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ON THE CONNECTION BETWEEN SYMMETRIC N -PLAYER
GAMES AND MEAN FIELD GAMES1

BY MARKUS FISCHER

University of Padua

Mean field games are limit models for symmetric N -player games with
interaction of mean field type as N → ∞. The limit relation is often under-
stood in the sense that a solution of a mean field game allows to construct
approximate Nash equilibria for the corresponding N -player games. The op-
posite direction is of interest, too: When do sequences of Nash equilibria
converge to solutions of an associated mean field game? In this direction, rig-
orous results are mostly available for stationary problems with ergodic costs.
Here, we identify limit points of sequences of certain approximate Nash equi-
libria as solutions to mean field games for problems with Itô-type dynamics
and costs over a finite time horizon. Limits are studied through weak conver-
gence of associated normalized occupation measures and identified using a
probabilistic notion of solution for mean field games.
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1. Introduction. Mean field games, as introduced by Lasry and Lions [Lasry
and Lions (2006a, 2006b, 2007)] and, independently, by Huang, Malhamé and
Caines [Huang, Malhamé and Caines (2006) and subsequent works], are limit
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models for symmetric nonzero-sum noncooperative N -player games with inter-
action of mean field type as the number of players tends to infinity. The limit rela-
tion is often understood in the sense that a solution of the mean field game allows
to construct approximate Nash equilibria for the corresponding N -player games
if N is sufficiently large; see, for instance, Huang, Malhamé and Caines (2006),
Kolokoltsov, Li and Yang (2011), Carmona and Delarue (2013) and Carmona and
Lacker (2015). This direction is useful from a practical point of view since the
model of interest is commonly the N -player game with N big so that a direct
computation of Nash equilibria is not feasible.

The opposite direction in the limit relation is also of interest: When and in which
sense do sequences of Nash equilibria for the N -player games converge to solu-
tions of a corresponding mean field game? An answer to this question is useful as it
provides information on what kind of Nash equilibria can be captured by the mean
field game approach. In view of the theory of McKean–Vlasov limits and propa-
gation of chaos for uncontrolled weakly interacting systems [cf. McKean (1966),
Sznitman (1991)], one may expect to obtain convergence results for broad classes
of systems, at least under some symmetry conditions on the Nash equilibria. This
heuristic was the original motivation in the Introduction of mean field games by
Lasry and Lions. Rigorous results supporting it are nonetheless few, and they
mostly apply to stationary problems with ergodic costs and special structure (in
particular, affine-linear dynamics and convex costs); see Lasry and Lions (2007),
Feleqi (2013), Bardi and Priuli (2013, 2014). For nonstationary problems, the pas-
sage to the limit has been established rigorously in Gomes, Mohr and Souza (2013)
for a class of continuous-time finite horizon problems with finite state space, but
only if the time horizon is sufficiently small. Moreover, in the situation studied
there, Nash equilibria for the N -player games are unique in a class of symmetric
Markovian feedback strategies. The above cited works on the passage to the limit
all employ methods from the theory of ordinary or partial differential equations, in
particular, equations of Hamilton–Jacobi–Bellman-type.

In Lacker (2016), which appeared as preprint three months after submission
of the present paper, a general characterization of the limit points of N -player
Nash equilibria is obtained through probabilistic methods. We come back to that
work, which also covers mean field games with common noise, in the second but
last paragraph of this section. Finally, we mention the even more recent work by
Cardaliaguet et al. (2015) on the passage to the mean field game limit; see Re-
mark 3.2 below.

Here, we study the limit relation between symmetric N -player games and mean
field games in the direction of the Lasry–Lions heuristic for continuous time finite
horizon problems with fairly general cost structure and Itô-type dynamics. The
aim is to identify limit points of sequences of symmetric Nash equilibria for the
N -player games as solutions of a mean field game. For a general Introduction to
mean field games, see Cardaliaguet (2013) or Carmona, Delarue and Lachapelle
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(2013). The latter work also explains the difference in the limit relation that distin-
guishes mean field games from optimal control problems of McKean–Vlasov-type.

To describe the prelimit systems, let XN
i (t) denote the state of player i at time t

in the N -player game, and denote by ui(t) the control action that he or she chooses
at time t . Individual states will be elements of Rd , while control actions will be
elements of some closed set � ⊂ R

d2 . The evolution of the individual states is then
described by the Itô stochastic differential equations:

(1.1) dXN
i (t) = b

(
t,XN

i (t),μN(t), ui(t)
)
dt + σ

(
t,XN

i (t),μN(t)
)
dWN

i (t),

i ∈ {1, . . . ,N}, where WN
1 , . . . ,WN

N are independent standard Wiener processes,
and μN(t) is the empirical measure of the system at time t :

μN(t)
.= 1

N

N∑
i=1

δXN
i (t).

Notice that the coefficients b, σ in equation (1.1) are the same for all players. We
will assume b, σ to be continuous in the time and control variable, Lipschitz con-
tinuous in the state and measure variable, where we use the square Wasserstein
metric as a distance on probability measures, and of sub-linear growth. The dis-
persion coefficient σ does not depend on the control variable, but it may depend
on the measure-variable. Moreover, σ is allowed to be degenerate. Deterministic
systems are thus covered as a special case.

The individual dynamics are explicitly coupled only through the empirical mea-
sure process μN . There is also an implicit coupling, namely through the strategies
u1, . . . , uN , which may depend on nonlocal information; in particular, a strategy
ui might depend, in a nonanticipative way, on XN

j or WN
j for j �= i. In this pa-

per, strategies will always be stochastic open-loop. In particular, strategies will be
processes adapted to a filtration that represents the information available to the
players. We consider two types of information: full information, which is the same
for all players and is represented by a filtration at least as big as the one gener-
ated by the initial states and the Wiener processes, and local information, which
is player-dependent and, for player i, is represented by the filtration generated by
his/her own initial state and the Wiener process WN

i .
Let u = (u1, . . . , uN) be a strategy vector, that is, an N -vector of �-valued pro-

cesses such that ui is a strategy for player i, i ∈ {1, . . . ,N}. Player i evaluates the
effect of the strategy vector u according to the cost functional

JN
i (u)

.= E
[∫ T

0
f
(
s,XN

i (s),μN(s), ui(s)
)
ds + F

(
XN

i (T ),μN(T )
)]

,

where T > 0 is the finite time horizon, (XN
1 , . . . ,XN

N ) the solution of the system
(1.1) under u, and μN the corresponding empirical measure process. The cost coef-
ficients f , F , which quantify running and terminal costs, respectively, are assumed
to be continuous in the time and control variable, locally Lipschitz continuous in
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the state and measure variable, and of sub-quadratic growth. The action space � is
assumed to be closed, but not necessarily compact; in the noncompact case, f will
be quadratically coercive in the control. The assumptions on the coefficients are
chosen so that they cover some linear-quadratic problems, in addition to many
genuinely nonlinear problems.

If there were no control in equation (1.1) (i.e., b independent of the con-
trol variable) and if the initial states for the N -player games were independent
and identically distributed with common distribution not depending on N , then
(XN

1 , . . . ,XN
N ) would be exchangeable for every N ∈ N and, under our assump-

tions on b, σ , the sequence (μN) of empirical measure processes would converge
to some deterministic flow of probability measures:

μN(t)
N→∞−→ m(t) in distribution/probability.

This convergence would also hold for the sequence of path-space empirical mea-
sures, which, by symmetry and the Tanaka–Sznitman theorem, is equivalent to the
propagation of chaos property for the triangular array (XN

i )i∈{1,...,N},N∈N. In par-
ticular, Law(XN

i (t)) → m(t) as N → ∞ for each fixed index i, and m would be
the flow of laws for the uncontrolled McKean–Vlasov equation

dX(t) = b
(
t,X(t),m(t)

)
dt + σ

(
t,X(t),m(t)

)
dW(t),

m(t) = Law
(
X(t)

)
.

The above equation would determine the flow of measures m.
Now, for N ∈ N, let uN be a strategy vector for the N -player game. For

the sake of argument, let us suppose that uN = (uN
1 , . . . , uN

N) is a symmetric
Nash equilibrium for each N [symmetric in the sense that the finite sequence
((XN

1 (0), uN
1 ,WN

1 ), . . . , (XN
N (0), uN

N,WN
N )) is exchangeable]. If the mean field

heuristic applies, then the associated sequence of empirical measure processes
(μN)N∈N converges in distribution to some deterministic flow of probability mea-
sures m. In this case, m should be the flow of measures induced by the solution of
the controlled equation

(1.2) dX(t) = b
(
t,X(t),m(t), u(t)

)
dt + σ

(
t,X(t),m(t)

)
dW(t),

where the control process u should, by the Nash equilibrium property of the N -
player strategies, be optimal for the control problem

minimize Jm(v)
.= E

[∫ T

0
f
(
s,X(s),m(t), v(s)

)
ds + F

(
X(T ),m(T )

)]
(1.3)

over all admissible v subject to: X solves equation (1.2) under v.

The mean field game, which is the limit system for the N -player games, can
now be described as follows: For each flow of measures m, solve the optimal con-
trol problem (1.3) to find an optimal control um with corresponding state process
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Xm. Then choose a flow of measures m according to the mean field condition
m(·) = Law(Xm(·)). This yields a solution of the mean field game, which can be
identified with the pair (Law(Xm, um,W),m); see Definition 4.3 below. We in-
clude the driving noise process W in the definition of the solution, as it is the joint
distribution of initial condition, control process and noise process that determines
the law of a solution to equation (1.2). If (Law(Xm, um,W),m) is a solution of the
mean field game, then thanks to the mean field condition, Xm is a McKean–Vlasov
solution of the controlled equation (1.2); moreover, Xm is an optimally controlled
process for the standard optimal control problem (1.3) with cost functional Jm.
Clearly, neither existence nor uniqueness of solutions of the mean field game are a
priori guaranteed.

In order to connect sequences of Nash equilibria with solutions of the mean
field game in a rigorous way, we associate strategy vectors for the N -player games
with normalized occupation measures or path-space empirical measures; see equa-
tion (5.1) in Section 5 below. Those occupation measures are random variables
with values in the space of probability measures on an extended canonical space
Z .= X ×R2 ×W , where X , W are path spaces for the individual state processes
and the driving Wiener processes, respectively, and R2 is a space of �-valued re-
laxed controls. Observe that Z contains a component for the trajectories of the
driving noise process. Let (uN) be a sequence such that, for each N ∈ N, uN is
a strategy vector for the N -player game (not necessarily a Nash equilibrium). Let
(QN) be the associated normalized occupation measures; thus, QN is the empiri-
cal measure of ((XN

1 , uN
1 ,WN

1 ), . . . , (XN
N ,uN

N,WN
N )) seen as a random element of

P(Z). We then show the following:

1. The family (QN)N∈N is pre-compact under a mild uniform integrability con-
dition on strategies and initial states; see Lemma 5.1.

2. Any limit random variable Q of (QN) takes values in the set of McKean–
Vlasov solutions of equation (1.2) with probability one; see Lemma 5.3.

3. Suppose that (uN) is a sequence of local approximate Nash equilibria (cf.
Definition 3.1). If Q is a limit point of (QN) such that the flow of measures in-
duced by Q is deterministic with probability one, then Q takes values in the set of
solutions of the mean field game with probability one; see Theorem 5.1.

The hypothesis in Point 3 above that the flow of measures induced by Q is
deterministic with probability one means that the corresponding subsequence of
(μN), the empirical measure processes, converges in distribution to a deterministic
flow of probability measures m. This is a strong hypothesis, essentially part of the
mean field heuristic; nonetheless, it is satisfied if uN is a vector of independent and
identically distributed individual strategies for each N , where the common distri-
bution is allowed to vary with N ; see Corollary 5.2. While Nash equilibria for the
N -player games with independent and identically distributed individual strategies
do not exist in general, local approximate Nash equilibria with i.i.d. components



762 M. FISCHER

do exist, at least under the additional assumption of compact action space � and
bounded coefficients; see Proposition 3.1. In this situation, the passage to the mean
field game limit is justified.

For the passage to the limit required by Point 2 above, we have to identify
solutions of equation (1.2), which describes the controlled dynamics of the limit
system. To this end, we employ a local martingale problem in the spirit of Stroock
and Varadhan (1979). The use of martingale problems, together with weak conver-
gence methods, has a long tradition in the analysis of McKean–Vlasov limits for
uncontrolled weakly interacting systems [for instance, Funaki (1984), Oelschläger
(1984)] as well as in the study of stochastic optimal control problems. Controlled
martingale problems are especially powerful in combination with relaxed controls;
see El Karoui, Hu̇u̇ Nguyen and Jeanblanc-Picqué (1987), Kushner (1990), and
the references therein. In the context of mean field games, a martingale problem
formulation has been used by Carmona and Lacker (2015) to establish existence
and uniqueness results for nondegenerate systems and, more recently, by Lacker
(2015), where existence of solutions is established for mean field games of the type
studied here; the assumptions on the coefficients are rather mild, allowing for de-
generate as well as control-dependent diffusion coefficient. The notion of solution
we give in Definition 4.3 below corresponds to the notion of “relaxed mean field
game solution” introduced in Lacker (2015).

The martingale problem formulation for the controlled limit dynamics we use
here is actually adapted from the joint work Budhiraja, Dupuis and Fischer (2012),
where we studied large deviations for weakly interacting Itô processes through
weak convergence methods. While the passage to the limit needed there for ob-
taining convergence of certain Laplace functionals is analogous to the convergence
result of Point 2 above, the limit problems in Budhiraja, Dupuis and Fischer (2012)
are not mean field games; they are, in fact, optimal control problems of McKean–
Vlasov-type, albeit with a particular structure. As a consequence, optimality has to
be verified in a different way: In order to establish Point 3 above, we construct an
asymptotically approximately optimal competitor strategy in noise feedback form
(i.e., as a function of time, initial condition, and the trajectory of the player’s noise
process up to current time), which is then applied to exactly one of the N players
for each N ; this yields optimality of the limit points thanks to the Nash equilibrium
property of the prelimit strategies. If the limit problem were of McKean–Vlasov-
type, one would use a strategy selected according to a different optimality criterion
and apply it to all components (or players) of the prelimit systems.

In the work by Lacker (2016) mentioned in the second paragraph, limit points
of normalized occupation measures associated with a sequence of N -player Nash
equilibria are shown to be concentrated on solutions of the corresponding mean
field game even if the induced limit flow of measures is stochastic (in contrast to
Point 3 above). This characterization is established for mean field systems over
a finite time horizon as here, but possibly with a common noise (represented as
an additional independent Wiener process common to all players). There as here,
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Nash equilibria are considered in stochastic open-loop strategies, and the methods
of proof are similar to ours. The characterization of limit points in Lacker (2016)
relies, even in the situation without common noise studied here, on a new notion
of solution of the mean field game (“weak MFG solution”) that applies to proba-
bility measures on an extended canonical space (extended with respect to our Z to
keep track of the possibly stochastic flow of measures). In terms of that notion of
solution a complete characterization of limit points is achieved. In particular, the
assumption in Point 3 that the flow of measures induced by Q is deterministic can
be removed. However, if that assumption is dropped, then the claim that Q takes
values in the set of solutions of the mean field game with probability one will in
general be false. A counterexample illustrating this fact can be deduced from the
discussion of Section 3.3 in Lacker (2016). The notion of “weak MFG solution” is
indeed strictly weaker than what one obtains by randomization of the usual notion
of solution (“strong” solution with probability one), and this is what makes the
complete characterization of Nash limit points possible.

The rest of this work is organized as follows. Notation, basic objects as well as
the standing assumptions on the coefficients b, σ , f , F are introduced in Section 2.
Section 3 contains a precise description of the N -player games. Nash equilibria
are defined and an existence result for certain local approximate Nash equilibria
is given; see Proposition 3.1. In Section 4, the limit dynamics for the N -player
games are introduced. The corresponding notions of McKean–Vlasov solution and
solution of the mean field game are defined and discussed. An approximation result
in terms of noise feedback strategies, needed in the construction of competitor
strategies, is given in Lemma 4.3. In Section 5, the convergence analysis is carried
out, leading to Theorem 5.1 and its Corollary 5.2, which are our main results.
Existence of solutions of the mean field game falls out as a by-product of the
analysis.

2. Preliminaries and assumptions. Let d, d1, d2 ∈ N, which will be the di-
mensions of the space of private states, noise values and control actions, respec-
tively. Choose T > 0, the finite time horizon. Set

X .= C
([0, T ],Rd), W .= C

([0, T ],Rd1
)
,

and, as usual, equip X , W with the topology of uniform convergence, which turns
them into Polish spaces. Let ‖·‖X , ‖·‖W denote the supremum norm on X and W ,
respectively. The spaces Rn with n ∈ N are equipped with the standard Euclidean
norm, always indicated by | · |.

For S a Polish space, let P(S) denote the space of probability measures on
B(S), the Borel sets of S . For s ∈ S , let δs indicate the Dirac measure concentrated
in s. Equip P(S) with the topology of weak convergence of probability measures.
Then P(S) is again a Polish space. Let dS be a metric compatible with the topology
of S such that (S,dS) is a complete and separable metric space. A metric that turns
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P(S) into a complete and separable metric space is then given by the bounded
Lipschitz metric

dP(S)(ν, ν̃)
.= sup

{∫
S

g dν −
∫
S

g dν̃ : g : S → R such that ‖g‖bLip ≤ 1
}
,

where

‖g‖bLip
.= sup

s∈S
∣∣g(s)

∣∣+ sup
s,s̃∈S:s �=s̃

|g(s) − g(s̃)|
dS(s, s̃)

.

Given a complete compatible metric dS on S , we also consider the space of
probability measures on B(S) with finite second moments:

P2(S)
.=
{
ν ∈ P(S) : ∃s0 ∈ S :

∫
S

dS(s, s0)
2ν(ds) < ∞

}
.

