On the Connection Between Macdonald Polynomials and Demazure Characters

YASMINE B. SANDERSON

sanderso@math.rutgers.edu

Department of Mathematics, Rutgers University, New Brunswick, N.J. 08901

Received March 30, 1998; Revised November 17, 1998; Accepted December 21, 1998

Abstract. We show that the specialization of nonsymmetric Macdonald polynomials at t = 0 are, up to multiplication by a simple factor, characters of Demazure modules for $\widehat{sl(n)}$. This connection furnishes Lie-theoretic proofs of the nonnegativity and monotonicity of Kostka polynomials.

Keywords: affine Lie algebras, Macdonald polynomials, Demazure character

1. Introduction

Macdonald defined a special class of polynomials $P_{\lambda}(z,q,t)$, called *symmetric Macdonald polynomials*, which form a basis of the symmetric polynomials in $\mathbb{C}(q,t)[z_1,\ldots,z_n]$. These polynomials are indexed by partitions $\lambda \in \mathbb{N}^n$, $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_n \geq 0$. They interpolate between several classes of classical polynomials: $P_{\lambda}(z,0,t)$ are the Hall-Littlewood polynomials, which, in turn are the Schur functions when t=0. By setting $q=t^{\alpha}$ and letting t go to 1, one obtains Jack polynomials. In [11], Macdonald mentions that there is no similar interpretation of $P_{\lambda}(z,q,0)$. By using the theory of nonsymmetric Macdonald polynomials, we show that the $P_{\lambda}(z,q,0)$ are the characters (up to factor) of certain Demazure modules of $\widehat{sl(n)}$. This interpretation allows us to obtain Lie-theoretic proofs of the nonnegativity and monotonicity of Kostka polynomials. In addition, it gives us a branching rule for the decomposition of certain integrable highest weight $\widehat{sl(n)}$ -modules under the action of sl(n).

The connection between Demazure characters and symmetric functions has already been explored in [8] using a path realization of the crystal basis. The results in this paper intersect somewhat with those in [8]. The main advantage of our approach is its simplicity and its explanation of the connection with Macdonald polynomials. Nonnegativity and positivity of Kostka polynomials have already been proven by Lascoux-Schützenberger [9], Butler [1], Lusztig [10]. The connection between the branching rule and Kostka polynomials was explored in [5]. A different representation-theoretic interpretation of $P_{\lambda}(z, q, 0)$ is given in [4].

2. Nonsymmetric Macdonald polynomials

These nonsymmetric analogues of the symmetric Macdonald polynomials were first introduced in [12, 14]. Nonsymmetric Macdonald polynomials $E_{\lambda}(z, q, t)$ are indexed by compositions $\lambda \in \mathbb{N}^n$ and form a basis of $\mathbb{C}(q, t)[z_1, \ldots, z_n]$. (See [2, 5] for their precise

270 SANDERSON

definition). In [6], Knop gives a recursive description of the $E_{\lambda}(z,q,t)$. We describe this recursion for when t=0. In this case, we have $E_{\lambda}(z,q,0) \in \mathbb{Z}[q,q^{-1}][z_1,\ldots,z_n]$. For ease of notation, we will denote $E_{\lambda}(z,q,0)$ simply by E_{λ} from now on. For $i \in [1,\ldots,n-1]$ let s_i be the simple reflection that interchanges z_i and z_{i+1} . Consider the following operators on $\mathbb{Z}[q,q^{-1}][z_1,\ldots,z_n]$:

$$\bar{H}_i := s_i - z_{i+1} \frac{(1 - s_i)}{(z_i - z_{i+1})} \quad \text{for } i \in [1, \dots, n-1]$$

$$\Phi f(z_1, \dots, z_n) := z_n f(q^{-1} z_n, z_1, \dots, z_{n-1})$$

$$\bar{H}_0 := \Phi \bar{H}_1 \Phi^{-1} = \Phi^{-1} \bar{H}_{n-1} \Phi$$

Then the recursion relations are given by [6]

Theorem 1 The E_{λ} are generated by application of the \bar{H}_i $(0 \le i < n)$ and Φ to 1. More precisely, set $E_{(0^n)} := 1$. The action of Φ and the \bar{H}_i on the set of E_{λ} for $\lambda \in \mathbb{N}^n$ is as follows:

$$q^{\lambda_1} \Phi E_{(\lambda_1, \dots, \lambda_n)} = E_{(\lambda_2, \dots, \lambda_n, \lambda_1 + 1)}$$

$$\bar{H}_i E_{\lambda} = \begin{cases} E_{s_i \lambda} & \text{if } \lambda_i < \lambda_{i+1} \\ E_{\lambda} & \text{if not} \end{cases} \text{ for } 1 \le i \le n-1$$

where $s_i\lambda$ is the composition λ with λ_i and λ_{i+1} interchanged.

