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Abstract. It is established in this paper, under conditions more general than those
used by Millikan, that the two-dimensional incompressible viscous flows past finite
bodies cannot be equivalent to a variational problem of the Euler-Lagrange type. It
has thereby been possible to obtain two harmonic functionals with a close relation to
the Navier-Stokes equations.

1. Introduction. Variational formulations of physical problems are well-known
for their simplicity and elegance. Mostly problems governed by linear differential or
integral equations have been successfully attacked by variational methods. In this
paper we explore the possibility of applying variational methods to the Navier-Stokes
equations. Millikan [1] has shown that the Navier-Stokes equations cannot be equivalent
(except in some exceptional cases) to a variational problem, but under conditions more
restrictive than those used in this paper. We find, under more general conditions, that
the structure of the Navier-Stokes equations is such that we cannot get a single functional
whose extremization yields the equations; instead, we obtain a system of functional
differential equations which are equivalent to the Navier-Stokes equations.

2. Analysis for two-dimensional flows. The governing partial differential equa-
tions for two-dimensional, incompressible viscous flow past a body are

u, + Uy = 0’ (2.1)
uuz + vull = _(l/p)pz + V<uzz + uyu); (2-2&)
w, +vu, = —(1/p)py + ve: + v,,), (2.2b)

where u and v are the components of the velocity at (z, y) in a rectangular Cartesian
frame, p the hydrostatic pressure, » the kinematic viscosity, and the suffixes z, ¥ on u
or v indicate partial differentiation.

We consider flows past finite bodies kept in an infinite mass of fluid having a free-
stream velocity U, (see Fig. 1). The boundary conditions will therefore be

u=0 v=0 on &§; 2.3)

for 2] > @ or [y = o, u—>Us, v—>0, p— po; (2.4)
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where p. is the free-stream hydrostatic pressure. We now pose the following problem:
does there exist a functional A[u, v, p] depending on the functions u(z, y), v(z, y¥) and
p(z, y) such that its functional derivatives 64/6p, 64 /6u and 84 /6v when equated to
zero yield Egs. (2.1), (2.2)? Here A is a class of functionals which we call the Euler-
Lagrange class, defined by

A[u’ v, P] = -[D L(u; VyPy Uz yVz y P2, Uy, Uy , Py, T, y) dx dy' (25)

where L is a function (of the variables listed in parentheses in Eq. (2.5)) satisfying
certain mathematical conditions regarding continuity, differentiability, integrability,
and D is the domain indicated in Fig. 1. (Millikan [1] took the integrand L in Eq. (2.5)
to be independent of p, p. and p, and further assumed that L can be expanded in a
Taylor series in all the variables.)

Giving variations du, év and ép to u, v and p respectively we get, from Eq. (2.5),

A = ff[—6u+——6 +—6 +6u,

oL oL oL oL oL )
+ 2. ov, + . 0. + 6 + o, o, + 3—1714 6p,,] dr dy. (2.6)

Integrating by parts the relevant terms in Eq. (2.6), and grouping the terms involving
su, ov and dp separately, we get

= " omtn " awam @)
A oL d oL d oL

ou  ou  oxdu, Odyou,’ 28)
24 9L 9 0L _ 8 9L 2.9)

provided that

oL\ _ (aL) :
(Op‘.).\v T \op, /. 0. (2.10)

Keeping in mind that L is a function of u, », p, --- we get from Eqs. (2.7). (2.8) and
(2.9)
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8A oL d’L 'L d°’L d’L o’L 'L
o = - U, — z z v Vy— Dy

op op du dp, v dp, op 0p, du dp, o dp, dp dp,

°L ’L ) ( °L ’L ) 9°L
- (au,, . T aw ap)* T \aw,op. T v, ap )" T 2 op. ap, P

_ 9L oL oL &L _9L 2L @.11)
du, dp, > v, dp, =  op- Pes ap, ou, ** v, dp, " P Puv 5 (5
4 oL ’L o’L o’L ’L o’L o’L

u  du  uow, owouwc  opowtt ouow,”  awou,”  opaou,r
8L ( 8L 8L ) ( d’L oL ) 8’L
2 au, du, v, du, + a0, ou, )" ap, du, + ap. 0u, /P T Uas

