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Abstract. It is established in this paper, under conditions more general than those
used by Millikan, that the two-dimensional incompressible viscous flows past finite
bodies cannot be equivalent to a variational problem of the Euler-Lagrange type. It
has thereby been possible to obtain two harmonic functionals with a close relation to
the Navier-Stokes equations.

1. Introduction. Variational formulations of physical problems are well-known
for their simplicity and elegance. Mostly problems governed by linear differential or
integral equations have been successfully attacked by variational methods. In this
paper we explore the possibility of applying variational methods to the Navier-Stokes
equations. Millikan [1] has shown that the Navier-Stokes equations cannot be equivalent
(except in some exceptional cases) to a variational problem, but under conditions more
restrictive than those used in this paper. We find, under more general conditions, that
the structure of the Navier-Stokes equations is such that we cannot get a single functional
whose extremization yields the equations; instead, we obtain a system of functional
differential equations which are equivalent to the Navier-Stokes equations.

2. Analysis for two-dimensional flows. The governing partial differential equa-
tions for two-dimensional, incompressible viscous flow past a body are

ux + vu = 0, (2.1)

uux + vuv = — (1 /P)px + v(urx + «„„), (2.2a)

uvx 4- vuy = -(l/p)Vv + "(vxx + vv„), (2.2b)

where u and v are the components of the velocity at (x, y) in a rectangular Cartesian
frame, p the hydrostatic pressure, v the kinematic viscosity, and the suffixes x, y on u
or v indicate partial differentiation.

We consider flows past finite bodies kept in an infinite mass of fluid having a free-
stream velocity Um (see Fig. 1). The boundary conditions will therefore be

u = 0, v = 0 on S; (2.3)

for |x| —> oo or |j/| —> oo, u —» Ua , v —> 0, p —> p„ ; (2.4)
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Domain D

Body surface, S

Uoo
Fig. 1.

where p„ is the free-stream hydrostatic pressure. We now pose the following problem:
does there exist a functional A[u, v, p] depending 011 the functions u(x, y), v(x, y) and
p(x, y) such that its functional derivatives 8 A /op, 8A/Su and SA/Sv when equated to
zero yield Eqs. (2.1), (2.2)? Here A is a class of functionals which we call the Euler-
Lagrange class, defined by

A[u, v,p] = JJ L(u, v, p, ux , vx , px , ii, ,vv,pv,x, y) dx dy, (2.5)

where L is a function (of the variables listed in parentheses in Eq. (2.5)) satisfying
certain mathematical conditions regarding continuity, differentiability, integrability,
and D is the domain indicated in Fig. 1. (Millikan [1] took the integrand L in Eq. (2.5)
to be independent of p, px and p„ and further assumed that L can be expanded in a
Taylor series in all the variables.)

Giving variations 8u, ov and op to u, v and p respectively we get, from Eq. (2.5),

. . rr rdL * i d.L dL5/1 = JI [ju Su + airSv + ^ + dL *
T 5UX
dux

dL dL dL dL dL 1 , , , ,
+ ^ ^ + fa SP> + fa 5U> + ^ *>> + fa 5P'\ dX dy■ (2"6)

Integrating by parts the relevant terms in Eq. (2.6), and grouping the terms involving
8u, 8v and op separately, we get

8A dL d dL d dL
8p dp dx dpx dy dpv '

8A dL d dL d dL
8u du dx dux dy duv '

8A _ dL d dL d dL
8v dv dx dvx dy dvv '

(2.7)

(2.8)

(2.9)

provided that

fdL\ = IdV
\fa) s \dpjs 0. (2.10)

Keeping in mind that L is a function of u, v, p, ■ - • we get from Eqs. (2.7). (2.8) and
(2.9)
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SA _ dL d2L d2L d2L d2L d2L d2L
dp dp du dpx U* dv dpx V" dp dpx du dpy Uy dv dpv V" dp dpv

_ ( d*L , d*L \ _ ( d'L . d2L \ _ d2L
\dUy dpx dux dpJUxv \dvy dpx dvx dpt/x" dpx dpy Pz"

d2L d2L d2L d2L d2L d2L
«\ «\ ^11 n VXX 2 Pxx o Hyy fj/y ~ 2 Pw ) \2 • 11/dux dpx dvx dpx dpx dpy duy dvy dpv dpy ^

