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Abstract. Satellite retrievals of methane weighted atmo-

spheric columns are assimilated within a Bayesian inversion

system to infer the global and regional methane emissions

and sinks for the period August 2009 to July 2010. Inversions

are independently computed from three different space-borne

observing systems and one surface observing system under

several hypotheses for prior-flux and observation errors. Pos-

terior methane emissions are compared and evaluated against

surface mole fraction observations via a chemistry-transport

model. Apart from SCIAMACHY (SCanning Imaging Ab-

sorption spectroMeter for Atmospheric CartograpHY), the

simulations agree fairly well with the surface mole frac-

tions. The most consistent configurations of this study us-

ing TANSO-FTS (Thermal And Near infrared Sensor for

carbon Observation – Fourier Transform Spectrometer),

IASI (Infrared Atmospheric Sounding Interferometer) or sur-

face measurements induce posterior methane global emis-

sions of, respectively, 565 ± 21 Tg yr−1, 549 ± 36 Tg yr−1

and 538 ± 15 Tg yr−1 over the one-year period August 2009–

July 2010. This consistency between the satellite retrievals

(apart from SCIAMACHY) and independent surface mea-

surements is promising for future improvement of CH4 emis-

sion estimates by atmospheric inversions.

1 Introduction

Methane (CH4) is the second most important anthropogenic

greenhouse gas in terms of radiative forcing after carbon

dioxide (Forster, 2007). CH4 sources are of biogenic origin

(wetlands, rice cultivation, ruminant animals, termites, land-

fills and waste), of pyrogenic origin (biomass burning) and

of thermogenic origin (production, transport and distribution

of fossil fuels, natural geological leakages). The emissions

are about 2/3 anthropogenic and 1/3 natural, with large un-

certainties for each individual source (20–100 %) (Kirschke

et al., 2013). Its loss in the atmosphere, mainly controlled by

its chemical reaction with hydroxyl free radical (OH), gives

the CH4 molecule a lifetime of about 9 yr. Methane concen-

trations have reached unprecedented values since the begin-

ning of the industrial era (+150 %) and the explanation for

their recent variability is still debated (Bousquet et al., 2011;

Rigby et al., 2008). Methane sources and sinks are classically

estimated either using bottom-up approaches (process-based

modelling and inventories) or top-down approaches (atmo-

spheric inversions). Atmospheric inversions, mostly based so

far on surface CH4 observations (Houweling et al., 1999;

Bousquet et al., 2006; Bergamaschi et al., 2009, 2010; Pi-

son et al., 2009), have shown to improve bottom-up methane
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emission estimates from global to regional scales. One diffi-

culty with atmospheric inversions is the determination of er-

ror statistics attached to atmospheric observations and prior

knowledge of emissions and sinks. More or less empirical

methods have been set up by various authors to fill the as-

sociated covariances matrices (Pison et al., 2009; Bergam-

aschi et al., 2010; Chen and Prinn, 2006). These approaches

generally rely on proxy methods and expert judgement.

Since 2003, retrievals of methane mixing ratios from space

are available from the SCanning Imaging Absorption spec-

troMeter for Atmospheric CartograpHY (SCIAMACHY) on

board the ENVIronmental SATellite (ENVISAT), largely

increasing the number of available constraints for atmo-

spheric inversions, but with a lower individual precision of

measurements (∼ 2 %) as compared to surface observations

(∼ 0.2 %). First inversions using SCIAMACHY retrievals

have been produced, with the need for specific and empiri-

cal treatment to account for retrieval biases (Meirink et al.,

2008).

We study four different observing systems that measure

or retrieve CH4 mole fractions (nmol mol−1, abbreviated

ppb): SCIAMACHY, the Thermal And Near infrared Sen-

sor for carbon Observation – Fourier Transform Spectrome-

ter (TANSO-FTS) on board the Greenhouse Gas Observing

SATellite (GOSAT), the Infrared Atmospheric Sounding In-

terferometer (IASI) on board the Meteorological Operational

Polar satellite (MetOp) and surface air sample sites from

various networks (the National Oceanic and Atmospheric

Administration (NOAA), the Italian National Agency for

New Technology, Energy and the Environment (ENEA), the

Japan Meteorological Agency (JMA), the Commonwealth

Scientific and Industrial Research Organisation (CSIRO) and

the National Institute of Water and Atmospheric Research

(NIWA)). These observations do not have the same spatial

(horizontal but also vertical) resolution nor the same spa-

tiotemporal sampling, and therefore they are not easy to com-

pare directly. We use the transport model of the Laboratoire

de Météorologie Dynamique (LMDz4) coupled with the at-

mospheric chemistry module Simplified Assimilation Chem-

ical System (SACS) to invert the methane fluxes from each

data set on a spatial grid of 3.75◦ × 2.5◦ with a weekly tem-

poral resolution. SACS allows combining methane observa-

tions and methyl-chloroform (CH3CCl3, called MCF here-

inafter) observations to simultaneously optimize the emis-

sions and oxidation of CH4 (Pison et al., 2009). We compare

the posterior methane emissions and losses inferred from the

various observing systems at both global and regional scales

in order to assess the consistency of their information about

methane emissions over the globe. The inversion that assim-

ilates surface measurements is taken here as the reference to

evaluate the satellite products.

The theoretical framework used to infer methane emis-

sions and their uncertainties is presented in Sect. 2. The data

sets from the various observing systems used in this study

are detailed in Sect. 3. Results are presented in Sect. 4 and

discussed in Sect. 5, including sensitivity tests introducing

a bias correction in the satellite retrievals as a function of the

air mass factor and the tuning of the input error statistics.