_9oL 9L _oL, 9L &L
v, du, ==  ap, du, Pee =™ 52 % T a0 o, ap, du,

Doy (2.12)

A oL 'L o°L °L o’L o°’L o’L

W o oudn, v dwan, 't dpov. Pt ouon, ™  avan, 't apav, P

—<62L+62L>u o asz_<a“’L+a“’L)
du, ov, | ou, 90,)" T “ bv, ov, ' ~ \ap, ov. * ap. v, /P
_0°L IL ~_ L _9L 9L _ ¥L
T o, T ek T ap o P T du, a0, T ™ T ap, av, P

If 6A/6p = 0, 64/6u = 0 and 64 /6v
then we must have

(2.13)

0 are to be equivalent to Egs. (2.1) and (2.2)

L L 3L L 3L L oL oL
du, dp, v, dp. Ou, dp. = Ou,dp, v, dp. Ov.dp, Op. Ip.dp,
d’L d°L ’L )
= ou,  opyon, - op (2.142, b, -~ , )
2 2 2 2 2 2
L L L L _ &L _ oL —o, @158, b, - o)

du, v, Ou, du, Ou,dv, ' 0dv,0u, Odu,d, v, I,

2 2 2 2

SL_SL_SL_L_, @165, 0,0
It may be noted that Egs. (2.14), (2.15) and (2.16) are obtained by comparing the
coefficients of the second-order derivatives u,, , %., , +-- ete. in 84/8p = 0, 4/6u = 0
and 84 /6v = 0 with those in Eqgs. (2.1), (2.2a) and (2.2b). At this stage we cannot make
a similar comparison for first-order derivatives u. , u, , --- etc. because the dL/dp,
dL/ou and AL/dv terms in Egs. (2.11), (2.12) and (2.13) respectively may contain
Uz , Uy , -+ etc. and thus the coefficients of these derivatives are not known. We thus
conclude that the satisfaction of Eqs. (2.14), (2.15) and (2.16) is not a sufficient con-
dition but only a necessary one for the desired equivalence. From Eqs. (2.14e), (2.14f)
and (2.141) we get

L = Z(ux y Uy 5 Uz vu) + pzz5(u= y Uy » Uz vy) + pch(uz y Uy » Uz, 1),,). (2.17)
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We have suppressed, for convenience in writing, the variables u, v, p, z, ¥ on which the
arbitrary functions Z, Z; and Z; depend. We will follow this notation throughout this
paper. Further, using Eqs. (2.14a) and (2.14b), it is clear that Z; is independent of u,
and v, . Similarly, Z; does not depend on u, and v, , in view of Eqgs. (2.14g) and (2.14h).
We can therefore write

L = Z(uz y Uy 5 Uz y vu) + pzZS(uu ’ 1),,) + puzﬁ(u: ) vz)' (218)
Substituting for L from Eq. (2.18) in Eqs. (2.15b) and (2.15e), we get
9°Z 3’7
du, du, v, v, (2192, b)

which yields the result

z = Z1(u, ’ vy) + Zg(?), ) u”) + Z3(u¢ ) l),) + Z4(uu ) vu)° (220)
Using Eqs. (2.18), (2.20), (2.15a) and (2.15d) we get
8°Zs 3°Zs
g, TP o, - O (2.21a)
9°Z, 07,
uy a0, TP o a0, = O (2.21b)
which lead to
0°Zy 3Z,
ou, v, 0, ou, g, 0, (2.22)
Zs _ Zs _
ou, v, 0, u, o, 0. (2.23)

Eqgs. (2.22) yield

Zs(u, , v.) = Fi(u,) + Fa(v.),

Zy(u, ,v,) = Fy(u,) + Fi(v,),
where I, , I, , F; and F, are arbitrary functions and we can absorb the first two of them
in Z, and Z, and thus can drop Z; term in Eq. (2.20) without loss of generality. For

similar reasons, the Z, term in the same equation can also be omitted. In view of this
reasoning and Egs. (2.23) we can write for L the expression

