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Summary. The cores of globular clusters evolve independently of the outer
parts and eventually achieve a self-similar evolution with a shrinking almost
isothermal portion followed by a power law density profile, p <, It is
proved that « is in the range 2 <a <2.5 and that both the magnitude of the
core energy and the core mass decrease during evolution towards core
collapse. In fact |E.|«M$ where ¢=(5—2a)/(3 —a). The temporal
behaviours of the core density and core velocity dispersion are determined in
terms of a. The central density always becomes infinite in finite time but
both the core mass and the core energy become zero then.

An eigenvalue equation is solved numerically to determine « for a model
with energy transport by stellar encounters approximated as heat conduction
in a gas. It yields a = 2.21, { ~ 3/4 and the detailed density and temperature
profiles for the similarity solution of that model.

1 Introduction

The aim of this paper is not to compute accurate models for the evolution of globular
clusters but to increase conceptual understanding of the mechanisms that drive that evolu-
tion. Because of this aim we shall not shrink from simplifying and idealizing the problems
discussed in the belief that a clear understanding may be best achieved thereby. Probably the
most drastic idealization that we shall make is to consider only clusters of stars of equal
mass. This is a serious matter since a flow of energy from heavy stars to light is one of the
driving mechanisms of cluster evolution and significantly speeds it up as Spitzer (1975)
emphasizes. However, it is not yet clear that the final evolution of a cluster of stars of
different masses is dominated by mechanisms that are not represented in the equal mass case.
Further, the unequal mass case is significantly more involved and does not lend itself to any
simple and general solution, whereas we show that the equal mass case has such solutions.
Early work on the dynamics of star clusters regarded the escape of stars from a cluster as
the primary force driving its dynamical evolution. Encounters continually create stars in the
tail of the near-Maxwellian distribution but these leave the cluster so no detailed balance of
reverse encounters can establish equilibrium. In the early 1960s Hénon (1960, 1961) showed
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that this was not the dominant evolutionary process. He pointed out that there was an
infinite volume of phase space bound to an isolated cluster and the population of this halo
by weak encounters was more important for evolution than the escape of stars, which could
only occur due to the rarer hard encounters. At about the same time Antonov (1962)
discovered the surprising fact that even the artificial problem of N stars in a perfectly
reflecting sphere endowed with a total energy £ and mass M does not possess an equilibrium
if the sphere has a radius greater than his critical value 7, = 0.335 GM*/(— E). Lynden-Bell &
Wood (1968) gave a physical explanation of Antonov’s discovery in terms of the negative
specific heat of the self-gravitating core of the cluster. If Antonov’s sphere is expanded
beyond his critical radius, the outside of the cluster, which was held in by the box, expands
and cools. Heat then flows from the core of the cluster which shrinks and gets hotter (higher
temperature), while the outer parts also get hotter on receiving the heat. If the outer parts
are too extensive then their temperature rise on receipt of a given quantity of heat dQ will
be less than the temperature rise of the core due to loss of that heat. Under these circum-
stances a gravothermal catastrophe arises in that the flow of heat only serves to increase the
temperature gradient. Several workers have followed what happens after the gravothermal
catastrophe. Larson (1970a, b) developed a computer code for solving Jeans’s equations of
stellar hydrodynamics giving the first few moments of the Fokker—Planck equation. His
results showed that the core of the cluster shrank in size and in mass, and it left behind a
‘halo’ which took up a power law of about p <7 %% out to the confining sphere. More
recently Hachisu ez al. (1978) and Inagaki & Hachisu (1978) have studied the gravothermal
collapse of gaseous spheres with various laws of thermal conductivity. Provided the
conductivity is sufficiently large in the middle as compared with the outside these develop
in a manner closely similar to Larson’s stellar dynamical calculation. A small central core
develops and loses mass as its density and temperature increase. Lynden-Bell & Wood (1968)
argued that clusters not confined by reflecting spheres would also go through a gravothermal
catastrophe once they had developed enough of the Maxwellian core. To demonstrate this
they calculated the entropies and energies of the truncated Maxwellian star clusters in both
the Woolley (1954) and the Michie—King (Michie 1963; Michie & Bodenheimer 1963; King
1966) sequences and showed that those sequences reached models of maximum entropy
(for given mass and energy) at values of S(¥o — V) close to that at which the gravothermal
catastrophe occurred for the Maxwellian in a reflecting sphere. Here 8= 1/kT for the
Maxwellian, Y, is the central value of the potential and Y, is the potential at the edge of the
system. They argued that evolution might proceed approximately along such a sequence of
clusters with an increasingly more Maxwell-like distribution until the point of maximum
true entropy S = — k [f log fd® was reached. Beyond that point the cluster would still go on
increasing its entropy, but in doing so it would get further and further from the approximate
models on the sequence which do not have the high entropies needed. The trouble is that the
models have been constructed around the idea that Maxwell’s distribution is the most
probable one, whereas this is only true up to Antonov’s critical radius. Thus the models are
built around the wrong precepts at the high central concentrations — the real clusters ‘want’
greater temperature differences between core and halo than those models allow — such states
have yet higher entropies than any achieved along the model sequences. Since, according to
Boltzmann’s H theorem, encounters increase S unless fis exactly Maxwellian, further evolu-
tion along the model sequences is not possible; and yet further evolution must and does
occur as encounters continue to increase S.

