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Abstract. We show that the specialization of nonsymmetric Macdonald polynomials att = 0 are, up to multi-
plication by a simple factor, characters of Demazure modules for̂sl(n). This connection furnishes Lie-theoretic
proofs of the nonnegativity and monotonicity of Kostka polynomials.
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1. Introduction

Macdonald defined a special class of polynomialsPλ(z,q, t), calledsymmetric Macdonald
polynomials, which form a basis of the symmetric polynomials inC(q, t)[z1, . . . , zn]. These
polynomials are indexed by partitionsλ ∈ Nn, λ1 ≥ λ2 ≥ · · · λn ≥ 0. They interpolate
between several classes of classical polynomials:Pλ(z, 0, t) are the Hall-Littlewood poly-
nomials, which, in turn are the Schur functions whent = 0. By settingq = tα and lettingt
go to 1, one obtains Jack polynomials. In [11], Macdonald mentions that there is no similar
interpretation ofPλ(z,q, 0). By using the theory of nonsymmetric Macdonald polynomials,
we show that thePλ(z,q, 0) are the characters (up to factor) of certain Demazure modules
of ŝl(n). This interpretation allows us to obtain Lie-theoretic proofs of the nonnegativity
and monotonicity of Kostka polynomials. In addition, it gives us a branching rule for the
decomposition of certain integrable highest weight̂sl(n)-modules under the action ofsl(n).

The connection between Demazure characters and symmetric functions has already been
explored in [8] using a path realization of the crystal basis. The results in this paper intersect
somewhat with those in [8]. The main advantage of our approach is its simplicity and its ex-
planation of the connection with Macdonald polynomials. Nonnegativity and positivity of
Kostka polynomials have already been proven by Lascoux-Sch¨utzenberger [9], Butler [1],
Lusztig [10]. The connection between the branching rule and Kostka polynomials was ex-
plored in [5]. A different representation-theoretic interpretation ofPλ(z,q, 0) is given in [4].

2. Nonsymmetric Macdonald polynomials

These nonsymmetric analogues of the symmetric Macdonald polynomials were first in-
troduced in [12, 14]. Nonsymmetric Macdonald polynomialsEλ(z,q, t) are indexed by
compositionsλ ∈ Nn and form a basis ofC(q, t)[z1, . . . , zn]. (See [2, 5] for their precise



270 SANDERSON

definition). In [6], Knop gives a recursive description of theEλ(z,q, t). We describe this re-
cursion for whent = 0. In this case, we haveEλ(z,q, 0) ∈ Z[q,q−1][z1, . . . , zn]. For ease
of notation, we will denoteEλ(z,q, 0) simply byEλ from now on. Fori ∈ [1, . . . ,n−1] let
si be the simple reflection that interchangeszi andzi+1. Consider the following operators
onZ[q,q−1][z1, . . . , zn]:

H̄i := si − zi+1
(1− si )

(zi − zi+1)
for i ∈ [1, . . . ,n− 1]

8 f (z1, . . . , zn) := zn f (q−1zn, z1, . . . , zn−1)

H̄0 := 8H̄18
−1 = 8−1H̄n−18

Then the recursion relations are given by [6]

Theorem 1 The Eλ are generated by application of thēHi (0 ≤ i < n) and8 to 1.
More precisely, set E(0n) := 1. The action of8 and theH̄i on the set of Eλ for λ ∈ Nn is as
follows:

qλ18E(λ1,...,λn) = E(λ2,...,λn,λ1+1)

H̄i Eλ =
{

Esi λ if λi < λi+1

Eλ if not
for 1≤ i ≤ n− 1

where siλ is the compositionλ with λi andλi+1 interchanged.

qλ1−λn+1H̄0Eλ =
{

E(λn−1,λ2,...,λn−1,λ1+1) if λ1 > λn − 1

Eλ if not

To ease notation, we define the operatorsH̃0 and8̃on the set of nonsymmetric Macdonald
polynomials:

H̃0E(λ1,...,λn) := qλ1−λn+1H̄0E(λ1,...,λn) = E(λn−1,λ2,...,λn−1,λ1+1)

8̃E(λ1,...,λn) := qλ18E(λ1,...,λn) = E(λ2,...,λn,λ1+1)