Notice that
∫

dS(s, s0)
2ν(ds) < ∞ for some s0 ∈ S implies that the integral is fi-

nite for every s0 ∈ S . The topology of weak convergence of measures plus conver-
gence of second moments turns P2(S) into a Polish space. A compatible complete
metric is given by

dP2(S)(ν, ν̃)
.=
(

inf
α∈P(S×S):[α]1=ν and [α]2=ν̃

∫
S×S

dS(s, s̃)2α(ds, ds̃)

)1/2
,

where [α]1 ([α]2) denotes the first (second) marginal of α; dP2(S) is often re-
ferred to as the square Wasserstein (or Vasershtein) metric. An immediate con-
sequence of the definition of dP2(S) is the following observation: for all N ∈ N,
s1, . . . , sN , s̃1, . . . , s̃N ∈ S ,

(2.1) dP2(S)

(
1

N

N∑
i=1

δsi ,
1

N

N∑
i=1

δs̃i

)
≤
√√√√ 1

N

N∑
i=1

dS(si, s̃i)2.

The bounded Lipschitz metric and the square Wasserstein metric on P(S) and
P2(S), respectively, depend on the choice of the metric dS on the underlying
space S . This dependence will be clear from context. If S = R

d with the metric
induced by Euclidean norm, we may write d2 to indicate the square Wasserstein
metric dP2(R

d ).
Let M, M2 denote the spaces of continuous functions on [0, T ] with values in

P(Rd) and P2(R
d), respectively:

M .= C
([0, T ],P(

R
d)), M2

.= C
([0, T ],P2

(
R

d)).
Let � be a closed subset of R

d2 , the set of control actions, or action space.
Given a probability space (�,F,P) and a filtration (Ft ) in F , let H2((Ft ),P;�)

denote the space of all �-valued (Ft )-progressively measurable processes u such
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that E[∫ T
0 |u(t)|2 dt] < ∞. The elements of H2((Ft ),P;�) might be referred to as

(individual) strategies.
Denote by R the space of all deterministic relaxed controls on � × [0, T ], that

is,

R .= {
r : r positive measure on B

(
� × [0, T ]) : r(� × [0, t])= t ∀t ∈ [0, T ]}.

If r ∈ R and B ∈ B(�), then the mapping [0, T ] � t �→ r(B × [0, t]) is absolutely
continuous, hence differentiable almost everywhere. Since B(�) is countably gen-
erated, the time derivative of r exists almost everywhere and is a measurable map-
ping ṙt : [0, T ] → P(�) such that r(dy, dt) = ṙt (dy) dt . Denote by R2 the space
of deterministic relaxed controls with finite second moments:

R2
.=
{
r ∈ R :

∫
�×[0,T ]

|y|2r(dy, dt) < ∞
}
.

By definition, R2 ⊂ R. The topology of weak convergence of measures turns R
into a Polish space (not compact unless � is bounded). Equip R2 with the topology
of weak convergence of measures plus convergence of second moments, which
makes R2 a Polish space, too.

Any �-valued process v defined on some probability space (�,F,P) induces
an R-valued random variable ρ according to

(2.2) ρω(B × I )
.=
∫
I
δv(t,ω)(B)dt, B ∈ B(�), I ∈ B

([0, T ]),ω ∈ �.

If v is such that
∫ T

0 |v(t)|2 dt < ∞ P-almost surely, then the induced random vari-
able ρ takes values in R2 P-almost surely. If v is progressively measurable with
respect to a filtration (Ft ) in F , then ρ is adapted in the sense that the mapping
t �→ ρ(B × [0, t]) is (Ft )-adapted for every B ∈ B(�) [cf. Kushner (1990), Sec-
tion 3.3]. More generally, an R-valued random variable ρ defined on some prob-
ability space (�,F,P) is called adapted to a filtration (Ft ) in F if the process
t �→ ρ(B × [0, t]) is (Ft )-adapted for every B ∈ B(�).

Below, we will make use of the following canonical space. Set

Z .= X ×R2 ×W,

and endow Z with the product topology, which makes it a Polish space. Let dR2

be a complete metric compatible with the topology of R2. Set

dZ
(
(ϕ, r,w), (ϕ̃, r̃, w̃)

) .= ‖ϕ − ϕ̃‖X + dR2(r, r̃)

1 + dR2(r, r̃)
+ ‖w − w̃‖W

1 + ‖w − w̃‖W ,

where (ϕ, r,w), (ϕ̃, r̃, w̃) are elements of Z written componentwise. This defines
a complete metric compatible with the topology of Z . Let dP2(Z) be the square
Wasserstein metric on P2(Z) induced by dZ . Since dZ is bounded with respect
to the second and third component of Z , the condition of finite second moment is
a restriction only on the first marginal of the probability measures on B(Z). Let
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us indicate by dP(P2(Z)) the bounded Lipschitz metric on P(P2(Z)) induced by
dP2(Z). Denote by (X̂, ρ̂, Ŵ ) the coordinate process on Z :

X̂
(
t, (ϕ, r,w)

) .= ϕ(t), ρ̂
(
t, (ϕ, r,w)

) .= r|B(�×[0,t]),

Ŵ
(
t, (ϕ, r,w)

) .= w(t).

Let (Gt ) be the canonical filtration in B(Z), that is,

Gt
.= σ

(
(X̂, ρ̂, Ŵ )(s) : 0 ≤ s ≤ t

)
, t ∈ [0, T ].

Let b denote the drift coefficient and σ the dispersion coefficient of the dynam-
ics, and let f , F quantify the running costs and terminal costs, respectively; we
take

b : [0, T ] ×R
d ×P2

(
R

d)× � → R
d,

σ : [0, T ] ×R
d ×P2

(
R

d) → R
d×d1,

f : [0, T ] ×R
d ×P2

(
R

d)× � → [0,∞),

F :Rd ×P2
(
R

d) → [0,∞).

Notice that the dispersion coefficient σ does not depend on the control variable and
that the cost coefficients f , F are nonnegative functions. We make the following
assumptions, where K , L are some finite positive constants:

(A1) Measurability and continuity in time and control: b, σ , f , F are Borel
measurable and such that, for all (x, ν) ∈ R

d × P2(R
d), b(·, x, ν, ·), σ(·, x, ν),

f (·, x, ν, ·) are continuous, uniformly over compact subsets of Rd ×P2(R
d).

(A2) Lipschitz continuity of b, σ : for all x, x̃ ∈ R
d , ν, ν̃ ∈ P2(R

d),

sup
t∈[0,T ]

sup
γ∈�

{∣∣b(t, x, ν, γ ) − b(t, x̃, ν̃, γ )
∣∣∨ ∣∣σ(t, x, ν) − σ(t, x̃, ν̃)

∣∣}
≤ L

(|x − x̃| + d2(ν, ν̃)
)
.

(A3) Sublinear growth of b, σ : for all x ∈ R
d , ν ∈ P2(R

d), γ ∈ �,

sup
t∈[0,T ]

∣∣b(t, x, ν, γ )
∣∣≤ K

(
1 + |x| + |γ | +

√∫
|y|2ν(dy)

)
,

sup
t∈[0,T ]

∣∣σ(t, x, ν)
∣∣≤ K

(
1 + |x| +

√∫
|y|2ν(dy)

)
.

(A4) Local Lipschitz continuity of f , F : for all x, x̃ ∈ R
d , ν, ν̃ ∈ P2(R

d)

sup
t∈[0,T ]

sup
γ∈�

{∣∣f (t, x, ν, γ ) − f (t, x̃, ν̃, γ )
∣∣+ ∣∣F(x, ν) − F(x̃, ν̃)

∣∣}

≤ L
(|x − x̃| + d2(ν, ν̃)

)(
1 + |x| + |x̃| +

√∫
|y|2ν(dy) +

√∫
|y|2ν̃(dy)

)
.
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(A5) Subquadratic growth of f , F : for all x ∈ R
d , ν ∈ P2(R

d), γ ∈ �,

sup
t∈[0,T ]

{∣∣f (t, x, ν, γ )
∣∣∨ ∣∣F(x, ν)

∣∣} ≤ K

(
1 + |x|2 + |γ |2 +

∫
|y|2ν(dy)

)
.

(A6) Action space and coercivity: � ⊂R
d2 is closed, and there exist c0 > 0 and

�0 ⊂ � such that �0 is compact and for every γ ∈ � \ �0

inf
(t,x,ν)∈[0,T ]×Rd×P2(R

d )
f (t, x, ν, γ ) ≥ c0|γ |2.

3. N -Player games. Let N ∈ N. Let (�N,FN,PN) be a complete probability
space equipped with a filtration (FN

t ) in FN that satisfies the usual hypotheses and
carrying N independent d1-dimensional (FN

t )-Wiener processes WN
1 , . . . ,WN

N .
For each i ∈ {1, . . . ,N}, choose a random variable ξN

i ∈ L2(�N,FN
0 ,PN ;Rd),

the initial state of player i in the prelimit game with N players. In addition, we
assume that the stochastic basis is rich enough to carry a sequence (ϑN

i )i∈{1,...,N}
of independent random variables with values in the interval [0,1] such that each
ϑN

i is FN
0 -measurable and uniformly distributed on [0,1], and (ϑN

i )i∈{1,...,N} is
independent of the σ -algebra generated by ξN

1 , . . . , ξN
N and the Wiener processes

WN
1 , . . . ,WN

N . The random variables ϑN
i , i ∈ {1, . . . ,N}, are a technical device

which we may use without loss of generality; see Remark 3.3 below.
A vector of individual strategies, that is, a vector u = (u1, . . . , uN) such that

u1, . . . , uN ∈ H2((FN
t ),PN ;�), is called a strategy vector. Given a strategy vector

u = (u1, . . . , uN), consider the system of Itô stochastic integral equations

XN
i (t) = ξN

i +
∫ t

0
b
(
s,XN

i (s),μN(s), ui(s)
)
ds

(3.1)

+
∫ t

0
σ
(
s,XN

i (s),μN(s)
)
dWN

i (s), t ∈ [0, T ],
i ∈ {1, . . . ,N}, where μN(s) is the empirical measure of the processes XN

1 , . . . ,

XN
N at time s ∈ [0, T ], that is,

μN
ω (s)

.= 1

N

N∑
j=1

δXN
j (s,ω), ω ∈ �N.

The process XN
i describes the evolution of the private state of player i if he/she

uses strategy ui while the other players use strategies uj , j �= i. Thanks to as-
sumptions (A2) and (A3), the system of equations (3.1) possesses a unique so-
lution in the following sense: given any strategy vector u = (u1, . . . , uN), there
exists a vector (XN

1 , . . . ,XN
N ) of continuous R

d -valued (FN
t )-adapted processes

such that (3.1) holds PN -almost surely, and (XN
1 , . . . ,XN

N ) is unique (up to PN -
indistinguishability) among all continuous (FN

t )-adapted solutions.
The following estimates on the controlled state process and the associated em-

pirical measure process will be useful in Section 5.
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LEMMA 3.1. There exists a finite constant CT,K depending on T , K , but not
on N , such that if uN = (uN

1 , . . . , uN
N) is a strategy vector for the N -player game

and (XN
1 , . . . ,XN

N ) the solution of the system (3.1) under uN , then

sup
t∈[0,T ]

EN

[∣∣XN
i (t)

∣∣2]

≤ CT,K

(
1 + EN

[∣∣ξN
i

∣∣2]+ EN

[∫ T

0

(
d2
(
μN(t), δ0

)2 + ∣∣uN
i (t)

∣∣2)dt

])

for every i ∈ {1, . . . ,N}, and

sup
t∈[0,T ]

EN

[
d2
(
μN(t), δ0

)2] ≤ sup
t∈[0,T ]

EN

[
1

N

N∑
j=1

∣∣XN
j (t)

∣∣2]

≤ CT,K

(
1 + 1

N

N∑
j=1

EN

[∣∣ξN
j

∣∣2 +
∫ T

0

∣∣uN
j (t)

∣∣2 dt

])
.

PROOF. By Jensen’s inequality, Hölder’s inequality, Itô’s isometry, assump-
tion (A3) and the Fubini–Tonelli theorem, we have for every t ∈ [0, T ],

EN

[∣∣XN
i (t)

∣∣2] ≤ 3EN

[∣∣ξN
i

∣∣2]+ 12(T + 1)K2
∫ t

0
EN

[∣∣XN
i (s)

∣∣2]ds

+ 12(T + 1)K2EN

[∫ T

0

(
1 + d2

(
μN(s), δ0

)2 + ∣∣uN
i (s)

∣∣2)ds

]
,

and the first estimate follows by Gronwall’s lemma.
By definition of the square Wasserstein metric d2, we have for every t ∈ [0, T ],

every ω ∈ �N ,

d2
(
μN

ω (t), δ0
)2 = 1

N

N∑
j=1

∣∣XN
j (t,ω)

∣∣2.
Thus, using again assumption (A3) and the same inequalities as above, we have
for every t ∈ [0, T ],

EN

[
1

N

N∑
j=1

∣∣XN
j (t)

∣∣2]

≤ 3EN

[
1

N

N∑
j=1

∣∣ξN
j

∣∣2]+ 12(T + 1)K2
∫ T

0
EN

[
1 + 1

N

N∑
j=1

∣∣uN
j (s)

∣∣2]ds

+ 24(T + 1)K2
∫ t

0
EN

[
1

N

N∑
j=1

∣∣XN
j (s)

∣∣2]ds,
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and we conclude again by Gronwall’s lemma. The constant CT,K for both esti-
mates need not be greater than 12(T ∨ 1)(T + 1)(K ∨ 1)2 exp(24(T + 1)K2T ).

�

LEMMA 3.2. Let p ≥ 2. Then there exists a finite constant C̃p,T ,K,d depend-
ing on p, T , K , d , but not on N such that if uN = (uN

1 , . . . , uN
N) is a strategy

vector for the N -player game and (XN
1 , . . . ,XN

N ) the solution of the system (3.1)
under uN , then

EN

[
sup

t∈[0,T ]
d2
(
μN(t), δ0

)p]

≤ 1

N

N∑
i=1

EN

[∥∥XN
i

∥∥p
X
]

≤ C̃p,T ,K,d

(
1 + 1

N

N∑
i=1

EN

[∣∣ξN
i

∣∣p +
∫ T

0

∣∣uN
i (t)

∣∣p dt

])
.

PROOF. The inequality

EN

[
sup

t∈[0,T ]
d2
(
μN(t), δ0

)p] ≤ 1

N

N∑
i=1

EN

[∥∥XN
i

∥∥p
X
]

follows by (2.1) and Jensen’s inequality. In verifying the second part of the asser-
tion, we may assume that

1

N

N∑
i=1

EN

[∣∣ξN
i

∣∣p +
∫ T

0

∣∣uN
i (t)

∣∣p dt

]
< ∞.

By Jensen’s inequality, Hölder’s inequality, (A3), the Fubini–Tonelli theorem and
the Burkholder–Davis–Gundy inequalities, we have for every t ∈ [0, T ]

1

N

N∑
i=1

EN

[
sup

s∈[0,t]
∣∣XN

i (s)
∣∣p]

≤ Ĉp,T ,K,d

(
1 + 1

N

N∑
i=1

EN

[∣∣ξN
i

∣∣p +
∫ T

0

∣∣uN
i (s)

∣∣p ds

])

+ 2Ĉp,T ,K,d

∫ t

0

1

N

N∑
i=1

EN

[
sup

s∈[0,s̃]
∣∣XN

i (s)
∣∣p]ds̃,

where Ĉp,T ,K,d
.= 12p−1(T ∨ 1)p(K ∨ 1)p(1 + Ĉp,d) and Ĉp,d , which depends

only on p and d , is the finite “universal” constant from the Burkholder–Davis–
Gundy inequalities [for instance, Theorem 3.3.28 and Remark 3.3.30 in Karatzas
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and Shreve (1991), pages 166–167]. The assertion now follows thanks to Gron-
wall’s lemma. �

Player i evaluates a strategy vector u = (u1, . . . , uN) according to the cost func-
tional

JN
i (u)

.= EN

[∫ T

0
f
(
s,XN

i (s),μN(s), ui(s)
)
ds + F

(
XN

i (T ),μN(T )
)]

,

where (XN
1 , . . . ,XN

N ) is the solution of the system (3.1) under u and μN is the
empirical measure process induced by (XN

1 , . . . ,XN
N ).

Given a strategy vector u = (u1, . . . , uN) and an individual strategy v ∈
H2((FN

t ),PN ;�), let [u−i , v] .= (u1, . . . , ui−1, v, ui+1, . . . , uN) indicate the strat-
egy vector that is obtained from u by replacing ui , the strategy of player i, with v.
Let (FN,i

t ) denote the filtration generated by ϑN
i , ξN

i , and the Wiener process WN
i ,

that is,

FN,i
t

.= σ
(
ϑN

i , ξN
i ,WN

i (s) : s ∈ [0, t]), t ∈ [0, T ].
The filtration (FN,i

t ) represents the local information available to player i. Clearly,
(FN,i

t ) ⊂ FN
t and H2((FN,i

t ),PN ;�) ⊂ H2((FN
t ),PN ;�). We may refer to the

elements of H2((FN,i
t ),PN ;�) as decentralized strategies for player i.

DEFINITION 3.1. Let ε ≥ 0, u1, . . . , uN ∈ H2((FN
t ),PN ;�). The strategy

vector u .= (u1, . . . , uN) is called a local ε-Nash equilibrium for the N -player
game if for every i ∈ {1, . . . ,N}, every v ∈ H2((FN,i

t ),PN ;�),

(3.2) JN
i (u) ≤ JN

i

([
u−i , v

])+ ε.

If inequality (3.2) holds for all v ∈H2((FN
t ),PN ;�), then u is called an ε-Nash

equilibrium.
If u is a (local) ε-Nash equilibrium with ε = 0, then u is called a (local) Nash

equilibrium.

REMARK 3.1. The attribute “local” in the expression “local Nash equilib-
rium” or “local ε-Nash equilibrium” refers to the information that is available to
the deviating player for choosing competitor strategies. Based on local informa-
tion, those strategies have to be decentralized. In this sense, decentralized strate-
gies are also “local.” Notice that the decentralized strategies here are not neces-
sarily representable as functionals of time and the corresponding individual state
process alone.