2 Method

2.1 Inversion system

Our inversion scheme relies on Bayes’ theorem and is based

on a variational data assimilation system that has been de-

tailed by Chevallier et al. (2005). The variational formula-

tion of data assimilation provides a powerful technique when

the dimension of the observation vector is very large, which

is the case with satellites, and when the number of vari-

ables to be optimized is large as well, which is the case for

grid-point-scale inversions. High-resolution inversions avoid

some of the aggregation errors that hit low-resolution inver-

sions (Bocquet et al., 2011; Kaminski et al., 2001). Varia-

tional data assimilation involves minimizing a cost function

J defined as follows:

J (x) =
1

2
(x − x

b)T B−1(x − x
b) +

1

2
(H(x) − y)T R−1(H(x) − y); (1)

x is the state vector that contains the variables to be op-

timized during the inversion process – the time series of

weekly grid-point emission fluxes of CH4 and MCF, to-

gether with their initial conditions (in the form of 2-D scal-

ing factors on the CH4 and MCF columns) and time se-

ries of weekly scaling factors of OH column concentrations

averaged into four bands of latitude (−90◦/−30◦, −30◦/0◦,

0◦/30◦, 30◦/90◦). The vector x
b represents the prior state of

x, the error statistics of which are defined by the covariance

matrix B. Likewise, the vector y contains the observations

of CH4 and MCF mole fractions with their associated errors

described by the covariance matrix R. Observation errors

are defined with respect to the inversion system and there-

fore combine measurement errors, errors of the chemistry-

transport model and representativity errors. The covariance

matrix R is assumed diagonal to simplify calculations, mean-

ing that no correlations between the observation errors are

explicitly taken into account. Following Chapnik et al. (2006)

and Chevallier (2007), the variances in R are inflated to ac-

count for the missing correlations. H is the non-linear obser-

vation operator that projects the state vector x onto the obser-

vation space. It contains the LMDz-SACS model presented

in Sect. 2.4 and appropriate observation averaging kernels or

weighting functions associated with the satellite retrievals.

The iterative minimizing process implies calculating the

gradient of the cost function, which is implemented using

the adjoint technique. The gradient of J can be written as

follows:

∇J (x) = B−1(x − x
b) + HT R−1(H(x) − y), (2)

where H is the tangent linear of the observation operator H ,

which is calculated at each iteration. The inversion process is
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Fig. 1. Surface sites from the NOAA, ENEA, CSIRO, JMA and

NIWA networks used in this study with red circles for surface sites

observing MCF dry air mole fractions and blue squares for surface

sites observing CH4 dry air mole fractions.

iteratively solved with the M1QN3 algorithm developed by

Gilbert and Lemaréchal (1989) until the gradient norm gets

reduced by more than 99 %. The inversion system provides

the statistically-optimal solution, given the observations, the

prior information and their respective uncertainties (i.e. the

maximum of the posterior probability density function), but

not directly the uncertainties associated with this solution.

In fact, these uncertainties can be estimated by calculating

the Hessian matrix but this is practically very costly given

the dimension of the state vector. Instead, we use a robust

Monte Carlo approach to compute the posterior uncertain-

ties (Chevallier et al., 2007). This method involves perform-

ing several inversions with randomly perturbed observations

and priors according to their respective error statistics. Be-

cause the estimation of the posterior uncertainties seems to

become stable from 8 inversions (not shown), an ensemble

of ten 19-month inversions (i.e. 190 members) is assumed

to be enough to produce an ensemble of solutions well repre-

senting the dispersion around the optimal solution xa. It com-

pletes the description of the posterior distribution for aggre-

gated values (typically regional and annual). The improve-

ment of methane emissions brought by an inversion is char-

acterized by the uncertainty reduction, defined as one minus

the ratio between posterior and prior uncertainties.

In addition to testing default configurations of the inver-

sion system, we perform two sensitivity tests, which are de-

fined as follows.

2.2 Bias correction

The first sensitivity test relies on a bias correction for some of

the satellite retrievals. In a previous inversion study, Berga-

maschi et al. (2009) proposed a bias correction as a function

of the latitude and of the month for SCIAMACHY. Here, we

parameterize possible biases of SCIAMACHY and TANSO-

FTS as a function of the air mass factor AF. AF is a parameter

varying with the latitude as well, but it has the advantage of

directly accounting for the geometrical position of the ob-

serving satellite and of the Sun.

AF =
1

cos(θ)
+

1

cos(ξ)
, (3)

where θ represents the solar zenith angle and ξ the viewing

angle of the satellite. The optimized 4-D CH4 state obtained

from the inversion using surface measurements is considered

as our reference. We linearly regress the difference between

this optimized state and the satellite observations of TANSO-

FTS and SCIAMACHY against AF for the 19-month pe-

riod at once. With 2 parameters only, estimated from the

19 months of the reference inversion with seasonally-varying

data coverage, we still consider our reference to be indepen-

dent from the other inversions for the quantities studied in

the following.

2.3 Tuning of error statistics

In our second sensitivity test, we use the method of

Desroziers et al. (2006) to compute simple diagnostics about

the error variances of the observations (diagonal of R matrix)

and of the prior emissions (diagonal of B matrix) projected

into the observation space. In principle, this method is an iter-

ative process in which B and R are tuned from the following

equations until convergence:

(HBHT )i+1 = E[(H(xi
a) − H(xb))(y − H(xb))

T
] (4)

(R)i+1 = E[(y − H(xi
a))(y − H(xb))

T
] (5)

(HBHT )i+1 + (R)i+1 = E[(y − H(xb))(y − H(xb))
T
] (6)

with i the iteration index within this process. Practically, this

iterative process is very costly. In fact, Eqs. (4)–(6) require

the implementation of the inversion, of which the error statis-

tics are diagnosed, and the implementation of the complete

Monte Carlo study associated (i.e. 10 more perturbed inver-

sions see Sect. 2.1). In this study, only one iteration of these

diagnostics is implemented for each inversion. Eqs (4)–(6)

are applied here to the ensemble defined by all observations

at once for the period June 2009–December 2010, i.e. by av-

eraging the diagonals of the matrices described by both sides

of the equations. By doing so, both sides are scalar values.

