/Z) 

is an isomorphism, and hence H2(as(A(~)), Q/Z)~HZ(as(A(~)),R/Z) is an 
isomorphism. On the other hand, since (as(F), as(F)) is of finite index in as(F) 
(Prasad [21: Theorem C]), HI(as(F),R/Q)=Hom(as(F),R/Q)={O}, and so 
H2(as(F),Q/Z)~H2(as(F),R/Z) is injective. Therefore, the metaplectic kernel 
M(~ ,~ )  is isomorphic to 

Ker(n2(as(A(~)), Q/Z) rest__+ H2(as(F) ' Q/Z)).  

Thus to prove the theorem, we only need to prove that the transgression from 
Hom(Cg(~, as), Q/Z) to 

Ker(H2(as(A(~)),Q/Z) rest H2(as(F) ,Q/Z)) 

is surjective. For this, we shall adopt an argument of Bass-Milnor-Serre [3: 
w 15]. 
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Let x~Ker(H2(~(A(G)), Q/Z) 
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rest , Hz(N(F), Q/Z)), and let 

0--~ Q/Z  ,E * >~(A(G))--~ 1 

be a topological central extension of ~(A(G)) representing x. Since the restric- 

tion of x to if(F) is trivial, there is a section s: if(F)--* E. Since Q/Z  is discrete, 
E is locally isomorphic to ~(A(G)). Let U be an open compact subgroup of E 

such that z is injective on U, and let F=r(U)c~(F). Then since z(U) is an 

open-compact  subgroup of ~(A(G)), F is an G-congruence subgroup. Since the 
restriction of z to U is an isomorphism on to z(U), the restriction of its inverse 

to F gives an splitting of the above extension over F with image in U. Since 

any two splittings over F coincide on the commutator  subgroup A = (F, F), we 

conclude that s(A)c U. But A is of finite index in F (Margulis [16, 17]) and 
hence A is an G-arithmetic group. 

Since U is a profinite group, the homomorphism slA extends to a con- 
tinuous homomorphism from the profinite completion z] of A to U. Since A is 

an open neighbourhood of the identity in the G-arithmetic topology on if(F), 

we see that s: ~ ( F ) ~  E is continuous in the G-arithmetic topology. Since E is 

complete, s extends to a continuous homomorphism #(~)--~E. Since the 
square 

E ~-~ ff(A(G)) 

~ (~ )  - - - .  ~(A(G)) 

commutes on the dense subgroup ~(F) of ~(G), it is commutative. Thus we 

have a morphism of the group extensions: 

0 - - - - ,  Q/Z  ~ E -----~(A(G))------~ 1 

/ 
1 , c ( G , ~ t  , ~ ( G )  , ~ ( A ( G ) ) - - - - ,  1. 

But since the first extension is a central extension, Z (introduced in 2.5) lies in 
the kernel of the homomorphism ~(G) -~  E. Thus we have the induced mor- 

phism of the central extensions: 

0 ~ Q /Z  ~ E ~ ~(A(G)) ) 1 

1 , c d ( G , ~ )  ~ # ( G )  ~ (~(A(~))  , 1. 

This proves that the transgression from Hom(Cd(G, if), Q/Z) to 

Ker(H2(N(A(G)), Q/Z) r e s t  , Hz(~(F), Q/Z)), 

induced by the central extension: 

1 -* cg(G, ~) --@(G) --* ~ ( A ( ~ ) )  --~ 1 

is surjective. 
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In case f#(F) is perfect, then so is ~(~), since f#(F) is dense in a)(~) and the 
commutator subgroup of c~(~) is closed (2.7). From this it is easy to deduce 
that (in case if(F) is perfect), the map 

Hom((~(~, f#), R/Z)-+ M(~,  if) 

is injective. This proves the theorem. 

Now Theorem 2.6 gives the following: 

2.10. Theorem. Assume that for every place v ~  of F, ff is isotropic over F~ and 
Fv-rank (r => 2. Then the metaplectic kernel M(~,  if) is finite. 

v~@ 

w 3. Isotropic Groups: The Main Theorem and some Reductions 

3.1. Let G be an absolutely simple, simply connected, algebraic group defined 
over F. Let S be a maximal F-split torus of G and let T be a maximal F-torus 
containing S. Assume that F-rank G = dim S = 1, and let a be a generator of the 
character group of S. We assume that {_+a, _+2a} is the set of roots of G with 
respect to S. For b=  _+a or _+2a, let U b be the root subgroup corresponding to 
b (i.e., the subgroup denoted by Ucb ) in Borel-Tits [4: 5.2]); it is a connected 
unipotent subgroup defined over F. Let Z(S) be the centralizer of S in G and 
let P = Z(S). U,. Then P is a parabolic F-subgroup. 