REMARK 3.2. In Definition 3.1, Nash equilibria are defined with respect to
stochastic open-loop strategies. This is the same notion as the one used in the prob-
abilistic approach to mean field games; see Carmona and Delarue (2013). A Nash
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equilibrium in stochastic open-loop strategies may be induced by a Markov feed-
back strategy (or a more general closed-loop strategy); still, it need not correspond
to a Nash equilibrium in feedback strategies. Given a vector of feedback strate-
gies, varying the strategy of exactly one player means that the feedback functions
defining the strategies of the other players are kept frozen. Since in general the
state processes of the other players depend on the state process of the deviating
player (namely, through the empirical measure of the system), the strategies of
the other players seen as control processes may change when one player deviates.
This is in contrast with the stochastic open-loop formulation where the control
processes of the other players are frozen when one player varies her/his strategy.
Now, suppose we had a Nash equilibrium in Markov feedback strategies for the
N -player game. If the feedback functions defining that Nash equilibrium depend
only on time, the current individual state, and the current empirical measure, and
if they are regular in the sense of being Lipschitz continuous, then they will induce
an εN -Nash equilibrium in stochastic open-loop strategies with εN also depend-
ing on the Lipschitz constants of the feedback functions. Here, we do not address
the question of when Nash equilibria in regular feedback strategies exist nor of
how their Lipschitz constants would depend on the number of players N . Neither
do we address the more general question of convergence of N -player Nash equi-
libria in feedback strategies, regular or not. That difficult problem was posed in
Lasry and Lions (2006b, 2007) and is beyond the scope of the present work. It
was solved very recently by Cardaliaguet et al. (2015) in the situation where the
noise is additive (allowing for an extra common noise), the cost structure satisfies
the Lasry–Lions monotonicity conditions, and the N -player game possesses, for
each N , a unique Nash equilibrium in feedback strategies. The authors introduce
an infinite-dimensional partial differential equation (the “master equation”) that
characterizes solutions of the mean field game and allows to capture the depen-
dence on the measure variable. They establish existence of a unique regular solu-
tion to the master equation. That solution is then used in proving convergence “on
average” of the (symmetric) equilibrium strategies to the mean field game limit.

REMARK 3.3. The random variables ϑN
i appearing in the definition of the lo-

cal information filtrations (FN,i
t ) are a technical device for randomization. They

will be used in the sequel only in two places, namely in the proof of Proposi-
tion 3.1 on existence of local ε-Nash equilibria, where they allow to pass from
optimal relaxed controls to nearly optimal ordinary controls, and in the proof of
Lemma 5.2, where they serve to generate a coupling of initial conditions. The
presence of the random variables ϑN

i causes no loss of generality in the following
sense. Suppose that u .= (u1, . . . , uN) is a strategy vector adapted to the filtration
generated by ξN

1 , . . . , ξN
N and the Wiener processes WN

1 , . . . ,WN
N such that, for

some ε ≥ 0, every i ∈ {1, . . . ,N}, inequality (3.2) holds for all individual strate-
gies v that are adapted to the filtration generated by ξN

i and the Wiener process
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WN
i . Then inequality (3.2) holds for all v ∈ H2((FN,i

t ),PN ;�); hence, u is a local
ε-Nash equilibrium. To check this, take conditional expectation with respect to ϑN

i

inside the expectation defining the cost functional JN
i and use the independence

of ϑN
i from the σ -algebra generated by ξN

1 , . . . , ξN
N and WN

1 , . . . ,WN
N . An analo-

gous reasoning applies to the situation of nonlocal (approximate) Nash equilibria
provided the strategy vector u is independent of the family (ϑN

i )i∈{1,...,N}.

By Definition 3.1, an ε-Nash equilibrium is also a local ε-Nash equilibrium.
Observe that the individual strategies of a local ε-Nash equilibrium are adapted
to the full filtration (FN

t ); only the competitor strategies in the verification of the
local equilibrium property have to be decentralized (or “local”), that is, strategies
adapted to one of the smaller filtrations (FN,1

t ), . . . , (FN,N
t ).

If ξN
1 , . . . , ξN

N are independent and u = (u1, . . . , uN) is a vector of decentral-
ized strategies, that is, ui ∈ H2((FN,i

t ),PN ;�) for every i ∈ {1, . . . ,N}, then
(ξN

1 , u1,W
N
1 ), . . . , (ξN

N ,uN,WN
N ), interpreted as R

d × R2 × W-valued random
variables, are independent. This allows to deduce existence of local approximate
Nash equilibria through Fan’s fixed point theorem in a way similar to that for one-
shot games [cf. Appendix 8.1 in Cardaliaguet (2013)]. For simplicity, we give the
result for a compact action space, bounded coefficients and in the fully symmetric
situation. In the sequel, Proposition 3.1 will be used only to provide an example of
a situation in which all the hypotheses of our main result can be easily verified.

PROPOSITION 3.1. In addition to (A1)–(A6), assume that � is compact and
that b, σ , f , F are bounded. Suppose that ξN

1 , . . . , ξN
N are independent and

identically distributed. Given any ε > 0, there exist decentralized strategies uε
i ∈

H2((FN,i
t ),PN ;�), i ∈ {1, . . . ,N}, such that uε .= (uε

1, . . . , u
ε
N) is a local ε-Nash

equilibrium for the N -player game and the random variables (ξN
1 , uε

1,W
N
1 ), . . . ,

(ξN
N ,uε

N,WN
N ) are independent and identically distributed.

PROOF. Since � is compact by hypothesis, we have R = R2 as topological
spaces, and P(R) is compact.

Let m0 denote the common distribution of the initial states ξN
1 , . . . , ξN

N ; thus
m0 ∈ P2(R

d). With a slight abuse of notation, let (X̂(0), ρ, Ŵ ) denote the restric-
tion to R

d × R × W of the canonical process on Z . Let (G̃t ) indicate the corre-
sponding canonical filtration, that is, G̃t

.= σ(X̂(0), ρ(s), Ŵ (s) : s ≤ t), t ∈ [0, T ].
Let Y be the space of all ν ∈ P(Rd × R × W) such that [ν]1 = m0 and Ŵ is a
(G̃t )-Wiener process under ν [in particular, Ŵ (0) = 0 ν-almost surely]. Then Y
is a nonempty compact convex subset of P(Rd × R × W), which in turn is con-
tained in a locally convex topological linear space (under the topology of weak
convergence of measures).

The proof proceeds in two steps. First, we show that there exists ν∗ ∈ Y such
that

⊗N ν∗ corresponds to a local Nash equilibrium in relaxed controls on the
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canonical space ZN . In the second step, given any ε > 0, we use ν∗ to construct a
local ε-Nash equilibrium for the N -player game.

First step. Let ν, ν̄ ∈ Y . Then there exists a unique �(ν; ν̄) ∈ P2(ZN) such that

�(ν; ν̄) = P ◦ (X,ρ,W)−1,

where W = (W1, . . . ,WN) is a vector of independent d1-dimensional (Ft )-adapted
Wiener processes defined on some stochastic basis ((�,F,P), (Ft )) satisfying
the usual hypotheses and carrying a vector ρ = (ρ1, . . . , ρN) of (Ft )-adapted
R-valued random variables such that

P ◦ (X(0),ρ,W
)−1 = ν

N−1⊗
ν̄,

and X = (X1, . . . ,XN) is the vector of continuous R
d -valued (Ft )-adapted pro-

cesses determined through the system of equations

Xi(t) = Xi(0) +
∫
�×[0,t]

b

(
s,Xi(s),

1

N

N∑
j=1

δXN
j (s), γ

)
ρi(dγ, ds)

(3.3)

+
∫ t

0
σ

(
s,Xi(s),

1

N

N∑
j=1

δXN
j (s)

)
dWi(s), t ∈ [0, T ],

i ∈ {1, . . . ,N}, which is the relaxed version of (3.1). The mapping

(ν, ν̄) �→ �(ν; ν̄)

defines a continuous function Y × Y → P2(ZN). The continuity of � can be
checked by using a martingale problem characterization of solutions to (3.3); cf.
El Karoui, Hu̇u̇ Nguyen and Jeanblanc-Picqué (1987), Kushner (1990), and also
Section 4 below. Define a function J : Y ×Y → [0,∞) by

J (ν; ν̄)

.= E�(ν;ν̄)

[∫
�×[0,T ]

f
(
s, X̂1(s), μ̂(s), γ

)
dρ̂1(dγ, ds) + F

(
X̂1(T ), μ̂(T )

)]
,

where μ̂(s)
.= 1

N

∑N
j=1 δ

X̂j (s)
and (X̂1, . . . , X̂N), (ρ̂1, . . . , ρ̂N) are components of

the canonical process on ZN with the obvious interpretation. Thanks to the conti-
nuity of � and the boundedness and continuity of f , F , we have that J is a con-
tinuous mapping on Y × Y . On the other hand, for any fixed ν̄ ∈ Y , all ν, ν̃ ∈ Y ,
all λ ∈ [0,1],

�
(
λν + (1 − λ)ν̃; ν̄) = λ�(ν; ν̄) + (1 − λ)�(ν̃; ν̄),

J
(
λν + (1 − λ)ν̃; ν̄) = λJ (ν; ν̄) + (1 − λ)J (ν̃; ν̄).
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Define a function χ : Y → B(Y) by

χ(ν̄)
.=
{
ν ∈ Y : J (ν; ν̄) = min

ν̃∈Y
J (ν̃; ν̄)

}
.

Observe that χ(ν̄) is nonempty, compact and convex for every ν̄ ∈ Y . Thus, χ

is well defined as a mapping from Y to K(Y), the set of all nonempty com-
pact convex subsets of Y . Moreover, χ is upper semicontinuous in the sense that
ν ∈ χ(ν̄) whenever (νn) ⊂ Y , (ν̄n) ⊂ Y are sequences such that limn→∞ ν̄n = ν̄,
limn→∞ νn = ν, and νn ∈ χ(ν̄n) for each n ∈ N (recall that Y is metrizable). We
are therefore in the situation of Theorem 1 in Fan (1952), which guarantees the
existence of a fixed point for χ , that is, there exists ν∗ ∈ Y such that ν∗ ∈ χ(ν∗).

Second step. Let ε > 0, and let ν∗ ∈ Y be such that ν∗ ∈ χ(ν∗). Let dY be
a compatible metric on the compact Polish space Y , and define a correspond-
ing metric on Y × Y by dY×Y((ν, ν̄), (μ, μ̄))

.= dY(ν,μ) + dY(ν̄, μ̄). Choose a
stochastic basis ((�,F,P), (Ft )) satisfying the usual hypotheses and carrying a
vector W = (W1, . . . ,WN) of independent d1-dimensional (Ft )-adapted Wiener
processes, a vector ρ = (ρ1, . . . , ρN) of (Ft )-adapted R-valued random variables
as well as a vector ξ = (ξ1, . . . , ξN) of Rd -valued F0-measurable random variables
such that

P ◦ (ξ ,ρ,W)−1 =
N⊗

ν∗.

For i ∈ {1, . . . ,N}, let (F◦,i
t ) be the filtration generated by ξi , ρi , Wi , that is,

F◦,i
t

.= σ(ξi, ρ
i(s),Wi(s) : s ≤ t), t ∈ [0, T ]. By independence and a version of

the chattering lemma [for instance, Theorem 3.5.2 in Kushner (1990), page 59],
for every δ > 0, there exists a vector ρδ = (ρδ,1, . . . , ρδ,N) of R-valued random
variables such that:

(i) for every i ∈ {1, . . . ,N}, ρδ,i is the relaxed control induced by a piecewise
constant (F◦,i

t )-progressively measurable �-valued process;
(ii) the random variables (ξ1, ρ

δ,1,W1), . . . , (ξN,ρδ,N ,WN) are independent
and identically distributed;

(iii) setting νδ
.= P ◦ (ξ1, ρ

δ,1,W1)
−1, we have dY(νδ, ν∗) ≤ δ.

Since J is continuous on the compact space Y ×Y , it is uniformly continuous. We
can therefore find δ = δ(ε) > 0 such that

(3.4)
∣∣J (νδ;νδ) − J (ν∗;ν∗)

∣∣+ max
ν∈Y

∣∣J (ν;νδ) − J (ν;ν∗)
∣∣ ≤ ε.

The law νδ ][with δ = δ(ε)] and the corresponding product measure can be
reproduced on the stochastic basis of the N -player game. More precisely, there
exists a measurable function ψ : [0, T ] × [0,1] × R

d × W → � such that, upon
setting

ui(t,ω)
.= ψ

(
t, ϑN

i (ω), ξN
i (ω),WN

i (·,ω)
)
, (t,ω) ∈ [0, T ] × �N,

the following hold:
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(i) ui ∈ H2((FN,i
t ),PN ;�) for every i ∈ {1, . . . ,N};

(ii) (ξN
1 , u1,W

N
1 ), . . . , (ξN

N ,uN,WN), interpreted as Rd ×R×W-valued ran-
dom variables, are independent and identically distributed;

(iii) PN ◦ (ξN
1 , u1,W

N
1 )−1 = νδ .

The relaxed controls ρδ,1, . . . , ρδ,1 are, in fact, induced by �-valued processes
that may be taken to be piecewise constant in time with respect to a common
equidistant grid in [0, T ]. Existence of a function ψ with the desired properties
can therefore be established by iteration along the grid points, repeatedly invok-
ing Theorem 6.10 in Kallenberg (2001), page 112, on measurable transfers; this
procedure also yields progressive measurability of ψ .

Set u .= (u1, . . . , uN) with ui ∈H2((FN,i
t ),PN ;�) as above. Then

JN
1 (u) = J (νδ;νδ).

Let v ∈ H2((FN,1
t ),PN ;�), and set ν

.= PN ◦(ξN
1 , v,WN

1 )−1, where v is identified
with its relaxed control. By independence and construction,

JN
1
([

u−1, v
]) = J (ν;νδ).

Now, thanks to (3.4) and the equilibrium property of ν∗,

J (ν;νδ) − J (νδ;νδ)

= J (ν;νδ) − J (ν;ν∗) + J (ν∗;ν∗) − J (νδ;νδ) + J (ν;ν∗) − J (ν∗;ν∗)
≥ −ε.

It follows that

JN
1 (u) ≤ JN

1
([

u−1, v
])+ ε for all v ∈ H2

((
FN,1

t

)
,PN ;�).

This establishes the local approximate equilibrium property of the strategy vector
u with respect to deviations in decentralized strategies of player one. By symmetry,
the property also holds with respect to deviations of the other players. We conclude
that u is a local ε-Nash equilibrium. �

4. Mean field games. In order to describe the limit system for the N -player
games introduced above, consider the stochastic integral equation:

X(t) = X(0) +
∫ t

0
b
(
s,X(s),m(s), u(s)

)
ds

(4.1)

+
∫ t

0
σ
(
s,X(s),m(s)

)
dW(s), t ∈ [0, T ],

where m ∈ M2 is a flow of probability measures, W a d1-dimensional Wiener pro-
cess defined on some stochastic basis, and u a �-valued square-integrable adapted
process.
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The notion of solution of the mean field game we introduce here makes use of a
version of equation (4.1) involving relaxed controls and varying stochastic bases.
Given a flow of measures m ∈ M2, consider the stochastic integral equation

X(t) = X(0) +
∫
�×[0,t]

b
(
s,X(s),m(s), γ

)
ρ(dγ, ds)

(4.2)

+
∫ t

0
σ
(
s,X(s),m(s)

)
dW(s), t ∈ [0, T ].

A solution of equation (4.2) with flow of measures m ∈ M2 is a quintuple
((�,F,P), (Ft ),X,ρ,W) such that (�,F,P) is a complete probability space,
(Ft ) a filtration in F satisfying the usual hypotheses, W a d1-dimensional (Ft )-
Wiener process, ρ an R2-valued random variable adapted to (Ft ), and X an
R

d -valued (Ft )-adapted continuous process satisfying equation (4.2) with flow
of measures m P-almost surely. Under our assumptions on b and σ , existence
and uniqueness of solutions hold for equation (4.2) given any flow of measures
m ∈ M2. Moreover, if ((�,F,P), (Ft ),X,ρ,W) is a solution, then the joint dis-
tribution of (X,ρ,W) with respect to P can be identified with a probability mea-
sure on B(Z). Conversely, the set of probability measures � ∈ P(Z) that corre-
spond to a solution of equation (4.2) with respect to some stochastic basis carrying
a d1-dimensional Wiener process can be characterized through a local martingale
problem. To this end, for f ∈ C2(Rd ×R

d1), m ∈ M2, define the process Mm
f on

(Z,B(Z)) by

Mm
f

(
t, (ϕ, r,w)

)
.= f

(
ϕ(t),w(t)

)− f
(
ϕ(0),0

)
(4.3)

−
∫
�×[0,t]

Am
γ,s(f )

(
ϕ(s),w(s)

)
r(dγ, ds), t ∈ [0, T ],

where

Am
γ,s(f )(x, y)

.=
d∑

j=1

bj

(
s, x,m(s), γ

) ∂f

∂xj

(x, y)

+ 1

2

d∑
j=1

d∑
k=1

(
σσ T)

jk

(
s, x,m(s)

) ∂2f

∂xj∂xk

(x, y)(4.4)

+ 1

2

d1∑
l=1

∂2f

∂y2
l

(x, y) +
d∑

k=1

d1∑
l=1

σkl

(
s, x,m(s)

) ∂2f

∂xk∂yl

(x, y).

Recall that (Gt ) denotes the canonical filtration in B(Z) and (X̂, ρ̂, Ŵ ) the coordi-
nate process on Z . By construction,

Mm
f (t) = f

(
X̂(t), Ŵ (t)

)− f
(
X̂(0),0

)− ∫
�×[0,t]

Am
γ,s(f )

(
X̂(s), Ŵ (s)

)
ρ̂(dγ, ds),
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and Mm
f is (Gt )-adapted.

DEFINITION 4.1. A probability measure � ∈ P(Z) is called a solution of
equation (4.2) with flow of measures m if the following hold:

(i) m ∈ M2;
(ii) Ŵ (0) = 0 �-almost surely;

(iii) Mm
f is a local martingale with respect to the filtration (Gt ) and the proba-

bility measure � for every f monomial of first or second order.