These equations allow calculating the values diago, diagb and

diag respectively representing the diagnosed values for the

observations, the prior and the full variances (right-hand side

of the equations). From our initial inverse set-up, we com-

pute the observation error variances (varo), the prior error

variances in the observation space (varb) and the sum of the

observation error variances and of the prior error variances,

called the full variances hereinafter (var = varo + varb), that

are defined in our system (left-hand side of the equations).

(HBHT )i+1 (i.e. varb) is computed from the spread of a

Monte Carlo ensemble simulation, where each ensemble

member is drawn from B. The ratio (ratio = var
diag

) is an indi-

cator of the goodness of the variances used in our inversions

www.atmos-chem-phys.net/14/577/2014/ Atmos. Chem. Phys., 14, 577–592, 2014
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and, in the best case, equals one. These diagnostics can be ad-

vantageously extended to also tune the error correlations (off

diagonal terms of R and B) and not only variances. However,

this implies defining retrieval ensembles for each correlation

lag, in spite of irregular spatiotemporal sampling; this is not

attempted here.

2.4 Chemistry-transport model: LMDz-SACS

The inversion scheme includes a chemistry-transport model

(CTM) that combines the LMDz4 transport model (Hourdin

et al., 2006) in a nudged (towards analysed winds) and of-

fline (transport mass fluxes are precomputed) mode, and the

chemistry module SACS implemented by Pison et al. (2009)

to estimate the methane emissions that most likely generated

the observed mole fractions. The SACS module accounts for

the interactions between CH4, OH and MCF. Indeed, MCF

only reacts with OH, which controls 90 % of the destruc-

tion of CH4 in the troposphere. Measurements of MCF mole

fractions, the emissions of which are relatively well known,

are used as an additional constraint for the OH modelled

mole fractions. CH4 and MCF mole fractions are synergis-

tically optimized during the inversion process to estimate the

methane surface sources and the methane atmospheric sink

on a spatial grid of 3.75◦ × 2.5◦ and with a weekly temporal

resolution.

3 Prior information and observations

3.1 Prior information

Our system exploits some prior information xb which com-

bines different standard and recent inventories (Table 1). The

anthropogenic emissions of CH4 are drawn from the Emis-

sion Database for Global Atmospheric Research EDGAR

v4.2 (Olivier and Berdowski, 2001) and biomass burning

emissions are from the interannual Global Fire and Emis-

sion Database GFED3 (van der Werf et al., 2010), both valid

for 2008. No effort is made here to adapt these inventories

to the years of the study (2009 and 2010). Other sources are

added to these emissions: termites from a study of Sander-

son (1996), ocean from Lambert and Schmidt (1993) and

wetlands from Kaplan (2002) which have been rescaled by

P. Bergamaschi (personal communication, 2009). Soil uptake

is based on Ridgwell et al. (1999). The 3-D concentrations of

OH are obtained from a previous simulation of the full atmo-

spheric chemistry model LMDz-INCA (Hauglustaine et al.,

2004). MCF emissions are described by the EDGAR v3.2

database and are extrapolated for the years 2009 and 2010

based on a former atmospheric inversion (Bousquet et al.,

2005), which has been updated.

Current bottom-up inventories range between 223 Tgyr−1

and 469 Tgyr−1 for the global methane natural sources and

between 296 Tgyr−1 and 353 Tgyr−1 for the global methane

anthropogenic sources (Kirschke et al., 2013), implying large

uncertainties of methane emissions. The standard deviation

of the errors of grid-point weekly CH4 prior emissions are

defined here as a percentage (120 %) of the maximum value

of the prior emissions between the 8 nearest neighbours in

the corresponding month for each grid point (Pison et al.,

2009). Errors on OH scaling factors are set at ±10 % and

those on MCF are set at ±1 % of the flux (from now on,

the ± sign is used to represent standard deviations). MCF er-

rors are relatively small because their emissions are consid-

ered to be well known, which motivates their use to constrain

the OH concentrations. Errors on the initial conditions are set

at ±10 % for MCF concentrations and ±3 % for CH4 con-

centrations. All error spatial correlations are defined by an e-

folding length of 500 km over land and of 1000 km over sea,

without any correlation between land and ocean grid points.

Temporal error correlations are all defined by an e-folding

length of 2 weeks. Combining variances and correlations,

the CH4 prior emissions budget amounts to 554±51 Tgyr−1,

which is consistent with the large range seen among the cur-

rent bottom-up inventories (Kirschke et al., 2013). This ini-

tial B will be further tuned in a sensitivity test (Sect. 4.3)

based on the objective diagnostics described in Sect. 2.3:

a scalar factor α is estimated so that the new covariance ma-

trix αB satisfies Eq. (4).

3.2 Surface measurements

Pointwise methane surface measurements are sparsely dis-

tributed but provide observations of the dry air mole frac-

tions with high accuracy and precision (0.2 %). We have se-

lected 49 sites that had regular measurements during the pe-

riod June 2009–December 2010 (Fig. 1) from the NOAA

global cooperative air sampling network (Dlugokencky et al.,

1994, 2009), JMA (Matsueda et al., 2004), ENEA (Artuso

et al., 2007), CSIRO (Francey et al., 1999) and NIWA (Lowe

et al., 1991) networks. The synoptic variability from NOAA’s

GLOBALVIEW-CH4 (2009) is used as a proxy for transport

error, which largely dominates the observation error. Over-

all, observation standard deviations range from 3.4 ppb (sta-

tion Casey, Australia) to 58.5 ppb (station Tae-ahn Peninsula,

Republic of Korea).

Methyl chloroform (MCF) is a molecule used in the past

as an industrial solvent. Its use and emission have been re-

stricted since the Montreal Protocol and its amendments so

that its concentration has exponentially decreased in the last

decades. Following Montzka et al. (2000, 2011), only flask

data from the NOAA network are used in our inversions.