SA _ dL d2L d2L d2L d2L d2L d2L
Su du du dux Uz dv dux V' dp dux du duy U" dv duy Vy dp duy

d2L _ ( d2L d2L \ _ ( d2L d2L \ _ tfL
dux duy U'" \dvx duy dvy duj°'y \dp„ dux dpx duyr'y dul U"

d2L d2L d2L d2L d2L
' v« - P» - «» - -Zn^7 P™ , (2.12)

dvx dux dpx dux du'v dvy duv "" dpv duv

SA =dL _ d2L _ d2L _ d2L _ d2L _ d2L _ d2L
Sv dv du dvx Ux dv dvx V' dp dvx du dvv dv dvy dp dvv

_ ( d2L d2L \ _ d2L _ / d2L d2L \
\duv dvx dux dVyT"1 " dvv dvx V'y \dpv dvz dpx dvvr"

d2L d2L d2L d2L d2L d2L
dUxdVxU" dvf" dpx dVxV" dUVdVyUV" dVyV"V dPydVyVy"- ^

If SA/Sp = 0, SA/8u = 0 and SA/Sv — 0 are to be equivalent to Eqs. (2.1) and (2.2)
then we must have

d2L = d2L = d2L d2L = d2L d2L _ d*L _ d2L
dux dpx dvx dpx duy dpx dux dpy dvy dpx dvx dpy dpi dpx dpy

d2L d2L d2L
dpy duy dpy dvy dpi = 0, (2.14a, b, • • • , i)

d2L d L d2L , d2L d2L d L
dux dvz dux duy dux dvy dvx duy duv dvv dvx dvv (2.15a, b, • • , e)

d2L d2L d2L d2L ,n ,
dv2x dvy du2x dul (2.16a, b, c, d)

It may be noted that Eqs. (2.14), (2.15) and (2.16) are obtained by comparing the
coefficients of the second-order derivatives uxx, uxy , • ■ • etc. in SA/Sp = 0, <5A/Su = 0
and SA/Sv = 0 with those in Eqs. (2.1), (2.2a) and (2.2b). At this stage we cannot make
a similar comparison for first-order derivatives ux , uy , • • • etc. because the dL/dp,
dL/du and dL/dv terms in Eqs. (2.11), (2.12) and (2.13) respectively may contain
ux , uy , • • • etc. and thus the coefficients of these derivatives are not known. We thus
conclude that the satisfaction of Eqs. (2.14), (2.15) and (2.16) is not a sufficient con-
dition but only a necessary one for the desired equivalence. From Eqs. (2.14e), (2.14f)
and (2.14i) we get

L = Z{UX ,Uy,Vx, Vy) -f PXZJUX ,Uy,Vx, V y) + PyZa(UX , Uy , V X , V y) . (2.17)
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We have suppressed, for convenience in writing, the variables u, v, p, x, y on which the
arbitrary functions Z, Zb and Z6 depend. We will follow this notation throughout this
paper. Further, using Eqs. (2.14a) and (2.14b), it is clear that Zb is independent of ux
and vx . Similarly, Z6 does not depend on uv and vu, in view of Eqs. (2.14g) and (2.14h).
We can therefore write

L = Z(ux ,uv,vx, vy) + pxZ5(uv , vy) + pyZs(ux , vx). (2.18)

Substituting for L from Eq. (2.18) in Eqs. (2.15b) and (2.15e), we get

^ =0, -5-f- = 0 (2.19a, b)dux duy dvx dv.t

which yields the result

Z = Zi{ux , vy) + Z2(vx , uu) + Z3(ux, vx) + Zi{u„ , vt). (2.20)

Using Eqs. (2.18), (2.20), (2.15a) and (2.15d) we get
d~Zx , d2Z„ n , N+ Vy t—r- = °. (2.2!a)

dux dvx " dux dvx

d2Z, , ifZ.+ P' = °> (2.21b)

which lead to
duv dv„ diiv dv

=0- -zrk- 0, (2.22)dux dvx ' duv dvy

d2zs „ d2Z:= 0. = 0. (2.23)
dux dv, ' dv„ dv

Eqs. (2.22) yield
Zs(ux , vx) = Fi(ux) + F2(vx),

Z^ , Vy) = F^Uy) + Ft (Vy),
where Ft , F2 , F3 and F4 are arbitrary functions and we can absorb the first two of them
in Zi and Z2 and thus can drop Z3 term in Eq. (2.20) without loss of generality. For
similar reasons, the Z4 term in the same equation can also be omitted. In view of this
reasoning and Eqs. (2.23) we can write for L the expression