Let ~b = 4~(G, T) be the root system of G with respect to T. We fix a Borel 

subgroup of G containing T, contained in P, and defined over the separable 
closure of F. This gives an ordering on the root system cb such that if the 
restriction to S of a root in ~b is either a or 2a, then that root is positive. Let 
~+(=cb) be the set of positive roots, A be the set of simple roots and d(~b +) 
be the dominant (or the highest) root. 

Let Gza be the subgroup of G generated by the root subgroups Uza and 
U 2a. Then G2~ is a semisimple group of F-rank 1 and it is normalized by Z(S) 
(=  T). It is not hard to see that the Dynkin diagram of Gza is obtained from 
the Tits index (Tits [27: 2.3]) of G/F as follows: To the Tits index of G/F 
appropriately adjoin a vertex corresponding to - d ,  delete the unique distin- 

guished vertex or orbit (since G is of F-rank 1, the Tits index has either a 
unique distinguished vertex or a unique distinguished orbit), and all the edges 
containing the deleted vertex (or vertices). Then the Dynkin diagram of G2a is 
just the connected component containing the vertex corresponding to - d  in 
the residual diagram. We see that since the Dynkin diagram of G2, is con- 
nected, G2, is absolutely simple. 

From the above description of the (absolute) Dynkin diagram of G2,, we 
know a set of simple (absolute) roots, and also the corresponding coroots (as 1- 
parameter subgroups of T). A case-by-case check, using the Tits' classification 
([27]) of absolutely simple groups of F-rank 1 (F a global field) in terms of the 
index, shows that G2, is simply connected (recall that G is simply connected) - 

in fact if F is an arbitrary field, then G2a fails to be simply connected only for a 
rank 1 form of type Es, namely the form E 9 1  " but this form does not exist over 8,1~ 
any local or global field. 
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3.2. Now let N be, as before, a simply connected absolutely simple group 
defined over a global field F. In the rest of this paper we shall assume that fr is 
isotropic over F. Let 5 p be a maximal F-split torus of fr and let 3- be a 
maximal F-torus containing 5g. Let 4 be the set of roots (the F-roots !) of fr 
with respect to ~ We fix a minimal parabolic F-subgroup ~ containing Y. 
This determines an ordering on 4;  let 4 + be the set of positive roots, A the set 
of simple roots and d be the dominant root with respect to this ordering. 

For a root be4 ,  let ~//b be the root subgroup corresponding to b, it is a 
connected unipotent F-subgroup normalized by the centralizer Z(5 P) of 5 P. Let 
fgb be the subgroup generated by d//b and q/ b. Then fgb is a connected semi- 
simple F-subgroup of F-rank 1, and it is simply connected if b is a nondivisible 
root. 

Using the Tits index of fr it is seen that there is a simple root a (cA) such 
that ~a is absolutely simple, and a is multipliable (i.e. 2a is a root) in case 4 is 
nonreduced, and in case 4 is reduced, a is long. Since a is a simple root, aJ a is 
simply connected. Moreover, from the observations in 3.1 it is clear that if 2a 
is a root, '~2a is an absolutely simple, simply connected group. Now since the 
dominant root d is conjugate (under the F-Weyl group) to a if 4 is reduced, 
and to 2a if @ is nonreduced, we conclude that fee is always absolutely simple 
and simply connected. 

3.3. Let v be a place of F. Let 5Q be a maximal F~-split torus of ~ containing 
5g and let 4~ be the root system of ~ with respect to 5~ v. For any root b~c4~, 
let ~//bo be the corresponding root subgroup and Nb, the connected semi-simple 
Fv-subgrou p generated by ~b~ and d//_bo. We fix a minimal parabolic subgroup 
of N defined over F v and contained in the minimal parabolic F-subgroup 
fixed above in 3.2. This gives an ordering on the root system 4v compatible 
with the ordering on @. Let d, be the positive dominant root in 4~ with 
respect to this ordering. Then it is obvious that the restriction of d~ to ,Y is the 
positive dominant root d of @. Hence, aJd~ c Ne. 

The following is the main theorem of this paper. 

