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ON THE CONJECTURES OF J. THOMPSON AND O. ORE

ERICH W. ELLERS AND NIKOLAI GORDEEV

Abstract. If G is a finite simple group of Lie type over a field containing
more than 8 elements (for twisted groups lXn(ql) we require q > 8, except for
2B2(q2), 2G2(q2), and 2F4(q2), where we assume q2 > 8), then G is the square
of some conjugacy class and consequently every element in G is a commutator.

1. Introduction

In 1951 Ore [O] proved that every element in the alternating group An, where
n ≥ 5, is a commutator. Towards the end of his paper he wrote: “It is possible that
a similar theorem holds for any simple group of finite order, but it seems that at
present we do not have the necessary methods to investigate the question.” Now
this supposition is known as the Ore conjecture.

In the notes of Arad and Herzog [AH] (we do not know of any more direct
reference) the following stronger conjecture is attributed to J. Thompson: “Every
finite simple group G contains a conjugacy class C such that C2 = G.” Obviously,
this statement implies that every element in G is a commutator.

Ore’s remark that we lack the tools to prove his assertion in general is valid even
now. The same, of course, is true for Thompson’s conjecture. There seems to be no
general approach to either one of them. Theoretically for every finite simple group
one can check, e.g. with a computer, both conjectures using character inequalities.
Namely let G be a finite simple group; then (see [I])

(i) every element in G is a commutator if and only if∑
χ∈Irr (G)

χ(g)
χ(1)

6= 0 for every g ∈ G,

and
(ii) G = C2 for some conjugacy class C of G if and only if x, x−1 ∈ C for some

x ∈ G and ∑
χ∈Irr (G)

|χ(x)|2χ(g)
χ(1)

6= 0 for every g ∈ G.

In order to use these inequalities we need some information about the conjugacy
classes and characters. It is not clear how this can be obtained in general. The
classification of finite simple groups, on the other hand, gives us a chance to prove
both conjectures through a case by case analysis.
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For the alternating groups the Ore conjecture has been proved by Ore himself,
as mentioned above, and the Thompson conjecture has been proved by Cheng-hao
Hsü [H] in 1965. Various papers were devoted to the determination of conjugacy
classes in the alternating groups An whose squares cover An (see [AH] and [BrL]).
For the sporadic groups the Thompson (and consequently the Ore conjecture) was
verified in 1984 by Neubüser, Pahlings, and Cleuvers; see [NPaCl]. The situation
for finite simple groups of Lie type is the following. In 1961/62 R. C. Thompson
proved the Ore conjecture for PSLn(K), where K is an arbitrary finite field. The
Thompson conjecture for PSLn(K) was proved by J. L. Brenner in 1983 for finite
fields K containing more than n + 1 elements (see [Br]), by A. R. Sourour in 1986
for fields K with |K| > n + 1 (see [So]), and by A. Lev in 1994 for arbitrary fields
(see [Le]). These conjectures have also been checked for some other groups of Lie
type. If charK 6= 2 and −1 is a square in the field K, the Thompson conjecture was
verified for PSpn(K) by R. Gow in 1988 (see [Gow]). The Thompson conjecture
was confirmed for 2B2(q) by Arad, Chillag, and Moran (see [AH]) and for all finite
simple groups with order less than 106 by S. Karni (see [AH]).

In 1993 O. Bonten [B] proved the following result, which gives an asymptotic
solution of Ore’s conjecture: Let G(q) = Xn(q), lXn(ql) be a series of groups of
Lie type. Then there exists a constant q0 such that every element in G(q) is a
commutator if q > q0. Here n and l are fixed, i.e., q0 depends on n. In [B] only the
existence of such numbers q0 is proved, but theoretically the methods used allow
one to calculate an estimate for q0. Using such estimates for groups of small Lie
rank and using a computer for small q, Bonten [B] proved Ore’s conjecture for all
simple groups of the following Lie types: G2(q), 2G2(q2), 3D4(q3), F4(q), 2F4(q2).
Bonten’s results are based on the inequalities (i) and (ii), estimates of the values of
characters for groups of Lie type obtained by Gluck (see [G1], [G2], [G3]), and on
the Deligne-Lusztig theory of characters for groups of Lie type.

In 1994–96 the authors of the present paper proved the following result (see
[EGI], [EGII], [EGIII]):

Theorem 1. Let G be a Chevalley group (untwisted or twisted) over a field K (here
Chevalley group means a group generated by root subgroups Xα (see [St]); in the
twisted cases K is supposed to be finite). Let h1 and h2 be two regular semisimple
elements in G from a maximal split torus and let C1 and C2 be the conjugacy classes
of h1 and h2, respectively. Then

C1C2 ⊃ G\Z(G).