REMARK 4.1. The test functions f in (iii) of Definition 4.1 are the functions
R

d × R
d1 → R given by (x, y) �→ xj , (x, y) �→ yl , (x, y) �→ xj · xk , (x, y) �→

yl · y
l̃
, and (x, y) �→ xj · yl , where j, k ∈ {1, . . . , d}, l, l̃ ∈ {1, . . . , d1}.

The following lemma justifies the terminology of Definition 4.1.

LEMMA 4.1. Let m ∈ M2. If ((�,F,P), (Ft ),X,ρ,W) is a solution of equa-
tion (4.2) with flow of measures m, then �

.= P◦ (X,ρ,W)−1 ∈P(Z) is a solution
of equation (4.2) with flow of measures m in the sense of Definition 4.1.

Conversely, if � ∈ P(Z) is a solution of equation (4.2) with flow of measures m
in the sense of Definition 4.1, then the quintuple ((Z,G�,�), (G�

t+), X̂, ρ̂, Ŵ ) is a
solution of equation (4.2) with flow of measures m, where G� is the �-completion
of G .= B(Z) and (G�

t+) the right-continuous version of the �-augmentation of the
canonical filtration (Gt ).

PROOF. The first part of the assertion is a consequence of Itô’s formula and the
local martingale property of the stochastic integral. The local martingale property
of Mm

f clearly holds for any f ∈ C2(Rd ×R
d1).

The proof of the second part is similar to the proof of Proposition 5.4.6 in
Karatzas and Shreve (1991), pages 315–316, though here we do not need to ex-
tend the probability space; see Appendix A below. �

A particular class of solutions of equation (4.2) in the sense of Definition 4.1 are
those where the flow of measures m ∈ M2 is induced by the probability measure
� ∈ P(Z) in the sense that m(t) coincides with the law of X̂(t) under �. We call
those solutions McKean–Vlasov solutions.

DEFINITION 4.2. A probability measure � ∈ P(Z) is called a McKean–
Vlasov solution of equation (4.2) if there exists m ∈ M2 such that:

(i) � is a solution of equation (4.2) with flow of measures m;
(ii) � ◦ (X̂(t))−1 =m(t) for every t ∈ [0, T ].
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REMARK 4.2. If � ∈ P2(Z), then the induced flow of measures is in M2.
More precisely, let � ∈ P2(Z) and set m(t)

.= � ◦ (X̂(t))−1, t ∈ [0, T ]. By defini-
tion of P2(Z) and the metric dZ ,

E�

[‖X̂‖2
X
] =

∫
Z

‖ϕ‖2
X�(dϕ,dr, dw) < ∞.

This implies, in particular, that m(t) ∈P2(R
d) for every t ∈ [0, T ]. By construction

and definition of the square Wasserstein metric, for all s, t ∈ [0, T ],
d2
(
m(t),m(s)

)2 ≤ E�

[∣∣X̂(t) − X̂(s)
∣∣2].

Continuity of the trajectories of X̂ and the dominated convergence theorem with
2‖X̂‖2

X as dominating �-integrable random variable imply that d2(m(t),m(s)) →
0 whenever |t − s| → 0. It follows that m ∈ M2.

Uniqueness holds not only for solutions of equation (4.2) with fixed flow of
measures m ∈M2, but also for McKean–Vlasov solutions of equation (4.2).

LEMMA 4.2. Let �,�̃ ∈ P2(Z). If �, �̃ are McKean–Vlasov solutions of
equation (4.2) such that � ◦ (X̂(0), ρ̂, Ŵ )−1 = �̃ ◦ (X̂(0), ρ̂, Ŵ )−1, then � = �̃.

PROOF. Let �,�̃ ∈ P2(Z) be McKean–Vlasov solutions of equation (4.2)
such that � ◦ (X̂(0), ρ̂, Ŵ )−1 = �̃ ◦ (X̂(0), ρ̂, Ŵ )−1. Set

m(t)
.= � ◦ X̂(t)−1, m̃(t)

.= �̃ ◦ X̂(t)−1, t ∈ [0, T ].
In view of Remark 4.2, we have m, m̃ ∈ M2. Define an extended canonical space
Z̄ by

Z̄ .= X ×X ×R2 ×W .

Let (Ḡ)t≥0 denote the canonical filtration in Ḡ .= B(Z̄), and let (X, X̃, ρ̂, Ŵ ) be
the canonical process. A construction analogous to the one used in the proof of
Proposition 1 in Yamada and Watanabe (1971) [also see Section 5.3.D in Karatzas
and Shreve (1991)] yields a measure Q ∈ P(Z̄) such that

Q ◦ (X, ρ̂, Ŵ )−1 = �, Q ◦ (X̃, ρ̂, Ŵ )−1 = �̃,

Q
{
X(0) = X̃(0)

} = 1.

By Lemma 4.1, ((Z̄, ḠQ,Q), (ḠQ
t+),X, ρ̂, Ŵ ), ((Z̄, ḠQ,Q), (ḠQ

t+), X̃, ρ̂, Ŵ ) are
solutions of equation (4.2) with flow of measures m and m̃, respectively, where
ḠQ is the Q-completion of Ḡ and (ḠQ

t+) the right-continuous version of the
Q-augmentation of (Ḡt ).

By construction and definition of the square Wasserstein distance,

d2
(
m(t), m̃(t)

)2 ≤ EQ

[∣∣X(t) − X̃(t)
∣∣2] for all t ∈ [0, T ].
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Using (A2), Hölder’s inequality, Itô’s isometry, Fubini’s theorem and the fact that
X(0) = X̃(0) Q-almost surely, we find that for every t ∈ [0, T ],

EQ

[∣∣X(t) − X̃(t)
∣∣2]

≤ 4(T + 1)L2
∫ t

0
EQ

[∣∣X(s) − X̃(s)
∣∣2 + d2

(
m(s), m̃(s)

)2]
ds

≤ 8(T + 1)L2
∫ t

0
EQ

[∣∣X(s) − X̃(s)
∣∣2]ds.

Gronwall’s lemma and the continuity of trajectories imply that X = X̃ Q-almost
surely and that m = m̃. It follows that � = �̃. �

Define the costs associated with a flow of measures m ∈ M2, an initial distribu-
tion ν ∈ P(Rd) and a probability measure � ∈ P(Z) by

Ĵ (ν,�;m)

.=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E�

[∫
�×[0,T ]

f
(
s, X̂(s),m(s), γ

)
ρ̂(dγ, ds) + F

(
X̂(T ),m(T )

)]
if � is a solution of equation (4.2) with flow of measures m

and � ◦ X̂(0)−1 = ν,

∞ otherwise.

This defines a measurable mapping Ĵ : P(Rd) ×P(Z) ×M2 → [0,∞]. The cor-
responding value function V̂ : P(Rd) ×M2 → [0,∞] is given by

V̂ (ν;m)
.= inf

�∈P(Z)
Ĵ (ν,�;m).

DEFINITION 4.3. A pair (�,m) is called a solution of the mean field game if
the following hold:

(i) m ∈ M2, � ∈ P(Z), and � is a solution of equation (4.2) with flow of
measures m;

(ii) Mean field condition: � ◦ X̂(t)−1 =m(t) for every t ∈ [0, T ];
(iii) Optimality condition: Ĵ (m(0),�;m) ≤ Ĵ (m(0), �̃;m) for every �̃ ∈

P(Z).

In Definition 4.3, there is some redundancy in the choice of the pair (�,m)

as solution of the mean field game in that, thanks to the mean field condition,
the flow of measures m is completely determined by the probability measure �.
Consequently, we may call a probability measure � ∈ P(Z) a solution of the mean
field game if the pair (�,m) is a solution of the mean field game in the sense of
Definition 4.3 where m is the flow of measures induced by �, that is, m(t)

.=
� ◦ X̂(t)−1, t ∈ [0, T ].
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If � is a solution of the mean field game, then, again thanks to the mean field
condition, it is also a McKean–Vlasov solution of equation (4.2). In general, how-
ever, � is not optimal as a controlled McKean–Vlasov solution. In the optimality
condition of Definition 4.3, in fact, the flow of measures is frozen at the flow of
measures induced by �, while in an optimization problem of McKean–Vlasov-
type the flow of measures would have to vary with the controlled solution.

REMARK 4.3. The use of relaxed controls in Definition 4.3 has a twofold
motivation. The first is pragmatic and well known [for instance, El Karoui,
Hu̇u̇ Nguyen and Jeanblanc-Picqué (1987), Kushner (1990)], namely the fact that
relaxed controls allow one to embed the space of control processes into a nice
topological space (if � is compact, then R = R2 is compact; for unbounded �,
R2 is still Polish) without changing the minimal costs. In particular, existence of
optimal controls is guaranteed in the space of relaxed controls. The second mo-
tivation is related to this fact, but more conceptual. The mean field condition in
the mean field game is required to hold for the law of the state process under an
optimal control only. Thus, existence of optimal controls (for a given flow of mea-
sures) is crucial for the existence of solutions to the mean field game. For ordinary
optimal control problems, on the other hand, it suffices that the minimal costs be
well defined. Still, it is natural to ask for conditions ensuring that a solution of the
mean field game can be obtained in ordinary control processes, not just in relaxed
controls. Sufficient conditions of this kind have been established in Lacker (2015).
One simple sufficient condition is that the dynamics be linear and the costs convex
in the control.

The next lemma will be an essential ingredient in the construction of competitor
strategies in the proof of Theorem 5.1 below.

LEMMA 4.3. Let m ∈ M2. Given any ε > 0, there exists a measurable func-
tion ψm

ε : [0, T ] ×R
d ×W → � such that the following hold:

(i) ψm
ε is progressively measurable in the sense that, for every t ∈ [0, T ], every

x ∈ R
d , we have ψm

ε (t, x,w) = ψm
ε (t, x, w̃) whenever w(s) = w̃(s) for all s ∈

[0, t];
(ii) ψm

ε takes values in a finite subset of �;
(iii) Ĵ (m(0),�m

ε ;m) ≤ V̂ (m(0);m) + ε, where �m
ε is the unique probability

measure in P2(Z) such that �m
ε is a solution of equation (4.2) with flow of mea-

sures m, �m
ε ◦ (X̂(0))−1 = m(0), and

ρ̂(dγ, dt) = δ
ψm

ε (t,X̂(0),Ŵ )
(dγ ) dt �m

ε -almost surely.

PROOF. The proof is based on time discretization and dynamic programming;
see Appendix B. �
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REMARK 4.4. The conditions of Lemma 4.3 do not determine ψm
ε in a unique

way. On the other hand, once ψm
ε has been constructed, the probability mea-

sure �m
ε is uniquely determined as the law of the solution of equation (4.2) with

flow of measures m, initial distribution m(0) and control process u given by
u(t)

.= ψm
ε (t,X(0),W), t ∈ [0, T ], where W is the driving Wiener process and

u is identified with its relaxed control random variable. Notice that u is square-
integrable since ψm

ε takes values in a finite subset of �.

5. Convergence of Nash equilibria. For N ∈ N, let uN
1 , . . . , uN

N ∈H2((FN
t ),

PN ;�) be individual strategies for the N -player game, and let uN .= (uN
1 , . . . , uN

N)

be the corresponding strategy vector. Let QN be the normalized occupation mea-
sure associated with uN . More precisely, QN is the P2(Z)-valued random variable
determined by setting, for B ∈ B(X ), R ∈ B(R2), D ∈ B(W),

QN
ω (B × R × D)

(5.1)
.= 1

N

N∑
i=1

δXN
i (·,ω)(B) · δ

ρ
N,i
ω

(R) · δWN
i (·,ω)(D), ω ∈ �N,

where (XN
1 , . . . ,XN

N ) is the solution of the system of equations (3.1) under strategy
vector uN , and ρN,i is the relaxed control associated with individual strategy uN

i ,
i ∈ {1, . . . ,N}.

Convergence results will be obtained under the hypothesis that

(T) ∃δ0 > 0 : sup
N∈N

EN

[
1

N

N∑
i=1

(∣∣ξN
i

∣∣2+δ0 +
∫ T

0

∣∣uN
i (t)

∣∣2+δ0 dt

)]
< ∞.

Whenever (T) holds, we will—as we may—suppose that δ0 ∈ (0,1 ∧ T ].

REMARK 5.1. Condition (T) is automatically satisfied if the action space �

is compact and the initial states, that is, the random variables ξN
i , N ∈ N, i ∈

{1, . . . ,N}, are uniformly bounded.

LEMMA 5.1. If condition (T) holds, then the family (PN ◦ (QN)−1)N∈N is
pre-compact in P(P2(Z)).

PROOF. We verify that condition (T) implies the pre-compactness of the fam-
ily (PN ◦ (QN)−1)N∈N by using a suitable tightness function on P2(Z). For a
function ψ on [0, T ] with values in R

d or Rd1 , let wψ(·, T ) denote the modulus of
continuity of ψ on [0, T ], that is, the function

[0,∞) � h �→ wψ(h,T )
.= sup

t,s∈[0,T ]:|t−s|≤h

∣∣ψ(t) − ψ(s)
∣∣ ∈ [0,∞].
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If ψ is continuous, then the modulus of continuity of ψ takes values in [0,∞).
Clearly, wψ(h,T ) = wψ(T ,T ) whenever h > T . Choose δ0 > 0 according to con-
dition (T), and set α

.= δ0
2(8+δ0)

. Define the function g : P2(Z) → [0,∞] by

g(�)
.=
∫
Z

(
‖ϕ‖2+δ0

X + ∣∣w(0)
∣∣+ ∫

�×[0,T ]
|γ |2+δ0r(dγ, dt)

(5.2)

+ sup
h∈(0,1]

{
h−α(wϕ(h,T ) + ww(h,T )

)})
�(dϕ,dr, dw).

Then g is a tightness function on P2(Z); see Appendix C.2. It is therefore enough
to check that condition (T) entails supN∈N EN [g(QN)] < ∞. By definition of QN

and g,

EN

[
g
(
QN )] = 1

N

N∑
i=1

EN

[∥∥XN
i

∥∥2+δ0
X +

∫ T

0

∣∣uN
i (t)

∣∣2+δ0 dt

]

+ 1

N

N∑
i=1

EN

[
sup

h∈(0,1]
{
h−α(wXN

i
(h, T ) + wWN

i
(h, T )

)}]
.

By Lemma 3.2 and condition (T),

sup
N∈N

{
1

N

N∑
i=1

EN

[∥∥XN
i

∥∥2+δ0
X +

∫ T

0

∣∣uN
i (t)

∣∣2+δ0 dt

]}
< ∞.

As to the terms involving the moduli of continuity, set p
.= 2 + δ0/2; then, by

monotonicity of h �→ h−α and Markov’s inequality (as well as Jensen’s inequal-
ity),

1

N

N∑
i=1

EN

[
sup

h∈(0,1]
{
h−α(wXN

i
(h, T ) + wWN

i
(h, T )

)}]

≤ 1

N

N∑
i=1

EN

[
sup

k∈N:k≥1/T

{
(k + 1)α

(
wXN

i

(
1

k
,T

)
+ wWN

i

(
1

k
,T

))}]

≤ 1 + 1

N

N∑
i=1

∫ ∞
1

∞∑
k=1

PN

(
wXN

i

(
1

k
,T

)
+ wWN

i

(
1

k
,T

)
≥ M

(k + 1)α

)
dM

≤ 1 +
∞∑

k=1

(k + 1)α·p
(

1

N

N∑
i=1

EN

[
wXN

i

(
1

k
,T

)p

+ wWN
i

(
1

k
,T

)p]) 2p−1

p − 1
,

where we have used that
∫∞

1 M−p dM = 1/(p − 1) since p > 1. To find an up-
per bound for the above sums that does not depend on N , we employ estimates
on the moments of the modulus of continuity of Itô processes; cf. Fischer and
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Nappo (2010) and the references therein. Since WN
1 , . . . ,WN

N are standard d1-
dimensional Wiener processes, we have by Lemma 3 of that paper and Hölder’s
inequality that there exists a finite constant C̄p,d1 depending only on p and d1 such
that, for every i ∈ {1, . . . ,N}, every k ∈ N with k ≥ 1/T ,

EN

[
wWN

i

(
1

k
,T

)p]
≤ C̄p,d1

(
log(2T k)

k

)p/2
.

Recall that p = 2 + δ0/2. By Theorem 1 in Fischer and Nappo (2010), there exists
a finite constant C̄δ0,d,d1 depending only on δ0 (through p = 2 + δ0/2 and δ0/2 =
2 + δ0 − p), d , and d1 such that, for every k ∈ N with k ≥ 1/T ,

1

N

N∑
i=1

EN

[
wXN

i

(
1

k
,T

)2+δ0/2]

≤ C̄δ0,d,d1

(
log(2T k)

k

)1+δ0/4

×
(

1

N

N∑
i=1

EN

[
sup

s,t∈[0,T ]:s<t

(∫ t
s |b(s̃,XN

i (s̃),μN(s̃), uN
i (s̃))|ds̃√|t − s|

)2+δ0/2]

+ 1

N

N∑
i=1

EN

[
sup

s∈[0,T ]
∣∣σ (s,XN

i (s),μN(s)
)∣∣2+δ0

]
+ 1

)
.

Thanks to assumption (A3), Lemma 3.2 and condition (T), we have

sup
N∈N

{
1

N

N∑
i=1

EN

[
sup

s∈[0,T ]
∣∣σ (s,XN

i (s),μN(s)
)∣∣2+δ0

]}
< ∞.

On the other hand, by Hölder’s inequality,

1

N

N∑
i=1

EN

[
sup

s,t∈[0,T ]:s<t

(∫ t
s |b(s̃,XN

i (s̃),μN(s̃), uN
i (s̃))|ds̃√|t − s|

)2+δ0/2]

≤ T δ0/4 · 1

N

N∑
i=1

EN

[∫ T

0

∣∣b(s̃,XN
i (s̃),μN(s̃), uN

i (s̃)
)∣∣2+δ0/2

ds̃

]

and, thanks to assumption (A3), Lemma 3.1 and condition (T),

sup
N∈N

{
1

N

N∑
i=1

EN

[∫ T

0

∣∣b(s̃,XN
i (s̃),μN(s̃), uN

i (s̃)
)∣∣2+δ0/2

ds̃

]}
< ∞.
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Recall that α = δ0
2(8+δ0)

and p = 2 + δ0/2. It follows that, for some finite constant

C̄K,T ,δ0,d,d1 not depending on N ,

sup
N∈N

{
1

N

N∑
i=1

EN

[
sup

h∈(0,1]
{
h−α(wXN

i
(h, T ) + wWN

i
(h, T )

)}]}

≤ C̄K,T ,δ0,d,d1

(
1 +

∞∑
k=1

(k + 1)α·p
(

log(2T k)

k

)p/2
)
,

where the infinite sum on the right-hand side above has a finite limit since p/2 −
α · p = (8 + 2δ0)/(8 + δ0) > 1. �

Below, we will use the symbol I to indicate the index set of a (convergent)
subsequence; thus I is a subset of N with the natural ordering and #I = ∞.