3.4. Theorem. Let ~ be a finite set of places o fF  (not necessarily containing all 
the archimedean places), and let M(~,  ~) be the metaplectic kernel: 

Ker(H2(fg(A(~)), R/Z) ~ t  , H2(ff(F) ' R/Z)). 
Then 

(i) M(~,  fr is trivial if ~ contains a nonarchimedean place. 
(ii) M(G, fr is trivial also if there is a real place r~G such that Ga~ is iso- 

morphic to SL 2. 
(iii) M(~,N) is isomorphic to a subgroup of ~(F) if every place in ~ is 

archimedean. 

3.5. We shall prove first that the assertion (iii) of the preceding theorem is a 
consequence of (i). So assume (i) and also that every place in G is archimedean 
(~  may, for example, be empty). For  a nonarchimedean place v, let ~ 
= ~w{v}.  Then by (i) M ( ~ , f r  is trivial. On the other hand, it is obvious that 
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~f(A(~)) is a direct product of N(A(~))  and N(F~), and hence 

Hz(q3(A(,~)), R/Z) -- H2 (~q(A(~.)), R/Z) O Hz(~(F~), R/Z), 

since C5(F~) is perfect (see, for 
let p: ~(A(~))--~N(A(~.)) be 
mutative diagram: 

example, Prasad-Raghunathan [-23: w Now 
the natural projection. Then we have a c o m -  

(~(A(~))/  ~(F) 

~(A(~))  ( ~(F) 

which induces the following commutative diagram in the cohomology: 

H2(N(A(~)),R/Z) r e s t  H2(N(F),R/Z) 

H2(~C(A(~v)),R/Z) ro~,_~ H2(~(F),R/Z). 

Under the natural identification of H2(N(A(~)), R/Z) with 

H2(~(A(%)), R/Z) |  2(~r R/Z), 

the projection p:~(A(~))-,~(A(~v)) induces the natural inclusion of 
H2(N(A(~)), R/Z) in 

H2(N(A(~)), R/Z) @ H2(a3(F~), R/Z). 

Now since M ( ~ ,  N) is trivial, the restriction map 

H 2 ( ~ ( A ( ~  v)), R/Z)  --~ H 2 (N(F), R/Z)  

is injective, and we conclude that under the natural projection of 

H2(N(A(~)), R/Z) ( = H2(N(A(~)), R/Z) �9 H2(N(F~), R/Z)) 

on to H2(N(F,,,),R/Z), the metaplectic kernel M(~ ,N)  maps injectively in to 
H2((~(Fv),R/Z). 

Now let i~ be the set of nonarchimedean places v of F such that N is quasi- 
split over F~; it is known that !~ contains almost all places of F. Then by the 
results of Moore and Deodhar (1.3), for ve~, H2(N(F~),R/Z) is isomorphic to a 
subgroup of /)(F~). Thus for every v ~ ,  the metaplectic kernel M(~,fr is 
isomorphic to a subgroup of the finite cyclic group/I(F~). But since !~ contains 
all but finitely many places of F, it follows easily from Theorem 9 of Heilbronn 
[11]* that ~/~(Fv)=/I(F). From this we conclude that M(~,N)  is isomorphic 

vE~  

to a subgroup of ~(F). This proves that assertion (i) of Theorem 3.4 implies 
assertion (iii). 

* We thank M. Ram Murty for this reference 
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Since 

H2(f#(Fv), R/Z) r e s t  , H2(ffdv(F~) ' R/Z) 

is injective (Theorem 1.2), we conclude that for all v, 

H2((q(F~), R/Z) r e s t  , H2((qd(F~) ' R/Z) 

is injective. 
Let 

M(~,  (~a) = Ker(H2((qd(A(~)), R/Z) r e s t  , H2((qa(F), R/Z)) 

Then as (see 2.4) H2(fq(A(~)),R/Z)= [I  H2(~(Fv), R/Z), and 
vr 

the restriction 

H2(~d(A(~)), R/Z) = [ I  H2(ffd(F~), R/Z), 

H2(CS(A(~)), R/Z) ~ HE(ffa(A(~)), R/Z) 

is injective, and hence it provides an imbedding of M(~,ff)  in M(~,fqa). Thus 
to prove the first two assertions of Theorem 3.4, we need only show that 
M(~,  ~a) is trivial if ~ contains either a nonarchimedean place, or a real place 
r such that fiat is isomorphic to S L  2. In other words, to prove Theorem 3.4, 
after replacing ~ by ~a we may (and we shall) assume that ff = (r Then ~ is of 
F-rank 1 and its F-root system is { - d , d } ;  thus the F-root system of ~ is 
reduced. 

w 4. A Result of Moore and the Proof of the Main Theorem 

The following theorem is a simple consequence of (in fact it is equivalent to) a 
result of C. Moore [20: Theorem 12.3]. 