Hénon (1971a, b, 1973, 1975) and Spitzer and collaborators (Spitzer & Hart 1971a, b;
Spitzer & Shapiro 1972; Spitzer & Thuan 1972; Spitzer & Chevalier 1973), have developed
large computer codes and performed beautiful calculations on the evolution of star clusters
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of large mass. Aarseth (1971, 1973, 1974, Aarseth & Hills 1972) has pioneered with some-
what smaller clusters where strict N body techniques are needed. All of these investigators
have studied clusters of both equal and unequal masses. However, in spite of these detailed
studies, the reality of the occurrence of the gravothermal catastrophe is still doubted — a
clear separation from the escape mechanism only occurs in large clusters with very high
central concentrations and while Spitzer & Thuan (1972) have found what they believe to
be the phenomenon at work in their experiments there is not yet universal agreement
(Lightman & Shapiro 1978). Furthermore the pretty experiments of Spitzer & Thuan do not
answer all questions about the evolution of equal mass clusters because the numerical
techniques become difficult when the central densities are very high. For this reason the way
that the energy and mass of the core behave at very high concentrations is not determined
with certainty. Several authors (Lightman & Shapiro 1978; Miller & Parker 1964) have
deduced from these works that the core energy is constant during evolution and we
emphasized that ‘if true’ this ‘fact’ demanded a physical explanation (Lynden-Bell 1975).
We shall see that very general considerations of the consequences of the gravothermal
catastrophe enable us to disprove this ‘fact’. In reality both core mass and core energy
tend to zero as the core radius shrinks. In the next section we give these general arguments
and conclude that not only the evolution of the core, but also its surroundings, are self-
similar and leave behind a power law debris (o « 7 *) of material that was once in the core.
The true value of o requires a detailed calculation from which it emerges as a sort of eigen-
value, but general considerations show that 2 <a <5/2. A preliminary determination of « is
made from consideration of the exactly self-similar solutions for a conducting gas model of
appropriate thermal conductivity. These are determined in Section 3. Not surprisingly the
value found, 2.21, is close to that originally found in Larson’s numerical work which evolved
to an almost power law form with « = 2.4, Hachisu et al. also found 2.4 but in that calcula-
tion they used a thermal conductivity inapproprfate for gravitational interactions. Our
eigenvalue a=2.21 is, however, the correct asymptotic value of the self-similar solution and
can be obtained from a graph of p against 7 if that graph is followed for at least five decades.