Although this definition of nonsymmetric Macdonald polynomials is given for only
λ ∈ Nn, we can easily extend it to compositionsλ ∈ Zn by defining

Eλ := 8̃−mnEλ+(mn) = q−(m|λ|+nm(m+1)/2)8−mnEλ+(mn)

wherem is chosen large enough so thatλ+ (mn) = (λ1+m, . . . , λn+m) is inNn. TheEλ
are well-defined (don’t depend on the choice ofm). In fact, letm1 andm2, with m1 ≤ m2,
be two such choices. Then,

8̃−m2nEλ+(mn
2)
= 8̃−m1n8̃−(m2−m1)nEλ+(mn

2)
= 8̃−m1nEλ+(mn

1)
,

the last equality following from the well-definedness of theEµ for µ ∈ Nn. Note that the
Eλ are elements ofZ[q,q−1][z1, z

−1
1 , . . . , zn, z−1

n ].
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We now check that, forλ ∈ Zn\Nn, theEλ satisfy the recursion relations. Fori 6= 0,

Esi ·λ = 8̃−mnEsi ·λ+(mn) = 8̃−mnH̄i 8̃
mnEλ = H̄i Eλ

Now, letλ∗ := (λn − 1, λ2, . . . , λn−1, λ1 + 1) and choosem such thatλ∗ + (mn) ∈ Nn.
Then

Eλ∗ = 8̃−mnEλ∗+(mn) = 8̃−mnH̃08̃
mnEλ = qλ1−λn+1H̄0Eλ,

the last equality following from the commutativity of thēHi with 8̃n. This proves that, for
all λ ∈ Zn, theEλ satisfy the relations of Theorem 1.

Let Bm denote theZ[q,q−1]-vector space generated by allEλ with |λ| = m. Then the
H̄i Bm ⊂ Bm for all i and8Bm ⊂ Bm+1. The action of theH̄i (i 6= 0) andH̃0 on theEλ is
related to the action of the affine Weyl group on compositions:

si · (λ1, . . . , λn) := (λ1, . . . , λi−1, λi+1, λi , λi+2, . . . , λn)

so · (λ1, . . . , λn) := (λn − 1, λ2, . . . , λn−1, λ1+ 1)

The connection between compositions of a given degree, saym, and elements of the affine
Weyl group is as follows. Letm = kn+ i wherek ≥ 0 and 0≤ i < n. Then the smallest
composition isηm := (k, . . . k, k+ 1, . . . , k+ 1) (i factors ofk+ 1 andn− i factors ofk).
Every compositionλ of degreem equalsw · ηm wherew is an affine Weyl group element.

Forw = si1, . . . , si j a reduced decomposition, we defineH̄w := H̄i1, . . . , H̄i j and H̃w

the same expression but with̄H0 replaced byH̃0.
For a compositionλ ∈ Zn, let u(λ) :=∑i

λi (λi−1)
2 .

Theorem 2 We can write Eλ = H̃w8̃
|λ| · 1 = qu(λ) H̄w8

|λ| · 1 wherew is determined by
λ = wη|λ|.

Proof: By the commuting relations of8 and theH̄i [6],{
8H̄i+1 = H̄i8 i = 1, . . . ,n− 2

82H̄1 = H̄n−18
2

we need only prove that the power ofq is u(λ) by induction. Fori ≥ 1, the actions of thēHi

do not involve any powers ofq. The operatorH̄0 equals8H̄18
−1 by definition. Therefore,

we need only check that this holds for8. Letµ = (λ1, . . . , λn−1, λn + 1). We have

Eµ = qλn8Eλ = qλnqu(λ)8Hw8
|λ| · 1= qu(µ)Hw′8

|µ| · 1

whereHw′ is determined by the above commutation relations. 2

Remark We note that8̃nk+i · 1 = qu(ηnk+i )(z1, . . . , zn)
kzn−i+1 · · · zn. The H̄i (all i )

commute with multiplication byq and the symmetric functionz1 · · · zn. Therefore,Eλ =
qu(ηnk+i )(z1, . . . , zn)

k H̃wzn−i+1 · · · zn. We will use this information in Section 4.