4.1. Theorem. Let ~ be a finite separable extension ofF. Let ~ be a finite set of 
places of F. Then the metaplectie kernel 

M(~,  R~/F(SL2) ) = Ker(H2(R~w(SL2)(A(~)), R/Z) rest , HE(R~w(SL2 ) (F), R/Z)) 

is trivial if ~ contains a nonarchimedean place. I f  ~ contains a real place r 
which has an extension as a real place of ~, then again the metaplectic kernel is 
trivial. In all the other cases the metaplectic kernel is isomorphic to ~(~) 
=Hom(/z(~),R/Z);  where la(~) is the group of roots of unity in ~. 

We have shown in w that to prove the main theorem (Theorem 3.4), it is 
enough to prove its first two assertions for absolutely simple, simply connected 
groups of F-rank 1 whose F-root system (i.e. the root system relative to a 
maximal F-split torus) is reduced. Accordingly, we shall assume now that fq is 
an absolutely simple, simply connected F-group of F-rank 1 whose F-root 
system is reduced, and ~ contains either a nonarchimedean place v, or a real 
place r such that (qar is isomorphic to SL 2. Now to prove that M(~,(q) is 
trivial we shall make use of the following: 
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4.2. Theorem. Let v be either a nonarchimedean or a real place of F. Then there 
is a finite separable extension ~ of F and a F-subgroup ~ of ~, Yt ~ isomorphic 
to R~/v(SL2) , such that the restriction homomorphism 

Hz(~(Fv), R/Z)--~ H2(o~Cf(Fv), R/Z) 

is injective. Moreover, if there is a real place r such that ~dr is isomorphic to 
SL2, then ~ may be chosen such that every extension of r to ~ is real. 

Assuming this theorem for a moment, we shall prove the triviality asser- 
tions of Theorem 3.4. 

According to Theorem 2.4 H2(~(A(~)),R/Z) is a direct product 

l~ Hz((~(Fv), R/Z). If M(~,  c5) is non-trivial, let c~ =(c%)~r (~,,~H2(~q(F~), R/Z)) be 

a nonzero element of the metaplectic kernel M(~,(q). Let v o be a place such 
that e,,o4:0. Then v 0 is either a nonarchimedean or a real place, because if v is 
a complex place, F~ =C, and as c5(C) is simply connected, HZ(f~(Fv), R/Z)= {0}. 
Now let ~vf be a F-subgroup of ~q, isomorphic to RI~/FSL2, where ~ is a finite 
separable extension of F, such that the restriction homomorphism 
H2(a3(Fv0), R/Z)~HZ(~(Fvo),  R/Z) is injective, and if there is a real place r of 

F such that Ndr is isomorphic to SL2, then every extension of r to ~ is real. 
Now since the restriction H2(~(F~o), R/Z)-oHZ(Jf(F~o), R/Z) is injective, the 

image of a = ( c ~ ) ~  in 

H2(~(A(~)) ,  R/Z) = [1 H2(~(Fv), R/Z), 

under the restriction homomorphism, is nonzero, and it is clearly contained in 
the metaplectic kernel 

M(~, Jt ~) = Ker(H2(~(A(~)) ,  R/Z) rest___~ H2(~(F),  R/Z)). 

But since H is isomorphic to R~/F(SL2), according to Theorem 4.1 (in view of 
our hypothesis on 6), the metaplectic kernel M(~,  Jig) is trivial. This implies 
that the restriction of ~ to Jf(A(~)) is zero, this is a contradiction which 

proves that the metaplectic kernel M(| (4) is trivial. 

Now to prove Theorem 4.2 we shall make use of explicit description of the 
groups ~q. The following is a complete list. It is extracted from the classifi- 
cation given in Tits [27]; we have also taken into account the result of G. 
Harder on the vanishing of the Galois cohomology of simply connected groups 
over global function fields. 

In the sequel we shall assume that v is either a nonarchimedean or a real 
place of F. 

(i) Inner forms of type A : ~ = S L 2 , v ,  where D is a central simple division 
algebra over F of degree d>  1. The Tits index is" 

~-~ ... ~-G-~ ... ~-~ 

d 1 d ' - l  



36 G. Prasad and M.S. Raghunathan 

(ii) Outer forms of type A: N=SU(h); where D is a central simple division 
algebra of degree n > 1 over a quadratic Galois extension ~ of F, and h is the 
hyperbolic hermitian form in 2 variables defined in terms of an involution 
of D of the second kind such that the subfield of ~- pointwise fixed by a is F. 