2 General arguments for, and properties of, self-similar solutions

Once a cluster has developed a core which is Maxwellian up to values of 3(e — Y,) of about 7
then the role of the halo is to receive the heat generated as the core shrinks. The outer parts
of the halo have a long relaxation time so they hardly change on the time-scale of this heat
transfer. Further, as the core shrinks it loses mass and thus generates a new higher density
inner halo with a shorter relaxation time. It is this inner halo that receives the heat from the
core allowing it to contract, grow hotter and to release yet more mass to make a yet higher
density inner halo etc. Thus as the core shrinks it is at all times surrounded by an inner halo
of old core debris, and an almost static outer halo that takes no interest in the core’s activity
but merely responds adiabatically to any changes in potential due to changes in core size.
Since this process proceeds until the core is very small, it is reasonable to guess that
eventualily the initial conditions that determined the size of the original core and the
structure of its halo will be irrelevant to the structure of the new core and the new inner
halo. If we take a snapshot at any time and then set ourselves the problem of the subsequent
evolution we would expect that apart from a scaling the problem would be the same as the
problem set at another time. Thus, apart from the rescaling, the solution will be the same.
Earlier we emphasized (Lynden-Bell 1975) that such a rescaling must apply to the isothermal
parts of the cores because isothermal spheres are homologous, but the above argument
extends this to those parts of the halo that are old core debris. We deduce that there will be
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a similarity solution for the core and that part of the halo that once inhabited the core,
while the outer halo will essentially be frozen in its initial state for many core relaxation
times. Mathematically such a similarity solution has its density and all other variables scaling
in the general form

P = pc(2) pul(ry) (2.1)
where
ry =rfre(t) (2.2)

where r.(?) is the radius of the core.

Mathematically it is difficult to calculate precisely with an approximate similarity
solution that does not hold for the whole cluster but luckily we may escape this difficulty
by a ruse. Since the outer parts of the halo play no part in the evolution of the core it does
not matter what the outer part of the halo is like. If our aim is the study of the core and
what was once core and is now halo, then we can replace the outer halo by anything we like,
always provided that it continues to do nothing! This suggests the following ruse. We replace
the outer halo by the structure that it would have had, had it once been part of the core of
an enormous cluster. In practice we shall find that we have to add an infinite halo in order to
do this at all scales, but this imaginary halo indeed does nothing and is so diffuse that it has
no effect on the core or inner halo. With the problem doctored by this strange ruse we can
now demand that we have an exact self-similar solution not only in the core and the inner
halo but everywhere. We therefore seek such solutions. Now by hypothesis the outer halo
does nothing while the core shrinks hence in the halo p(r, £) = p(f) p«[r/rc(¢)] must be
independent of t. Thus differentiating and writing a dash for differentiation of p, wrt its
argument r
N r"C ]

Pl M;‘_pcr*p* =0

¢

and so

TuPo Top

*P*z._cf_g:_a. (2'3)
Pyx T Pe

Since the lhs is a functionof r, alone and the rhs is a function of ¢ alone, @ must be a
constant. We deduce that

Py =AryY  in the halo 24)
and that -
pe =7 (2.5)

Since p. and r. are functions of ¢ alone this last relationship holds everywhere. Now the core
mass is some definite multiple of p.r2 (dependent on whose precise definition we use) and so
M, o« r3™. Similarly the core energy is some multiple of — GM?/r, « — r3~2* Hence the core
energy is related to the core mass by

5 -2

E.xc—M{ where ¢= . (2.6)
3—a

Similarly calling v2 the central velocity dispersion we have

V2 GM,fro < r2 ™., 2.7
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Now the standard formutla for the relaxation time in a stellar system is
T, = v*(8nGmp log N)™". (2.8)
For the evolution of our system we must have

1dp, 1
— e o~ <% (87Gm 10g ). (2.9)
pe dt Ty vg

In any similarity solution it is the scales that vary so the dimensionless quantities appearing
in the solution are constant (since they are scale independent). (Tyc/pc)dpc/dt) is
dimensionless, and is therefore constant in the similarity solution. (In order to use such argu-
ments strictly we should remark that we allow m the mass of a star to enter only in ‘the
relaxation time and nowhere in the momentary equilibrium of the star cluster. Encounter-
less stellar dynamics has equilibria independent of the masses that make them up.)

In the standard formula (2.8) NV is the number of stars in the system. In our infinite
system N is the number of stars that interact with the core. It is natural to take N to be
a multiple of the number of stars in the core itself but although there are still similarity
solutions when log V is dependent on time — indeed they have the same separation constant
and identical spatial form — nevertheless the extra complication of the formulae for the time
dependence outweighs the gain in accuracy (Lynden-Bell 1975). We shall hereafter neglect
the time variation of log V. Its value is then absorbed into the constant of proportionality in
equation (2.9).

From equations (2.9), (2.7) and (2.5)

1-a
_a_d_rfoc Fe = /22
dr p¥Ae) ¢
C
Hence
r& e (to— 1) (2.10)

where ¢, is a constant of integration and we take o # 6. From equations (2.7) and (2.9) we
obtain

b2 e (1 — 14 2/(6-2)
pe o (to — 1) 2167
M, (t — £(6-29/(6-0)
B, o (g — 12626,

(2.11)

Notice that r. = 0 at the finite time ¢ = #, provided a < 6.