272 SANDERSON

3. Demazure modules ofŝl(n)

Let3 be a dominant integral weight. LetV = V(3) be the unique (up to isomorphism)
irreducible highest weight̂sl(n)-module with highest weight3. Let W be the Weyl group
of ŝl(n). For eachw ∈ W, the weight spaceVw(3) of weightw(3) is one-dimensional.
We considerEw(3), theb-module generated byVw(3), whereb is the Borel subalgebra.
The Ew(3), calledDemazure modules, are finite-dimensional vector spaces which form a
filtration of V which is compatible with the Bruhat order onW: w ≤ w′ ⇔ Ew(3) ⊆
Ew′(3).

To each Demazure moduleEw(3), we can associate its characterχ(Ew(3):

χ(Ew(3)) :=
∑

µ weight

(dim Ew(3)µ)e
µ

Since theEw(3) are finite dimensional, theχ(Ew(3)) are polynomials in then simple
rootsαi and lie in the group ring for the weight latticeP.

We now defineDemazure operators. For eachαi , we define an operator1i on P:

1i := 1− e−αi si

1− e−αi

wheresi is the simple reflection with respect toαi . Letw= si1si2 · · · si j be a reduced decom-
position. Then, we can define1w :=1i11i2 · · ·1i j and1w does not depend on the choice
of reduced decomposition. The connection between characters and Demazure operators is
given by [3, 7, 13]:

Theorem 3 χ(Ew(3)) = 1w(e3).

4. Macdonald polynomials and Demazure module characters

Let30, . . . , 3n−1 denote then fundamental weights of̂sl(n) defined by(3i , α j ) = δi j . Let
δ = ∑n−1

i=0 αi . Let π be the ring homomorphismπ :Z[q,q−1][z1, . . . , zn] → P defined
by: π(zi ) = e3i−3i−1 for i < n, π(zn) = e30−3n−1 andπ(q) = e−δ.

Theorem 4 The operatorH̄i is equivalent to the Demazure operator1i in the sense that
the following diagram commutes:

Z[q,q−1][z1, . . . , zn]
π→P

H̄i↓ ↓1i (e30 · )

Z[q,q−1][z1, . . . , zn]
π→P

Proof: We have thatH̄i , i 6= 0 (resp.H̄0) commutes with multiplication byzj for j 6= i or
i +1 (resp.z1 or zn). Therefore, one only needs to verify this equivalence on the monomials
za

i zb
i+1 (resp.za

1zb
n). This is done by direct computation. 2
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Let C be the following “change of basis” operator onP: C(e30) = e3n−1 andC(e3i ) =
e3i−1−δ for 1≤ i ≤ n− 1.

Theorem 5 The operator8 is equivalent to the operator C in the sense that the following
diagram commutes:

Z[q,q−1][z1, . . . , zn]
π→P

8↓ ↓C

Z[q,q−1][z1, . . . , zn]
π→P

Proof: By direct computation. 2

Theorems 1, 4, 5 along with the preceding Remark give us our main result:

Theorem 6 Through theπ homomorphism, we can identify q−u(λ)+u(η|λ|)Eλ with
χ(Ew(3i )) where i = |λ| modn and wherew is an affine Weyl group element defined
byλ = wη|λ|.

Proof: We have that

Eλ = qu(λ) H̄w8
|λ| · 1= qu(λ)−u(η|λ|)(z1 · · · zn)

k H̄wzn−i+1 · · · zn.

We haveπ(z1z2 · · · zn) = 1 andπ(zn−i+1 · · · zn) = e3i . Therefore,

π(Eλ) = qu(λ)−u(η|λ|)1we3i .
2

Remark

1. π(Eλ) having nonnegative coefficients implies thatEλ has nonnegative coefficients.
2. By settingq = 1, one obtains thereal characterof a Demazure module (see [15]). For
λ a partition, we have the factorization ([11], p. 324)

Pλ(z, 1, 0) = eλ′(z) =
n∏

i=1

eλi−λi+1
i (z)

whereei (z) is thei th elementary symmetric function. This gives us a similar factorization
of

χ(Ew(3)) = q−u(λ)+u(η|λ|)
n−1∏
i=1

ei (π(z))
λi−λi+1.

Previous examples of this factorization are found in [8, 15].
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5. Positivity and monotonicity of Kostka polynomials

Recall thatPλ(z,q, t) denotes the symmetric Macdonald polynomial associated to the
partitionλ.