LEMMA 5.2. Suppose that (Pn ◦ ξn
in∗ )n∈I converges in P2(R

d) to some ν̄ ∈
P2(R

d), where, for each n ∈ I, in∗ ∈ {1, . . . , n}. Then there exists a sequence
(ξ̄ n)n∈I of Rd -valued random variables such that the following hold:

(i) for every n ∈ I, ξ̄ n is defined on (�n,Fn), measurable with respect to
σ(ξn

in∗ , ϑ
n
in∗ ) ⊂ Fn

0 , and such that Pn ◦ (ξ̄ n)−1 = ν̄;

(ii) En[|ξn
in∗ − ξ̄ n|2] → 0 as n → ∞.

PROOF. Set νn
.= Pn ◦ (ξn

in∗ )
−1. By hypothesis,

d2(νn, ν̄)
n→∞−→ 0.

Let n ∈ I. By definition of the square Wasserstein metric,

d2(νn, ν̄)2 = inf
α∈P(Rd×Rd ):[α]1=νn and [α]2=ν̄

∫
Rd×Rd

|x − x̃|2α(dx, dx̃).

The infimum in the above equation is attained; see, for instance, Theorem 1.3
(Kantorovich’s theorem) in Villani (2003), pages 19–20. Thus, there exists αn∗ ∈
P(Rd ×R

d) such that [αn∗]1 = νn, [αn∗]2 = ν̄ and

d2(νn, ν̄)2 =
∫
Rd×Rd

|x − x̃|2αn∗(dx, dx̃).

Recall that ϑn
1 , . . . , ϑn

n are independent Fn
0 -measurable random variables which

are uniformly distributed on [0,1] and independent of the σ -algebra generated by
ξn

1 , . . . , ξn
n , Wn

1 , . . . ,Wn
n . By Theorem 6.10 in Kallenberg (2001), page 112, on

measurable transfers, there exists a measurable function ϕn : Rd × [0,1] → R
d

such that

Pn ◦ (ξn
in∗ , ϕn

(
ξn
in∗ , ϑ

n
in∗
))−1 = αn∗ .
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Set ξ̄ n .= ϕn(ξ
n
in∗ , ϑ

n
in∗ ). Then ξ̄ n is σ(ξn

in∗ , ϑ
n
in∗ )-measurable, Pn ◦ (ξ̄ n)−1 = ν̄, and

En

[∣∣ξn
in∗ − ξ̄ n

∣∣2] = d2(νn, ν̄)2,

which tends to zero as n → ∞. �

LEMMA 5.3. Grant condition (T). Let (Qn)n∈I be a subsequence that con-
verges in distribution to some P2(Z)-valued random variable Q defined on some
probability space (�,F,P). Set

μω(t)
.= Qω ◦ X̂(t)−1, t ∈ [0, T ],ω ∈ �.

Then for P-almost every ω ∈ �, μω ∈ M2 and Qω is a solution of equation (4.2)
with flow of measures μω. Moreover,

lim inf
I�n→∞

1

n

n∑
i=1

Jn
i

(
un) ≥

∫
�

Ĵ
(
μω(0),Qω,μω

)
P(dω).

PROOF. By Lemma 5.1, (PN ◦ (QN)−1)N∈N is pre-compact in P(P2(Z)). Let
(Qn)n∈I be a subsequence that converges in distribution to some P2(Z)-valued
random variable Q, defined on some probability space (�,F,P). Set μω(t)

.=
Qω ◦ X̂(t)−1, t ∈ [0, T ], ω ∈ �. Since Qω ∈ P2(Z) for every ω ∈ �, we have
μω ∈ M2 for every ω ∈ �; cf. Remark 4.2 above. By construction, Ŵ (0) = 0 Qn

ω-
almost surely for Pn-almost every ω ∈ �n. Convergence in distribution implies
Ŵ (0) = 0 Qω-almost surely for P-almost every ω ∈ �.

In order to verify that Qω is a solution of equation (4.2) with flow of measures
μω for P-almost every ω ∈ �, it suffices to check that condition (iii) of Defini-
tion 4.1 holds. The proof of this fact is analogous to the proof of Lemma 5.2 in
Budhiraja, Dupuis and Fischer (2012). Since the situation here is somewhat differ-
ent, we give details in Appendix D below.

The asymptotic lower bound for the average costs is a consequence of a version
of Fatou’s lemma [cf. Theorem A.3.12 Dupuis and Ellis (1997), page 307] since,
for every n ∈ I,

1

n

n∑
i=1

Jn
i

(
un) =

∫
�n

∫
Z

(∫
�×[0,T ]

f
(
t, ϕ(t),Qn

ω ◦ X̂(t)−1, γ
)
r(dγ, dt)

+ F
(
T ,ϕ(T ),Qn

ω ◦ X̂(T )−1))Qn
ω(dϕ, dr, dw)Pn(dω)

and Qn
ω ◦ X̂(t)−1 → μ(t) in distribution as n → ∞. �

REMARK 5.2. Lemma 5.3 shows that, under condition (T), all limit points of
the normalized occupation measures (QN)N∈N are concentrated on those random
variables that, with probability one, take values in the set of McKean–Vlasov so-
lutions of equation (4.2). The mean field condition of Definition 4.3 is therefore
always satisfied.
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In addition to (T), we will need the following weak symmetry condition on the
costs:

∃ a sequence of indices
(
iN∗

)
N∈N with iN∗ ∈ {1, . . . ,N} such that

sup
N∈N

JN
iN∗
(
uN )

< ∞ and lim sup
N→∞

1

N

N∑
i=1

JN
i

(
uN ) ≤ lim sup

N→∞
JN

iN∗
(
uN )

.
(S)

REMARK 5.3. Condition (S) is automatically satisfied if the cost coefficients
f , F are bounded functions. If f , F are unbounded and the costs associated with
uN are symmetric in the sense that, for every N , every i ∈ {2, . . . ,N}, JN

1 (uN) =
JN

i (uN), then thanks to assumption (A5) and Lemma 3.1, condition (S) follows
from condition (T).

THEOREM 5.1. Let (εN)N∈N ⊂ [0,∞) be a sequence converging to zero. Sup-
pose that (ξN)N∈N and (uN)N∈N are such that (T) and (S) hold and, for each
N ∈ N, ξN = (ξN

1 , . . . , ξN
N ) is exchangeable and uN is a local εN -Nash equilib-

rium for the N -player game. Let (Qn)n∈I be a subsequence that converges in dis-
tribution to some P2(Z)-valued random variable Q defined on some probability
space (�,F,P). If there is m ∈M2 such that, for P-almost every ω ∈ �,

Qω ◦ X̂(t)−1 =m(t), t ∈ [0, T ],
then (Qω,m) is a solution of the mean field game for P-almost every ω ∈ �.

We postpone the proof of Theorem 5.1 to the end of this section. The crucial hy-
pothesis in Theorem 5.1 is the almost sure nonrandomness of the flow of measures
induced by a limit random variable Q. Thus, under the rather general conditions
(T) and (S), we prove convergence to solutions of a mean field game for subse-
quences with limit random variable Q such that P ◦ (Q ◦ (X̂(t))−1

t∈[0,T ])−1 = δm
for some m ∈ M2. This condition is reminiscent of the characterization of prop-
agation of chaos in the Tanaka–Sznitman theorem. The nonrandomness of the
induced flow of measures is implied by the nonrandomness of the joint law
of initial condition, relaxed control and noise process, that is, by the condition
P ◦ (Q ◦ (X̂(0), ρ̂, Ŵ )−1)−1 = δν for some ν ∈P(Rd ×R2 ×W). This condition,
in turn, is satisfied if the initial states and individual strategies of each N -player
game are independent and identically distributed, where the marginal distributions
are allowed to vary with N .

COROLLARY 5.2. Let (εN)N∈N ⊂ [0,∞) be a sequence converging to zero.
Suppose that (ξN)N∈N and (uN)N∈N are such that (T) holds and, for each
N ∈ N, uN is a local εN -Nash equilibrium for the N -player game and the ran-
dom variables (ξN

1 , uN
1 ,WN

1 ), . . . , (ξN
N ,uN

N,WN
N ) are independent and identically

distributed. Let (Qn)n∈I be a subsequence that converges in distribution to some
P2(Z)-valued random variable Q defined on some probability space (�,F,P).
Then Qω is a solution of the mean field game for P-almost every ω ∈ �.
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PROOF. By distributional symmetry of the vectors of initial states and indi-
vidual strategies, the costs are symmetric and condition (T) entails condition (S);
cf. Remark 5.3 above.

Let T ⊂ Cb(R
d × R2 × W) be a countable and measure determining set of

functions. Let (Qn)n∈I be a convergent subsequence with limit random variable Q

on (�,F,P). Let � ∈ T , and set

m�
.= EP

[
EQ

[
�
(
X̂(0), ρ̂, Ŵ

)]]
,

v�
.= EP

[(
EQ

[
�
(
X̂(0), ρ̂, Ŵ

)]− m�

)2]
,

mn
�

.= En

[
EQn

[
�
(
X̂(0), ρ̂, Ŵ

)]]
, n ∈ I.

The mapping � �→ ∫
� d� is continuous on P2(Z). By convergence of (Qn) to

Q and the continuous mapping theorem,

v� = lim
n→∞ En

[(
EQn

[
�
(
X̂(0), ρ̂, Ŵ

)]− mn
�

)2]

= lim
n→∞ En

[(
1

n

n∑
i=1

�
(
ξn
i , ρn,i,Wn

i

)− mn
�

)2]
,

where ρn,i is the relaxed control random variable induced by un
i . As a consequence

of the i.i.d. hypothesis, the random variables �(ξn
i , ρn,i,Wn

i ), i ∈ {1, . . . , n}, are
independent and identically distributed with common mean equal to mn

� . Since �

is bounded, it follows that v� = 0. This implies

EQ

[
�
(
X̂(0), ρ̂, Ŵ

)] = m� P-almost surely.

Since T is countable, we have with P-probability one

EQ

[
�
(
X̂(0), ρ̂, Ŵ

)] = m� for all � ∈ T .

Since T is also measure determining, it follows that there exists a measure ν ∈
P(Rd ×R2 ×W) such that, for P-almost every ω ∈ �,

Qω ◦ (X̂(0), ρ̂, Ŵ
)−1 = ν.

On the other hand, we know by Lemma 5.3 that Qω ∈ P2(Z) is a McKean–Vlasov
solution of equation (4.2) for P-almost every ω ∈ �. Uniqueness of such solutions
according to Lemma 4.2 yields the existence of a measure � ∈ P2(Z) such that
Qω = � for P-almost every ω ∈ �. Let m ∈ M2 be the flow of measures induced
by �. Then, for P-almost every ω ∈ �,

Qω ◦ X̂(t)−1 = m(t), t ∈ [0, T ].
The assertion is now a consequence of Theorem 5.1. �
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Existence of local approximate Nash equilibria as required in Corollary 5.2 is
guaranteed, in particular, under the hypotheses of Proposition 3.1 above (com-
pact action space, bounded coefficients). Suppose that (ξN) is such that, for
each N ∈ N, ξN is a vector of independent and identically distributed ran-
dom variables with common marginal mN

0 ∈ P2(R
d) and that, for some δ0 > 0,

supN∈N
∫ |x|2+δ0mN

0 (dx) < ∞. Then, by Proposition 3.1, there exists a corre-
sponding sequence (uN) of local approximate Nash equilibria such that the hy-
potheses of Corollary 5.2 are satisfied. In addition to the desired limit relation, we
thus obtain a proof of existence of solutions for the mean field game. Note that ex-
istence of solutions is just a by-product of our analysis; analogous existence results
can in fact be obtained by directly working with the mean field game; see Lacker
(2015). The proof there is based, as in Proposition 3.1 here, on relaxed controls
and a version of Fan’s fixed-point theorem.

PROOF OF THEOREM 5.1. By hypothesis, Q◦ X̂(·)−1 = m(·) P-almost surely
for some deterministic m ∈ M2. In view of Lemma 5.3, it is enough to show
that the pair (Qω,m) satisfies the optimality condition of Definition 4.3 with P-
probability one. This is equivalent to showing that Ĵ (m(0),Qω;m) = V̂ (m(0);m)

for P-almost all ω ∈ �.
Let ε > 0. Choose a function ψm

ε : [0, T ]×R
d ×W → � and a probability mea-

sure �m
ε ∈ P2(Z) according to Lemma 4.3. Choose a sequence of indices (in∗ )n∈I

according to condition (S). We will, as we may, assume that in∗ = 1 for every n ∈ I;
otherwise, renumber the components of the n-player games.

The proof proceeds in five steps. First, we construct a coupling for the initial
conditions. In the second step, based on that coupling and the feedback function
ψm

ε , we define a competitor strategy ũn that differs from un only in component one
(= in∗ ). As verified in step three, the associated normalized occupation measures
have the same limit Q as the sequence (Qn). This is used in the fourth step to show
that lim supn→∞ Jn

1 (ũn) ≤ V̂ (m(0);m) + ε. Thanks to this upper limit, the local
approximate Nash equilibrium property of un together with condition (S), and
the asymptotic lower bound on the average costs from Lemma 5.3, we establish
optimality in the fifth and last step.

First step. By hypothesis, the sequence (Pn ◦ (Qn)−1)n∈I converges to P ◦Q−1

in P(P2(Z)). By the choice of the metric on Z , the continuity of the map Z �
(ϕ, r,w) �→ ϕ(0) ∈ R

d , and the mapping theorem [for instance, Theorem 5.1 in
Billingsley (1968), page 30], we have that

P2(Z) � � �→ � ◦ (X̂(0)
)−1 ∈ P2

(
R

d)
is continuous. This implies, again by the continuous mapping theorem, that

Pn ◦ (Qn ◦ (X̂(0)
)−1)−1 n→∞−→ P ◦ (Q ◦ (X̂(0)

)−1)−1 in P
(
P2

(
R

d)).
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By construction and hypothesis, respectively,

Qn ◦ (X̂(0)
)−1 = 1

n

n∑
i=1

δξn
i

while P ◦ (Q ◦ (X̂(0)
)−1)−1 = δm(0).

It follows that ( 1
n

∑n
i=1 δξn

i
)n∈I converges to m(0) in distribution as P2(R

d)-valued
random variables, where m(0) is deterministic. This convergence implies, in par-
ticular, that

En

[
1

n

n∑
i=1

∣∣ξn
i

∣∣2] n→∞−→
∫
Rd

|x|2m(0)(dx).

By hypothesis, ξn = (ξn
1 , . . . , ξn

n ) is exchangeable for every n ∈ I. Convergence of
the associated empirical measures, by the Tanaka–Sznitman theorem [for instance,
Theorem 3.2 in Gottlieb (1998), page 27], implies that

Pn ◦ (ξn
1
)−1 n→∞−→ m(0) in P

(
R

d).
Actually, we have convergence in P2(R

d) since, by exchangeability,

En

[∣∣ξn
1

∣∣2] = En

[
1

n

n∑
i=1

∣∣ξn
i

∣∣2] for every n ∈ I,

and the expectations on the right-hand side above converge to the second moment
of m(0). We are therefore in the situation of Lemma 5.2, and we apply that result
with the choice in∗ = 1 to obtain a sequence (ξ̄ n)n∈I of Rd -valued random variables
such that ξ̄ n is σ(ξn

in∗ , ϑ
n
in∗ )-measurable, Pn◦(ξ̄ n)−1 = m(0) and En[|ξn

1 − ξ̄ n|2] → 0
as n → ∞.

Second step. Define a strategy vector ũn = (ũn
1, . . . , ũ

n
n) by setting, for (t,ω) ∈

[0, T ] × �n,

ũn
i (t,ω)

.=
{
ψm

ε

(
t, ξ̄ n(ω),Wn

1 (·,ω)
)

if i = 1,

un
i (t,ω) if i ∈ {2, . . . , n}.

Notice that ũn is indeed a strategy vector for the game with n players. Moreover,
ũn

i = un
i for i ∈ {2, . . . , n}, while ũn

1 ∈ H2((Fn,1
t ),Pn;�). Let ρ̃n,i be the relaxed

control induced by ũn
i , i ∈ {1, . . . , n}. Clearly, ρ̃n,i = ρn,i for i ≥ 2. On the other

hand, by construction and since ξ̄ n and Wn
1 are independent,

Pn ◦ (ξ̄ n, ρ̃n,1,Wn
1
)−1 = �m

ε ◦ (X̂(0), ρ̂, Ŵ
)−1 for every n ∈ I.

The law of ũn
1, in particular, does not change with n. It follows that

sup
n∈I

En

[∫ T

0

∣∣ũn
1(t)

∣∣2 dt

]
< ∞.
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The coercivity assumption (A6) implies that there exists C > 0 such that for every
n ∈ I,

En

[∫ T

0

∣∣un
1(t)

∣∣2 dt

]
≤ C

(
1 + Jn

1
(
un)).

By choice of the index in∗ = 1 according to (S), we have supn∈N Jn
1 (un) < ∞.

Since En[|ξn
1 |2] = 1

n

∑n
i=1 En[|ξn

i |2] by exchangeability, it follows that

(5.3) sup
n∈I

En

[∣∣ξn
1

∣∣2 +
∫ T

0

(∣∣un
1(t)

∣∣2 + ∣∣ũn
1(t)

∣∣2)dt

]
< ∞.