We now turn to the proof that 2 <a<2.5. To do this we first prove that any self-similar
evolving solution must be infinite. We start by assuming that the total mass M and total
energy F are finite and show that this leads to contradiction. ,

In any similarity solution the scales change but the functional forms such as p.(ry)
remain the same. In our problem constants with dimensions are:

G=[M"L’T7
M=[M]
E=[ML*T).
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Since each is constant and py(r,) is some definite functional form we deduce that the core
radius is some fixed fraction of the natural length and so

T [L].

Thus if M and E are finite constants, r; is fixed, the core does not shrink and no evolution
occurs. Now this is false since the only non-evolving systems are isothermal and these are
infinite. Now M finite implies o >3, whereas E finite only requires a >2.5 (we remember
that p, = AryY is only the asymptotic form at large r,). Thus we now try the supposition
that 3 >a>2.5 so that M is inifinite but F is finite. Now E/E is dimensionless — in a simi-
larity solution it is only the scales that change, so dimensionless numbers are constant.
Hence E, is constant. This looks like a straightforward proof that the core evolves at
constant energy, but it actually leads on to contradiction as we now show. Looking at our
asymptotic form for p,, and remembering that the outer halo is unchanging on the time-
scale of the evolution of the core, we see that A4 is a constant of dimensions ML®™3. Hence
A, G and FE form three dimensionfull constants and so

GA? 1/(20-5)
e (—E) -k

Hence r, is again fixed and again no evolution is possible. However, the careful reader will
have noticed that this argument itself fails when o = 5/2 for then both GA? and E have the
same dimensions and so a changing r. is possible. This suggests a fixed core energy with
a=5/2 is the solution to our problem. That is not the case. At the start of our argument
we assumed E' the total energy to be finite so a>5/2. Thus « = 5/2 is outside the range of
the argument’s validity but the argument does show that there are no solutions with o >5/2
so both E and M must be infinite in any similarity solution,

At this point in the argument D.L.-B. was much tempted to believe that although the
argument leading to E = constant and a = 5/2 is not strictly valid, nevertheless there might
be a solution of this form. However, this too is false. Consider for a moment the system
with p « 7752 everywhere; then M(r) = A ,r"/? where A, is constant. Hence

J‘GMdM_ JGMdM

ro. M?

The integral is logarithmically divergent not only at large M but also at small M. Thus if the
core should ever shrink to zero in finite time the inner halo would have to lose an infinite
energy. However, the transport would be through a cluster that was of finite density and
velocity dispersion away from the central core and the transport processes could not carry
an infinite energy in a finite time. As we have already shown that r; shrinks to zero in a
finite time, both a = 5/2 and constant £, are impossible.

We have thus shown that a < 5/2 but we still need to show that a > 2. This follows from
the remark that a =2 is the case of an isothermal sphere. We require that our solutions lose
heat from the core to the halo so the temperature of the core must be greater. There is only
a decrease of temperature outward for a > 2 and only then does the central temperature,
v2, increase as ¢ increases towards ¢, — see equation (2.11). A further property of complete
similarity solutions can be used as a check that their central non-power-law parts are indeed
correct. M and E, tend to zero when r; tends to zero and both the total energy and mass
within any given r =R well out in the halo must remain constant. Thus both M(R) and
E(R) must equal the values that will be obtained when r, = 0. But those values will be those
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obtained from the power law density all the way in to r, = 0. Thus the inward extrapolation
of the limiting power laws gives a distribution with exactly the same mass and the same
energy as the true similarity solution. Hence

4mR3p(R)
——

M(R) — 0 as R-oo

Similarly
M. (r,) ’ 0
r.)— ———=0.
LA 3 —a

Using Jeans’s equation of stellar hydrodynamics

GMp
or (v r?

and the asymptotic forms at large » we have

Since this form of Jeans’s equation assumes isotropic velocities, the precise result only
follows in that case. None of the other arguments of this section has assumed isotropy of the
velocities. They are still true in the anisotropic case. By discussing the radii at which the core
debris is left Lightman & Shapiro (1978) reached similar conclusions on &’s range.