This theorem immediately implies the Ore conjecture for any simple group G
containing a regular semisimple element h in a maximal split torus, and the Thomp-
son conjecture if this element is in addition real, i.e., if h and h−1 are conjugate.
Estimates show that such a real regular element exists if |K| > (2r + 3)2, where
r is the Lie rank of G (more precise statements can be found in [EGI], [EGII],
[EGIII]). Thus this theorem also gives an asymptotic solution for the Thompson
and in turn for the Ore conjecture. Our estimates are not worse than those in [B],
because there the group is also supposed to have a regular element in a maximal
split torus. Moreover, Theorem 1 gives a solution of the Thompson conjecture and
consequently for the Ore conjecture for untwisted Chevalley groups over arbitrary
infinite fields.

The purpose of the present paper is to prove the Thompson conjecture for all
groups of Lie type over fields containing more than 8 elements (for twisted groups
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lXn(ql) we require q > 8, except for 2B2(q2), 2G2(q2), and 2F4(q2), where we
assume q2 > 8).

Thus now the situation with the conjectures of Thompson and Ore is the follow-
ing: the Thompson conjecture has been confirmed for all groups of Lie type except
for those over small fields k, where |k| = 2, 3, 4, 5, 7, 8. Actually, for most cases the
bound is even better, see Table 1 below, e.g. |k| = 8 needs to be checked only for
2F4(8). For the Ore conjecture the groups with small Lie ranks F4(q), 2F4(q2r+1),
G2(q), 2G2, 3D4(q3) and over small fields have been checked by computer (see [B]).

Finally, we mention a number of interesting results that are related to the con-
jectures of Thompson and Ore. The question of representation of a group element
as a commutator has been considered for cases of infinite groups too. In 1949
M. Goto [Go] proved that every element in a connected compact semisimple group
is a commutator. The same result for semisimple algebraic groups over the com-
plex number field was obtained by S. Pasiencier and H. C. Wang [PW] and for
semisimple algebraic groups over arbitrary algebraically closed fields by Ree [R].
In 1964 Ree proved that in a connected semisimple algebraic group defined over an
algebraically closed field every element is a commutator (see [R]). In 1951 Shoda
obtained results on commutators of matrices (see [S]). There are papers showing
that certain simple groups are cubes of some conjugacy classes (see [MSaWe]); there
are other papers showing that in certain simple groups every element is a product
of two commutators (see [Wi]). For further results see [AH], [Wi], [VWh], and [L].

2. Notation and terminology

A Chevalley group G = G(R, K), over a field K, corresponding to the root system
R is a group generated by root subgroups Xα, α ∈ R, where Xα = 〈xα(t)|t ∈ K〉
or Xα = 〈xα(t, s)|t, s ∈ K〉 or Xα = 〈xα(t, s, r)|t, s, r ∈ K〉. The second and
third possibilities occur only in the case of twisted Chevalley groups (see [C1],
[St]). Thus G is a commutator subgroup of the group of rational points G̃(K) of
the corresponding simple algebraic group G̃. When we use Xn(q) and lXn(ql) we
follow Carter [C1]. In the case of untwisted groups K is an arbitrary field. For
twisted groups, K is a finite field, θ : K → K is the corresponding automorphism
and Kθ is the subfield of θ-invariant elements of K.

We put
k = K if G is untwisted or if it is of type 2B2, 2G2 or 2F4

and
k = Kθ in all other cases.

Let K∗ and k∗ denote the multiplicative groups of the fields K and k, respec-
tively.

We use the following notation:
∆ denotes a simple root system of R,
B = HU denotes a Borel subgroup of G, where U = 〈Xα|α ∈ R+〉, H =
〈hα|α ∈ ∆〉, U− = 〈Xα|α ∈ R−〉.

For groups of Lie type we have the Bruhat decomposition

G = BNB

where H / N and W = N/H is the Weyl group of G (see [C1], [St]). We shall
identify the elements of the group W with those of N .
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A semisimple element h ∈ H is regular if the centralizer CG(h) ⊂ N . This is
equivalent to the usual definition (see [C2]). We shall also consider regular elements
from groups of Lie type An. Then a preimage of such an element lies in SLn+1(K̄),
where K̄ is the algebraic closure of K; so the preimage has a canonical form, where
distinct Jordan blocks have distinct eigenvalues.

An element g ∈ G is called real if g is conjugate to g−1.
We use the notation of Bourbaki for root systems of untwisted groups (see [Bo])

and that of Carter (see [C1]) for twisted groups.
If ∆1 is a subsystem of the simple root system ∆, then 〈∆1〉 denotes the root

subsystem generated by ∆1.

3. The main theorem

Our main result is

Theorem 2. Let G be a Chevalley group over K and k = K or k = Kθ a field as
defined above. If |k| > 8, then there is a real conjugacy class C ⊂ G such that

C2 ⊃ G\Z(G).

Corollary. If G is a simple group satisfying the conditions of Theorem 2, then the
Thompson conjecture holds for G.