$$q^{\lambda_1 - \lambda_n + 1} \bar{H}_0 E_{\lambda} = \begin{cases} E_{(\lambda_n - 1, \lambda_2, \dots, \lambda_{n-1}, \lambda_1 + 1)} & \text{if } \lambda_1 > \lambda_n - 1 \\ E_{\lambda} & \text{if not} \end{cases}$$

To ease notation, we define the operators \tilde{H}_0 and $\tilde{\Phi}$ on the set of nonsymmetric Macdonald polynomials:

$$\begin{split} \tilde{H}_0 E_{(\lambda_1,\dots,\lambda_n)} &:= q^{\lambda_1 - \lambda_n + 1} \bar{H}_0 E_{(\lambda_1,\dots,\lambda_n)} = E_{(\lambda_n - 1,\lambda_2,\dots,\lambda_{n-1},\lambda_1 + 1)} \\ \tilde{\Phi} E_{(\lambda_1,\dots,\lambda_n)} &:= q^{\lambda_1} \Phi E_{(\lambda_1,\dots,\lambda_n)} = E_{(\lambda_2,\dots,\lambda_n,\lambda_1 + 1)} \end{split}$$

Although this definition of nonsymmetric Macdonald polynomials is given for only $\lambda \in \mathbb{N}^n$, we can easily extend it to compositions $\lambda \in \mathbb{Z}^n$ by defining

$$E_{\lambda} := \tilde{\Phi}^{-mn} E_{\lambda + (m^n)} = q^{-(m|\lambda| + nm(m+1)/2)} \Phi^{-mn} E_{\lambda + (m^n)}$$

where m is chosen large enough so that $\lambda + (m^n) = (\lambda_1 + m, \dots, \lambda_n + m)$ is in \mathbb{N}^n . The E_{λ} are well-defined (don't depend on the choice of m). In fact, let m_1 and m_2 , with $m_1 \leq m_2$, be two such choices. Then,

$$\tilde{\Phi}^{-m_2n}E_{\lambda+(m_2^n)}=\tilde{\Phi}^{-m_1n}\tilde{\Phi}^{-(m_2-m_1)n}E_{\lambda+(m_2^n)}=\tilde{\Phi}^{-m_1n}E_{\lambda+(m_1^n)},$$

the last equality following from the well-definedness of the E_{μ} for $\mu \in \mathbb{N}^n$. Note that the E_{λ} are elements of $\mathbb{Z}[q,q^{-1}][z_1,z_1^{-1},\ldots,z_n,z_n^{-1}]$.

We now check that, for $\lambda \in \mathbb{Z}^n \setminus \mathbb{N}^n$, the E_{λ} satisfy the recursion relations. For $i \neq 0$,

$$E_{s:\lambda} = \tilde{\Phi}^{-mn} E_{s:\lambda+(m^n)} = \tilde{\Phi}^{-mn} \bar{H}_i \tilde{\Phi}^{mn} E_{\lambda} = \bar{H}_i E_{\lambda}$$

Now, let $\lambda^* := (\lambda_n - 1, \lambda_2, \dots, \lambda_{n-1}, \lambda_1 + 1)$ and choose m such that $\lambda^* + (m^n) \in \mathbb{N}^n$. Then

$$E_{\lambda^*} = \tilde{\Phi}^{-mn} E_{\lambda^* + (m^n)} = \tilde{\Phi}^{-mn} \tilde{H}_0 \tilde{\Phi}^{mn} E_{\lambda} = q^{\lambda_1 - \lambda_n + 1} \bar{H}_0 E_{\lambda},$$

the last equality following from the commutativity of the \tilde{H}_i with $\tilde{\Phi}^n$. This proves that, for all $\lambda \in \mathbb{Z}^n$, the E_{λ} satisfy the relations of Theorem 1.