~ - I  ... ~-t 
We shall denote SU(h) by SU2,DI ~. The Tits index of N/F is: ~ ... 

(iii) Forms of type B or D: N is the spin group of a nondegenerate qua- 
dratic form in n(>5) variables and of Witt indes 1; if F is of positive 
characteristic, then n = 5  or 6; if F is of characteristic 2 and n=6,  the form is 
assumed to be nondefective, if n=5,  the form is of defect 1. The Tits index is: 

. . . ~ - ~  i f n i s o d d  ( ( 2 ~  if n=5),  
and 

i,.a even ( <  if.=6) and 

the descriminant of the quadratic form is ( - 1 )  n/2, or (Z) I I... ~ - <  if n is 

e v e n ( <  if n=6) and the descriminant of the quadratic form is +(-1)  "/z. 

Proof of Theorem 4.2. (i) We first take up the case where N=SL2, D, for a central 
simple division algebra D over F: 

There exists a central simple division algebra D v over F v such that D | 
is isomorphic to the matrix algebra M,(Dv) for some n > l  ([6:w 
Th6or6me 2]). In case v is nonarchimedean, let ~ be an unramified extension 

of F v of degree = degree Dv/F ~ = [ 1 / ~  �9 Fv], contained in Dv ([25: Chapitre XII]). 
In case v is a real place, let ~ v = R  or C according as degree DffF=I or 2; we 
identify ~ with a field contained in D~. Let 

; } Av= ".. xle~, , for l <_i<n cM,(D~). 

t \  x. i I 

Let a~A~ be a regular element (i.e., the roots of the reduced characteristic 
polynomial of a~ are all distinct). We choose an element a of D "sufficiently" 

close to a~ in the topology on D |  F~ induced by the local field topology on F v 
(note that in this topology D is dense in D| Then the field ~ (cD) ,  
generated by a over F, is a Galois extension of F of degree =degree D/F=d 
= n . [ ~ : F J ,  and as a F~-algebra ~| is isomorphic to A~(~(~)").  If there 

exists a real place r such that Na. is isomorphic to SL2, then since N/F is an 
inner form of type A, aj, and hence D, splits over F,. Now since in D |  ~ 

(=  Me(R) ) the set of elements which have all the eigenvalues real and distinct is 
nonempty and open, and D in its diagonal imbedding in (D| (D| is 
dense (weak approximation), we may (and we shall) further assume that the 
element a of D is so chosen that ~@vF~ is isomorphic to R e. This implies that 
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all the places of ~ extending r are real. Now using the theorem of Sk/Slem- 
Noether and the simple fact that given a subalgebra B v of the matrix algebra 
M, (~ ) ,  B~ isomorphic to Av, there is an (inner) automorphism of M , ( ~ )  which 
takes By on to A~, we see that there is an F~-algebra isomorphism of DQFF ~ 
with M,(D~) which maps ~| o n  to Av. 

Let 9 f  be the F-subgroup SL2,~('~R~/FSL2) of SL2, w It is obvious that 
there is an isomorphism of SL2,v(F~)(=SL2(D| ) with SL2,(D~) which 
maps 9f(F~) onto the subgroup: 

(SL a(~,))" = l SL2(~v) SLz(~v.).SL2(~vl c SLzn(~v) ~ SL2,(D~). 

If v is nonarchimedean, according to Proposition 1.6, the restriction 

H2(SL2,(D~), R/Z) --, H2(SL2,(~), R/Z) 

is injective. Also a result of Moore (Theorem 1.2 for split groups) implies that 
the restriction H2(SL2,(~),R/Z)-*HZ(SLz(~,),R/Z) is injective, where SLz(~v ) 

1 
is assumed to be imbedded in SL2,(~)  as . . Hence, afor t ior i ,  the 

restriction 

H2(SL2n(~v), R/Z)-~ H2((SL2(~v)) ~, R/Z) 

is injective. Now it is obvious that the restriction 

H2(~(F~), R/Z) --~ H2 (~Uf(Fv), R/Z) 

is injective. On the other hand, if v is real, and D~ is 'the quaternion division 
algebra, then Vm, SL,,(D~) is simply connected and hence H2(SLm(D~),R/Z) 
={0}, and if D v=R, then Theorem 1.2 implies that the restriction 
H2(~(F~), R/Z)--~H2(jF(F~), R/Z) is injective. This proves Theorem 4.2 in case 

~=SL2,w 
(ii) Now we take up the case where N=SU2,w~; D is a central simple 

division algebra of degree n>  1 over a quadratic Galois extension f f  of F, a is 
an involution of D of the second kind such that the subfield of f fixed 
pointwise by a is F, and SUE,w~ is the special unitary group of the hyperbolic 
hermitian form in 2 variables defined in terms of a. 