Proof of Corollary. Clearly Z(G) = 1, and 1 ∈ C2 because C is real.

Remark 1. Here |K| = |k| or |K| = |k|2 or |K| = |k|3. The last condition is only
possible for 3D4(q3). One can say that the Thompson conjecture holds for twisted
groups if the corresponding field contains more than 82 or 83 elements. But for
twisted groups, when |K| = |k|2 or |K| = |k|3, the field K is determined by k and
it is better to look at k to describe the unsolved cases.

Remark 2. In Table 1 we summarize results. We give a number d, depending on
the type of the Chevalley group, indicating that the Thompson conjecture has been
proved for all groups G provided that |k| ≥ d. Thus if G is a finite group of type
Xn(q) or lXn(ql), except for 2B2(q2), 2G2(q2), 2F4(q2), the table gives a bound for
q. In the cases 2B2(q2), 2G2(q2), 2F4(q2) the table gives a bound for q2. Note that
in some cases there is no group with |k| = d. (The statement is then trivially
true.) These d have been chosen in order to allow us to give a reasonable global
estimate in Theorem 2.

Table 1

type Al B2 Bl Cl D2l D2l+1 E6 E7 E8 F4 G2

(l > 2)
d 2 4 7 4 5 4 7 5 7 8 7

type 2A2l−1
2A2l

2Dl+1
2E6

3D4
2B2

2G2
2F4

d 8 4 7 8 7 3 4 9
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4. Gauss decomposition for Chevalley groups

Let G be a Chevalley group and H , U , U− be the corresponding subgroups. Then
every element in G belonging to the “big cell” U−HU has a unique decomposition
g = u1hu2, where u1 ∈ U−, u2 ∈ U , h ∈ H . This is called the Gauss decomposition
of g.

Now let Γ be a group generated by G and a cyclic group 〈σ〉 which normalizes
G in Γ and acts as a diagonal automorphism on G (perhaps trivially). In [EGI],
[EGII], [EGIII] the following theorem has been proved.

Theorem 3. Let γ = σg ∈ Γ, g ∈ G and γ 6∈ Z(Γ). If h is any fixed element in
the group H, then there is an element τ ∈ G such that

τγτ−1 = σu1hu2,

where u1 ∈ U− and u2 ∈ U .

Remark. This is a generalization of a theorem of Sourour for G = SLn(K) and
Γ ≤ GLn(K) (see [So]).

We shall refer to Theorem 3 as EG.
Clearly, Theorem 1 follows immediately from Theorem 3. Indeed, if h1, h2 ∈ H

are regular elements, then the elements u1 ∈ U− and u2 ∈ U can be presented
as u1 = v1h1v

−1
1 h−1

1 and u2 = h−1
2 v2h2v

−1
2 for some v1 ∈ U− and v2 ∈ U (see

[EGI, Proposition 1]). Thus, if we consider any noncentral conjugacy class C ⊂ G,
according to EG we can find a representative c ∈ C such that

c = u1h1h2u2 =
(
v1h1v

−1
1 h−1

1

)
h1h2

(
h−1

2 v2h2v
−1
2

)
=
(
v1h1v

−1
1

) (
v2h2v

−1
2

)
.

Moreover, EG implies other decompositions in Chevalley groups; e.g. if we choose
h = 1 in Theorem 3 we get the following.

Corollary. Every noncentral element in a Chevalley group is a product of two
unipotent elements. In particular, every noncentral element in a finite Chevalley
group is a product of two p-elements, where p is the characteristic of the field k.

5. Proof of Theorem 2

The two main components of our proof are EG and the following theorem by
Lev.

Theorem (Lev [Le]). Let F be a field and let A, B ∈ GLn(F ) be regular matrices,
where n ≥ 3 and |F | ≥ 4. Assume that all eigenvalues of A or of B lie in F . Then,
for every nonscalar matrix M ∈ GLn(F ) with detA · detB = detM , there are
matrices A1 and B1 in GLn(F ) which are similar to A and B, respectively, such
that A1B1 = M . The same conclusion holds for n = 2 if and only if either the
eigenvalues of A or those of B are distinct or all eigenvalues of A and B lie in F .

Remark. If Z is a subgroup of the centre of GLn(F ), then we obviously can apply
Lev’s theorem to the images Ā, B̄, M̄ of matrices A, B, M in GLn(F )/Z.

Suppose ∆1 ⊂ ∆ and R1 = 〈∆1〉. If R1 = Al, then

G1 = 〈X±α|α ∈ R1〉 ≈ SLl+1(F )/Z

where F = K or F = k and Z ≤ Z(SLl+1(F )). Let u be a regular element in G1

and assume a preimage of u has all eigenvalues in F . Suppose every element in
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G1 that is GLl+1(F )-conjugate to u is also HG1-conjugate to u. Then by Lev’s
theorem every noncentral element g ∈ G1 is a product

g = u1u2,

where u1, u2 are elements which are HG1-conjugate to u. In the situation just
described we shall say that G1\Z(G1) ⊂ C2, where C is the HG1-conjugacy class
of u, by Lev’s theorem.