Let B_m denote the $\mathbb{Z}[q, q^{-1}]$ -vector space generated by all E_{λ} with $|\lambda| = m$. Then the $\bar{H}_i B_m \subset B_m$ for all i and $\Phi B_m \subset B_{m+1}$. The action of the \bar{H}_i $(i \neq 0)$ and \tilde{H}_0 on the E_{λ} is related to the action of the affine Weyl group on compositions:

$$s_i \cdot (\lambda_1, \dots, \lambda_n) := (\lambda_1, \dots, \lambda_{i-1}, \lambda_{i+1}, \lambda_i, \lambda_{i+2}, \dots, \lambda_n)$$

$$s_o \cdot (\lambda_1, \dots, \lambda_n) := (\lambda_n - 1, \lambda_2, \dots, \lambda_{n-1}, \lambda_1 + 1)$$

The connection between compositions of a given degree, say m, and elements of the affine Weyl group is as follows. Let m = kn + i where $k \ge 0$ and $0 \le i < n$. Then the smallest composition is $\eta_m := (k, \dots, k, k+1, \dots, k+1)$ (*i* factors of k+1 and n-i factors of k). Every composition λ of degree m equals $w \cdot \eta_m$ where w is an affine Weyl group element.

For $w = s_{i_1}, \ldots, s_{i_i}$ a reduced decomposition, we define $\bar{H}_w := \bar{H}_{i_1}, \ldots, \bar{H}_{i_i}$ and \tilde{H}_w the same expression but with \bar{H}_0 replaced by \tilde{H}_0 . For a composition $\lambda \in \mathbb{Z}^n$, let $\mathrm{u}(\lambda) := \sum_i \frac{\lambda_i(\lambda_i - 1)}{2}$

Theorem 2 We can write $E_{\lambda} = \tilde{H}_{w}\tilde{\Phi}^{|\lambda|} \cdot 1 = q^{u(\lambda)}\bar{H}_{w}\Phi^{|\lambda|} \cdot 1$ where w is determined by $\lambda = w \eta_{|\lambda|}$.

Proof: By the commuting relations of Φ and the H_i [6],

$$\begin{cases} \Phi \bar{H}_{i+1} = \bar{H}_i \Phi & i = 1, \dots, n-2 \\ \Phi^2 \bar{H}_1 = \bar{H}_{n-1} \Phi^2 & \end{cases}$$

we need only prove that the power of q is $u(\lambda)$ by induction. For $i \geq 1$, the actions of the \bar{H}_i do not involve any powers of q. The operator \bar{H}_0 equals $\Phi \bar{H}_1 \Phi^{-1}$ by definition. Therefore, we need only check that this holds for Φ . Let $\mu = (\lambda_1, \dots, \lambda_{n-1}, \lambda_n + 1)$. We have

$$E_{\mu} = q^{\lambda_n} \Phi E_{\lambda} = q^{\lambda_n} q^{\mathrm{u}(\lambda)} \Phi H_w \Phi^{|\lambda|} \cdot 1 = q^{\mathrm{u}(\mu)} H_{w'} \Phi^{|\mu|} \cdot 1$$

where $H_{w'}$ is determined by the above commutation relations.

Remark We note that $\tilde{\Phi}^{nk+i} \cdot 1 = q^{u(\eta_{nk+i})}(z_1, \dots, z_n)^k z_{n-i+1} \cdots z_n$. The \bar{H}_i (all i) commute with multiplication by q and the symmetric function $z_1 \cdots z_n$. Therefore, $E_{\lambda} =$ $q^{\mathrm{u}(\eta_{nk+i})}(z_1,\ldots,z_n)^k \tilde{H}_w z_{n-i+1}\cdots z_n$. We will use this information in Section 4.

272 SANDERSON

3. Demazure modules of $\widehat{sl(n)}$

Let Λ be a dominant integral weight. Let $V = V(\Lambda)$ be the unique (up to isomorphism) irreducible highest weight $\widehat{sl(n)}$ -module with highest weight Λ . Let W be the Weyl group of $\widehat{sl(n)}$. For each $w \in W$, the weight space $V_{w(\Lambda)}$ of weight $w(\Lambda)$ is one-dimensional. We consider $E_w(\Lambda)$, the $\underline{\mathbf{b}}$ -module generated by $V_{w(\Lambda)}$, where $\underline{\mathbf{b}}$ is the Borel subalgebra. The $E_w(\Lambda)$, called *Demazure modules*, are finite-dimensional vector spaces which form a filtration of V which is compatible with the Bruhat order on W: $w \leq w' \Leftrightarrow E_w(\Lambda) \subseteq E_{w'}(\Lambda)$.