Twelve sites have been selected over our study period; they

are not homogeneously distributed (Fig. 1). During the in-

version process, OH columns are scaled into 4 latitude bands

to fit the MCF and CH4 observations. In the southern tropi-

cal band, only Samoa Observatory (SMO) observes the MCF

dry air mole fractions. SMO did not have a regular sam-

pling, with no data between April and July 2010, implying

that MCF does not add much constraint on the chemical

Atmos. Chem. Phys., 14, 577–592, 2014 www.atmos-chem-phys.net/14/577/2014/
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Table 1. Global annual prior methane emissions used in the inversions.

Emissions Tg yr−1 Source

Anthropogenic emissions 364 EDGAR v4.2, Olivier and Berdowski (2001)

Biomass burning 14 GFED3, van der Werf et al. (2010)

Termites 20 Sanderson (1996)

Ocean 17 Lambert and Schmidt (1993)

Wetlands 177 Kaplan (2002) rescaled by P. Bergamaschi

(personal communication, 2009)

Soil −38 Ridgwell et al. (1999)

Total 554

loss in this band. The MCF monthly variances are averaged

over each year from NASA’s Advanced Global Atmospheric

Gases Experiment (AGAGE) program (Prinn et al., 2005)

when available, otherwise from the NOAA. These averages,

representing synoptic variability, are used as MCF observa-

tion errors. MCF standard deviations range from 0.07 ppt

(station Summit, Denmark) to 0.21 ppt (station Harvard For-

est Massachusetts, USA).

3.3 Satellite observations

SCIAMACHY was operated on board the European satel-

lite ENVISAT between March 2002 and April 2012. It or-

bited at 800 km and covered Earth in full every 6 days with

a swath of 960 km and a ground resolution of 30 km (along

track) and 60 km (across track) at nadir. The instrument ob-

served the solar radiation reflected at the surface and the

top of the atmosphere in the short wave infrared (SWIR)

domain that allows deducing total columns of methane in

cloud-free and sunlight conditions. The ratio of the CH4 and

CO2 dry air mole fractions is retrieved together with the cor-

responding averaging kernels using the Iterative Maximum

A Posteriori (IMAPv55) DOAS (differential optical absorp-

tion spectroscopy) algorithm initially detailed by Franken-

berg et al. (2006). We use this ratio and the 4-D CO2 analy-

sis from the surface air-sample inversion of Chevallier et al.

(2010) to obtain the column-averaged dry air mole fraction

of CH4 (XCH4). The retrievals have a lower accuracy over

the oceans, where the reflection of the solar radiation is very

weak and at high latitudes as well. To avoid biases that may

be introduced by these data and following Bergamaschi et al.

(2009), we limit our study to the observations over land

within 50◦ from the Equator and for which ground altitudes

and model orography differ by less than 250 m. The selected

XCH4 data (Fig. 2b) are then averaged (non-weighted by

their errors) into grid cells for each time step of the model

so that “super-observations” are obtained. Lastly, we remove

outliers by suppressing the super-observations whose depar-

ture to the prior is larger than three times the standard de-

viation of all departures. The mean of these averaged obser-

vations is about 1747 ppb. The uncertainty of the XCH4 re-

trievals is around 2 % (Frankenberg et al., 2006). Following

Pison et al. (2009) and Spahni et al. (2011), a CTM error of

8 % of the observation values, describing the inability of the

model to represent the observations and accounting for cor-

related errors (see Sect. 2.1), is quadratically added to this

retrieval error. In a sensitivity test (Sect. 4.3), a tuning will

be computed based on the objective diagnostics described in

Sect. 2.3: a scalar factor γ is estimated so that the new co-

variance matrix of the observation errors γ R satisfies Eq. (5).

The Japanese satellite GOSAT was launched in January

2009 and has a polar sun-synchronous orbit at 667 km. It

provides a full coverage of Earth every 3 days with a swath

of 750 km and a ground pixel resolution of 10.5 km at nadir.

The TANSO-FTS instrument also observes in the SWIR do-

main. Version 3.2 of the TANSO-FTS XCH4 proxy retrievals

performed at the University of Leicester (Parker et al., 2011)

are used with associated averaging kernels and a priori pro-

files. The XCH4 retrieval algorithm uses an iterative re-

trieval scheme based on Bayesian optimal estimation. The

retrieval accuracy is estimated to be about 0.6 %. As for

SCIAMACHY, CO2 columns at appropriate time and loca-

tion from Chevallier et al. (2010) are then used as a proxy for

light path to retrieve the averaged mole fractions of methane.

A CTM error of 8 % of the observation is quadratically added

to this error (see previous paragraph). Given the similar-

ity between SCIAMACHY and TANSO-FTS measurements,

we apply the data selection of the previous paragraph (see

Fig. 2a), create “super-observations” and remove outliers as

well. The assimilated observations have a mean of 1775 ppb.

Moreover, the covariance matrix for TANSO-FTS R will also

be tuned with a scalar γ in Sect. 4.3.

The European MetOp-A satellite was launched in Octo-

ber 2006 and has a polar sun-synchronous orbit at an al-

titude of 817 km. On board MetOp-A, the Infrared Atmo-

spheric Sounding Interferometer (IASI) measures the ther-

mal radiation coming from Earth and the atmosphere in

the thermal infrared domain (TIR) with a spectral resolu-

tion of 0.5 cm−1 apodized. It provides a full global cov-

erage daily with a swath of 1066 km and a ground reso-

lution of 12 km at nadir. The retrieval algorithm is based

on a non-linear inference scheme (Crevoisier et al., 2009,

www.atmos-chem-phys.net/14/577/2014/ Atmos. Chem. Phys., 14, 577–592, 2014
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(a) TANSO-FTS

(b) SCIAMACHY

(c) IASI

Fig. 2. Satellite “super-observations” (ppb) used in the inversions

for the month of July 2010.