Theorem 7 For λ a partition, we have Eλ(z,q, 0) = Pλ(z,q, 0).

Proof: Consider
∑

w∈W H̄wEλ(z,q, t). It is symmetric and satisfies the same defining
conditions asPλ(z,q, t) (see [6]), therefore is a scalar multiple of it. Whent = 0, we have
H̄wEλ(z,q, 0) = Eλ(z,q, 0). By comparing coefficients of the leading coefficientzλ in
both Eλ(z,q, 0) andPλ(z,q, 0), we see that we have equality. 2

Recall that one has the following order relation on partitions: two partitionsγ andµ
such that|γ | = |µ| satisfyγ < µ if γ1 + · · · + γi ≤ µ1 + · · · + µi for all i with strict
inequality for somei .

It is known [[11], VI (8.11)] thatPλ(z,q, 0) =
∑

µ≤λ Kµλ(q, 0)sµ(z) whereK is the
Kostka function and thesµ are the Schur functions. In addition, it is known [[11], p. 355]
thatKµλ(q, 0) = Kµ′λ′(q)whereµ′ (resp.λ′) is the dual partition ofµ (resp.λ). It follows
that Pλ(z,q, 0) =

∑
µ≤λ Kµ′λ′(q)sµ(z).

Theorem 8 The Kµλ(q) have positive coefficients.

Proof: We have thatPλ(z,q, 0) is invariant under theH̄i (for i 6= 0). This is equivalent
to saying that the Demazure moduleEw(30) decomposes as a direct sum of simplesl(n)-
modules. In fact, we have the following decomposition:

Ew(30) = ⊕ j∈Z(Ew(30)) j δ

where(Ew(30)) j δ is just the direct sum of weight spaces whose weights are of the form
υ = κ + j δ whereκ is some weight forsl(n). (In other words, these are all weights that
satisfy 〈υ, d〉 = j whered is the scaling element.) Sinceδ is orthogonal to the Cartan
subalgebra ofsl(n), each(Ew(30)) j δ is a direct sum of irreduciblesl(n)-modules. Let
λ = wν|λ|. ThePλ(z,q, 0)merely represents the characterχ(Ew(30)) as seen in this light;
since thesµ(z) is a character of an irreduciblesl(n)-module, the coefficient ofq j in Kµ′λ′(q)
is the multiplicity of thesl(n)-module of highest weightµ− j δ in Ew(30). Therefore, the
Kµ′λ′(q) have positive coefficients. 2

Remark A consequence of this theorem is that the Kostka numbersKµλ(1) are the mul-
tiplicities of the (finite-dimensional)sl(n)-modules in the Demazure modulesEw(3).

Recall thatV = V(3i ) is the irreducible highest weight̂sl(n)-module of highest weight
3i . We have thatχ(V) = lim`(w)→∞ χ(Ew(3i )). We can now describe the branching rule
for V in terms of Kostka polynomials (see [5]). Let{λ j } be an “increasing” sequence of
partitions in the sense thatλ j := w j ν|λ j |where limj `(w j ) = ∞and where|λ j | = i (modn).
We must chooseν|λ j | such that the resultingλ j are still partitions.
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Corollary 1 The multiplicity of the sl(n)-module of weightµ in V is given by

lim
j→∞

q−u(λ j )+u(ν|λ j |)Kµ′λ j ′(q)

We also have a monotonicity result. LetK̃λµ(q) :=q−u(µ)Kλµ(q). Recall that ifλ = wνm

andγ = w′νm, λ 6= γ are partitions, thenλ < γ if and only ifw < w′ in the Bruhat order,
wherew andw′ are chosen to have smallest length.

Theorem 9 K̃λµ(q)− K̃λν(q) has nonnegative coefficients whenν ≥ µ.

Proof: Let υ < γ be two partitions such thatυ = w′η|λ| andγ = wη|λ|. Thenw′ < w

andEw′(3) ⊂ Ew(3). The coefficient ofq j in K̃ν ′γ ′(q) − K̃ν ′υ ′(q) is the multiplicity of
thesl(n)-module of weightν − j δ ( j ∈ Z) in Ew(3)/Ew′(3). Therefore, it has positive
coefficients. 2
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