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Abstract. We show that the specialization of nonsymmetric Macdonald polynomials-ed are, up to multi-
plication by a simple factor, characters of Demazure modulesl{ay. This connection furnishes Lie-theoretic
proofs of the nonnegativity and monotonicity of Kostka polynomials.
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1. Introduction

Macdonald defined a special class of polynomRl&, g, t), calledsymmetric Macdonald
polynomialswhich form a basis of the symmetric polynomial€ieg, t)[z, .. ., z,]. These
polynomials are indexed by partitionse N", A; > A, > --- Ay > 0. They interpolate
between several classes of classical polynomiBl$z, 0, t) are the Hall-Littlewood poly-
nomials, which, in turn are the Schur functions wiea 0. By settingg = t* and lettingt

go to 1, one obtains Jack polynomials. In[11], Macdonald mentions that there is no similar
interpretation oP; (z, g, 0). By using the theory of nonsymmetric Macdonald polynomials,
we show that the®; (z, g, 0) are the characters (up to factor) of certain Demazure modules
of sl(n). This interpretation allows us to obtain Lie-theoretic proofs of the nonnegativity
and monotonicity of Kostka polynomials. In addition, it gives us a branching rule for the
decomposition of certain integrable highest wegjkih)-modules under the action sf(n).

The connection between Demazure characters and symmetric functions has already been
explored in [8] using a path realization of the crystal basis. The results in this paper intersect
somewhat with those in [8]. The main advantage of our approach is its simplicity and its ex-
planation of the connection with Macdonald polynomials. Nonnegativity and positivity of
Kostka polynomials have already been proven by Lascouxi2ehberger [9], Butler [1],
Lusztig [10]. The connection between the branching rule and Kostka polynomials was ex-
ploredin[5]. Adifferentrepresentation-theoreticinterpretatioRak, q, 0) is givenin[4].

2. Nonsymmetric Macdonald polynomials
These nonsymmetric analogues of the symmetric Macdonald polynomials were first in-

troduced in [12, 14]. Nonsymmetric Macdonald polynomiBjgz, g, t) are indexed by
compositions. € N" and form a basis of(q, t)[zi, ..., z,]. (See [2, 5] for their precise
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definition). In[6], Knop gives arecursive description of 85z, q, t). We describe this re-
cursion for when = 0. In this case, we havg, (z, g, 0) € Z[q, q ][z, . .., z,]. Forease
of notation, we will denot&, (z, g, 0) simply byE, fromnow on. Foi € [1, ..., n—1]let

s be the simple reflection that interchangesindz 1. Consider the following operators
onZ[q,q Y[z, ..., z]:

1-s)
(z —zi41)
&f(z1,...,20) =20 F(q 20, 22, ..., Zn_1)

Hp := ®H;® ' = & 1H, 1@

H=s —zn fori e[1,...,n—1]

Then the recursion relations are given by [6]

Theorem 1 The E are generated by application of thé; (0 <i < n)and® to 1.
More precisely set By := 1. The action ofp and theH; on the set of -for A € N" is as
follows

9 PEp,y...in) = Eguinintd)
_ Es if A < A
Hi E), = S o '+ foril<i<n-1
E, ifnot

where g\ is the composition with A; and ;. interchanged.

EGn-Li0in ity IF A1>2Ap—1

)\1—)\”-&—1'__' E, =
q 0= {E,\ if not

To ease notation, we define the operatésgand® on the set of nonsymmetric Macdonald
polynomials:

Although this definition of nonsymmetric Macdonald polynomials is given for only
A € N", we can easily extend it to compositiohs Z" by defining

EA = &)_mnEA+(m”) — q—(m|M+nm(m+l)/2)@—mnEA+(mn)

wheremis chosen large enough so that (m") = (A1 +m, ..., Ay +m)isinN". TheE;
are well-defined (don’t depend on the choicenf In fact, letm; andm,, with m; < my,
be two such choices. Then,

OME) 4y = OO MM, () = OTME, o),

the last equality following from the well-definedness of tgfor 1 € N". Note that the
E, are elements di[q, q Y[z1, z %, - . ., Z0, 23 1.
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We now check that, fok € Z"\N", the E,, satisfy the recursion relations. Fog O,
Eso = ® ™Eg i@ = @ ""H;®™"E;, = H,E,

Now, letA* := (An — 1, Ap, ..., An—1, A1 + 1) and choosen such thatA* + (m") € N".
Then

EA* — &)_mnExu—(m") — &)—mnHOqunEA — q)q—)m—t-l'_"OE)”

the last equality following from the commutativity of ti& with ®". This proves that, for
all A € Z", the E;, satisfy the relations of Theorem 1.