2013). It allows inferring mid-to-upper troposphere columns

of methane for the tropical band between 30◦ S and 30◦ N, in-

cluding both land and ocean, twice a day at 09:30 a.m./p.m.

local time, with an accuracy of 1.2 %. A CTM error of 3 % of

the CH4 mid-to-upper troposphere columns is quadratically

added to the retrieval error. The lower CTM error compared

to TANSO-FTS and SCIAMACHY relates to the lesser verti-

cal extent of the IASI (partial) column retrieval that does not

include the boundary layer. IASI retrievals (Fig. 2c) are also

averaged into super-observations and outliers are removed

as well. This removal suppresses about 10 % of the super-

observations which now have a mean of 1788 ppb. A tuning

of the observation error covariance matrix for IASI is done

as for the other instruments in Sect. 4.3.

4 Results

A series of grid-point inversions covering the period from

June 2009 to December 2010 are computed with the inverse

model presented in Sect. 2 and the data sets presented in

Sect. 3. To avoid edge effects, we study the methane emis-

sions for the one-year period from August 2009 to July 2010.

This time period has been chosen to have all observing sys-

tems available. Posterior states given by the inversions are

then aggregated at global or regional scales and evaluated at

the local scale, i.e. at the surface sites. Each inversion will be

called XXα
γ with XX a two-letter code specific to each ob-

serving system (SC for SCIAMACHY, TA for TANSO-FTS,

IA for IASI and SU for surface sites) and α and γ the multi-

plicative factors associated, respectively, with the covariance

matrices B (see Sect. 3.1) and R (see Sect. 3.3).

4.1 Default configurations

For this first set of inversions, no tuning of inversions errors

is performed. We present and analyse SU1
1, SC1

1, TA1
1 and

IA1
1.

4.1.1 Global and regional budgets

Figure 3a presents the methane global annual emissions and

losses as inferred by the inversions. When compared to the

prior fluxes, the global emission budgets of TANSO-FTS

(TA1
1) and SCIAMACHY (SC1

1) are respectively increased by

3.9 % (+22 Tgyr−1) and 4.2 % (+24 Tgyr−1) (see Table 3).

They are decreased for IASI (IA1
1) and the surface (SU1

1) re-

spectively by 2.3 % (−12 Tgyr−1) and 3.6 % (−19 Tgyr−1).

Chemical losses are increased by 0.4 % (+2 Tgyr−1) for

TA1
1 only. For the other observing systems, they are de-

creased by 1.4 % (−8 Tgyr−1), 0.3 % (−2 Tgyr−1) and 3 %

(−17 Tgyr−1) respectively for SC1
1, IA1

1 and SU1
1. This leads

to global annual growth rates of +39 Tgyr−1, +51 Tgyr−1,

+9 Tgyr−1 and +17 Tgyr−1 respectively for TA1
1, SC1

1, IA1
1

and SU1
1. Uncertainty reductions on global budgets, esti-

mated with a Monte Carlo approach as detailed in Sect. 2.1,

are of 41 %, 51 %, 56 % and 60 % respectively for TA1
1,

SC1
1, IA1

1 and SU1
1 (see Table 2). The global posterior un-

certainty is inferred from the uncertainty reduction and the

global prior uncertainty of 51 Tgyr−1 and completes the de-

scription of posterior global annual estimates of methane.

The global emission budgets amount to 576 ± 30 Tgyr−1,

578±25 Tgyr−1, 542±22 Tgyr−1 and 535±20 Tgyr−1 re-

spectively for TA1
1, SC1

1, IA1
1 and SU1

1. As shown by Fig. 3a,

with error bars representing the 1-sigma standard deviations

(68 % of the posterior distribution), the global emissions

and chemical losses of methane inferred from the different
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(a)

(b)

Fig. 3. Global emissions (circles) and losses (triangles) for the con-

figurations TA1
1

(blue), SC1
1

(red), IA1
1

(green) and SU1
1

(violet) (a)

and for TA1
1

(dark blue), SC1
1

(red) and bias-corrected configura-

tions TA1
1
CAF (light blue) and SC1

1
CAF (magenta) (b). Numbers

describe the global growth rates in Tg yr−1 inferred by the inver-

sions. Error bars represent the posterior uncertainties estimated with

the Monte Carlo study (see Section 2.1).

observing systems are statistically consistent with each other,

in the sense that they agree within at least two sigmas.

The methane emissions are then aggregated over large

continental regions (shown in Fig. 4a and adapted from Gur-

ney et al., 2002). As shown by Fig. 4b, the three satellites

show a very good agreement for 8 regions: North American

Boreal, USA, South American Temperate, Southern Africa,

West Europe, Eurasian Boreal, Middle East and Australia. In

some of them (USA, South American Temperate, Southern

Africa, West Europe, Eurasian Boreal and Middle East), this

agreement combined with significant uncertainty reductions

reflects a good improvement of our knowledge of methane

emissions. For some other regions (North American Boreal

and Australia), the inversion process infers marginal incre-

ments and very weak uncertainty reductions for the three

satellites, meaning that we do not really improve our knowl-

edge of methane emissions for these regions. Large differ-

ences are found between satellite- and surface-based inver-

sions for regions USA, South American Temperate and South

(a) Sub-continental regions inspired from Gurney et al. (2002)

(b)

(c)

Fig. 4. (a) Sub-continental regions inspired from Gurney et

al. (2002). Regional methane emissions for default configurations

TA1
1

(blue), SC1
1

(red), IA1
1

(green) and SU1
1

(violet) (b) and for

configurations TA1
1

(dark blue), SC1
1

(red) and bias-corrected con-

figurations TA1
1
CAF (light blue) and SC1

1
CAF (magenta) (c). Error

bars represent the posterior uncertainties estimated with the Monte

Carlo study (see Section 2.1).

East Asia. The surface-based inversion does not agree with

the satellite ones, especially in the Tropics where there are

few surface data. It seems that the increments found in re-

gion USA by the surface-based inversion are highly overes-

timated. Large differences between IASI and the other ob-

serving systems are found in regions South East Asia and In-

donesia. The IASI-based inversion achieves high uncertainty

reductions for these regions (64 % in Indonesia and 51 % in

South East Asia). However, the uncertainty reduction com-

putation only accounts for random errors but biases in the

transport model for this area may degrade the actual perfor-

mance. Therefore, the differences are more likely due to a

misattribution of the emissions in these regions because of a
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Table 2. Uncertainty reduction (%) on methane emissions for the

default configurations.