Third step. Let (X̃n
1 , . . . , X̃n

n) be the solution of the system of equations (3.1)
under strategy vector ũn, and let μ̃N denote the empirical measure process associ-
ated with (X̃n

1 , . . . , X̃n
n). Let Q̃n be the normalized occupation measure associated

with ũn, that is, the P2(Z)-valued random variable determined by

Q̃n
ω(B × R × D)

.= 1

n

n∑
i=1

δ
X̃n

i (·,ω)
(B) · δ

ρ̃
n,i
ω

(R) · δWn
i (·,ω)(D), ω ∈ �n,

B ∈ B(X ), R ∈ B(R2), D ∈ B(W). We are going to show that

(5.4) Q̃n n→∞−→ Q in distribution as P2(Z)-valued random variables.

Since Qn → Q in distribution, it suffices to show that

dP(P2(Z))

(
Pn ◦ (Q̃n)−1

,Pn ◦ (Qn)−1) n→∞−→ 0.

Let n ∈ I. By construction, definition of the bounded Lipschitz metric, inequality
(2.1) and Hölder’s inequality,

dP(P2(Z))

(
Pn ◦ (Q̃n)−1

,Pn ◦ (Qn)−1)
= sup

G∈C(P2(Z)):‖G‖bLip≤1
En

[
G
(
Qn)− G

(
Q̃n)]

≤ En

[
dP2(Z)

(
Qn, Q̃n)]

≤
√√√√En

[
1

n

n∑
i=1

dZ
((

Xn
i , ρn,i,Wn

i

)
,
(
X̃n

i , ρ̃n,i,Wn
i

))2

]

≤ 1√
n

+
√√√√En

[
1

n

n∑
i=1

sup
t∈[0,T ]

∣∣Xn
i (t) − X̃n

i (t)
∣∣2],

where the last inequality follows by definition of dZ and from the fact that
ρn,i = ρ̃n,i for i ∈ {2, . . . , n}. Using assumption (A2), Hölder’s inequality, Doob’s
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maximal inequality, Itô’s isometry, inequality (2.1) and Fubini’s theorem, we find
that for i ∈ {2, . . . , n}, every t ∈ [0, T ],

En

[
sup

s∈[0,t]
∣∣Xn

i (s) − X̃n
i (s)

∣∣2]

≤ 4(T + 4)L2En

[∫ t

0

∣∣Xn
i (s) − X̃n

i (s)
∣∣2 ds +

∫ t

0
d2
(
μN(s), μ̃N(s)

)2
ds

]

≤ 4(T + 4)L2
∫ t

0
En

[∣∣Xn
i (s) − X̃n

i (s)
∣∣2 + 1

n

n∑
k=1

∣∣Xn
k (s) − X̃n

k (s)
∣∣2]ds.

Similarly, but also using assumption (A3),

En

[
sup

s∈[0,t]
∣∣Xn

1(s) − X̃n
1(s)

∣∣2]

≤ Cn + 8(T + 2)L2
∫ t

0
En

[∣∣Xn
1(s) − X̃n

1(s)
∣∣2 + 1

n

n∑
k=1

∣∣Xn
k (s) − X̃n

k (s)
∣∣2]ds,

where Cn is equal to

80T K2
∫ T

0
En

[
1 + ∣∣Xn

1(s)
∣∣2 + ∣∣un

1(s)
∣∣2 + ∣∣ũn

1(s)
∣∣2 + 1

n

n∑
k=1

∣∣Xn
k (s)

∣∣2]ds.

It follows that, for every t ∈ [0, T ],
1

n

n∑
i=1

En

[
sup

s∈[0,t]
∣∣Xn

i (s) − X̃n
i (s)

∣∣2]

≤ Cn

n
+ 8(T + 4)L2

∫ t

0
En

[
1

n

n∑
i=1

sup
s̃∈[0,s]

∣∣Xn
i (s̃) − X̃n

i (s̃)
∣∣2]ds.

Therefore, by Gronwall’s lemma,

En

[
1

n

n∑
i=1

sup
t∈[0,T ]

∣∣Xn
i (t) − X̃n

i (t)
∣∣2] ≤ Cn

n
exp

(
8T (T + 4)L2).

To complete the proof of (5.4), one checks that supn∈I Cn < ∞. But this is a con-
sequence of (5.3), condition (T), and Lemma 3.1.

Fourth step. We are going to show that

(5.5) lim sup
n→∞

Jn
1
(
ũn) ≤ Ĵ

(
m(0),�m

ε ;m)
.

Let n ∈ I. Recall that X̃n
1 solves the equation

X̃n
1(t) = ξn

1 +
∫ t

0
b
(
s, X̃n

1(s), μ̃n(s), ũn
1(s)

)
ds

+
∫ t

0
σ
(
s, X̃n

1(s), μ̃n(s)
)
dWn

1 (s), t ∈ [0, T ].
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Let X̄n
1 be the unique solution to

X̄n
1(t) = ξ̄ n +

∫ t

0
b
(
s, X̄n

1(s),m(s), ũn
1(s)

)
ds

+
∫ t

0
σ
(
s, X̄n

1(s),m(s)
)
dWn

1 (s), t ∈ [0, T ].
Then, by uniqueness in law and construction, for every n ∈ I,

Ĵ
(
m(0),�m

ε ;m)
= En

[∫ T

0
f
(
t, X̄n

1(t),m(t), ũn
1(t)

)
dt + F

(
X̄n

1(T ),m(T )
)]

.

Using assumption (A2), Hölder’s inequality, Itô’s isometry and Fubini’s theorem,
we find that for every t ∈ [0, T ],

En

[∣∣X̃n
1(t) − X̄n

1(t)
∣∣2]

≤ 3En

[∣∣ξn
1 − ξ̄ n

∣∣2]+ 6(T + 1)L2En

[∫ T

0
d2
(
μ̃n(s),m(s)

)2
ds

]

+ 6(T + 1)L2
∫ t

0
En

[∣∣X̃n
1(s) − X̄n

1(s)
∣∣2]ds.

The limit relation (5.4) implies that (μ̃n(0))n∈I converges to m(0) in distribution
as P2(R

d)-valued random variables and that, by uniform integrability thanks to
Lemma 3.2 and condition (T),

sup
t∈[0,T ]

En

[
d2
(
μ̃n(t),m(t)

)2] n→∞−→ 0.

By choice of the random variables ξ̄ n according to Lemma 5.2,

En

[∣∣ξn
1 − ξ̄ n

∣∣2] n→∞−→ 0.

Therefore, by Gronwall’s lemma,

sup
t∈[0,T ]

En

[∣∣X̃n
1(t) − X̄n

1(t)
∣∣2] n→∞−→ 0.

Thanks to assumption (A4) and Hölder’s inequality,∣∣Jn
1
(
ũn)− Ĵ

(
m(0),�m

ε ;m)∣∣
≤ En

[∫ T

0

∣∣f (
t, X̃n

1(t), μ̃n(t), ũn
1(t)

)− f
(
t, X̄n

1(t),m(t), ũn
1(t)

)∣∣dt

]

+ En

[∣∣F (
X̃n

1(T ), μ̃n(T )
)− F

(
X̄n

1(T ),m(T )
)∣∣]

≤ √
10L(1 + √

T ) sup
t∈[0,T ]

En

[∣∣X̃n
1(t) − X̄n

1(t)
∣∣2 + d2

(
μ̃n(t),m(t)

)2]1/2

× sup
t∈[0,T ]

En

[
1 + ∣∣X̃n

1(t)
∣∣2 + ∣∣X̄n

1(t)
∣∣2 + d2

(
μ̃n(t), δ0

)2 + d2
(
m(t), δ0

)2]1/2
.
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By (5.3) together with Lemma 3.1 and an analogous estimate applied to X̄n
1 , and

since supt∈[0,T ] d2(m(t), δ0)
2 < ∞ by continuity, we have

sup
n∈I

sup
t∈[0,T ]

En

[∣∣X̃n
1(t)

∣∣2 + ∣∣X̄n
1(t)

∣∣2 + d2
(
μ̃n(t), δ0

)2 + d2
(
m(t), δ0

)2]
< ∞.

It follows that Jn
1 (ũn) → Ĵ (m(0),�m

ε ;m) as n → ∞, which establishes (5.5).
Fifth step. The limit relation (5.5) and the choice of �m

ε imply that

lim sup
j→∞

J
Nj

1

(
ũNj

) ≤ V̂
(
m(0);m)+ ε.

By hypothesis, un is a local εn-Nash equilibrium. By construction, ũn differs from
un only in component number one (= in∗ ), and ũn

1 is (Fn,1
t )-adapted. Therefore,

Jn
1
(
un) ≤ Jn

1
(
ũn)+ εn.

By choice of the index 1 = in∗ according to (S) and since εn → 0 by hypothesis,

lim sup
n→∞

1

n

n∑
i=1

Jn
i

(
un) ≤ lim sup

n→∞
Jn

1
(
un) ≤ lim sup

n→∞
Jn

1
(
ũn).

It follows that

lim sup
n→∞

1

n

n∑
i=1

Jn
i

(
un) ≤ V̂

(
m(0);m)+ ε.

On the other hand, thanks to the second part of Lemma 5.3,

lim inf
n→∞

1

n

n∑
i=1

Jn
i

(
un) ≥

∫
�

Ĵ
(
m(0),Qω,m

)
P(dω).

It follows that ∫
�

Ĵ
(
m(0),Qω,m

)
P(dω) ≤ V̂

(
m(0);m)+ ε.

Since ε > 0 was arbitrary and Ĵ (m(0),Qω,m) ≥ V̂ (m(0);m) for every ω ∈ � by
definition of V̂ , we conclude that

Ĵ
(
m(0),Qω,m

) = V̂
(
m(0);m)

for P-almost all ω ∈ �. �

REMARK 5.4. The proof of Theorem 5.1 gives some insight into why the
assumption that the limit flow of measures m is deterministic cannot simply be
dropped. In the second step of the proof, we define a competitor strategy ũn

1 for
the deviating player (player one after relabeling) in terms of the noise feedback
function ψm

ε . In general, for any t ∈ [0, T ], ψm
ε (t, ·, ·) depends on m through its

values for all times, not only through its values up to time t . Therefore, if m were
random, even taking for granted the measurable dependence of ψm

ε on m, we might
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end up with a nonadapted competitor strategy. Indeed, the natural choice for ũn
1,

namely ũn
1(t,ω)

.= ψ
μn

ω(·)
ε (t, ξ̄ n(ω),Wn

1 (·,ω)), would in general yield a �-valued
process that would not be an admissible strategy for player one in the n-player
game.

APPENDIX A: PROOF OF LEMMA 4.1, SECOND PART

Let � ∈ P(Z) be a solution of equation (4.2) with flow of measures m in the
sense of Definition 4.1. Using the local martingale property of Mm

f for f a mono-
mial of first or second order as in the proof of Proposition 5.4.6 in [Karatzas and
Shreve (1991), pages 315–316], we find that, under � and with respect to the fil-
tration (Gt ):

• Ŵ is a d1-dimensional vector of continuous local martingales with Ŵ (0) = 0
and quadratic covariations

〈Ŵl, Ŵl̃
〉(t) = t · δ

l,l̃
, l, l̃ ∈ {1, . . . , d1};

• X̄
.= X̂−X̂(0)−∫

�×[0,·] b(s, X̂(s),m(s), γ )ρ̂(dγ, ds) is a d-dimensional vector
of continuous local martingales with quadratic covariations

〈X̄j , X̄k〉(t) =
∫ t

0

(
σσ T)

jk

(
s, X̂(s),m(s)

)
ds, j, k ∈ {1, . . . , d};

• Ŵ , X̄ have quadratic covariations

〈X̄k, Ŵl〉(t) =
∫ t

0
σkl

(
s, X̂(s),m(s)

)
ds,

where k ∈ {1, . . . , d}, l ∈ {1, . . . , d1}.
The local martingale property also holds with respect to the filtration (G�

t+); see
the solution to Problem 5.4.13 in Karatzas and Shreve (1991), pages 318–319,
392, and Remark 4.2 in Budhiraja, Dupuis and Fischer (2012). By Lévy’s char-
acterization of Brownian motion [for instance, Theorem 3.3.16 in Karatzas and
Shreve (1991), page 157], we see that Ŵ is a standard Wiener process with respect
to (G�

t+). As a consequence, the process

Y(t)
.=
∫ t

0
σ
(
s, X̂(s),m(s)

)
dŴ(s), t ∈ [0, T ],

is well defined and a d-dimensional vector of continuous local martingales [under
� with respect to (G�

t+)] with quadratic covariations

〈Yj ,Yk〉(t) =
∫ t

0

(
σσ T)

jk

(
s, X̂(s),m(s)

)
ds, j, k ∈ {1, . . . , d},

〈Yj , Ŵl〉(t) =
∫ t

0
σjl

(
s, X̂(s),m(s)

)
ds, j ∈ {1, . . . , d}, l ∈ {1, . . . , d1}.
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The quadratic covariations between the components of the vectors of continuous
local martingales X̄, Y are given by [cf. Proposition 3.2.24 in Karatzas and Shreve
(1991), page 147]

〈Yj , X̄k〉(t) =
d1∑
l=1

∫ t

0
σjl

(
s, X̂(s),m(s)

)
d〈X̄k, Ŵl〉(s)

=
∫ t

0

(
σσ T)

jk

(
s, X̂(s),m(s)

)
ds, j, k ∈ {1, . . . , d}.

It follows that X̄ − Y is a d-dimensional vector of continuous local martingales
with X̄(0) = 0 = Y(0) and quadratic covariations

〈X̄j − Yj , X̄k − Yk〉 = 〈X̄j , X̄k〉 − 〈Yj , X̄k〉 − 〈X̄j , Yk〉 + 〈Yj ,Yk〉 ≡ 0.

This implies [cf. Problem 1.5.12 in Karatzas and Shreve (1991), page 35] that
X̄ = Y �-almost surely, which establishes the solution property.

APPENDIX B: PROOF OF LEMMA 4.3

Fix m ∈ M2, and set, for (t, x, γ ) ∈ [0, T ] ×R
d × �,

bm(t, x, γ )
.= b

(
t, x,m(t), γ

)
, σm(t, x)

.= σ
(
t, x,m(t)

)
,

fm(t, x, γ )
.= f

(
t, x,m(t), γ

)
, Fm(x)

.= F
(
x,m(T )

)
.

Thanks to assumptions (A1), (A2), (A4) and the continuity of m, we have that bm,
σm, fm are continuous in the time and control variable, uniformly over compact
subsets of Rd , bm, σm are globally Lipschitz continuous in the state variable, uni-
formly in the other variables, and fm, Fm are locally Lipschitz continuous in the
state variable, uniformly in the other variables, with local Lipschitz constants that
grow sublinearly in the state variable.

The function ψm
ε will be constructed based on the principle of dynamic pro-

gramming applied in discrete time. To this end, we first introduce an original con-
trol problem corresponding to the minimal costs V̂ (·,m), then we build a sequence
of approximating optimal control problems by successively restricting the set of
admissible strategies. The proof proceeds in six steps.

First step. Let U be the set of all quadruples ((�,F,P), (Ft ), ρ,W) such that
the pair ((�,F,P), (Ft )) forms a stochastic basis satisfying the usual hypotheses,
W is a d1-dimensional (Ft )-Wiener process, and ρ is an (Ft )-adapted R2-valued
random variable such that E[∫�×[0,T ] |γ |2ρ(dγ, ds)] < ∞. For simplicity, we may
write ρ ∈ U instead of ((�,F,P), (Ft ), ρ,W) ∈ U . Given any ρ ∈ U , (t0, x) ∈
[0, T ] ×R

d , the stochastic integral equation

X(t) = x +
∫
�×[0,t]

bm
(
t0 + s,X(s), γ

)
ρ(dγ, ds)

(B.1)

+
∫ t

0
σm

(
t0 + s,X(s)

)
dW(s), t ∈ [0, T − t0],
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has a unique solution X = Xt0,x,ρ , that is, X is the unique (up to indistinguisha-
bility with respect to P) R

d -valued (Ft )-adapted continuous process that sat-
isfies (B.1) with P-probability one. Although the solution X of equation (B.1)
starts in x at time zero, it corresponds to the solution of equation (4.2) starting
in x at time t0. Define the costs associated with strategy ρ and initial condition
(t0, x) ∈ [0, T ] ×R

d by

Jm(t0, x, ρ)
.= E

[∫
�×[0,T −t0]

fm
(
t0 + s,X(s), γ

)
ρ(dγ, ds) + Fm

(
X(T − t0)

)]
,

where X = Xt0,x,ρ . The corresponding value function Vm is given by

Vm(t, x)
.= inf

ρ∈U Jm(t, x, ρ),

which is well defined as a measurable function [0, T ] × R
d → [0,∞). Actually,

Vm is continuous. For x ∈ R
d , ρ ∈ U , set

�x,ρ .= P ◦ (X0,x,ρ, ρ,W
)−1

.

Then �x,ρ is a solution of equation (4.2) with flow of measures m and

Jm(0, x, ρ) = Ĵ
(
δx,�

x,ρ;m)
.

Conversely, in view of Lemma 4.1 and thanks to Assumption (A6), any � ∈ P(Z)

with Ĵ (δx,�;m) < ∞ induces a strategy ρ ∈ U such that �x,ρ = �. It follows
that Vm(0, x) = V̂ (δx;m) for every x ∈ R

d and, by conditioning on the initial state
at time zero, ∫

Rd
Vm(0, x)m(0)(dx) = V̂

(
m(0);m)

.

Second step. The function Vm(0, ·) is locally Lipschitz continuous. To be more
precise, choose c0 > 0, �0 ⊂ � according to (A6), and let r0 > 0 be such that �0 ⊂
{γ ∈ R

d2 : |γ | ≤ r0}. We are going to show that there exists a constant C1 ∈ (0,∞)

depending only on K , L, T , m, r0 and c0 such that

(B.2)
∣∣Vm(0, x) − Vm(0, x̃)

∣∣ ≤ C1(1 + R)|x − x̃| whenever |x| ∨ |x̃| ≤ R.

To establish (B.2), set, for ε > 0, R > 0,

Uε,R
.= {

ρ ∈ U : Jm(0, x;ρ) ≤ Vm(0, x) + ε for some x with |x| ≤ R
}
.