3 Self-similar solutions for a gas sphere in gravothermal evolution

Hachisu et al. have studied the evolution of a gaseous system larger than Antonov’s critical
radius. They point out that it is possible to approximate a stellar dynamical problem by
using appropriate dependence of the thermal conductivity on density and temperature. They
find by numerical computation that their solution does eventually achieve an approximately
self-similar form with p —»r™ at large distances and a ~2.4. Now 2.4 is very close to the
critical value 2.5 and since this small difference is vital to the way the core energy depends
on core mass it is important to determine « precisely. It is also interesting to demonstrate
that exactly selfsimilar solutions exist. To determine « accurately we set up the exact
equations to be satisfied by a self-similar solution from which it emerges as a separation
constant determined from the boundary conditions. On computation we find a=2.21;
earlier workers estimated o ~ 2 4.

During the evolution the time dependence is due to the slow transport of heat between
different parts of the system. Thus, although the system moves, the equations of hydro-
statics are a good approximation at all times. We may therefore write

oM
— =4mp (3.1
or
dp 0 GMp
u.__:._(puz)z— —T (3.2)
or Or r
where M(r) is the mass within radius 7, and where

kT
PE (3.3)
P m
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if we take v? as the rms velocity in one dimension (so that 3v?is the total rms velocity). We
need an equation governing ‘heat’ flow between different parts of the system. In thermal
problems one writes

L K or 34)
4nr? or '
where K is the thermal conductivity. In stellar interiors K is written as 4acT>/3kp, where
k is the opacity. In order to approximate a stellar dynamical situation we need to know how
K (or k) depends on p, T (or p,v). In the elementary theory of thermal conductivity of
gases the heat flux is an average of the one-way flux of particles across an imaginary surface
times the excess energy per particle between starting point and end point, i.e.

L A9 (3 kT\ (35)
47r? P rar\2ml’ )

where A is the mean free path between collisions and 7 is the time between collision, so that

I (3.6)
T v kT. .

However, these concepts are not directly applicable to stellar dynamics since the stars do not
move with constant velocity but make several orbits in and out and around the cluster
between encounters. In such a stellar system a typical star at any radius moves in and out by
about a local Jeans length A = 1/k; where kfv?® = 4nGp. This gives a typical radial distance
between encounters. However, the time between those encounters is not A/v but rather a
relaxation time T,. Hence the energy flux is given by equation (3.5) with A = k3! and with 7
replaced by T,

L Co 0 /3 )
—— T oo \Tv 3.7
47r kiT, or \2
p. dv?
= —3GmC(log N) - — (3.8)
v or
where C is a dimensionless constant of order unity. As Lecar pointed out, this implies a
conductivity K proportional to pT "2 or an opacity k proportional to T*%2. Notice
that the details of the argument are unimportant, for the use of dimensions, coupled with
the fact that the heat flux must be proportional to the relaxation rate (7 ') gives the same
dependence of conductivity on p,v. The detailed computation of Hachisu et al. (1978) was
done for a different conductivity in which the heat flows faster when the relaxation time is
longer. This is not the physical case. However, Hachisu er al. do show that their result is
rather insensitive to the details of conduction.
To complete our equations we need the analogue of the first law of thermodynamics,
viz.

oL 0 3v? 0 1
IRMEEZCE
or ot/ yy 2 0t/ pp P
) 3
= — 4qripv? (—) log (—~) . (3.10)
\ 0t M P
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since by equation (3.3) p = pv?. The operator (3/d1)y, follows the mass shell concerned.
In what follows, we look for a similarity solution to our equations (3.1), (3.2), (3.8) and
(3.10) in terms of a time-dependent scaled radius r,. = r/rc(?).

Let us put

r=re()rs

M=M(t) M (ry)

P = c(t) Plrs) (3.11)
v =0c(?) Valry) |
L=Le(t) Lylry).