For ∅ 6= ∆1 ⊂ ∆, let R1 be the root subsystem generated by ∆1, G1 = 〈X±α|α ∈
R1〉, H1 = H ∩G1, V = 〈Xα|α > 0, α ∈ R\R1〉, V − = 〈Xα|α < 0, α ∈ R\R1〉.
Proposition 5.1. Let f be a real element in G belonging to HG1, let C be the
conjugacy class of f , Cf and Cf−1 the HG1-conjugacy classes of f and f−1, re-
spectively. Put C1 = Cf ∪ Cf−1 . Suppose

1. H1 6= Z(G1),
2. C2

1 ⊃ G1\Z(G1),
3. f acts fixed-point freely on Vi/Vi+1 for every i, where {Vj} is the central series

of V , i.e., V0 = V , V1 = [V, V ], V2 = [V, V1], . . . .
Then

C2 ⊃ G\Z(G).

If in addition G is simple, then C2 ⊃ G.

In order to prepare the proof of Proposition 5.1 we make an observation and
establish Lemma 5.1. Since f ∈ HG1, any element of C1 normalizes V and V −.
Consequently the action of such elements on Vi/Vi+1 or on V −

i /V −
i+1 is defined.

Lemma 5.1. If 3 of Proposition 5.1 holds, then for any σ1, σ2 ∈ C1 and for any
v1 ∈ V −, v2 ∈ V there are a1 ∈ V − and a2 ∈ V such that

v1 = a1σ1a
−1
1 σ−1

1 =
[
a−1
1 , σ−1

1

]
,

v2 = σ−1
2 a2σ2a

−1
2 =

[
σ2, a

−1
2

]
.

Proof of Lemma 5.1. Obviously every σ ∈ C1 acts on Vi/Vi+1 fixed-point freely.
Since Vi/Vi+1 can be considered as a finite dimensional vector space over some
subfield of K, the linear operator 1 − σ is invertible on Vi/Vi+1. Thus for every
v ∈ V there exists some x1 ∈ V such that

x1σx−1
1 σ−1 ≡ v mod V1.

Further, if

xiσx−1
i σ−1 ≡ v mod Vi

for some xi ∈ V , there exists some yi ∈ Vi such that(
xiσx−1

i σ−1
) (

yiσy−1
i σ−1

) ≡ v mod Vi+1.

Hence (xiyi)σ
(
y−1

i x−1
i

)
σ−1 ≡ (xiσx−1

i σ−1
) (

yiσy−1
i σ−1

) ≡ v mod Vi+1.

Proof of Proposition 5.1. Let y ∈ G\Z(G). According to EG, for every h ∈ H
there is some y1 conjugate to y such that

y1 = u1hu2(1)

for some u1 ∈ U−, u2 ∈ U . Since H1 6= Z(G1) we can take h ∈ H1\Z(G1). Further,

u1 = v1ũ1, u2 = ũ2v2,(2)
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where v1 ∈ V −, v2 ∈ V , ũ1 ∈ U− ∩ G1 = U−1 , ũ2 ∈ U ∩ G1 = U1 (we can arrange
the factors from the root subgroups in appropriate order). From (1) and (2) we get

y1 = v1 (ũ1hũ2) v2.(3)

Put g = ũ1hũ2. Then g ∈ G1 but g 6∈ Z(G1); indeed, if ũ1hũ2 = h′ ∈ Z(G1), then
ũ1h = h′ũ−1

2 ∈ U−1 H1 ∩H1U1 = H1 (see [C1, Corollary 7.1.3]). Thus ũ1, ũ2 ∈ H1,
which implies ũ1 = ũ2 = 1 and h ∈ Z(G1), contradicting our choice of h. Therefore

g = σ1σ2(4)

for some σ1, σ2 ∈ C1, according to 2 of Proposition 5.1. From Lemma 5.1 we get

a1σ1a
−1
1 σ−1

1 = v1,

σ−1
2 a2σ2a

−1
2 = v2

(5)

for some a1 ∈ V − and a2 ∈ V . Applying (3), (4), and (5) we get(
a1σ1a

−1
1

) (
a2σ2a

−1
2

)
=
(
a1σ1a

−1
1 σ−1

1

)
σ1σ2

(
σ−1

2 a2σ2a
−1
2

)
= v1gv2 = y1.

Thus

C2 ⊃ G\Z(G).(6)

If G is simple the equality C2 = G follows from (6) because f is real.

Lemma 5.2. Let u be a real element in HG1 and h an element in H. Suppose
a. C2

u ⊃ G1\Z(G1), where Cu is the HG1-conjugacy class of u,
b. h ∈ CG(G1),
c. whw−1 = h−1, wuw−1 ∈ Cu for some w ∈ W ,
d. the element f = hu satisfies 3 of Proposition 5.1.