Then for all x, x̃ ∈R
d with |x| ∨ |x̃| ≤ R,∣∣Vm(0, x) − Vm(0, x̃)

∣∣ ≤ inf
ε>0

sup
ρ∈Uε,R

∣∣Jm(0, x;ρ) − Jm(0, x̃;ρ)
∣∣.

Let x, x̃ ∈ R
d , ρ ∈ U and let X, X̃ be the solutions of (B.1) under ρ with initial

state x and x̃, respectively. Using Hölder’s inequality, Jensen’s inequality, Itô’s
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isometry, Fubini’s theorem, assumption (A2) and Gronwall’s lemma, we find that
there exists a constant CL,T depending only on L, T such that

sup
t∈[0,T ]

E
[∣∣X(t) − X̃(t)

∣∣2] ≤ CL,T |x − x̃|.

Reusing the same tools but with assumption (A3) in place of (A2) (also cf.
Lemma 3.1), we find that there exists a constant CK,T ,m depending only on K ,
T , and on m [through supt∈[0,T ]

∫ |y|2m(t)(dy), which is finite since m is contin-
uous in time] such that

sup
t∈[0,T ]

E
[∣∣X(t)

∣∣2] ≤ CK,T ,m

(
1 + |x|2 + E

[∫
�×[0,T ]

|γ |2ρ(dγ, dt)

])
.

Thanks to the above estimates and assumption (A4), we have that there exist a con-
stant CL,T ,m depending only on L, T , and m, and a constant CK,L,T ,m depending
only on K , L, T and m such that∣∣Jm(0, x;ρ) − Jm(0, x̃;ρ)

∣∣
≤ CL,T ,m

(
1 + sup

t∈[0,T ]

√
E
[∣∣X(t)

∣∣2]+ sup
t∈[0,T ]

√
E
[∣∣X̃(t)

∣∣2]) · |x − x̃|

≤ CK,L,T ,m

(
1 + |x| ∨ |x̃| +

√
E
[∫

�×[0,T ]
|γ |2ρ(dγ, dt)

])
· |x − x̃|.

It follows that for all x, x̃ ∈R
d with |x| ∨ |x̃| ≤ R,∣∣Vm(0, x) − Vm(0, x̃)

∣∣
≤ CK,L,T ,m · inf

ε>0

(
1 + R + sup

ρ∈Uε,R

√
E
[∫

�×[0,T ]
|γ |2ρ(dγ, dt)

])
· |x − x̃|.

By the same estimates as above, but using (A5) instead of (A4), we find that
there exists a constant C̃K,T ,m depending only on K , T , m such that, for all x ∈ R

d ,
all ρ ∈ U ,

Jm(0, x;ρ) ≤ C̃K,T ,m

(
1 + |x|2 + E

[∫
�×[0,T ]

|γ |2ρ(dγ, dt)

])
.

This implies that there exists a constant CK,T ,m,� depending only on K , T , m, and
on � (through minγ∈� |γ |2) such that, for all x ∈R

d ,

Vm(0, x) ≤ CK,T ,m,�

(
1 + |x|2).

Let ρ ∈ Uε,R for some ε > 0. Choose x ∈ R
d with |x| ≤ R such that Jm(0, x;ρ) ≤

Vm(0, x) + ε (possible by definition of Uε,R). By the coercivity assumption (A6),

Jm(0, x;ρ) ≥ c0E
[∫

(�\�0)×[0,T ]
|γ |2ρ(dγ, dt)

]
,
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hence

c0E
[∫

(�\�0)×[0,T ]
|γ |2ρ(dγ, dt)

]
≤ CK,T ,m,�

(
1 + R2)+ ε.

By construction,

E
[∫

�×[0,T ]
|γ |2ρ(dγ, dt)

]
≤ T · r2

0 + E
[∫

(�\�0)×[0,T ]
|γ |2ρ(dγ, dt)

]
.

It follows that there exists a constant CK,T ,m,c0,r0 depending only on K , T , m, c0
and on r0 (clearly, minγ∈� |γ |2 ≤ r2

0 ) such that

sup
ρ∈Uε,R

√
E
[∫

�×[0,T ]
|γ |2ρ(dγ, dt)

]
≤ CK,T ,m,c0,r0(1 + R + √

ε).

This establishes (B.2).
Third step. For M ∈ N, set �M

.= {γ ∈ � : |γ | ≤ M}. For M big enough, say
M ≥ M0, �M is nonempty. Choose γ0 ∈ �M0 , and set �M

.= {γ0} if M < M0.
Then, for every M ∈ N, �M is compact (and nonempty) and �M ⊂ �M+1. Set

UM
.= {

ρ ∈ U : ρ(�M × [0, T ]) = T P-almost surely
}
,

and let Vm,M be the value function defined with respect to UM instead of U . We
claim that

(B.3) Vm,M(0, ·) M→∞↘ Vm(0, ·) uniformly over compact subsets of Rd .

Notice that, by construction, Vm,M(0, ·) ≥ Vm,M+1(0, ·) ≥ Vm(0, ·) for every M ∈
N. By Step 2, we know that Vm(0, ·) is locally Lipschitz. Repeating the arguments
of Step 2 (notice that UM ⊂ U by definition), we find that inequality (B.2) also
holds for Vm,M(0, ·) in place of Vm(0, ·) and that the constant C1 can be cho-
sen independently of M ∈ N. To establish (B.3), it is therefore enough to check
that point-wise convergence holds. Fix x ∈ R

d . It suffices to show that given
ρ ∈ U there exits a sequence (ρ(M)) ⊂ U such that ρ(M) ∈ UM for every M and
Jm(0, x;ρ(M)) → Jm(0, x;ρ) as M → ∞.

Let ρ ∈ U . For M ∈ N, let ρ(M) ∈ UM be such that for every B ∈ B(�), every
I ∈ B([0, T ]),

ρ(M)(B × I ) = ρ
(
(B ∩ �M) × I

)+ ρ
(
(� \ �M) × I

) · δγ0(B).

This determines a unique strategy ρ(M) ∈ UM . Clearly, ρ(M) comes with the same
stochastic basis as ρ. If (ρ̇t ) is a version of the time derivative process associated
with ρ [thus, ρ(dγ, dt) = ρ̇t (dγ ) dt], then a version of the time derivative process
of ρ(M) is given by

ρ̇
(M)
t (dγ ) = 1�M

(γ ) · ρt (dγ ) + ρt (� \ �M) · δγ0(dγ ).
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Let X, X(M) be the solutions of (B.1) under ρ and ρ(M), respectively. Thanks
to Hölder’s inequality, Jensen’s inequality, Itô’s isometry, Fubini’s theorem and
assumption (A2), there exists a constant CL,T depending only on L, T such that,
for every t ∈ [0, T ],

E
[∣∣X(t) − X(M)(t)

∣∣2]
≤ CL,T

∫ t

0
E
[∣∣X(s) − X(M)(s)

∣∣2]ds

+ CL,T E
[∣∣∣∣
∫
�×[0,t]

bm
(
s,X(s), γ

)(
ρ(M) − ρ

)
(dγ, ds)

∣∣∣∣2
]
.

Using the definition of ρ(M), Hölder’s inequality and assumption (A3), we find
that, for some constant CK,T ,m depending only on K , T and m,

E
[∣∣∣∣
∫
�×[0,t]

bm
(
s,X(s), γ

)(
ρ(M) − ρ

)
(dγ, ds)

∣∣∣∣2
]

≤ 2T E
[∫ T

0

∫
�\�M

∣∣bm(s,X(s), γ
)∣∣2ρ̇s(dγ ) ds

]

+ 2E
[
ρ
(
(� \ �M) × [0, T ]) ·

∫ T

0

∣∣bm(s,X(s), γ0
)∣∣2 ds

]

≤ CK,T ,mE
[
ρ
(
(� \ �M) × [0, T ]) ·

(
1 + sup

r∈[0,T ]
∣∣X(r)

∣∣2)]

+ CK,T ,mE
[∫

�×[0,T ]
1�\�M

(γ ) · |γ |2ρ(dγ, ds)

]
.

By (A3) and the usual estimates, including Gronwall’s lemma, we have
E[supr∈[0,T ] |X(r)|2] < ∞. Since ρω is a measure with total mass T for every
ω ∈ �, we have ρ((� \ �M) × [0, T ]) → 0 as M → ∞ P-almost surely. This
implies, by dominated convergence,

E
[
ρ
(
(� \ �M) × [0, T ]) ·

(
1 + sup

r∈[0,T ]
∣∣X(r)

∣∣2)] M→∞−→ 0.

On the other hand, E[∫�×[0,T ] |γ |2ρ(dγ, ds)] < ∞ by definition of U . This means
that

E
[∫

�×[0,T ]
1�\�M

(γ ) · |γ |2ρ(dγ, ds)

]
M→∞−→ 0.

An application of Gronwall’s lemma now yields

E
[∣∣X(t) − X(M)(t)

∣∣2] M→∞−→ 0.

This convergence together with assumption (A5) (and an estimate completely anal-
ogous to the one above) implies that Jm(0, x;ρ(M)) → Jm(0, x;ρ) as M → ∞.
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Fourth step. Choose a family (�M,k)M,k∈N of finite subsets of � such that
�M,k ⊂ �M,k+1 ⊂ �M , �M,k ⊂ �M+1,k , and minγ̃∈�M,k

|γ − γ̃ | ≤ 1/k for any
γ ∈ �M . Let UM,k be the set of all ρ ∈ U such that ρ is the R2-valued ran-
dom variable induced by a �M,k-valued adapted process that is piecewise con-
stant in time with respect to the equidistant grid of step size T · 2−k . Thus,
((�,F,P), (Ft ), ρ,W) ∈ UM,k if and only if ρω(dγ, dt) = δu(t,ω)(dγ ) dt for
P-almost every ω ∈ �, where u is a �M,k-valued (Ft )-progressively measur-
able process with càdlàg trajectories that are piecewise constant over the grid
{0, T · 2−k,2T · 2−k,3T · 2−k, . . . , T }. Let Vm,M,k be the value function defined
with respect to UM,k . Then thanks to the continuity in time and control of the
coefficients according to (A1), a version of the chattering lemma [for instance,
Theorem 3.5.2 in Kushner (1990), page 59], and the local Lipschitz continuity of
Vm,M,k(0, ·), which holds uniformly in k and M (one repeats the arguments of
Step 2), we find that

Vm,M,k(0, ·) k→∞↘ Vm,M(0, ·) uniformly over compact subsets of Rd .

By (B.3) and since UM,k ⊂ UM,k+1 ⊂ UM and UM,k ⊂ UM+1,k , it follows that

(B.4) Vm,M,M(0, ·) M→∞↘ Vm(0, ·) uniformly over compact subsets of Rd .

Fifth step. The value function Vm,M,k coincides with the value function of a
discrete-time optimal control problem defined as follows. Set h

.= T · 2−k . Thanks
to Theorem 1 in Kallenberg (1996) and because �M,k is finite, we find a measur-
able and universally predictable function

�m,M,k :N0 ×R
d × �M,k × C

([0, h],Rd1
) →R

d

such that �m,M,k(j, x, γ,W) = X((j + 1)h) P-almost surely whenever X is the
unique strong solution to

X(t) = x +
∫ t

0
bm

(
j · h + s,X(s), γ

)
ds

+
∫ t

0
σm

(
j · h + s,X(s)

)
dW(s), t ∈ [0, h],

where W is a d1-dimensional standard Wiener process defined on some stochastic
basis ((�,F,P), (Ft )). The function �m,M,k is the system function of the con-
trol problem in the sense of Bertsekas and Shreve (1978). Let ŪM,k denote the
set of discrete-time Markov feedback strategies with values in �M,k , that is, the
set of all Borel measurable functions v : N0 × R

d → �M,k . To describe the path-
wise evolution of the system, choose a complete probability space (�◦,F◦,P◦)
rich enough to carry a d1-dimensional standard Wiener process W◦. For j ∈ N0,
set ζj

.= (W(jh + s) − W(jh))s∈[0,h], which defines a C([0, h],Rd1)-valued ran-
dom variable. Given any Markov feedback strategy v ∈ ŪM,k and initial condition
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(j, x) ∈ {0, . . . ,2k} ×R
d , the corresponding state sequence is defined recursively,

for each ω ∈ �◦, by

X0(ω)
.= x,

Xl+1(ω)
.= �m,M,k

(
j + l,Xl(ω), v

(
j + l,Xl(ω)

)
, ζl(ω)

)
,

(B.5)

l ∈ {0, . . . ,2k − j − 1}. The associated costs are given by

J̄m,M,k(j, x, v)
.= E◦

[2k−j−1∑
l=0

fm
(
(j + l)h,Xl, v(j + l,Xl)

) · h + Fm(Xk−j )

]
,

where (Xl) is the state sequence generated according to (B.5) with feedback strat-
egy v and initial condition (j, x). Let V̄m,M,k be the value function of the control
problem just defined:

V̄m,M,k(j, x)
.= inf

v∈ŪM,k

J̄m,M,k(j, x, v), (j, x) ∈ {
0, . . . ,2k}×R

d .

By Proposition 8.6 in Bertsekas and Shreve (1978), pages 209–210, the princi-
ple of dynamic programming applies to V̄m,M,k . This has two consequences. First,
notice that any feedback strategy v ∈ ŪM,k induces, for any given initial condition
(j, x) ∈ {0, . . . ,2k} ×R

d , a relaxed control variable ρ ∈ UM,k such that

J̄m,M,k(j, x, v) = Jm(jh, x, ρ).

This implies V̄m,M,k(j, x) ≥ Vm,M,k(jh, x) for all (j, x) ∈ {0, . . . ,2k}×R
d . Since

V̄m,M,k(2k, ·) = Fm(·) = Vm,M,k(2kh, ·), it follows by dynamic programming for
V̄m,M,k and backward induction that

V̄m,M,k(j, x) = Vm,M,k(jh, x) for all (j, x) ∈ {
0, . . . ,2k}×R

d .

As a second consequence of the principle of dynamic programming, there exists
an optimal Markov feedback strategy. More precisely, we can choose v∗ ∈ ŪM,k

such that, for every (j, x) ∈ {0, . . . ,2k} ×R
d ,

v∗(j, x) ∈ argminγ∈�M,k

{
fm(jh, x, γ ) · h

+
∫

C([0,h],Rd1 )
V̄m,M,k

(
j + 1,�m,M,k(j, x, γ, y)

)
ηh(dy)

}
,

where ηh is standard Wiener measure on B(C([0, h],Rd1)). Then

J̄m,M,k(j, x, v∗) = V̄m,M,k(j, x) for all (j, x) ∈ {
0, . . . ,2k}×R

d .

Sixth step. Define a function ψm
M,k : [0, T ] × R

d × W → �M,k as follows. Let
x ∈ R

d , w ∈ W . In analogy with (B.5), recursively define a sequence (xj )j∈{0,...,2k}
by

x0
.= x, xj+1

.= �m,M,k

(
j, xj , v∗(j, xj ),

(
w(jh + s) − w(jh)

)
s∈[0,h]

)
.
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For j ∈ {0, . . . ,2k − 1}, s ∈ [0, h), set

ψm
M,k(jh + s, x,w)

.= v∗(j, xj ),

and set ψm
M,k(T , x,w)

.= v∗(2k, xk). By construction, ψm
M,k is progressively mea-

surable with values in a finite set. Let ((�,F,P), (Ft )) be a stochastic basis
rich enough to carry a d1-dimensional (Ft )-Wiener process W and an R

d -valued
F0-measurable random variable ξ such that P ◦ ξ−1 = m(0). For every x ∈ R

d ,
the process ψm

M,k(t, x,W) induces a relaxed control random variable ρ such that
((�,F,P), (Ft ), ρ,W) ∈ UM,k and Jm(0, x, ρ) = Vm,M,k(0, x). Let ρM,k be the
relaxed control random variable in UM,k induced by the process ψm

M,k(t, ξ,W).
Let XM,k be the unique continuous (Ft )-adapted process such that XM,k(0) = ξ

and ((�,F,P), (Ft ),XM,k, ρ
M,k,W) is a solution of equation (4.2) with flow of

measures m. Set

�m
M,k

.= P ◦ (XM,k, ρ
M,k,W

)−1
.

Then �m
M,k ∈ P2(Z) and �m

M,k is a solution of equation (4.2) with flow of mea-

sures m such that �m
M,k ◦ (X̂(0))−1 = m(0), ρ̂(dγ, dt) = δ

ψm
M,k(t,X̂(0),Ŵ )

(dγ ) dt

with probability one under �m
M,k , and

Ĵ
(
m(0),�m

M,k;m
) =

∫
Rd

Vm,M,k(0, x)m(0)(dx) < ∞.

By (B.4) and dominated convergence, it follows that

Ĵ
(
m(0),�m

M,M;m) M→∞↘ V̂
(
m(0);m)

.

Hence, given any ε > 0, there exists M(ε) ∈ N such that, for all M ≥ M(ε),
Ĵ (m(0),�m

M,M ;m) ≤ V̂ (m(0);m) + ε. This completes the proof.

APPENDIX C: TIGHTNESS FUNCTIONS

Let S be a Polish space. A function g : S → [0,∞] is called a tightness function
on S if it is measurable and its sublevel sets {s ∈ S : g(s) ≤ c} are pre-compact in
S for all c ∈ [0,∞). If g is a tightness function on S , then the function P(S) �
� �→ ∫

S g(s)�(ds) ∈ [0,∞] is a tightness function on P(S); see, for instance,
Theorem A.3.17 in Dupuis and Ellis (1997), page 309.

C.1. A tightness function on R2. Let δ0 > 0. Define a function g̃ : R2 →
[0,∞] by

g̃(r)
.=
∫
�×[0,T ]

|γ |2+δ0r(dγ, dt).
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We check that g̃ is a tightness function on R2. By construction, g̃ is measurable.
For c ∈ [0,∞), set

Ac
.= {

r ∈ R2 : g̃(r) ≤ c
}
.