Regions TA1
1

SC1
1

IA1
1

SU1
1

North American Boreal 07 00 00 41

USA 18 15 10 35

South American Tropical 21 31 48 16

South American Temperate 41 37 43 33

Northern Africa 53 61 63 49

Southern Africa 13 12 24 29

West Europe 15 16 04 51

East Europe 21 15 00 46

Eurasian Boreal 11 17 06 45

Middle East 30 24 07 13

South Asia 35 44 35 33

South East Asia 39 32 36 51

Australia 01 00 02 26

Indonesia 29 20 64 38

Global 41 51 56 60

larger footprint of the IASI free tropospheric column com-

bined with a lack of retrievals during the monsoon period.

4.1.2 Initial conditions

2-D scaling factors adjust the initial conditions of CH4 and

MCF on 1 June 2009 at 00:00 UTC (see Sect. 3.1) and there-

fore influence the mass budget of the inversion. After the in-

versions SC1
1, TA1

1, IA1
1 and SU1

1, the initial CH4 columns

show increments of about 1.1±0.6%, 0.7±0.6%, 0.8±1.0%

and 0.8±0.7% respectively. The spatial distribution of these

columns is very different between SCIAMACHY and the

other observing systems. Figure 5b shows a decrease of the

amplitude of the columns in the two hemispheres that can

reach 3 % for SCIAMACHY, with a slight increase in the

Tropics (less than 1 %). However, for TANSO-FTS, IASI and

the surface sites, Fig. 5a, c, 6a show an increase especially

located in the Southern Hemisphere that can reach 4 % for

IASI, 3 % for TANSO-FTS and 2 % for the surface.

4.1.3 Fit to surface measurements

The fit to the surface data is summarized by the absolute

mean of the biases (called mean bias hereinafter) and the

root mean squares of the bias (called rms hereinafter) (last

2 columns of Table 3) between the posterior states ob-

tained by using the different data sets, respectively TA1
1,

SC1
1, IA1

1 and SU1
1, and their equivalent seen at each sur-

face site (see Figs. 7a–c and 8a respectively). The mean bias

obtained by TA1
1 is 4.1 ppb, which is well bellow the SC1

1

one (39.1 ppb) and the IA1
1 one (13.0 ppb), and close to the

SU1
1 one (0.8 ppb). The rms obtained by TA1

1 is 15.4 ppb, the

one by SC1
1 is 40.5 ppb, the one by IA1

1 is 20.0 ppb and the

one by SU1
1 is 5.5 ppb. Note that for SU1

1, surface observa-

(a) TA1

1

(b) SC1

1

(c) IA1

1
28

Fig. 5. Increments of the initial conditions of methane for the vari-

ous inversions expressed as a fraction of the prior.

tions are assimilated by the inverse system, therefore explain-

ing low rms and mean-bias values. Only the SCIAMACHY-

based inversion does not result in improved agreement with

surface measurements when compared to the prior mean bias

(24.3 ppb) and rms (28.1 ppb).
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(a) SU1

1

(b) TA1

1
CAF

(c) SC1

1
CAF29

Fig. 6. Increments of the initial conditions of methane for the vari-

ous inversions expressed as a fraction of the prior.

4.2 Bias correction

A bias correction as a function of the air mass factor AF (see

Sect. 2.2) is applied to TANSO-FTS and SCIAMACHY re-

trievals, as presented in Sect. 3.3. SC1
1CAF and TA1

1CAF rep-

resent the inversions using bias-corrected satellite retrievals

(a) TA1

1

(b) SC1

1

(c) IA1

1

Fig. 7. Fit at surface sites (unitless) represented as the ratio of the

posterior to the prior values of bias (in absolute values) between

simulated and observed methane concentrations.

of SCIAMACHY and TANSO-FTS respectively. As shown

by Fig. 9a, b, the linear model is 4.0 × AF − 34.0 ppb for

TANSO-FTS and 13.7 × AF − 26.6 ppb for SCIAMACHY.

SC1
1CAF and TA1

1CAF are compared to SC1
1 and TA1

1 from

Sect. 4.1 to evaluate the impact of such a correction.

4.2.1 Global and regional budgets

At the global scale, as shown by Fig. 3b and Table 3, the

bias correction decreases both posterior emissions and losses

for TANSO-FTS respectively by 1 % (6 Tgyr−1) and 0.6 %

(3 Tgyr−1), leading to a decrease of 7 % in the annual growth
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(a) SU1

1

(b) TA1

1
CAF

(c) SC1

1
CAF

31

Fig. 8. Fit at surface sites (unitless) represented as the ratio of the

posterior to the prior values of bias (in absolute values) between

simulated and observed methane concentrations.

rate (36 Tgyr−1 instead of 39 Tgyr−1 without correction).

For SCIAMACHY, the correction increases both posterior

emissions and losses respectively by 0.7 % (4 Tgyr−1) and

0.2 % (2 Tgyr−1), leading to an increase of 6 % in the an-

nual growth rate (53 Tgyr−1 instead of 51 Tgyr−1 without

correction). The correction induces increments of the same

order of magnitude for the two satellites but these do not

have the same signs. The bias correction in TANSO-FTS

retrievals shows methane emissions, growth rates and fit to

surface sites closer to the surface-based inversion ones. For

SCIAMACHY, the correction does not improve the agree-

(a)

(b)

Fig. 9. Linear regression for SU1
1

posterior state (model) minus

TANSO-FTS observations (a) or SCIAMACHY observations (b)

as a function of the air mass factor (AF ).

ment between the posterior state and the surface in terms of

methane emissions and growth rates even though improves

the fit to independent surface sites (see Fig. 8c and Table 3).