Then f is a real element in the group G satisfying 2 of Proposition 5.1.

Proof. From c we get

f1 = wfw−1 = h−1u1

for some u1 ∈ Cu. Since u is real in HG1, there is some g ∈ HG1 such that
gu1g

−1 = u−1. Hence

f2 = gf1g
−1 = gh−1g−1gu1g

−1 = h−1u−1 = f−1.

Therefore f is real in G. Moreover, for any v1, v2 ∈ Cu one can find g1, g2 ∈ HG1

such that v1 = g1ug−1
1 , v2 = g2u

−1g−1
2 . Thus(

g1fg−1
1

) (
g2f

−1g−1
2

)
= v1hh−1v2 = v1v2

and we have 2 of Proposition 5.1.

Note, that if |K| > 3, condition 1 of Proposition 5.1 holds. Thus, to prove
Theorem 2 it is sufficient to find elements u and h satisfying a to d. In the proof
that follows we shall check conditions a to d for appropriate u and h.

Since for infinite fields Theorem 2 is a consequence of Theorem 1, we shall
consider in the following only the Chevalley groups over finite fields, i.e., we shall
consider Xn(q) or lXn(ql).

In order to check condition a of Lemma 5.2 we use the following facts.
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Lemma 5.3. Let R1 = 〈ε1 − ε2, . . . , εl − εl+1〉 be a root subsystem of R of type Al

and let G1 ≈ SLl+1(F )/Z for some Z ⊂ Z(SLl+1(F )), where F = K or F = k.
Let u be a regular unipotent element in G1. Suppose one of the following conditions
holds:

1. There exists an element h0 ∈ H such that

h0xεi−εj (a)h−1
0 = xεi−εj(µija)

for every a ∈ F , i < j, where µij = 1 if j 6= l + 1, µil+1 = s for every i and
〈s〉 = F ∗.

2. There exists a root subsystem R1 ⊂ R such that R1 ⊂ R1 and R1 is of type
Al+1.

Then condition a of Lemma 5.2 holds for u.

Proof. 1. We may assume for simplicity that G1 ≈ SLl+1(F ), because the question
considered is on the HG1-conjugacy class of u. One easily sees that 1 implies
〈G1, h0, Z(GLl+1(F ))〉 = GLl+1(F ). Now condition a follows from Lev.

2. We may assume the group generated by R1 is isomorphic to SLl+2(F ). Thus
G1 ≤ GLl+1(F ) ≤ G. Now we can apply Lev again.

Lemma 5.4. Suppose R1 is of type Al. Let u ∈ G1 be the image of the matrix

ũ =

α 0
0 α−1

Jl−1

 ,

where α 6= α−1, α ∈ k∗, and Jl−1 is a unipotent Jordan block (J0 = ∅, J1 = 1).
Then u satisfies condition a of Lemma 5.2.

Proof. If any matrix from SLl+1(K) is GLl+1(K)-conjugate to ũ, then it is also
SLl+1(k)-conjugate to ũ. Thus our statement follows from Lev.

In order to check c of Lemma 5.2 we shall use the following result.

Lemma 5.5. Let u be a regular element in G1. Assume either u is unipotent and
the conditions of Lemma 5.3 hold, or u is an element as described in Lemma 5.4.
Suppose −1W ∈ W and also that for twisted groups the element h from Lemma 5.2
belongs to the subgroup 〈hα(t)|α ∈ R, t ∈ k〉, where R is the root system of G. Then
condition c of Lemma 5.2 holds.

Proof. Clearly −1W (h) = h−1 for every h ∈ H . Further, −1W (u) is a regular
unipotent element in G1 which is 〈G1, h0〉-conjugate to u or −1W (u) is an element
in G1 which is a product of a regular unipotent element of a subgroup of type Al−2

and a semisimple element with eigenvalues α and α−1 which commutes with the
first one. Thus, −1W (u) is HG1-conjugate to u.

In order to check d of Lemma 5.2 we use the following statement.

Lemma 5.6. Let f = gsgu ∈ HG1, where gs ∈ H, gu ∈ U and gsgu = gugs.
Suppose that for every α ∈ R\R1, α > 0, and for every a ∈ K

gsxα(a)g−1
s = xα(µαa), where µα 6= 1,

or, in the case where Xα is a two parameter root subgroup, for every a, b ∈ K

gsxα(a, b)g−1
s = xα(µαa, ναb), where µα, να 6= 1,
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or, in the case where Xα is a three parameter root subgroup, for every a, b, c ∈ K

gsxα(a, b, c)g−1
s = xα(µαa, ναb, λαc), where µα, να, λα 6= 1.

Then the element f satisfies 3 of Proposition 5.1.