L = Zl(uz ) ?),,) + Zz(vz ) uy) + pI[Gl(ulr) + 02(vu)] + pu[GS(uz) + G4(vz)]’ (224)

where G, , G, , G, and G, are arbitrary functions of w, , v, , u, and v, respectively.
Substituting for L from Eq. (2.24) in Eqgs. (2.16), we get

3’7 G

z2 + av 1 = 1’)
2 2

32, G, _
v, +r T Y
-71 203 _
FI +p Yol TV
2 277

&z, + p. 2—'—' = .

u,
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These equations yield
G, 9°G, G, Gy,

W T ok el o 0,
3Z, 987, 97, 9%, .
W e oul E AR

solving these, we get
L=Y+4+ Yu + Yu, + Y. + Yo, + Yeip. + Yep, + @ + u) + 02 +0))
+ Yopau, + Yspv, + Yopu. + Yipp. + Yiww, + Y, , (2.25)

where Y, Y, ,Y,, ---, Y, are arbitrary functions of u, v, p and their dependence on
these variables is not exhibited in conformity with the notation adopted before. Sub-
stituting for L from Eq. (2.25) in Egs. (2.14¢), (2.14d) and (2.15¢) we get

YV, + Y=Y +Yyy=Yu+ Y. =0 (2.26)

It is now clear that the expression for L given by Eqs. (2.25) and (2.26) satisfies all the
Eqgs. (2.14), (2.15) and (2.16); hence, the expressions for 64 /ép, 64 /6u, 4 /6v given by
Egs. (2.11), (2.12) and (2.13) reduce to

94 oL _ oL 9L 9L ~_ 9L 9L ~_ &L
B op ouop. s awop,: opop.tc duop, ™ waop,”  apop, P
(2.27)
94 oL _ oL 9L~ OL
du Ou  dudu, - - wou, °  Ip o, P*
d°L 9°L d°L
s T du, U ap du, Py = vlhee + ), (2.28)
°4 oL oL - L~ 9L
. v uan,c avon,  op vt
d’L d°L 3L
— (e + vy,). (2.29)

T uan,™  swan, " apon,

The viscous terms in Eqs. (2.2a) and (2.2b) appear in the above expressions for 64 /6u
and 64 /v, as must be expected. The next task is to explore the possibility of reproducing
the inertia and pressure-gradient terms in these expressions, keeping in mind that L
must be of the type given by Eq. (2.25). It is obvious that the terms in Eq. (2.25) con-
taining Y, Y5, Vs, Y; , Y5 and Y,; cannot reproduce the inertia terms. We choose

Ys=u/p, VYs=uv/p, Yu=»p Y =7V,=7Ys=0,

which means

L =Y. + Y2uu + Y. + Yﬂ),, + (u/p)p, + (U/p)p,,
+ L(u, + v,)° + (v, — u,)’. (2.30)

It may be noted here that this form for L satisfies Eq. (2.10). Substituting for L from
Eq. (2.30) into Egs. (2.27), (2.28) and (2.29), we get
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o4 _ (6_1_ _ 1) (& _ 1) aY, , 3Y,

w Nap o) T \ap TR e T g (2.31)

M_(LE_&Y,) <6Y4_6Y2> _aY, (1__3_&) B

511, = ou M) [ + du v vy ap pv + p ap D: V(u,, + uw),
(2.32)

34 _ (aYl _ aY3> (aY2 _ aY,,) (1 B ay,) _3Y,

w ~ \ov au )T o " au S T\, T o P T e P T Y0 )
(2.33)

We must choose

2y, _aY, _aY, _ Y. _,

dp op ap op
to reproduce correctly the terms (u, + v,)/p in Eq. (2.31) and the pressure-gradient
terms in Eqgs. (2.32) and (2.33). From the expressions for 4 /6u and 6A4 /v it is obvious
that no functions Y, , ¥, , Y; and Y, exist which will reproduce the inertia terms in
Eqgs. (2.32) and (2.33). We therefore conclude that there does not exist a single functional
Alu, v, p] belonging to the Euler-Lagrange class whose functional derivatives with respect to
u and v when equated to zero would yield the momentum equations. Eqgs. (2.32) and (2.33),
on the other hand, possess an interesting property by virtue of which a close connection
can be established between the two-dimensional Navier-Stokes equations and analytic
functionals (see the Appendix). To establish this, let