At the regional scale, when compared to the non-corrected

inversion TA1
1, posterior methane emissions of TA1

1CAF are

slightly increased or decreased, getting closer to the ref-

erence inversion for all regions. As shown by Fig. 4c,

the emissions are increased especially in mid- and high-

latitudes, such as in region East Europe (+13 %). They are

decreased especially in the Tropics, such as in region Indone-

sia (−7.6 %). For SCIAMACHY, the correction triggers in-

creases or decreases following the reference increments for

almost all regions, with exceptions particularly in regions

South American Tropical (−4 %) and South American Tem-

perate (+4 %). The correction only infers marginal variations

of methane emissions and does not improve the agreement

between SC1
1CAF and the surface-based inversion at the re-

gional scale. As surface measurements are especially located

in mid- and high-latitudes, it makes sense that the largest in-

consistencies with the reference concern the Tropics.
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Table 3. Global emissions, chemical losses, growth rates of methane, fit to surface sites described by the absolute mean bias and rms. XXα
γ

where XX is a two-letter code specific to each observing system (SC for SCIAMACHY, TA for TANSO-FTS, IA for IASI and SU for surface

sites); α and γ are the multiplicative factors associated with the covariance matrices B (see Sect. 3.1) and R (see Sect. 3.3).

Name Emissions Loss Growth rate Mean bias Rms

Tg yr−1 Tg yr−1 Tg yr−1 ppb ppb

PRIOR 554 ± 51 535 ± 51 19 ± 50 24.3 28.1

SU1
1

535 ± 20 518 ± 51 17 ± 31 0.8 5.5

TA1
1

576 ± 30 537 ± 51 39 ± 38 4.1 15.4

SC1
1

578 ± 25 527 ± 51 51 ± 36 39.1 40.5

IA1
1

542 ± 22 533 ± 51 9 ± 35 13.0 20.0

TA1
1
CAF 570 ± 30 534 ± 51 36 ± 23 2.7 13.7

SC1
1
CAF 582 ± 25 529 ± 51 53 ± 22 23.4 26.4

SU0.6
1

538 ± 15 519 ± 30 19 ± 24 9.1 10.3

TA0.6
0.075

565 ± 21 537 ± 30 28 ± 25 2.2 16.1

SC0.6
0.2

631 ± 16 549 ± 30 83 ± 28 39.7 44.3

IA0.6
0.22

530 ± 16 530 ± 30 0 ± 20 15.5 23.6

TA1.5
0.075

568 ± 29 541 ± 71 27 ± 48 1.9 15.2

IA1.5
0.22

549 ± 36 536 ± 71 13 ± 50 12.4 19.2

4.2.2 Initial conditions

The initial columns of the two configurations using TANSO-

FTS observations have the same spatial distribution. How-

ever, the bias correction infers larger negative increments in

the Northern Hemisphere and weaker positive increments in

the Southern Hemisphere. The intial columns of the two con-

figurations of SCIAMACHY are dominated by a strong de-

crease compared to the prior (see Fig. 6c) with the largest

negative variations (around 3 %) located in the Northern

Hemisphere. The CH4 initial columns vary by 1.1 ± 0.6%

without correction (SC1
1) and by 0.8 ± 0.5% with the bias

correction (SC1
1CAF). The bias correction seems to make the

spatial distribution of the SC1
1CAF initial conditions agree

more with TA1
1 or TA1

1CAF initial conditions (Figs. 5a, 6b),

which show a positive anomaly in the Tropics of the Southern

Hemisphere.

4.2.3 Fit to surface measurements

For TANSO-FTS, the mean bias between the model and the

surface observations is decreased from 4.1 ppb to 2.7 ppb

(see Table 3) and the rms is slightly reduced from 15.4 ppb

to 13.7 ppb after the bias correction. The bias correction

marginally improves the fit to surface sites in the Northern

Hemisphere where five more sites show better agreement be-

tween surface measurements and the posterior state of the

corrected version TA1
1CAF (Fig. 8b). For SCIAMACHY, the

fit to the surface sites is slightly improved in the mid-latitudes

and better in the Tropics (see Figs. 7b and 8c). The bias

correction improves the fit for 10 sites located in the two

hemispheres while the mean bias is reduced from 39.1 ppb

to 23.4 ppb and the rms is reduced from 40.5 ppb to 26.4 ppb

but still not better than the prior (mean bias = 24.3 ppb and

rms = 28.1 ppb).

4.3 Tuning of error statistics

4.3.1 Diagnostics on default configurations

The results of the diagnostics introduced in Sect. 2.3 and ap-

plied to the default configurations SU1
1, SC1

1, TA1
1 and IA1

1

are presented in Table 4. They suggest that prior error vari-

ances are overestimated by almost 2-fold for the surface

(ratiob = 1.68) and SCIAMACHY (ratiob = 1.82) while they

are underestimated by 1.5 for TANSO-FTS (ratiob = 0.64)

and IASI (ratiob = 0.69). The differences among prior error

diagnostics for the four observing systems likely stems from

the use of a single scaling factor for the whole matrix that

may have a more complex structure in reality. Each observ-

ing system suggests a scaling factor in this context, based on

its own spatial and temporal sensitivity.

The observation errors seem to be fairly well repre-

sented in our system for the surface (ratioo = 0.79) even

though they are overestimated by 13-fold for TANSO-FTS
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(a)

(b)

Fig. 10. Global emissions (circles) and losses (triangles) (a) and

regional emissions (b) for the “optimal" configurations T A0.6
0.075

(blue), IA0.6
0.22

(green) and SU0.6
1

(violet). Numbers describe the

global growth rates in Tg yr−1 inferred by the inversions. Error

bars represent either the prior uncertainties (α = 0.6 in black and

α = 1.5 in dark green) or the posterior uncertainties estimated with

the Monte Carlo study (see Sect. 2.1).

(ratioo = 13.69), by 5-fold for SCIAMACHY (ratioo = 5.00)

and by 4-fold for IASI (ratioo = 4.41). The initial value of

ratioo for the satellites is related to our use of a diagonal R,

with inflated variances qualitatively compensating for miss-

ing correlations (see Sect. 2.1). It should be noted that the

diagnostics do not account for this numerical artifact.