Proof. We consider the action of f on Vi/Vi+1 by conjugation. As a linear operator
gu acts as unipotent and gs as semisimple operator with eigenvalues {µα}, {να},
{λα}. Since gsgu = gugs and since there is no 1 among the eigenvalues of gs, the
operator f = gsgu also has no eigenvalue 1. This implies our statement.

Now we consider different cases.

B2(q); q ≥ 4. We put

∆1 = {ε2}, u = xε2(t), h = hε1(s), f = hu,

where t, s ∈ K∗, and 〈s〉 = K∗. We check the conditions a to d of Lemma 5.2.

a. Put h0 = hε1+ε2(s). Then

h0xε2(t)h
−1
0 = xε2(st).

Therefore h0 satisfies the conditions of Lemma 5.3, and a follows.
b. This is obvious.
c. This is a consequence of Lemma 5.5.
d. Here V = 〈Xε1±ε2 , Xε1〉. So

hxα(t)h−1 = xα(s2t)

for α = ε1, ε1 ± ε2. Now we use Lemma 5.6.

Bl(q); l > 2; q ≥ 7. We put

∆1 = {ε1 − ε2, . . . , εl−1 − εl}, ∆2 = {ε3 − ε4, . . . , εl−1 − εl},
(if l < 4 we put ∆2 = ∅), G2 = 〈X±α|α ∈ 〈∆2〉〉. Let ũ denote a regular unipotent
element in G2, u = hε1−ε2(s)ũ, where 〈s〉 = K∗, h = hε1(s) · · ·hεl

(s), f = hu.
We check the conditions a to d of Lemma 5.2.

a. This follows from Lemma 5.4.
b. This is obvious.
c. This follows from Lemma 5.5.
d. Here V = 〈Xεi , Xεk+εl

〉. We have

hhε1−ε2(s)xα(t)h−1
ε1−ε2(s)h

−1 = xα(µαt),

where

µα =



s3 if α = ε1,
s if α = ε2,
s2 if α = εi, i > 2,
s5 if α = ε1 + εk, k > 2,
s3 if α = ε2 + εk, k > 2,
s4 if α = ε1 + ε2.

Now we use Lemma 5.6.
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Cl(q); l ≥ 3; q ≥ 4. We put ∆1 = {ε1 − ε2, . . . , εl−1 − εl}. Let u denote a regular
unipotent element in G1, 〈s〉 = K∗, and h = h2ε1(s) · · ·h2εl

(s).

a. Put h0 = h2εl
(s). Then

h0xεi−εi+1(t)h
−1
0 = xεi−εi+1(µit),

where µi = 1 if i < l − 1 and µi = s−1 if i = l − 1. Thus h0 satisfies the
condition of Lemma 5.3, and a is proved.

b. This is obvious.
c. This follows from Lemma 5.5.
d. Here V = 〈Xεi+εj , X2εi〉. So

hxα(t)h−1 = xα(s2t)

for every α = εi + εj, 2εi. Now we use Lemma 5.6.

D2l(q); 2l = n ≥ 4; q ≥ 5. We put

∆1 = {ε1 − ε2, . . . , εn−1 − εn}, ∆2 = {ε3 − ε4, . . . , εn−1 − εn},
G2 = 〈X±α|α ∈ 〈∆2〉〉. Let ũ denote a regular unipotent element in G2, u =
hε1−ε2(s)ũ, where 〈s〉 = K∗, h = hε1+ε2(s) · · ·hεn−1+εn(s), f = hu.

a. This follows from Lemma 5.4.
b. This is obvious.
c. This follows from Lemma 5.5.
d. Here V = 〈Xεi+εj 〉. We have

hhε1−ε2(s)xα(t)h−1
ε1−ε2(s)h

−1 = xα(µαt)

where

µα =


s3 if α = ε1 + εk, k > 2,

s if α = ε2 + εk, k > 2,

s2 if α = ε1 + ε2 or εi + εj, i, j > 2.

Now we use Lemma 5.6.

D2l+1(q); n = 2l + 1 ≥ 5; q ≥ 4. Let ∆1 = {ε2 − ε3, . . . , εn−1 − εn}. Let u denote
a regular unipotent element in G1 and put h = hε2+ε3(s) · · ·hεn−1+εn(s), where
〈s〉 = K∗.

a. This follows from Lemma 5.3.
b. This is obvious.
c. This follows from Lemma 5.5, because −1 ∈ W (Dn−1).
d. Here V = 〈Xε1±εi , Xεi+εj 〉, i, j > 1; then hxα(t)h−1 = xα(µαt), where

µα =


s if α = ε1 + εk,

s−1 if α = ε1 − εk,

s2 if α = εi + εj, i, j > 1.