L = Zi(ux , vy) + Z2{vx , Uy) + p,[Gi(u„) + G2(v„)] + p„[Gs(ux) + Gi(vx)], (2.24)

where (?i , G2 , G3 and G4 are arbitrary functions of u„ , vy , ux and vx respectively.
Substituting for L from Eq. (2.24) in Eqs. (2.18), we get

d2Z2 . d2G,
r py ~n~2~ — v,

dvx dvx

d2Z, , d2G2
+ px Tf = v,dVy dVy

d2Z> , d2G:^3

aw; du;

d2Z2 , d2G,
+ P* XT" = "•dul du
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These equations yield

d2Gi _ d2G2 d2G3 d2Gi _ „
dv'x dv2y dux dul '

d2z2 d2z! d2zj
1 2 2 « 2 ~2 " jdvx dvy dux dUy

solving these, we get

L = Y + Y iUx + Y 2uy + Y3vx + F4y„ + F6px + F6p„ + + u2y + v2x + v2)

+ F7pxM# + Fspxvy + YspyUx + Y10pyvx + YjiUxvy + Y12vxuy , (2.25)

where Y, Fj , F2 , • • ■ , Y12 are arbitrary functions of u, v, p and their dependence on
these variables is not exhibited in conformity with the notation adopted before. Sub-
stituting for L from Eq. (2.25) in Eqs. (2.14c), (2.14d) and (2.15c) we get

F7 + F9 = Fs + F10 = Fn + F12 = 0. (2.26)

It is now clear that the expression for L given by Eqs. (2.25) and (2.26) satisfies all the
Eqs. (2.14), (2.15) and (2.16): hence, the expressions for 8A/8p, SA/Su, 8A/8v given by
Eqs. (2.11), (2.12) and (2.13) reduce to

SA _ dL d"~L d2L d2L d2L d2L d2L
Sp dp du dpx U" dv dpx Vz dp dpx du dpv Uy dv dpy Vy dp dpv ̂ y '

(2.27)
_ dL d2L d2L d2L

Su du du dux Ux ' dv dux Vx dp dux ^1

d2L d2L d2L . , . QC.
dU dUy ' dV dUy V" dpdUyPV ^ + ^ ^ ^

SA _ dL _ d2L _ d2L _ d2L
Sv dv du dvx U" dv dvx Vx dp dvx Px

d2L d2L d2L ,  
— -—— Uy — -r^r-Vy — -—— pv — v(vxx + VyJ. (2.29)du dVy dv dvy dp dvy

The viscous terms in Eqs. (2.2a) and (2.2b) appear in the above expressions for SA/8u
and 8A / 8v, as must be expected. The next task is to explore the possibility of reproducing
the inertia and pressure-gradient terms in these expressions, keeping in mind that L
must be of the type given by Eq. (2.25). It is obvious that the terms in Eq. (2.25) con-
taining F, F5 , F6 , F7 , Fs and Fn cannot reproduce the inertia terms. We choose

F5 = u/P, F6 = v/P, F„ Y = F7 = F8 = 0,

which means

L = YlUx + Y2Uy + Y3vx + Y4Vy + (u/p)px + (v/p)py

+ b(ux + Vy)2 + \v(vx — Uy)2. (2.30)

It may be noted here that this form for L satisfies Eq. (2.10). Substituting for L from
Eq. (2.30) into Eqs. (2.27), (2.28) and (2.29), we get
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54 (dYi l\ . (dYj l\ ay, , aF3 . „ .
^ - Vaf* - + I IF " + IF + "5" "* ■ <2-31)
M _ to _ , to _ 9Y,\ _dY, (1 aFA ,
5m \ at< at; / 1 + V du dv )" dp Pu + Vp dp )pz v(u" + Uvv)'

(2.32)

M _ to _ ilA J_ to _ ^ a. (I - *XA _ ^ ( , ,
8v lay du r + \ dv du ) " + Vp dp r dp Px " + yy)-