Let By, denote theéZ[q, q~1]-vector space generated by &) with |A| = m. Then the
Hi Bm C By, foralli and® By, C Bny1. The action of theH; (i # 0) andHg on theE; is
related to the action of the affine Weyl group on compositions:

S '()"17"'5}‘41) = ()\'17"'a)"i—lv)"i-‘rla)\'i’)"i+25"'7)"n)
%'()“19"'5)‘41) = ()Ln_l’)LZ’-n,)hn—l»)hl‘l‘l)

The connection between compositions of a given degreemsand elements of the affine
Weyl group is as follows. Leain = kn+i wherek > 0 and O< i < n. Then the smallest
compositionis)m = (k,...kK,k+1,...,k+1) (i factors ofk +1 andn — i factors ofk).
Every compositiort. of degrean equalsw - n, wherew is an affine Weyl group element.
Forw =s,,....s, areduced decomposition, we defilg := H;,...., H; and H,
the same expression but wiHh replaced byHo.
For a composition. € Z", let u(x) = Y, 241,

Theorem 2 We can write E = H, ®* . 1 = q»H, ®"* . 1 wherew is determined by
A= wnw.

Proof: By the commuting relations ab and theH; [6],

<1>H_i+1=H_i¢‘ i=1...,n=-2
®?H; = Hy_1 P2
we need only prove that the powerais u(x) by induction. For > 1, the actions of thel;

do not involve any powers af. The operatoH, equalsd H; 1 by definition. Therefore,
we need only check that this holds fér Let u = (A4, ..., An_1, An + 1). We have

E, = qA"QEA — q?»nqu()»)q)qu)\M 1= qU(H) Hw,q,\m .1
whereH,, is determined by the above commutation relations. O
Remark We note thatd"™ <t . 1 = qumki)(zy, ..., z)%zni41--- 2. The H; (all i)

commute with multiplication by and the symmetric functiom, - - - z,. Therefore,E; =
QUMD (zy, ... Zo)HwZo—iv1 - - - Zo. We will use this information in Section 4.



272 SANDERSON

3. Demazure modules ofsT(ﬁ)

Let A be a dominant integral weight. L& = V (A) be the unique (up to isomorphism)
irreducible highest weigtl(n)-module with highest weight. Let W be the Weyl group
of sl(n). For eachw € W, the weight spac®,,,, of weightw(A) is one-dimensional.
We considerE, (A), theb-module generated by,,), whereb is the Borel subalgebra.
The E, (A), calledDemazure modulesre finite-dimensional vector spaces which form a
filtration of V which is compatible with the Bruhat order 8: w < w’ & E, (A) C
E, (A).

To each Demazure module, (A), we can associate its characigiE,, (A):

X(Ey(A) = ) (dimE,(A),)e"

1 weight

Since theE, (A) are finite dimensional, the (E,,(A)) are polynomials in th@ simple
rootse; and lie in the group ring for the weight lattide.
We now defindDemazure operatord~or eachy;, we define an operatax; on P:

l-eg
Aj = ——€°s
l-e™

wheres is the simple reflection with respectdp. Letw =5, 5, - - - 5, be areduced decom-
position. Then, we can defin®,, := Aj, Aj, - - - Aj; andA,, does not depend on the choice

of reduced decomposition. The connection between characters and Demazure operators is
given by [3, 7, 13]:

Theorem 3 x(E,(A)) = A, (ed).

4. Macdonald polynomials and Demazure module characters

Let Ao, ..., An_1 denote the fundamental weights m‘l/(ﬁ) defined by(Aj, oj) = &;. Let
§ = Y5 ai. Letr be the ring homomorphism : Z[q, g~ Y[z, ..., 2] — P defined
by: m(z) = et~ Ai1fori < n, 7(z,) = eroA1andn(q) = e7°.

Theorem 4 The operatorH; is equivalent to the Demazure operaityy in the sense that
the following diagram commutes

Z[9. 9 Yz, . ... za] —> P
Hi\l/ lAi(eAO' )
Z[a.q Nz . ... 2] —> P

Proof: We have thatl;,i # 0 (resp.Ho) commutes with multiplication by; for j #ior
i +1 (resp.z; orz,). Therefore, one only needs to verify this equivalence on the monomials
220, (resp.Z8z0). This is done by direct computation. O
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Let C be the following “change of basis” operator 8n C(e’?) = e andC(et) =
efiidforl<i<n-—1.

Theorem5 The operatord is equivalent to the operator C in the sense that the following
diagram commutes

z19.q9 z..... 2] —>P
q>l lc
7[99 [z, .... 2] —> P
Proof: By direct computation. O

Theorems 1, 4, 5 along with the preceding Remark give us our main result:

Theorem 6 Through thesz homomorphism we can identify qU®+UmDE, with
x (E»(Aj)) where i = |A| modn and wherew is an affine Weyl group element defined
by)» = WN||-

Proof: We have that
E)\ = qu()h) HWCDW 1= qu(x)iu(mk‘)(zl e Zn)kHwZn—H—l c .
We haver (212, - - - z,) = 1 andm (za_iy1 - - - Zo) = €. Therefore,

7(Ey) = qU()»)—U(mA\)AweAu.