Let D ~ be the F-vector subspace of D consisting of elements fixed under a. 
We first consider the case where i is linearly disjoint from Fv. Then 

f |  . ' ~  is a field ( f ~ = C  in case v is real), D| ~ is isomorphic to the 
matrix algebra M,(f~); where n=degree  D/if; ~ is quasi-split over F~ and its 
F~-rank=n; in fact, C~/Fv is the special unitary group of the direct sum of n 
hyperbolic planes (the form defined in terms of the nontrivial automorphism of 
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~/F~). There is an isomorphism of D | F~ with M,(Y~) such that the diagonal 
matrices of M,(.f,), with entries in F~, are fixed under the involution of M , ( ~ )  
induced by the involution a of D (existence of such an isomorphism is obvious 
from the fact that any hermitian form is diagonalizable and the involutions of 
the second kind of M , ( ~ )  correspond to the hermitian forms on Y~"). Now 
since the set of diagonal matrices of M,(~,~), with coefficients in F~, is a F~- 
subalgebra isomorphic to (F~)", we see that D"| ~ contains an F~-algebra 
isomorphic to (Fv)". From this we conclude that the set of elements of D ~ @v F~ 
( c D  | whose characteristic polynomial has distinct roots (~F~) is nonemp- 
ty; it is not difficult to see that this subset is open in D~QFF~. (We note that 
the characteristic polynomial of any element in D" | F~ has coefficients in F~.) 

If there exists a real place r such that F~ is linearly disjoint from ~ then 
= o ~ |  ~ is the field of complex numbers, D| ~ is isomorphic to the matrix 
algebra M,(~) ,  and ff/F~ is the special unitary group of the direct sum of n 
hyperbolic planes (the form defined in terms of the nontrivial automorphism of 
~/F,), hence ffa~ is isomorphic to SL 2. As above, we see that D~| contains 

a F~-subalgebra isomorphic to (F,)". Therefore, the set of elements of D ~ | 
(cDQvF~) whose characteristic polynomial has distinct real roots is non- 
empty (note that the characteristic polynomial of every element in D~| has 
coefficients in F~=R); it is obviously an open subset. 

We shall now consider the case where ~ F ~ .  In this case, D| 
| a(Mm(D~)), where D~ is a central division algebra with center F~ and Mm(Dv) 
is the matrix algebra of m • m matrices with coefficients in D~(m> 1). Let ~ be 
an extension of F~ of degree=degree DjFv, contained in D~, ~ is assumed to 
be an unramified extension of Fo if v is nonarchimedean, and let 

Let 

/(Xl  
Av= ".. x i ~ v  for l<_i<_m 

t \  x,,/I 

A~ = {a + a(a)la EA~}. 

Then it is obvious that Y .  A~=AvOa(Av) is a maximal abelian subalgebra of 

D | F v = Mm(Dv) 0 a(Mm(D~)). 
If there exists a real place r of F such that c~dr is isomorphic to SL 2 and 

~-cF~ (the case where f f  is linearly disjoint from F~ has already been consid- 

ered above), then D | v F~ = Mn(F~)G a(M,(F~)), where n = deg D/~. Let 

and let 

Ar {(xl xn) } = xi6F ~ for l < i < n  

Ar = {a + a(a) Ja~A~}. 

Then A r is a Fr-subalgebra isomorphic to (F~)" and it is contained in D ~ | F~. 
From this we conclude once again that the set of elements in D~| whose 
reduced characteristic polynomial has distinct real roots is a nonempty subset 
of D~'| it is clearly open. 
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Now by an approximation argument (note that D ~ is dense in D ~ | F.), we 
see that there is a Galois extension 30 of F, of degree n, contained in D ", such 
that 30 | F~ is isomorphic to (Fv)" in case ~ is linearly disjoint from F~, and is 
isomorphic to (3v)" if ,~-cF~, where, as before, 3~ is an extension of F~ of 
maximal degree contained in Dr, 3v is assumed to be an unramified extension 
of F v if v is nonarchimedean. If moreover, there exists a real place r such that f# 
is isomorphic to SL2, then we may (and we shall), using the density of the 
diagonal imbedding of D e in (D~| (De@eFt), assume that 30 is such that 
3o| is isomorphic to F,.n(=R'), from this it is obvious that all the places of 
30 extending r are real. 