Fix c ∈ [0,∞). Then we have to show that Ac is pre-compact in R2. This is equiv-
alent to showing that:

(a) Ac is pre-compact in R,
(b) if (rn)n∈N ⊂ Ac is such that rn → r in R for some r ∈ R, then r ∈ R2 and∫

�×[0,T ] |γ |2rn(dγ, dt) → ∫
�×[0,T ] |γ |2r(dγ, dt) as n → ∞.

Pre-compactness of Ac in R is equivalent to tightness of Ac. This holds since,
for every M > 0, the set {γ ∈ � : |γ | ≤ M} is compact [by assumption (A6), � is
closed] and, by Markov’s inequality,

sup
r∈Ac

r
{
(γ, t) ∈ � × [0, T ] : |γ | > M

} ≤ 1

M2+δ0
· sup
r∈Ac

g̃(r) ≤ c

M2+δ0
,

which tends to zero as M → ∞.
As to the convergence of moments, let (rn)n∈N ⊂ Ac be such that rn → r in R

for some r ∈ R. Then, by Fatou’s lemma and Hölder’s inequality,

lim inf
n→∞

∫
�×[0,T ]

|γ |2rn(dγ, dt) ≥
∫
�×[0,T ]

|γ |2r(dγ, dt),

hence r ∈ Ac ⊂ R2. By convergence in R, we have, for every M > 0,

lim
n→∞

∫
�×[0,T ]

|γ |2 ∧ Mrn(dγ, dt) =
∫
�×[0,T ]

|γ |2 ∧ Mr(dγ, dt).

On the other hand, again by Hölder’s and Markov’s inequality, for every n ∈ N,
every M > 0,∫

�×[0,T ]
|γ |2 · 1[M,∞)

(|γ |2)rn(dγ, dt)

≤
(∫

�×[0,T ]
|γ |2+δ0rn(dγ, dt)

) 1
2+δ0 · rn{(γ, t) ∈ � × [0, T ] : |γ |2 > M

} 1+δ0
2+δ0

≤ c
1

2+δ0 · c
1+δ0
2+δ0 · M−(1+δ0/2).

It follows that

sup
n∈N

∫
�×[0,T ]

|γ |2 · 1[M,∞)

(|γ |2)rn(dγ, dt)
M→∞−→ 0,

hence limn→∞
∫
�×[0,T ] |γ |2rn(dγ, dt) = ∫

�×[0,T ] |γ |2r(dγ, dt).
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C.2. A tightness function on P2(Z). We check that the function g defined
by (5.2) is a tightness function on P2(Z). By construction, g is measurable (by
continuity, the suprema appearing inside the second integral and in the definition
of the modulus of continuity can be restricted to countable index sets). Thus, we
have to show that, given any c ∈ [0,∞), the set

A(c)
.= {

� ∈ P2(Z) : g(�) ≤ c
}

is pre-compact in P2(Z). Fix c ∈ [0,∞). The pre-compactness of A(c) in P2(Z)

is equivalent to the following two conditions:

(a) A(c) is tight in P(Z);
(b) if (�n)n∈N ⊂ A(c) is such that �n converges to �̄ in P(Z) for some �̄ ∈

P(Z), then �̄ ∈ P2(Z) and
∫
Z dZ(s, s0)

2�n(ds) → ∫
Z dZ(s, s0)

2�̄(ds), where s0

is some arbitrarily fixed element of Z .

To verify (a), it is enough to check tightness of marginals, that is, to verify
that AX (c)

.= {[�]X : � ∈ Ac} is tight in P(X ), AR2(c)
.= {[�]R2 : � ∈ Ac} is

tight in P(R2), and AW(c)
.= {[�]W : � ∈ Ac} is tight in P(W), where [�]X ,

[�]R1 , [�]W denote the marginal distributions of � on X , R2 and W , respec-
tively. Thanks to Markov’s inequality and the Ascoli–Arzelà criterion [for instance,
Theorem 8.2 in Billingsley (1968), page 55], AX (c), AW(c) are tight in P(X ) and
P(W), respectively. The tightness of AR2(c) in P(R2) follows from the fact that
the mapping

R2 � r �→
∫
�×[0,T ]

|γ |2+δ0r(dγ, dt) ∈ [0,∞]

is a tightness function on R2; see Appendix C.1.
In order to check (b), let (�n)n∈N ⊂ A(c) be such that �n converges to �̄ in

P(Z) for some �̄ ∈ P(Z). By a version of Fatou’s lemma [cf. Theorem A.3.12
Dupuis and Ellis (1997), page 307],

lim inf
n→∞

∫
Z

‖ϕ‖2+δ0
X �n(dϕ, dr, dw) ≥

∫
Z

‖ϕ‖2+δ0
X �̄(dϕ, dr, dw).

By definition of dZ and of g, and thanks to Hölder’s inequality, it follows that
� ∈ P2(Z). By convergence of (�n)n∈N to �̄ in P(Z), we have for every M > 0

lim
n→∞

∫
Z

M ∧ ‖ϕ‖2
X�n(dϕ, dr, dw) =

∫
Z

M ∧ ‖ϕ‖2
X �̄(dϕ, dr, dw).

It suffices to show that (recall the notation for the marginal distributions)

lim sup
M→∞

sup
n∈N

∫
X

1{‖ϕ‖2
X≥M} · ‖ϕ‖2

X
[
�n]

X (dϕ) = 0.
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But this is true by Hölder’s inequality, the Markov inequality and the fact that
supn∈N g(�n) ≤ c < ∞ by hypothesis since

sup
n∈N

∫
X

1{‖ϕ‖2
X≥M} · ‖ϕ‖2

X
[
�n]

X (dϕ)

≤ sup
n∈N

{[
�n]

X
({‖ϕ‖2

X ≥ M
}) δ0

2+δ0 ·
(∫

X
‖ϕ‖2+δ0

X
[
�n]

X (dϕ)

) 2
2+δ0

}

≤ M
− δ0

2+δ0 · c
2δ0

(2+δ0)2 · c 2
2+δ0 ,

which tends to zero as M → ∞.

APPENDIX D: PROOF OF LEMMA 5.3, LOCAL MARTINGALE PROPERTY

We have to show that, for P-almost every ω ∈ �, any f :Rd ×R
d1 →R mono-

mial of first or second order, M
μω

f is a (Gt )-local martingale under Qω; cf. (iii) in
Definition 4.1. Recall that μω is the flow of measures in M2 induced by Qω, that
is, μω(t) = Qω ◦ (X̂(t))−1, t ∈ [0, T ]. If � ∈ P2(Z), then the flow of measures in-
duced by � is in M2; cf. Remark 4.2 above. Thus, we may write M�

f meaning the

process Mm
f with m the flow of measures in M2 given by m(t)

.= � ◦ (X̂(t))−1,
t ∈ [0, T ].

We closely follow the proof of Lemma 5.2 in Budhiraja, Dupuis and Fischer
(2012). The canonical space Z there is slightly bigger than our Z here (relaxed
controls in R1 instead of R2), but this causes no problems since the smaller space
gives L2-integrability of controls (instead of L1) and we have the correspond-
ing distributional convergence of Qn to Q as P2(Z)-valued random variables; cf.
Lemma 5.1 above.

In verifying the local martingale property of M
μω

f , we will work with random-
ized stopping times. This will ensure almost sure continuity of certain mappings
even if the diffusion coefficient σσ T is degenerate. The randomized stopping times
live on an extension (Ẑ,B(Ẑ)) of the measurable space (Z,B(Z)) and are adapted
to a canonical filtration (Ĝt ) in B(Ẑ) given by

Ẑ .=Z × [0,1], Ĝt
.= Gt ×B

([0,1]), t ∈ [0, T ].
Any random object defined on (Z,B(Z)) also lives on (Ẑ,B(Ẑ)), and no nota-
tional distinction will be made. Let λ denote the uniform distribution on B([0,1]).
Any probability measure � on B(Z) induces a probability measure on B(Ẑ) given
by � ⊗ λ. For k ∈ N, define a stopping time τk on (Ẑ,B(Ẑ)) with respect to the
filtration (Ĝt ) by setting, for ((ϕ, r,w), a) ∈ Z × [0,1],

τk

(
(ϕ, r,w), a

) .= inf
{
t ∈ [0, T ] : v((ϕ, r,w), t

)≥ k + a
}
,
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where

v
(
(ϕ, r,w), t

) .=
∫
�×[0,t]

|y|2r(dy, ds) + sup
s∈[0,t]

∣∣ϕ(s)
∣∣+ sup

s∈[0,t]
∣∣w(s)

∣∣.
Then, given any � ∈ P(Z), τk ↗ T as k → ∞ and the mapping

Z × [0,1] � (
(ϕ, r,w), a

) �→ τk

(
(ϕ, r,w), a

) ∈ [0, T ]
is continuous with probability one under � ⊗ λ.

Notice that if M�
f is a local martingale with respect to (Ĝt ) under � ⊗ λ with

localizing sequence of stopping times (τk)k∈N, then M�
f is also a local martin-

gale with respect to (Gt ) under � with localizing sequence of stopping times
(τk(·,0))k∈N; see the Appendix in Budhiraja, Dupuis and Fischer (2012). Thus,
it suffices to prove the martingale property of M�

f up till time τk with respect to

the filtration (Ĝt ) and the probability measure � ⊗ λ.
Clearly, the process M�

f (· ∧ τk) is a (Ĝt )-martingale under � ⊗ λ if and only if

(D.1) E�⊗λ

[
� · (M�

f (t1 ∧ τk) − M�
f (t0 ∧ τk)

)] = 0

for all t0, t1 ∈ [0, T ] with t0 ≤ t1, and Ĝt0 -measurable � ∈ Cb(Ẑ). To verify the
martingale property of M�

f (· ∧ τk), it is enough to check that (D.1) holds for any
countable collection of times t0, t1 which is dense in [0, T ] and any countable
collection of functions � ∈ Cb(Ẑ) that generates the (countably many) σ -algebras
Ĝt0 . Recall that the collection of test functions f for which a martingale property
must be verified consists of just monomials of degree one or two, and hence is
finite. Thus, we can choose a countable collection T ⊂ N × [0, T ]2 × Cb(Ẑ) ×
C2(Rd ×R

d1) of test parameters such that whenever � ∈ P2(Z) satisfies (D.1) for
all (k, t0, t1,�,f ) ∈ T , then M�

f is a (Gt )-local martingale under �.
Let (k, t0, t1,�,f ) ∈ T . Define a mapping � = �(k,t0,t1,�,f ) : P2(Z) →R by

�(�)
.= E�⊗λ

[
� · (M�

f (t1 ∧ τk) − M�
f (t0 ∧ τk)

)]
.

We claim that � is continuous on P2(Z). To check this, take � ∈ P2(Z) and
any sequence (�l)l∈N ⊂ P2(Z) that converges to � in P2(Z). Let ml , l ∈ N,
m be the induced flows of measures in M2, that is, ml(t)

.= �l ◦ (X̂(t))−1,
m(t)

.= � ◦ (X̂(t))−1, t ∈ [0, T ]. Recall the definition of M�
f = Mm

f in (4.3) and
(4.4) above. By Assumption (A3) and definition of the stopping time τk , the inte-
grand in (4.3) is bounded. By continuity of b, σ according to Assumption (A2), the
almost sure continuity of τk under � ⊗ λ, the extended mapping theorem [Theo-
rem 5.5 in Billingsley (1968), page 34] applied to the relaxed controls in (4.3) (plus
convergence of first moments by choice of the topology on R2), and the fact that
� ∈ Cb(Ẑ), it follows that the mapping

Ẑ � ẑ �→ �(ẑ) · (Mm
f

(
t1 ∧ τk(ẑ), ẑ

)− Mm
f

(
t0 ∧ τk(ẑ), ẑ

)) ∈ R
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is bounded and � ⊗ λ-almost surely continuous. By weak convergence and the
mapping theorem [Theorem 5.1 in Billingsley (1968), page 30], it follows that

E�l⊗λ

[
� · (Mm

f (t1 ∧ τk) − Mm
f (t0 ∧ τk)

)]
l→∞−→ E�⊗λ

[
� · (Mm

f (t1 ∧ τk) − Mm
f (t0 ∧ τk)

)]
.

(D.2)

Since (�l)l∈N converges to � in P2(Z), we have that {�l : l ∈N}∪{�} is compact
in P2(Z). By continuity of projections, dominated convergence and the definition
of dZ , we have liml→∞ d2(ml(t),m(t)) = 0 uniformly in t ∈ [0, T ]. This together
with Assumption (A2) and the construction of τk implies that

sup
t∈[0,T ],ẑ∈Ẑ

∣∣Mml

f

(
t ∧ τk(ẑ), ẑ

)− Mm
f

(
t ∧ τk(ẑ), ẑ

)∣∣ l→∞−→ 0.

Since � is bounded, it follows by dominated convergence that

∣∣E�l⊗λ

[
� · (Mm

f (t1 ∧ τk) − Mm
f (t0 ∧ τk)

)]
− E�l⊗λ

[
� · (Mml

f (t1 ∧ τk) − M
ml

f (t0 ∧ τk)
)]∣∣ l→∞−→ 0.

In combination with (D.2), this implies �(�l) → �(�) as l → ∞.
By hypothesis, the sequence (Qn)n∈I of P2(Z)-valued random variables con-

verges to Q in distribution. Hence, the mapping theorem and the continuity of �

imply �(Qn) → �(Q) in distribution as n → ∞. Let n ∈ I. By construction of
Qn and Fubini’s theorem, for every ω ∈ �n,

�
(
Qn

ω

) = EQn
ω⊗λ

[
� · (Mμn

ω

f (t1 ∧ τk) − M
μn

ω

f (t0 ∧ τk)
)]

= 1

n

n∑
i=1

∫ 1

0
�
((

Xn
i (·,ω), ρn,i

ω ,Wn
i (·,ω)

)
, a

)

×
(
f
(
Xn

i

(
t1 ∧ τ

n,i
k (ω, a),ω

)
,Wn

i

(
t1 ∧ τ

n,i
k (ω, a),ω

))
− f

(
Xn

i

(
t0 ∧ τ

n,i
k (ω, a),ω

)
,Wn

i

(
t0 ∧ τ

n,i
k (ω, a),ω

))

−
∫ t1∧τ

n,i
k (ω,a)

t0∧τ
n,i
k (ω,a)

Aμn
ω

un
i (s,ω),s

(f )
(
Xn

i (s,ω),Wn
i (s,ω)

)
ds

)
da,

where A is defined by (4.4) and τ
n,i
k (ω, a) is defined like τk((ϕ, r,w), a) with

ϕ replaced by Xn
i (·,ω), r replaced by ρn,i

ω , the relaxed control corresponding to
un

i (·,ω), and w replaced by Wn
i (·,ω).
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Let a ∈ [0,1]. By Itô’s formula, it holds Pn-almost surely that

f
(
Xn

i

(
t1 ∧ τ

n,i
k

)
,Wn

i

(
t1 ∧ τ

n,i
k

))− f
(
Xn

i

(
t0 ∧ τ

n,i
k

)
,Wn

i

(
t0 ∧ τ

n,i
k

))

−
∫ t1∧τ

n,i
k

t0∧τ
n,i
k

Aμn

un
i (s),s

(f )
(
Xn

i (s),Wn
i (s)

)
ds

=
∫ t1∧τ

n,i
k

t0∧τ
n,i
k

∇xf
(
Xn

i (s),Wn
i (s)

)T
σ
(
s,Xn

i (s),μn(s)
)
dWn

i (s)

+
∫ t1∧τ

n,i
k

t0∧τ
n,i
k

∇yf
(
Xn

i (s),Wn
i (s)

)T
dWn

i (s),

where τ
n,i
k = τ

n,i
k (·, a) and τ

n,i
k , μn, Xn

i , un
i all live on (�n,Fn). By Fubini’s

theorem and Jensen’s inequality, it follows that

En

[
�
(
Qn)2]

≤
∫ 1

0
En

[
EQn

ω

[
�(·, a) · (MQn

ω

f

(
t1 ∧ τk(·, a)

)− M
Qn

ω

f

(
t0 ∧ τk(·, a)

))]2]
da.

Let again a ∈ [0,1]. By the Itô isometry, the independence of the Wiener processes
Wn

1 , . . . ,Wn
n , and because �(·, a) is Gt0 -measurable and τk(·, a) is a stopping time

with respect to (Gt ), it holds that

En

[
EQn

ω

[
�(·, a) · (MQn

ω

f

(
t1 ∧ τk(·, a)

)− M
Qn

ω

f

(
t0 ∧ τk(·, a)

))]2]

= En

[(
1

n

n∑
i=1

∫ t1∧τ
n,i
k (·,a)

t0∧τ
n,i
k (·,a)

�(·, a) · 1{τn,i
k (·,a)≥t0} · (∇yf

(
Xn

i (s),Wn
i (s)

)T

+ ∇xf
(
Xn

i (s),Wn
i (s)

)T
σ
(
s,Xn

i (s),μn(s)
))

dWn
i (s)

)2]

= 1

n2

n∑
i=1

En

[∫ t1∧τ
n,i
k (·,a)

t0∧τ
n,i
k (·,a)

∣∣�(·, a) · 1{τn,i
k (·,a)≥t0} · (∇yf

(
Xn

i (s),Wn
i (s)

)T

+ ∇xf
(
Xn

i (s),Wn
i (s)

)T
σ
(
s,Xn

i (s),μn(s)
))∣∣2 ds

]
n→∞−→ 0.

Since (�(Qn))n∈I converges to �(Q) in distribution, it follows that for
each (k, t0, t1,�,f ) ∈ T we can choose a set Z(k,t0,t1,�,f ) ∈ F such that
P(Z(k,t0,t1,�,f )) = 0 and

�(Qω) = �(k,t0,t1,�,f )(Qω) = 0 for all ω ∈ � \ Z(k,t0,t1,�,f ).
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Let Z be the union of all sets Z(k,t0,t1,�,f ), (k, t0, t1,�,f ) ∈ T . Since T is count-
able, we have Z ∈ F , P(Z) = 0 and

�(k,t0,t1,�,f )(Qω) = 0 for all ω ∈ � \ Z, all (k, t0, t1,�,f ) ∈ T .

By definition of �, this implies that, for every test function f , M
μω

f is a (Gt )-local
martingale under Qω for P-almost every ω ∈ �.
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