Generally, if M, is any function of M, 7,

A 0 oM d

), G, = Go, o @12
ot/ ot M, ot M, oM/ ;

so that if we separate variables as in equations (3.11), equation (3.10) gives

LedLy ., , , ,|d vd dlogM.dlogvi/ps
— —— = — 4Amrip Vg TeP V% |\ log — — .
re dry dt pc dt dlogM,

(3.13)

Since some portions of this depend only on ¢ and others on M,, there is consistency only
in one or other of the two circumstances:

d log (v¥/p L
(i) —M=*c1——c2—3 (3.14)
dt 4mp VEre
dlogM, L
Sz (3.15)
dt 4mp vt
dL* 2 2 d log (Ui/p*)
— =PV iC1—Co 3.16)
dr, #PVx (€17 C2 d log M, (
or alternatively
d log (v3/p
(i) dlogbules) (3.17)
dlogM,
dL
—E= o, rip02 (3.18)
dr,
3
Ve dlogM,
¢oL = — 4nrip v = log;c —aT_ | (3.19)

In both cases c,, ¢, are separation constants. For ¢, # 0, equation (3.17) cannot give Py, Vy
finite and non-zero at r, =0, as we require; and for ¢; =0, equation (3.17) implies an
adiabatic model (an n = 3/2 polytrope) which «does not extend to M, =o° as we require.
Therefore we require alternative (i).

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny 9| uo Jasn sonsnr Jo uswpedaq 'S'N Aq 682696/S81/S/ L6 1L/3191e/SBIUW/WOod dNo"dIWspeose//:sd)y Wol) Papeojumo(


http://adsabs.harvard.edu/abs/1980MNRAS.191..483L

FTOBOVNRAS, 191 - ~483[ !

492 D. Lynden-Bell and P. P. Eggleton
The remaining equations (3.1), (3.2) and (3.8) separate'more easily: taking,
M, = 4mrip, (3.20)
L. =12nGmC log Nrp v, (3.21)
v2=GM,][r, (3.22)
we deduce
aM.
—F=y2p, (3.23)
ar
dv? vyl
Tk TE :‘ (3.24)
dry Pl
d(pv3) oM.
_ (P V% - 2*. (3.25)
dr rs

The ratio a = ¢,/c, is readily related to the parameter « of Section 2. Equations (3.14),
(3.15), (3.20) and (3.22) unite to give
Pe ,.-c[6(1—a) [G-a)] ro® (3.26)
so that a = (3 — @)/(3 — &/2). We then recover equations (2.10) and (2.11), as expected. The

discussion of Section 2 also shows that for a self-similar solution to be static at large 7, we
must have

dlogM,
-3 -« (3.27)
dlogr,
dlogv
LA SRV (3.28)
dlogr,

asr, ~ <, Using equations (3.24) and (3.25) these can be written as
Ly~ (00— 2) pyryvy (3:29)
Qo —2) v2 > M,fr, (3.30)

as ry ~>co. Relations (3.27) and (3.28) will ensure, via equations (3.24) and (3.25), that L,
Py also tend asymptotically to power laws.

To find «, we have therefore to solve a straightforward eigenvalue problem, viz., the four
differential equations (3.16), (3.23), (3.24) and (3.25), with six boundary conditions
(because ¢, o are also unknown) which are equations (3.29), (3.30) and

Li=My,=0, py=v,=1 at r,=0. (3.31)

We have taken p., v, to be the central values of p,v, without loss of generality. For
numerical purposes, using a standard package (Eggleton 1971) to solve two-point boundary
value problems by relaxation on a finite mesh, it is convenient

(i) to impose the surface boundary conditions at a large but finite value of 7
(i) initially to specify c¢,, and remove the condition pe=1atr,=0 (c,=1/200 was
found to give p,(0) ~ 2). We subsequently rescaled so that P4 = 1and found ¢, = 1/430,
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(iii) to introduce the trivial equation do/dr, =0,

(iv) to use as variables log (1 +r2), log (1+M23), log (1 + L/r,), log py, log v, rather
than r,, my, L., py, Uy, since this ensures nearly linear behaviour of each variable with
respect to every other over all the mesh.

The value of a was found to be very insensitive to variations in (a) the surface value of
r. (b) the step size; although v, varies so slowly in relation to py (o4 ~ vZ in the outer
layers) that the surface value of v, was not very small. Different distributions, and numbers,
of mesh points gave « in the range 2.206—2.214, with a preferred value of 2.208 which we
think is right to £0.001.