Remark

1. = (E,) having nonnegative coefficients implies tlgthas nonnegative coefficients.
2. By settingg = 1, one obtains theeal characterof a Demazure module (see [15]). For
A a partition, we have the factorization ([11], p. 324)

P)L(Z, 1, O) =6y (Z) — 1_[ QA.—A,H (Z)
i=1

whereg (2) is thei th elementary symmetric function. This gives us a similar factorization
of

n-1

x (Eyp(A)) = q~uW+utn) H 8 (m(2))hH+,
i=1

Previous examples of this factorization are found in [8, 15].
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5. Positivity and monotonicity of Kostka polynomials

Recall thatP, (z, q,t) denotes the symmetric Macdonald polynomial associated to the
partition A.

Theorem 7 For A a partition, we have E(z,q,0) = P, (z,q, 0).

Proof: Consider)_, . H,E.(z, q,1). It is symmetric and satisfies the same defining
conditions as?; (z, g, t) (see [6]), therefore is a scalar multiple of it. Whega: 0, we have
H,E.(z,q,0) = E,(z q,0). By comparing coefficients of the leading coefficiehtin
bothE; (z, g, 0) and P, (z, g, 0), we see that we have equality. O

Recall that one has the following order relation on partitions: two partitjoid i
such thaty| = |u| satisfyy < wif y14+---+y < pu1+--- 4+ w; foralli with strict
inequality for some.

It is known [[11], VI (8.11)] thatP,(z,q,0) = ZMS)\ K,..(q, 0)s,(2) whereK is the
Kostka function and ths, are the Schur functions. In addition, it is known [[11], p. 355]
thatK ;. (g, 0) = K,/ (q) wherew’ (resp.1’) is the dual partition ofc (resp.A). It follows
thatP,(z,q,0) = Zusx K, (0)S,(2).

Theorem 8 The K, (q) have positive coefficients.

Proof: We have thaP,(z, q, 0) is invariant under théd; (fori # 0). This is equivalent
to saying that the Demazure modug (Ao) decomposes as a direct sum of simglign)-
modules. In fact, we have the following decomposition:

Ew(Ao) = 69] ez(Ey (AO))J(S

where(E, (Ao))js is just the direct sum of weight spaces whose weights are of the form
v = k + j& wherek is some weight fosl(n). (In other words, these are all weights that
satisfy (v, d) = j whered is the scaling element.) Sindeis orthogonal to the Cartan
subalgebra o8l(n), each(E, (Ag))js is a direct sum of irreduciblel(n)-modules. Let

A =wvyp,;. ThePy(z, g, 0) merely represents the characteiE,, (Ao)) as seen in this light;
since thes, (z) is a character of an irreducibdé(n)-module, the coefficient afl in K (@)

is the multiplicity of thesl(n)-module of highest weight — j§ in E,,(Ag). Therefore, the

K, (Q) have positive coefficients. O

Remark A consequence of this theorem is that the Kostka numkgr$1) are the mul-
tiplicities of the (finite-dimensionaBl(n)-modules in the Demazure modulgg (A).

Recall thatv = V (A;) is the irreducible highest weigbf(\n)—module of highest weight
Ai. We have thag (V) = limgw)— x (Ew(Aj)). We can now describe the branching rule
for V in terms of Kostka polynomials (see [5]). Lgti} be an “increasing” sequence of
partitions in the sense thiat := wj v, wherelim £(w;) = ocoandwhergi! | = i (modn).
We must choose;; | such that the resulting’ are still partitions.
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Corollary 1 The multiplicity of the gln)-module of weightc in V is given by

,Iim q—u(/\l)+u(lej‘)Ku/kj,(q)

J]—>0o0

We also have a monotonicity result. Li€t,, (q) :=q~"*K;,,(q). Recall that i, = wvy,
andy = w'vm, A # y are partitions, thei < y if and only if w < w’ in the Bruhat order,
wherew andw’ are chosen to have smallest length.

Theorem 9 K,\M(q) — K, (q) has nonnegative coefficients wher 1.

Proof: Letv < y be two partitions such that = w'n);, andy = wn;;,. Thenw’ < w
andE, (A) C E,(A). The coefficient ofy! in K,.,.(q) — K,(q) is the multiplicity of
the sl(n)-module of weighty — j§ (j € Z) in E,,(A)/E, (A). Therefore, it has positive
coefficients. O
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