Dlu, v, p] = ff [%v(div u)’ + y(curlu)® + %u- grad p] dzx dy, (2.34)
and
Blu,ol = = [[ (Yo + You, + Yoo, + Vo) dz dy. (2.35)
D
We then get
(6D/éu) = (1/p)p. — v(thss + v,0), (2.362)
(6D/&v) = (1/p)py — v@zz + v4), (2.36b)
(6D/ép) = —(1/p)(u. + v,), (2.36¢)
and
(BE/éu) = —(uv. + w,), (2.37a)
(8E/&v) = uu, + w, , (2.37b)
if we choose Y, , Y,, Y; and Y, so as to satisfy
) ) ) A
ow W du v (2.38)

Using Eqgs. (2.36), (2.37) and (2.38), we can write the continuity and the momentum
equations equivalently as
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8D

o =0, (2.39)
8E 8D

Yl (2.40)
oE 8D

= (2.41)

Eqgs. (2.40) and (2.41) are precisely the Cauchy-Riemann conditions for £ + ¢D to be
an analytic functional of 4 + 4. In order to establish the existence of £ compatible
with Eqgs. (2.38), we observe that among infinitely many solutions of Eq. (2.38) two
simple solutions are

a’) YI=Y4=O,Y2_——%2)2’Y=%u

giving
1
E = = u, — u%,) dz dy, 2.
f];z(vu, u®,) dz dy (2.42)
and
b) Yl = Y4 = 0, Y3 = _Y2 = (u2 + 02)/2
giving

E = f fD % W + D), — v,) dz dy. (2.43)

3. Some concluding remarks.

a) Interpretation of the functionals D and E. We observe that when (u, v, p) repre-
sents a fluid dynamical motion, the div u term in Eq. (2.34) vanishes and so does the
term u. grad p, as it gives the work done by the expansion of the incompressible fluid
against pressure forces. The integrand for D is then just the square of the vorticity
and in such a case Lamb [3] has shown that D is equal to the total dissipation of energy
ocecurring in a unit time. The drag on the body is then equal to pD/U., .

Following Sommerfeld [4], we can define the ‘mass density’ of the vortex distribution
equal to the vorticity, and get the result that F is the negative of the net kinetic energy
due to this ‘mass’ distribution.

b) An approzimate method of solution of flow problems. In this subsection we exploit
the property of analyticity of E + D for getting an approximate method to obtain
flows past finite bodies. Let us presume that

u = g a2, Y) 3.1
v = g bk¢k(x; y)’ (3'2)

p= ;ckxk(x, », (3.3)
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where ¢, and x, , k = 1,2, - -+, =, are linearly independent sets of functions. One has
to be careful in the choice of these sets, as u and p are not L, functions. The functionals
D and E can then be written as

D=g(a’l’a2) ;blyb2’ ;Cl>c2)"'))
E=f(al:a2>"' ;bl)b2y "')’

where f and g are functions of a countably infinite number of variables. In fact, f and ¢
are quadratic and cubic functions respectively of these variables. We can then state
that E 4 2D being an analytic functional of u + v is equivalent to f + 7g being analytic
(holomorphie) in @, + b, , k = 1, 2, --- . This result can be easily demonstrated
by the following approach. Consider the variation in D:

5D = Z (:g day + 5b,, + 4 5ck), (3.4)
(472 dc Cr
which is equal to
ﬂ@w+—w+—ww@ 3.5)

Substituting for éu and év from Egs. (3.1) and (3.2) into Eq. (3.5) we get, by comparing
coefficients of 6a; , b, in the resultant expression with those in Eq. (3.4), the expressions

ai‘i = % oz, y) dz dy, (3.6)

;gk f——¢k(x y) dz dy. 3.7
Similarly, we can show that

g‘f%M@wmw, 3.8)

aagk = f g o(z, v) dx dy. (3.9)

The functional Cauchy-Riemann conditions (2.40) and (2.41), in view of Egs. (3.6)
through (3.9), become

df/da, = 3g/db; , (3.10)
df/db, = — dg/0a, , 3.11)

thus establishing the result that f 4+ ig is analytic in a, + b, , bk = 1,2, -++ | . It
may be noted that the continuity equations become

dg/de, =0, k=1,2,---, », (3.12)

Now Egs. (3.10), (3.11) and (3.12) are only algebraic equations (in fact, quadratic)
in @, , b, and ¢, . Solution of these equations then yields a solution to the flow problem.