Now let 3 be the field spanned by 30 and f t .  It is obvious that ~ is stable 
under a. Using the theorem of Sk61em-Noether we see that in case J~ is 
linearly disjoint from F~, there is an Fv-algebra isomorphism of D| with 
M , ( ~ )  which maps 3| (~D| on to the subalgebra of the diagonal 
matrices in M , ( ~ ) ;  whereas in case f f  c F~, there is an Fv-algebra isomorphism 
of D| with M,(Dv)Ga(M,,(D~)) which takes 3| onto the subalgebra 
A, �9 (~(A~). 

Clearly, 

SU2,o/~(F)={[~ bd] [2; ~d'l [10 - ? ]  [~ bali--[10 -011; a,b,c, dcD}. 

Let ~ be the F-subgroup of SUe,el ~ such that 

Then ~f' is F-isomorphic to R~o/vSL 2. Assume first that Y is linearly disjoint 
from F~, then Fv-rank ~ = F , - r a n k  fg=n; there is an identification of (# (over 
F~) with the special unitary group of the direct s u m H |  ... @ H  of n hyperbolic 
planes, in such a way that the subgroup Yt~/F~ gets identified with the subgroup 
SU(H)". Note that SU(H) is isomorphic to SL 2 over F~. It is easy to see that ~r 
contains the SL 2 corresponding to a suitable long root in the root system of (# 
with respect to a maximal F~-split torus contained in ~ .  Hence, it follows from 
a result of Deodhar (i.e., Theorem 1.2 for quasi-split groups) that the restric- 
tion: 

H 2(~(Fo), R/Z) -~ H 2 (Jt~(Fv), R/Z) 

is injective. 
We shall now consider the case where ~ c F , .  In this case D| is 

isomorphic to M,,(D~)Oa(M,,(D~)). It is easily seen that (q/F~ is isomorphic to 
SL2,,,D~ , ~ is F-isomorphic to R~o/rSL 2, and we can choose an isomorphism 
of ~q(F~) with SL2m(D~) so that under this isomorphism ~(F~,) corresponds to 
the subgroup 

(SL2(3~))m =(SL2(3~) 
\ 

SL2(3v) 
] c  SL2~(3~) c SL2,.(D~). 
! 

SL2(3~)/ 
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Now, as in the part (i) of the proof, we conclude that the restriction 
Hz(N(Fv), R/Z) ~ HZ(Jg(Fv), R/Z) is injective. 

(iii) Finally we take up the case where ~ is a F-form of type B or D. Let 

V = H G  V0 be a quadratic space over F of dimension n and of Witt index 1; 
where H is a hyperbolic plane and V o is an anisotropic quadratic subspace of 
dimension n - 2 > 3 .  Then fg=Spin(V). In case v is a real place and V o is 
anisotropic over Fv(=R), fg(=Spin(V)) is of rank 1 over R and ~(R) is simply 
connected, hence Hz(f~(R),R/Z)={O}, and Theorem4.2 is obvious. So we as- 

sume that if v is real, V o is isotropic over Fv. 
Now we consider the case where n>6.  In this case F is of characteristic 

zero, and dim Vo>4. Hence Vo| v is isotropic. Using a continuity argument 
(see Kneser [-12:w his proof works also for forms over R) we can find a 
nondegenerate quadratic subspace W of V o of dimension 3 or 4 according as n 
is odd or even, such that WQF Fv is isotropic and if there exists a real place r 
such that fqd, is isomorphic to SL 2 (in this case the Witt index of V over F~ is at 
least 2, since F~-rank fr then W Q F F  r is also isotropic. Let W • be the 
orthogonal complement of W in V 0. Then V = H |  W@ W z. Let g0 be the spin 
group of the quadratic space H@ W. Then in its natural imbedding in 
f#(= Spin V)), f#0 is a F-subgroup of f#. Moreover, if there is a real place r of F 
such that aJd~ is isomorphic to SL2, then since the Witt index of H O W  over F~ 
is at least 2, f#o is quasi-split over F~. Since ( H O W ) |  ~ is of Witt index >2, 
by Proposition 1.9 the restriction homomorphism 

H2(ff(F~), R/Z)-~ H2(ffo(F~), R/Z) 

is injective if v is nonarchimedean. On the other hand, if v is a real place, 
F~=R and xl(ffo(R))--~Tzl(ff(R)) is easily seen to be surjective and hence the 
restriction H2(qfl(Fv),R/Z)---~H2(q~o(F~),R/Z ) is again injective. In view of 
this, it is obvious that to prove the theorem in case ff is a F-form of type B or 
D, we may replace ~ by (~o ( = S p i n ( H O  W). Thus we may (and we shall) 
assume that n is either 5 or 6. Now in case n=6 ,  ff is a F-form of (inner or 
outer) type A3, and the theorem for groups of type A has already been proved 
in (i) and (ii) above. So we shall assume that n = 5. Then the Tits index of ~/F 
is ~ ,  and (r can be thought of as a F-rank 1 form of type C 2. 