4 The solutions

The eigenvalue a=2.21 can be substituted into expressions (2.11) to obtain the time
dependences of the central velocity dispersion and density v2o«(z,— #)"%!! and
P& (to— £)*6. The core radius 7, < (to — £)*% and the core energy E, (£, — £)**! and
M, (to— )®*2. The density profile of the similarity solution is given in the log o — logr
plot of Fig. 1. Notice the asymptotic gradient of 2.21 steepens to about 2.4 before flattening
off as the centre of the core is approached. We remarked earlier that the mass must be
exactly the same as that obtained by extrapolating the asymptotic slope right into the origin.
The steepening before the final flattening is therefore necessary, so that p, can lie above the
power law at some radii and thereby compensate for its deficit near » = 0. The whole profile
shrinks to zero at £ =t,, leaving the power law a=2.21 at that moment. It is clear that the
few body problem takes over from the many body problem just before t =ty because
M. — 0. What happens after that is still one of the most interesting research problems in
stellar dynamics. Both Hénon and Aarseth have made interesting attacks on that problem
but we shall not consider it in detail here. We remark, however, that although v2— o and
Pc > ° in our many body solution, nevertheless this is not a spectacular event as M, —> 0 and
even £, —~ 0. In that sense little or nothing is involved in the final core collapse. In reality it
may be that the core is replaced by a well bound central binary star. Now, from expressions
(2.11), v2 e« M;%?, Thus a reduction of the mass in the core by a factor of 10* will only
increase v2 by a factor of 10. Thus a globular cluster core that originally contained 10* stars
and had 10kms™ as its velocity dispersion might be reduced to a binary star with an orbital
velocity of about 30kms™.

Figure 1. Density profile of the self-similar solution. The broken line has slope 2.4. The continuous
straight line has slope 2.21 and the evolution of the unscaled variables can be represented by a sliding of
the density profile up this line.
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Figure 2. Potential and velocity-dispersion profiles of the self-similar solution.
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Figure 3. Heat-flux profile of the self-similar solution. At the point A the density has dropped by
Antonov’s critical factor of 708. The point where the specific heat of the central sphere changes sign is
also indicated.

Fig. 2 shows the rather weak dependence of velocity dispersion on radius. Indeed v lies
within 5 per cent of being constant out to 14r.. Since the central parts are so closely iso-
thermal it is interesting to compare thermodynamic properties with those of isothermal
spheres as discussed by Lynden-Bell & Wood. C,, the specific heat at constant volume, first
becomes negative at almost the same radius as that at which L, the heat flux, is a maximum
(Fig. 3). This is what the physical argument behind gravothermal runaway suggests ought to
be the case. The heat flux has fallen from its maximum by a factor of 2.5 by the time that
Antonov’s critical density concentration of 708 is reached, and it seems very reasonable
that collapse could continue even were the system cut off by an insulating wall at that point
as envisaged by Antonov.

Fig. 4 demonstrates that over all the system outside the core p, & y1%¢ so that the
system is close to a polytrope of index 10.6 except at the centre. Fig. 5 shows that in the
core and on into an overlap region p, is very close to exp (Y — V4o) as in an infinite
isothermal sphere. We found that the law

mlioi) (i) D
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Figure 4. Density against potential in the self-similar solution. A polytrope would yield a straight line;
the one indicated has index 10.6.
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fitted this graph to 3 per cent or better over the whole range from the centre out to the
power law region, although we were surprised that this formula fitted the exponential part
with such good accuracy.

Although the gas model has lost many of the details of a proper stellar dynamical treat-
ment, we consider that the same basic process is at work in this gas model as in the stellar
dynamics of globular clusters. We therefore believe that when we perform a full stellar
dynamical calculation we shall find a self-similar solution with a density profile very close to
that of the gas model. It is therefore of interest to calculate a simple stellar-dynamical
distribution function that reproduces the density distribution that we have found. In the
approximation that the distribution function is isotropic, it is the solution of the integral
equation

0
pW)=dn [ f@Le + )] de.
-y
It is well known that this can be cast into the form of Abel’s integral equation and that the
solution for fis

d [—¢ dp/oy

1
AN

nf—
<

57 9 mo13 15y

B.e—

Figure 5. (i) Natural log density versus potential. Notice that in the central region p,, is approximately
exponential. (ii) Natural log of the distribution function plotted against energy. f is Maxwellian for well
bound energies but approaches a power law near the energy of escape.
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Performing these operations on our formula (4.1) for p(¢) we find
— 8.9 _ 8.7

v3p3'f(e)=0.0134 ( €"‘) [1 +3.92 ( e*) ] (4.2)
15.3. 15.3

where €, = o€ = €/vZ.