¢) Functional power series representation of E + 1D. If Glw(z, y)] is a cubic analytic
functional, then (see the Appendix)
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Glw(z, y)] = K, + fDKl(x, Yw(z, y) dr dy
+ ‘/; K@, ¥1 5 T2, YW@, 12)W(T2 , ¥2) d2y dy, dx, dy,

+ ];)Ks(xl YY1 T2, Yo 5 Ts, Y)W, Y)

“w(xy , Y)w(zs , ys) dx, dy, dz, dy, dzs dys , (3.13)

where we have denoted, for convenience in writing, multiple integration by a single
integration symbol. In view of the fact that £ + ¢D is a cubic functional, analytic at
that w which satisfies the Navier-Stokes equations, it is clear that £ 4 D must be
equal to Gw(z, y)]. We may use this property for generating solutions of the Navier-
Stokes equations. This can be achieved by assuming some specific kernels K, , K, , K,
and K; and then by finding a w which makes E + <D equal to G[w(z, y)]. Further, if
w = 0 gives a closed curve and w tends to a constant at infinity, then that w represents
a solution to the flow past the corresponding body.

d) Extension to three-dimensional flows. The extension of the above analysis to
three dimensions is conceptually not very difficult but somewhat involved mathe-
matically. We will not go into the analysis here but shall be content with the following
observation. Following Deshpande [5] we can write the Navier-Stokes equations for
three-dimensional flows as

CURL (E) = GRAD (D)

where CURL and GRAD are functional differential operators, E is a vector functional
and D a scalar functional defined by

E, = —f 1 €nttis ¥, Dy, dz, dz, dzs
v

D

f [%v(div u)® + y(curlu)® + %u'grad p] dx, dx, dz, .
14

Here ¢, is the alternating Cartesian tensor, u, is the rth component of the velocity
vector u and the dummy suffix notation is used in the above equations.
Acknowledgement. The author gratefully acknowledges the help and suggestions
received from his colleague Dr. A. Prabhu on the extension of the work to three-dimen-
sional flows. The author is also grateful to the referee for many valuable suggestions.
Appendiz. The concept of an analytic functional used in this paper is closely
related to the analytical functional introduced by Volterra [2]. Following Volterra we
define

Glw(®)] = K, + f K@) di + [ [ Kyt ) E)wE)w(E:) dé dt,

+ .. _*_[ f Kit  ky oo E)wE) - wE) dEy -+ dE+ -+, (AD).

where w(f) belongs to a ceratin functional field (e.g. the set of all continuous functions
w(t), t € [a, b)), K, is a symmetric kernel in all its variables & , &, -+ , £, and it is
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presumed that the above series (A.1) is convergent if |w(f)] < R. It may be noted that
the series (A.1) is a functional power series.

If we now regard w as a complex function u(z, y) + w(z, y) of two variables z and y
defined over a certain domain D and further make all the kernels also into complex
functions of several variables z, , y, ; 2., ¥2 ; - - - we get

GG, vl = Ko+ [[ Kila, i, 1) dody
+ ffff K@, 41522, y)w(@s , y)w(s , ¥2) dxy dyy dxo dy, + - -+ 5 (AL2)
D

we call this an analytic functional provided the series (A.2) converges for [w(z, y)| < R.
We may take w and v as continuous functions defined on D and having continuous
first-order partial derivatives everywhere in D. We can easily show that Glw(z, y)]
defined by Eq. (A.2) satisfies the Cauchy-Riemann conditions

SH/ou = 8J /v, 0H/ov = —4J/du,

where H and J are the real and imaginary parts respectively of Glw(z, y)).
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