Now we apply Lemma 5.6.
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E6(q); q ≥ 7. We put

∆1 = {ε3 − ε2, ε4 − ε3, ε5 − ε4},
β =

1
2
(ε8 − ε7 − ε6 + ε1 + ε2 + ε3 + ε4 + ε5),

γ =
1
2
(ε8 − ε7 − ε6 + ε1 − ε2 − ε3 − ε4 − ε5),

〈tγ〉 = K∗, tβ ∈ K∗, tβ 6= t±1
γ , t2β 6= 1,

h = hβ(tβ)hγ(tγ).

Let u be a regular unipotent element in G1 and f = hu.

a. This follows from Lemma 5.3.
b. This can be confirmed by a simple calculation.
c. Let w = wβwγ . It is easy to see that α ± β and α ± γ are not roots for

any α = εk − εl, k, l > 1. Clearly wβwγ = wγwβ , and w commutes with all
elements in G1. Therefore w(h) = h−1 and w(u) = u. This shows c.

d. Here

V = 〈Xεk−ε1 , Xεi+εj , i, j, k ≤ 5, Xα〉,

where α = 1
2

(
ε8 − ε7 − ε6 +

∑5
i=1(−1)ν(i)εi

)
with

∑5
i=1 ν(i) ≡ 0 mod 2.

Then

hxδ(a)h−1 = xδ(µδa),

where δ = εk− ε1, εi + εj , α and µδ = t2β , t2γ , t±1
β , t±1

γ , t±1
β t±1

γ . Now we apply
Lemma 5.6.

E7(q); q ≥ 5. We put ∆1 = {ε2−ε1, ε3−ε2, ε4−ε3, ε5−ε4, ε6−ε5}. Let u be a regular
unipotent element in G1, 〈s〉 = K∗, h = hε8−ε7(s)hε1+ε2(s)hε3+ε4(s)hε5+ε6(s), and
f = hu.

a. This follows from Lemma 5.3.
b. This requires only a simple calculation.
c. Here −1 ∈ W (E7), and we can apply Lemma 5.5.
d. V = 〈Xεi+εj , i, j ≤ 6, Xε8−ε7 , Xα〉, where

α =
1
2

(
ε8 − ε7 +

6∑
i=1

(−1)ν(i)εi

)
,

6∑
i=1

ν(i) ≡ 1 mod 2.

Then

hxεi+εj (a)h−1 = xεi+εj(s
2a),

hxε8−ε7(a)h−1 = xε8−ε7(s
2a),

hxα(a)h−1 = xα(µαa),

where α = 1
2

(
ε8 − ε7 +

∑6
i=1(−1)ν(i)εi

)
,
∑6

i=1 ν(i) ≡ 1 mod 2, µα = s, s3,

s−1. Thus we can apply Lemma 5.6.
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E8(q); q ≥ 7. We put ∆1 = {ε2 − ε1, ε3 − ε2, ε4 − ε3, ε5 − ε4, ε6 − ε5, ε7 − ε6}. Let u
be a regular unipotent element in G1,

〈t〉 = K∗, h = hε8−ε7(t
2)hε8+ε7(t

2)hα0(t),

where α0 = 1
2 (ε1 + ε2 + ε3 + ε4 + ε5 + ε6 + ε7 + ε8), f = hu.

a. This follows from Lemma 5.3.
b. This is obvious.
c. Clearly −1 ∈ W (E8), and we can use Lemma 5.5.
d. Here

V = 〈Xε8−εk
, Xε8+εk

, k ≤ 7, Xεi+εj , i, j ≤ 7, Xβ〉,

where β = 1
2

(
ε8 +

∑7
i=1(−1)ν(i)εi

)
,
∑7

i=1 ν(i) ≡ 0 mod 2. Then

hxεi+εj (a)h−1 = xεi+εj (ta),

and for k ≤ 7 we get

hxε8−εk
(a)h−1 = xε8−εk

(t4a),

hxε8+εk
(a)h−1 = xε8+εk

(t5a),

hxβ(a)h−1 = xβ(µβa),

where µβ = t, t2, t3, t4. Now we apply Lemma 5.6.

F4(q); q ≥ 8. We put ∆1 = {ε2− ε3, ε3 − ε4}. Let u be a regular unipotent element
in G1, β0 = 1

2 (ε1 + ε2 + ε3 + ε4), 〈s〉 = K∗, h = hβ0(s)hε2(s)hε3(s)hε4(s).

a. This follows from Lemma 5.3.
b. This is obvious.
c. Clearly −1 ∈ W (F4), and we can apply Lemma 5.5.
d. V = 〈Xεi+εj , i, j > 1, Xεi, Xε1−εk

, Xε1+εk
, Xβ〉, where β = 1

2 (ε1±ε2±ε3±ε4),

hxεi+εj (a)h−1 = xεi+εj(s
6a),

hxεi(a)h−1 = xεi(µia),

where µ1 = s and µi = s3 if i > 1,

hxε1−εk
(a)h−1 = xε1−εk

(s−2a),

hxε1+εk
(a)h−1 = xε1+εk

(s4a),

hxβ(a)h−1 = xβ(µβa),

where µβ = s5, s−4, s2, s−1. Now we apply Lemma 5.6.