There is a bijective correspondence between the set of isomorphism classes 
of absolutely simple, simply connected F-rank 1 groups of type C 2 and the set 
of isomorphism classes of quaternion division algebras over F: To any quater- 
nion division algebra D we associate the special unitary group of a anti- 
hermitian hyperbolic form in 2 variables defined in terms of an involution (of 
the first kind) of D such that the F-subspace of elements in D fixed by the 
involution is 3-dimensional. Any other involution of D of this type determines 
an isomorphic algebraic group. 

Now to describe the F-rank 1 simply connected group of type C 2 as- 
sociated with a quaternion division algebra D, in a form convenient for the 
present purpose, we fix an involution of D as follows: 

Let ~ ( c  D) be a quadratic Galois extension of F such that ~ | F~ is an 
extension of F~ (assumed to be unramified, if v is nonarchimedean) of degree 2 
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in case D | is a division algebra, otherwise (D @~F v is isomorphic to the 
matrix algebra M2(F~) ) ~@FFv is isomorphic to FvOF ~. Moreover ,  if there 

exists a real place r such that  c~ar is isomorphic to SL2, then fq being a form of 
type C2, actually splits over F~, and hence, D splits over F,, and we may (and 
we shall assume further that ~- |  is isomorphic to (F~)e; this implies that  the 
extensions of r to J~ are real. Let  x~--- ,~=Trdx-x be the s tandard involut ion 
of D. Let  7z be an element of D such that for x ~ , ,  rcxn -1 =~.  Then  since rc z 
commutes  with J~ and r c ~  ~, n2eF,  and hence g = - r c .  For  xeD, let a(x) 

- -  - - 1  o" = n x ~  . Then a is an involut ion of D and the space D ,  of elements fixed 
under  a, is of dimension 3, and it contains 

Now let X = e _  1 .D+e  1 .D be a right vector  space over D of dimension 2, 
and let q9 be the hyperbolic a-ant ihermit ian form on X determined by: 

q~(e_ 1, e_ 1) = 0 = cP(e l ,  e l )  , 

~~ 1, el) = 1 = --q~(el, e -  1). 

Then  f# is F- isomorphic  to SU(q~). We shall use the basis {e_ 1, el} to identify 
f# with a F-subgroup of SL2. o. Let W be the F-subgroup such that 

~ ( F )  = S L 2 ( g )  ( c ~(F) c SL2(D)). 

Then ~ is F- isomorphic  to R~/rSL  2. Now in case D |  ~ is a division 
algebra, F~-rank f#= 1, thus in this case f~/F, is a relative rank 1 form of type 
C2; if v is real, then f#(F,) is simply connected and hence H2(f#(Fo), R / Z ) =  {0}, 
on the other hand, if v is nonarchimedean,  then according to Proposi t ion 1.8, 
the restriction 

H :  (f#(F~), R / Z ) ~  H :  (3/f (F~), R/Z) 

is injective. If D splits over Fv, then both  f# and SL2, o split over F~. Now if v is 
real, then F~=R and it is easily seen that the natural  map nl(Jvt~(R))---~r~l(fg(R)) 
is surjective, and hence the restriction 

H2(fg(F~), R/Z)-- ,  H2(W(F~), R/Z) 

is injective. If v is nonarchimedean,  then as the restriction 

H2(SL2, o(F~), R/Z) ~ He(W(F~), R/Z) 

is injective (this follows from Theorem 1.2), the image is of order  # #(F~). This 
implies that (since S L2. o ~f# ~ ) f )  the image of the restriction homomorph i sm 

n2(fg(F~), R/Z) --~ H2(W(Fv), R/Z) 

is of order  => ~/~(Fv). But as f# splits over F~,H2(f#(F~),R/Z) is isomorphic to 

/~(F~), and from this it is obvious that the restriction 

U2(fq(F~), R/Z) --~ U :  (~Vf(Fo), R/Z) 

is injective. This completes the proof  of Theorem 4.2. 
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