(2.33)
We must choose

dY1 = dY1=dY, = dYA = Q
dp dp dp dp

to reproduce correctly the terms (ux + vy)/p in Eq. (2.31) and the pressure-gradient
terms in Eqs. (2.32) and (2.33). From the expressions for 5A/5w and 8A/8v it is obvious
that no functions Yx , Y2 , Y3 and F4 exist which will reproduce the inertia terms in
Eqs. (2.32) and (2.33). We therefore conclude that there does not exist a single functional
A[u, v, p] belonging to the Euler-Lagrange class whose junctional derivatives with respect to
u and v when equated to zero would yield the momentum equations. Eqs. (2.32) and (2.33),
on the other hand, possess an interesting property by virtue of which a close connection
can be established between the two-dimensional Navier-Stokes equations and analytic
functionals (see the Appendix). To establish this, let

D[u,v,p] = JJ [^(div u)2 + Jv(curlu)2 + -u- grad pj dxdy, (2.34)

and

E[u, y] = — JJ" (Y,ux + F2w„ + Y-tVx + Ytvv) dx dy. (2.35)

We then get

(SD/Su) = (l/p)p. — v(uxx + O, (2.36a)

(SD/Sv) = (1 /p)py — v(vxx + vyv), (2.36b)

(8D/Sp) = -(1 /p)(ux + vy), (2.36c)

and

(8E/8u) = —(uvx + w„), (2.37 a)

(8E/Sv) = uux + wv , (2.37b)

if we choose Ft , F2 , F3 and F< so as to satisfy

— - = u - v. (2 38)du dv ' du dv

Using Eqs. (2.36), (2.37) and (2.38), we can write the continuity and the momentum
equations equivalently as
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IT = °- (2.39)Sp

SE SD
Su Sv '

SE _ SD
Sv Su

(2.40)

(2.41)

Eqs. (2.40) and (2.41) are precisely the Cauchy-Riemann conditions for E + iD to be
an analytic functional of u + iv. In order to establish the existence of E compatible
with Eqs. (2.38), we observe that among infinitely many solutions of Eq. (2.38) two
simple solutions are

a) Yx = Yi = 0, F2 = -iv2, Y = \u2

giving

E = J J | (vSiy — uvx) dx dy, (2.42)

and

b) F, = F4 = 0, F3 = - Y2 = (u2 + v2)/2

giving

E = JJ | (u2 + v2)(uv — vx) dx dy. (2.43)

3. Some concluding remarks.
a) Interpretation of the junctionals D and E. We observe that when (u, v, p) repre-

sents a fluid dynamical motion, the div u term in Eq. (2.34) vanishes and so does the
term u. grad p, as it gives the work done by the expansion of the incompressible fluid
against pressure forces. The integrand for D is then just the square of the vorticity
and in such a case Lamb [3] has shown that D is equal to the total dissipation of energy
occurring in a unit time. The drag on the body is then equal to pD/U„ .

Following Sommerfeld [4], we can define the 'mass density' of the vortex distribution
equal to the vorticity, and get the result that E is the negative of the net kinetic energy
due to this 'mass' distribution.

b) An approximate method of solution of flow problems. In this subsection we exploit
the property of analyticity of E + iD for getting an approximate method to obtain
flows past finite bodies. Let us presume that

CO

U = X) at<f>k(x, y) (3.1)

CO

V = 23 bk(j}h(x, y), (3.2)
k-1

oo

V = T,c„xk(x, y), (3.3)
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where <j>k and x* , k — 1, 2, • • • , are linearly independent sets of functions. One has
to be careful in the choice of these sets, as u and p are not L2 functions. The functionals
D and E can then be written as

D = i a2 i ■' ■ bi , b2 , • • ■ ; Ci , c2 , • ■ •)»

E = /(oi , <j2 , ■ ■ • ] bi , b2 , ■ •

where / and g are functions of a countably infinite number of variables. In fact, / and g
are quadratic and cubic functions respectively of these variables. We can then state
that E + iD being an analytic functional of u + iv is equivalent to / + ig being analytic
(holomorphic) in ak + ibk , k = 1, 2, • • • <». This result can be easily demonstrated
by the following approach. Consider the variation in D:

(3.4)SD = E (|£ Sak + ^sbk + d^- Sek) ,
t~i \aak dbk dck /

which is equal to

rr /sn sn xn \
dx dy. (3.5)rr (SD . , SD f , SD . \

Ji t + ~dv + VSp

Substituting for Su and Sv from Eqs. (3.1) and (3.2) into Eq. (3.5) we get, by comparing
coefficients of Sak, Sbk in the resultant expression with those in Eq. (3.4), the expressions

£:= f^Mx,y)dxdy, (3.6)