In Fig. 5, log f is plotted against (—e€). It is evident that f is close to Maxwellian for €
from 7 into the centre at Boe ~ 15.3. However, f(€) becomes a power law (— €)% for values
of € closer to the energy of escape. The form of distribution function is close to those found
by Hénon and by Spitzer in their computations of isolated clusters. However, the power law
régime is not well developed in their models because their clusters are finite and the outer
parts of them were never in the self-similar part of the clusters.

At k,=Bo(e + o) =8.7, f falls below a Maxwellian by a factor 2. Thus significant
modification of the Maxwellian occurs near k,=8.5 which is the value of k, at which
maximum true entropy is achieved along Woolley’s sequence of truncated Maxwellians
(Lynden-Bell & Wood 1968). Here the true entropy is S = — k f f log fd°r and the sequence is
considered at fixed energy and mass with &k, being varied.

Possible application of the stellar dynamical catastrophe to the formation of central black
holes in stellar systems was considered by Hachisu et al. who found only very small black
holes in extreme cases. This confirms the idea that the more dissipative collapse of gas is
necessary to make such objects (Lynden-Bell 1970, 1978).
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Appendix 1: The number of free parameters in the asymptotic solutions

There are two free parameters ¢;, @ in the solutions to the four equations (3.16) and
(3.23)—(3.25) integrated outwards from the centre where equation (3.31) holds as the
boundary condition. With ¢ and therefore o known, there is only one new free parameter
A in the asymptotic power laws. However, all four of the functions L, M, v, p must be
fitted at some chosen intermediate point so it looks unlikely that this can be done with only
three parameters to vary. In fact there is another free parameter in the asymptotic form as
we now demonstrate. We linearize our solutions about their asymptotic forms writing
3-a

*

M, =

(1+my)
—Q

pu = A [1+m, +(3 — 0‘)_1 m]

where m; =dm /d(logr).
We also write

~(0-2) 12
U* = [_ﬁr—_._._] (1 + u)
20— DB —a)

We keep only first order terms in m and u and substitute these expressions into equations
(3.23)—(3.25) and (3.15) to obtain

my+GB—-—a)ym+2(a— 1B —-a)ymye=—203—a)u; — 2(e — D u] (AD)
and
Ayexp[-QB—a/)]=my+¥2(4—a)ym; — 3B — )y, (A2)

where A4, is a constant.
The dominant asymptotic form of solution for m, that obeys the boundary conditions is

my=Azexp (— N) (A3)
where A2 — 2N(%2 — &) — ¥s(a¢ — 1) = 0 and A > 0. Thus
A=(2—a) +[(2—0)* + Ys(a — D]V? (A4)

Aj is the missing free parameter. The inhomogeneous solution to equations (A1) and (A2) is
not dominant since 3 — a/2 > A as given by equation (A4), over the range 2 < a < 2.5.
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Appendix 2: Differential conductivity laws — criterion for the gravothermal catastrophe

Hachisu et al. explored a number of conductivity laws by making many different trials.
Crucial to the form of solution in which the core shrinks losing mass and energy almost
independently of the halo is the condition that the thermal time-scale is smallest in the inner
parts. If asymptotically p o 7 then T & > and K « p®T?, so the energy within  is propor-
tional to 2% and the thermal time-scale is E/KrT o p2~20¢(1-¢"D) 4 siven by them. We have
shown that the binding energy of the core and inner halo gets greater and greater as o > 5/2.
If we slowly change the conductivity law to allow heat to flow through the outer parts more
readily, the binding energy of the inner parts will increase and « will approach the value 5/2.
We expect our form of gravothermal evolution provided that @’ and b are such that the
thermal time-scale still increases outward even in the limiting case o = 5/2. Thus the condi-
tion for the gravothermal catastrophe to occur is that 2 — 26 — a1 —a' — b) > 0 with « set
equal to 5/2. This condition becomes

b>1-5a.

This condition agrees with the numerical experiments of Hachisu et al. Our b is their § and
our @’ is their a. They have labelled one figure a =% but this is a misprint for a = — % as is
clear from the positioning of the diagram and the accompanying text.
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