To each Demazure module $E_w(\Lambda)$, we can associate its character $\chi(E_w(\Lambda))$:

$$\chi(E_w(\Lambda)) := \sum_{\mu \text{ weight}} (\dim E_w(\Lambda)_\mu) e^\mu$$

Since the $E_w(\Lambda)$ are finite dimensional, the $\chi(E_w(\Lambda))$ are polynomials in the n simple roots α_i and lie in the group ring for the weight lattice P.

We now define *Demazure operators*. For each α_i , we define an operator Δ_i on P:

$$\Delta_i := \frac{1 - e^{-\alpha_i} s_i}{1 - e^{-\alpha_i}}$$

where s_i is the simple reflection with respect to α_i . Let $w = s_{i_1} s_{i_2} \cdots s_{i_j}$ be a reduced decomposition. Then, we can define $\Delta_w := \Delta_{i_1} \Delta_{i_2} \cdots \Delta_{i_j}$ and Δ_w does not depend on the choice of reduced decomposition. The connection between characters and Demazure operators is given by [3, 7, 13]:

Theorem 3 $\chi(E_w(\Lambda)) = \Delta_w(e^{\Lambda}).$

4. Macdonald polynomials and Demazure module characters

Let $\Lambda_0, \ldots, \Lambda_{n-1}$ denote the n fundamental weights of $\widehat{sl(n)}$ defined by $(\Lambda_i, \alpha_j) = \delta_{ij}$. Let $\delta = \sum_{i=0}^{n-1} \alpha_i$. Let π be the ring homomorphism $\pi : \mathbb{Z}[q, q^{-1}][z_1, \ldots, z_n] \to P$ defined by: $\pi(z_i) = e^{\Lambda_i - \Lambda_{i-1}}$ for $i < n, \pi(z_n) = e^{\Lambda_0 - \Lambda_{n-1}}$ and $\pi(q) = e^{-\delta}$.

Theorem 4 The operator \bar{H}_i is equivalent to the Demazure operator Δ_i in the sense that the following diagram commutes:

$$\mathbb{Z}[q, q^{-1}][z_1, \dots, z_n] \xrightarrow{\pi} P$$

$$\downarrow \Phi_i \qquad \qquad \downarrow \Delta_i(e^{\Delta_0} \cdot)$$

$$\mathbb{Z}[q, q^{-1}][z_1, \dots, z_n] \xrightarrow{\pi} P$$

Proof: We have that \bar{H}_i , $i \neq 0$ (resp. \bar{H}_0) commutes with multiplication by z_j for $j \neq i$ or i+1 (resp. z_1 or z_n). Therefore, one only needs to verify this equivalence on the monomials $z_i^a z_{i+1}^b$ (resp. $z_1^a z_n^b$). This is done by direct computation.

Let *C* be the following "change of basis" operator on *P*: $C(e^{\Lambda_0}) = e^{\Lambda_{n-1}}$ and $C(e^{\Lambda_i}) = e^{\Lambda_{i-1} - \delta}$ for 1 < i < n-1.

Theorem 5 The operator Φ is equivalent to the operator C in the sense that the following diagram commutes:

$$\mathbb{Z}[q, q^{-1}][z_1, \dots, z_n] \xrightarrow{\pi} P$$

$$\downarrow C$$

$$\mathbb{Z}[q, q^{-1}][z_1, \dots, z_n] \xrightarrow{\pi} P$$

Proof: By direct computation.

Theorems 1, 4, 5 along with the preceding Remark give us our main result:

Theorem 6 Through the π homomorphism, we can identify $q^{-\mathrm{u}(\lambda)+\mathrm{u}(\eta_{|\lambda|})}E_{\lambda}$ with $\chi(E_w(\Lambda_i))$ where $i=|\lambda| \mod n$ and where w is an affine Weyl group element defined by $\lambda=w\eta_{|\lambda|}$.

Proof: We have that

$$E_{\lambda} = q^{\mathrm{u}(\lambda)} \bar{H}_w \Phi^{|\lambda|} \cdot 1 = q^{\mathrm{u}(\lambda) - \mathrm{u}(\eta_{|\lambda|})} (z_1 \cdots z_n)^k \bar{H}_w z_{n-i+1} \cdots z_n.$$

We have $\pi(z_1z_2\cdots z_n)=1$ and $\pi(z_{n-i+1}\cdots z_n)=e^{\Lambda_i}$. Therefore,

$$\pi(E_{\lambda}) = q^{\mathrm{u}(\lambda) - \mathrm{u}(\eta_{|\lambda|})} \Delta_w e^{\Lambda_i}.$$