G2(q); q ≥ 7. Let 〈s〉 = K∗, h = hε1−ε2(s)h2ε3−ε1−ε2(s). For every β ∈ R we have

hxβ(a)h−1 = xβ(µβa),

where µβ = s±2, s±3, s±1, s±5. Hence h is a regular element. Since −1 ∈ W (G2),
the element h is real. Now we can apply Theorem 1 from [EGII].
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2A2l−1(q2); l ≥ 2; q ≥ 8. We use the notation of [C1]. Put

∆1 = {e1 − e2, . . . , el−1 − el}, ∆2 = {e3 − e4, . . . , el−1 − el},
G2 = 〈X±α|α ∈ 〈∆2〉〉.

Let ũ be a regular unipotent element in G2,

〈t〉 = k∗, u = he1−e2(t)ũ,

h = h2e1(t
2) · · ·h2el

(t2), f = hu.

a. This follows from Lemma 5.4.
b. This can be confirmed by a simple calculation:

h2ei(t
2)xek−em(a)h−1

2ei
(t2) = xek−em(δia),

where

δi =


t2 if i = k,
t−2 if i = m,
1 if i 6= k, m.

c. Since −1 ∈ W (Cl) and the parameters in h and he1−e2(t) belong to k, we can
apply Lemma 5.5.

d. V = 〈Xei+ej , X2ek
〉. Now

he1−e2(t)xei+ej (a)h−1
e1−e2

(t) = xei+ej (µija),

where

µij =


t if i = 1, j > 2,

t−1 if i = 2, j > 2,
1 if i = 1, j = 2.

Further, he1−e2(t)x2ek
(a)h−1

e1−e2
(t) = x2ek

(δka), where

δk =


t2 if k = 1,
t−2 if k = 2,
1 if k > 2.

Finally,

hxα(a)h−1 = xα(t4a)

for α = ei + ej and α = 2ek. Thus

hhe1−e2(t)xα(a)h−1
e1−e2

(t)h−1 = xα(γa),

where γ = t2, t3, t4, t5, t6. Now we apply Lemma 5.6.

2A2l(q2); q ≥ 4. If l = 1 then we take h = diag (t, 1, t−1), where t is a generator of
k∗. It is easy to see that h is a real regular semisimple element in SU3(q2) if q ≥ 4.
Thus the image f of h in G is also real regular semisimple. Theorem 2 now is a
consequence of Theorem 1.

Now let l > 1 and put ∆1 = {e1−e2, . . . , el−1−el} . Let u be a regular unipotent
element in G, 〈t〉 = k∗, h = he1(t) · · ·hel

(t), f = hu.
a. Put h0 = hel

(s), where 〈s〉 = K∗. Then h0 commutes with all roots of the
form xei−ek

if i, k 6= l. One can check that
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h0xei−el
(a)h−1

0 = xei−el
(s−1a).

Thus we can apply Lemma 5.3.
b. This follows by a simple calculation.
c. Since −1 ∈ W (Bl) and the parameter t ∈ k, we can apply Lemma 5.5.
d. V = 〈Xei+ej , Xek

〉. We have (see [St])

hei(t)xei (a, b)h−1
ei

(t) = xei (ta, t2b).

Further,

hei(t)xek
(a, b)h−1

ei
(t) = xei(a, b) if k 6= i,

hei(t)xei+ej (a)h−1
ei

(t) = xei+ej (ta),

hei(t)xek+em(a)h−1
ei

(t) = xek+em(a) if k, m 6= i.

Hence,

hxei(a, b)h−1 = xei(ta, t2b), hxei+ej (a)h−1 = xei+ej (t
2a).

Thus we can apply Lemma 5.6.

2Dl+1(q2); q ≥ 7. Put

∆1 = {e1 − e2, . . . , el−1 − el}.
Let u be a regular unipotent element in G1, h = he1(s) · · ·hel

(s), 〈s〉 = k∗, and
f = hu.

a. This follows from Lemma 5.3 with h0 = hel
(t), 〈t〉 = K∗.

b. This is obvious.
c. This is true because −1 ∈ W (Bl) and the parameter s in h belongs to k.
d. V = 〈Xei , Xei+ej 〉. Then

h(s)xei (a)h−1(s) = xei (s
2a),

h(s)xei+ej (a)h−1(s) = xei+ej (s
4a).

So we have confirmed d.

2E6(q2); q ≥ 8. Here we have the root system of type F4. If in the proof of the case
F4 we put the parameter t ∈ k, we also have a proof for 2E6(q2).

For the cases 3D4(q3), q ≥ 7, 2B2(22m+1), m ≥ 1, 2G2(32m+1), m ≥ 1,
2F4(22r+1), r ≥ 2, there exist regular semisimple elements; see [EGIII, Section
4].
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