/8 D— <j}k(x, y) dx dy. (3.7)i£ _
dbk J Sv

Similarly, we can show that

£ = {^Mx,y)dxdy, (3.8)

dbk = / ^x' V"> dx dy" ('3'9')

The functional Cauchy-Riemann conditions (2.40) and (2.41), in view of Eqs. (3.6)
through (3.9), become

df/dak = dg/dbk , (3.10)

df/dbk = - dg/dak , (3.11)

thus establishing the result that / + ig is analytic in ak + ibk , k = 1, 2, • • • , oo. It
may be noted that the continuity equations become

dg/dck =0, k = 1, 2, ••• , co. (3.12)

Now Eqs. (3.10), (3.11) and (3.12) are only algebraic equations (in fact, quadratic)
in ak , bk and ck . Solution of these equations then yields a solution to the flow problem.

c) Functional power series representation of E + iD. If G[w(x, y)] is a cubic analytic
functional, then (see the Appendix)
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G[w(x, y)] = Ko + / Kx(x, y)w(x, y) dx dy
J D

+ / K2(xx ,ih \x2 , y2)w(x1 , yi)w(x2 , y2) dx1 dyx dx2 dy2
J D

+ / K3(xi , y1 ; x2 , y2 ; x3 , , Vi)
J D

■ w(x2 , y2)w(x3 , 2/3) dxi dyx dx2 dy2 dx3 dy3 , (3.13)

where we have denoted, for convenience in writing, multiple integration by a single
integration symbol. In view of the fact that E + iD is a cubic functional, analytic at
that w which satisfies the Navier-Stokes equations, it is clear that E + iD must be
equal to G[w(x, y)]. We may use this property for generating solutions of the Navier-
Stokes equations. This can be achieved by assuming some specific kernels K0 , Kt , K2
and K3 and then by finding a w which makes E + iD equal to G[w(x, y)]. Further, if
w = 0 gives a closed curve and w tends to a constant at infinity, then that w represents
a solution to the flow past the corresponding body.

d) Extension to three-dimensional flows. The extension of the above analysis to
three dimensions is conceptually not very difficult but somewhat involved mathe-
matically. We will not go into the analysis here but shall be content with the following
observation. Following Deshpande [5] we can write the Navier-Stokes equations for
three-dimensional flows as

CURL (E) = GRAD (D)
where CURL and GRAD are functional differential operators, E is a vector functional
and D a scalar functional defined by

En = — J | fmtUrU, -D<» dx, dx2 dx3

D = f ^(divu)2 + |y(curlu)2 + -u-gradp
Jr L" P

dxl dx2 dx3 .

Here trnl is the alternating Cartesian tensor, ur is the rth component of the velocity
vector u and the dummy suffix notation is used in the above equations.
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Appendix. The concept of an analytic functional used in this paper is closely
related to the analytical functional introduced by Volterra [2]. Following Yolterra we
define

G[w(t)] = K0 + f K^QwQi) d£ + f f K2(£x , $2)w(^1)w(^2) d£i d%2
J a J a * a

r*b nb

+ ••■+/ ''' / > ?2, • • ■ , £n)w(£i) • • • w(£„) d£i • • ■ d%n + • ■ • , (Al).
J a J a

where ivit) belongs to a ceratin functional field (e.g. the set of all continuous functions
w{t), t £ [a, b]), Kn is a symmetric kernel in all its variables , • • • , and it is
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presumed that the above series (A.l) is convergent if |w>(0| < R- It may be noted that
the series (A.l) is a functional power series.

If we now regard w as a complex function u(x, y) + iv(x, y) of two variables x and y
defined over a certain domain D and further make all the kernels also into complex
functions of several variables Xi , yx ; x2 , y2 ; • • • we get

G[w(x, y)] = K0 + JJ Ki(x, y)w(x, y) dx dy

+ fill K2(x i , y, ;x2, y2)w(x1 , y,)w(x2, y2) dxx dyx dx2 dy2 + ■■■ ; (A.2)

we call this an analytic functional provided the series (A.2) converges for |w(x, y)\ < R.
We may take u and v as continuous functions defined on D and having continuous
first-order partial derivatives everywhere in D. We can easily show that G[w(x, y)}
defined by Ecj. (A.2) satisfies the Cauchy-Riemann conditions

5H/5u = 5J/dv, 5H/Sv = -SJ/Su,

where H and J are the real and imaginary parts respectively of G[w(x, ?/)].
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