Remark

- 1. $\pi(E_{\lambda})$ having nonnegative coefficients implies that E_{λ} has nonnegative coefficients.
- 2. By setting q = 1, one obtains the *real character* of a Demazure module (see [15]). For λ a partition, we have the factorization ([11], p. 324)

$$P_{\lambda}(z, 1, 0) = e_{\lambda'}(z) = \prod_{i=1}^{n} e_{i}^{\lambda_{i} - \lambda_{i+1}}(z)$$

where $e_i(z)$ is the *i*th elementary symmetric function. This gives us a similar factorization of

$$\chi(E_w(\Lambda)) = q^{-\mathrm{u}(\lambda) + \mathrm{u}(\eta_{|\lambda|})} \prod_{i=1}^{n-1} e_i(\pi(z))^{\lambda_i - \lambda_{i+1}}.$$

Previous examples of this factorization are found in [8, 15].

274 SANDERSON

5. Positivity and monotonicity of Kostka polynomials

Recall that $P_{\lambda}(z, q, t)$ denotes the symmetric Macdonald polynomial associated to the partition λ .

Theorem 7 For λ a partition, we have $E_{\lambda}(z, q, 0) = P_{\lambda}(z, q, 0)$.

Proof: Consider $\sum_{w \in W} \bar{H}_w E_{\lambda}(z, q, t)$. It is symmetric and satisfies the same defining conditions as $P_{\lambda}(z, q, t)$ (see [6]), therefore is a scalar multiple of it. When t = 0, we have $\bar{H}_w E_{\lambda}(z, q, 0) = E_{\lambda}(z, q, 0)$. By comparing coefficients of the leading coefficient z^{λ} in both $E_{\lambda}(z, q, 0)$ and $P_{\lambda}(z, q, 0)$, we see that we have equality.

Recall that one has the following order relation on partitions: two partitions γ and μ such that $|\gamma| = |\mu|$ satisfy $\gamma < \mu$ if $\gamma_1 + \cdots + \gamma_i \le \mu_1 + \cdots + \mu_i$ for all i with strict inequality for some i.

It is known [[11], VI (8.11)] that $P_{\lambda}(z,q,0) = \sum_{\mu \leq \lambda} K_{\mu\lambda}(q,0)s_{\mu}(z)$ where K is the Kostka function and the s_{μ} are the Schur functions. In addition, it is known [[11], p. 355] that $K_{\mu\lambda}(q,0) = K_{\mu'\lambda'}(q)$ where μ' (resp. λ') is the dual partition of μ (resp. λ). It follows that $P_{\lambda}(z,q,0) = \sum_{\mu \leq \lambda} K_{\mu'\lambda'}(q)s_{\mu}(z)$.

Theorem 8 The $K_{\mu\lambda}(q)$ have positive coefficients.

Proof: We have that $P_{\lambda}(z, q, 0)$ is invariant under the \bar{H}_i (for $i \neq 0$). This is equivalent to saying that the Demazure module $E_w(\Lambda_0)$ decomposes as a direct sum of simple sl(n)-modules. In fact, we have the following decomposition:

$$E_w(\Lambda_0) = \bigoplus_{j \in \mathbb{Z}} (E_w(\Lambda_0))_{j\delta}$$

where $(E_w(\Lambda_0))_{j\delta}$ is just the direct sum of weight spaces whose weights are of the form $\upsilon = \kappa + j\delta$ where κ is some weight for sl(n). (In other words, these are all weights that satisfy $\langle \upsilon, d \rangle = j$ where d is the scaling element.) Since δ is orthogonal to the Cartan subalgebra of sl(n), each $(E_w(\Lambda_0))_{j\delta}$ is a direct sum of irreducible sl(n)-modules. Let $\lambda = w\upsilon_{|\lambda|}$. The $P_\lambda(z,q,0)$ merely represents the character $\chi(E_w(\Lambda_0))$ as seen in this light; since the $s_\mu(z)$ is a character of an irreducible sl(n)-module, the coefficient of q^j in $K_{\mu'\lambda'}(q)$ is the multiplicity of the sl(n)-module of highest weight $\mu - j\delta$ in $E_w(\Lambda_0)$. Therefore, the $K_{u'\lambda'}(q)$ have positive coefficients.

Remark A consequence of this theorem is that the Kostka numbers $K_{\mu\lambda}(1)$ are the multiplicities of the (finite-dimensional) sl(n)-modules in the Demazure modules $E_w(\Lambda)$.

Recall that $V=V(\Lambda_i)$ is the irreducible highest weight $\widehat{sl(n)}$ -module of highest weight Λ_i . We have that $\chi(V)=\lim_{\ell(w)\to\infty}\chi(E_w(\Lambda_i))$. We can now describe the branching rule for V in terms of Kostka polynomials (see [5]). Let $\{\lambda^j\}$ be an "increasing" sequence of partitions in the sense that $\lambda^j:=w_j\nu_{|\lambda^j|}$ where $\lim_j\ell(w_j)=\infty$ and where $|\lambda^j|=i\pmod{n}$. We must choose $\nu_{|\lambda^j|}$ such that the resulting λ^j are still partitions.

Corollary 1 The multiplicity of the sl(n)-module of weight μ in V is given by

$$\lim_{j\to\infty}q^{-\mathrm{u}(\lambda^j)+\mathrm{u}(\nu_{|\lambda^j|})}K_{\mu'\lambda^{j\prime}}(q)$$

We also have a monotonicity result. Let $\tilde{K}_{\lambda\mu}(q) := q^{-\mathrm{u}(\mu)} K_{\lambda\mu}(q)$. Recall that if $\lambda = w \nu_m$ and $\gamma = w' \nu_m$, $\lambda \neq \gamma$ are partitions, then $\lambda < \gamma$ if and only if w < w' in the Bruhat order, where w and w' are chosen to have smallest length.

Theorem 9 $\tilde{K}_{\lambda\mu}(q) - \tilde{K}_{\lambda\nu}(q)$ has nonnegative coefficients when $\nu \geq \mu$.

Proof: Let $v < \gamma$ be two partitions such that $v = w'\eta_{|\lambda|}$ and $\gamma = w\eta_{|\lambda|}$. Then w' < w and $E_{w'}(\Lambda) \subset E_w(\Lambda)$. The coefficient of q^j in $\tilde{K}_{v'\gamma'}(q) - \tilde{K}_{v'v'}(q)$ is the multiplicity of the sl(n)-module of weight $v - j\delta$ $(j \in \mathbb{Z})$ in $E_w(\Lambda)/E_{w'}(\Lambda)$. Therefore, it has positive coefficients.

Acknowledgments

The connection between Demazure characters and Macdonald polynomials was pointed out by I. Cherednik. The author thanks the referees for helpful comments.

References

- 1. L.M. Butler, "Subgroup lattices and symmetric functions," Memoirs of the A.M.S 112(539), (1994).
- 2. I. Cherednik, "Double affine Hecke algebras and Macdonald's conjectures," Ann. Math. 141 (1995), 191-216.
- M. Demazure, "Désingularisation des variétés de Schubert généralisées," Ann. Scient. Ec. Norm. Sup. 6 (1974), 53–88.
- 4. A. Garsia and C. Procesi, "On certain graded S_n -modules and the q-Kostka polynomials," Adv. Math 94(1) (1992), 82–138.
- 5. A.N. Kirillov, "Dilogarithm identities," hep-th/9408113 v2, 25, Aug 1994.
- 6. F. Knop, "Integrality of two variable Kostka functions," J. reine angew. Math. 482 (1997), 177–189.
- 7. S. Kumar, "Demazure character formula in arbitrary Kac-Moody setting," Invent. Math. 89 (1987), 395–423.
- 8. A. Kuniba, K.C. Misra, M. Okado, T. Takagi, and J. Uchiyama, "Characters of Demazure modules and solvable lattice models," q-alg 9707004, 3 July 1997.
- A. Lascoux and M.-P. Schützenberger, "Sur une conjecture de H. O. Foulkes," C.R. Acad. Sci. Paris 286A (1978), no. 7, 323–324.
- 10. G. Lusztig, "Green polynomials and singularities of unipotent classes," Advances in Math. 42 (1981), 169–178.
- I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford Math. Mon. Clarendon Press, Oxford, 1995.
- I.G. Macdonald, "Affine Hecke algebras and orthogonal polynomials," Seminaire Bourbaki, 1996, Vol. 1994/1995, Astérisque No. 237, Exp. No. 797, 4, 189–207.
- O. Mathieu, "Formule de Demazure-Weyl et généralisation du théorème de Borel-Weil-Bott," C.R. Acad. Sci. Paris, Sér. I Math. 303(9) (1986), 391–394.
- E. Opdam, "Harmonic analysis for certain representations of graded Hecke algebras," Acta Math. 175 (1995), 75–121
- Y. Sanderson, "Real characters of Demazure modules for rank two affine Lie algebras," J. Algebra 184 (1996), 985–1000.