The full variances are slightly overestimated for the sur-

face (ratio = 1.54) while they are overestimated by 4-fold for

TANSO-FTS and SCIAMACHY (ratio = 4.24 for TA1
1 and

ratio = 4.60 for SC1
1) and by 2-fold for IASI (ratio = 2.12 for

IA1
1).

From these diagnostics, we perform two tuning experi-

ments series where we tune observation and prior error vari-

ances. We evaluate the results based on their agreement with

our reference system, i.e. the surface network.

Table 4. Ratios (unitless) of the observation (ratioo), prior (ratiob)

and full (ratio) variances inferred from the diagnostics presented in

Sect. 2.3. These quantities are respectively defined as the ratios be-

tween prescribed (varo, varb and var = varo + varb) and associated

diagnosed (diago, diagb and diag) error variances and represent the

goodness of the error statistics in the inversion system. Good statis-

tical consistency is obtained when the ratios are close to 1.

NAME ratioo ratiob ratio

SU1
1

0.79 1.68 1.54

TA1
1

13.69 0.64 4.24

SC1
1

5.00 1.82 4.60

IA1
1

4.41 0.69 2.12

SU0.6
1

0.74 0.94 0.90

TA0.6
0.075

1.17 0.38 0.49

SC0.6
0.2

1.06 0.93 1.03

IA0.6
0.22

1.00 0.41 0.58

TA1.5
0.075

1.11 0.95 0.96

IA1.5
0.22

1.00 1.01 1.00

4.3.2 Tuning experiments 1

In the first experiment, we select the prior error variance

(α = 0.6 = 1/1.68) suggested by our reference observing sys-

tem (SU1
1). It avoids making the prior error matrix vary with

the observing system. For the satellites, the observation er-

rors are tuned in order to satisfy Eq. (5). For the surface, the

observation error variances are not tuned as they are rather

good already (ratioo = 0.79 for SU1
1). This tuning improves

all diagnostics for the surface (ratioo = 0.74, ratiob = 0.94

and ratio = 0.90 for SU0.6
1 see Table 4) and SCIAMACHY

(ratioo = 1.06, ratiob = 0.93 and ratio = 1.03 for SC0.6
0.2) but

does not improve the agreement with the reference in terms

of mole fractions (see Table 3). For the surface, the fit to as-

similated surface sites is degraded. This result is expected as

decreasing prior errors limits the possibility of the inversion

to deviate from the prior to better fit the assimilated obser-

vations. For SCIAMACHY, there is no real improvement of

the fit to surface sites after inversion in terms of mean bias

(39.7 ppb) and rms (44.3 ppb) when compared to the prior

statistics of the bias. This suggests that the observation er-

ror variances of SCIAMACHY have a more complex struc-

ture than the one tuned here. Otherwise, the observation error

diagnostics for TANSO-FTS (ratioo = 1.17 for TA0.6
0.075) and

IASI (ratioo = 1.00 for IA0.6
0.22) are both improved while the

prior error diagnostics are degraded for both satellite instru-

ments (ratiob = 0.38 for TA0.6
0.075 and ratiob = 0.41 for IA0.6

0.22),

confirming the fact that the prior error configuration satis-

fying for the surface does not fit TANSO-FTS and IASI.
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However, the agreement with independent surface sites is

improved in terms of mean bias (2.2 ppb) for TANSO-FTS

only (the rms is stable at 16.1 ppb) and is degraded for IASI

(mean bias = 15.5 ppb and rms = 23.6 ppb).

4.3.3 Tuning experiments 2

In the second experiment, we tune both prior and obser-

vation error variances following the diagnostics specific to

TANSO-FTS and IASI. As suggested by the diagnostics ap-

plied on the default configurations, we set α = 1.5 for prior

errors (ratiob = 0.64 for TANSO-FTS and ratiob = 0.69 for

IASI) and the observation errors are independently tuned

(ratioo = 13.69 for TANSO-FTS and ratioo = 4.41 for IASI).

The results of the diagnostics for the configurations TA1.5
0.075

and IA1.5
0.22 are presented in Table 4. They suggest that all er-

ror variances are fairly well prescribed in our system now

(ratio = 0.96 for TA1.5
0.075 and ratio = 1.00 for IA1.5

0.22). The fit

to surface sites are improved by this tuning in terms of

mean bias and rms for both instruments when compared to

the default configurations (i.e. when α = γ = 1; see Table 3).

However, for TANSO-FTS, the mean bias and rms are sim-

ilar to the ones obtained by the first tuning experiment with

prior error diagnostics degraded (i.e. configuration TA0.6
0.075),

meaning that prior error variances have a minor effect on

the quality of the inverted fluxes for this instrument. This is

not the case for IASI, for which the prior error configuration

has a larger impact on the inverted fluxes. When compared

to the first experiment (i.e. IA0.6
0.22), the growth rate obtained

for IASI is increased by 13 Tgyr−1, better agreeing with the

surface-based inversions while the fit to surface sites is also

improved (mean bias = 12.4 ppb and rms = 19.2 ppb).

5 Discussion

The two satellite instruments observing in the SWIR do-

main, TANSO-FTS and SCIAMACHY, infer larger emis-

sions than the other two observing systems, respectively by

+41 Tgyr−1 and +43 Tgyr−1 for the default configurations

(i.e. with α = γ = 1), when compared to the surface global

budget of 535 Tgyr−1. This overestimation can be partly ex-

plained by a bias identified as a function of the air mass factor

in the satellite products, respectively of 4.0 × AF − 34.0 ppb

and 13.7 × AF − 26.6 ppb. Correcting this bias improves the

agreement between TANSO-FTS and the surface at global

and regional scales and the fit to surface measurements as

well. However, given the modesty of the bias and the un-

certainty of the linear regression, its need is not obvious.

For SCIAMACHY, the bias correction has a slight impact

on the inverted methane emissions and does not improve the

agreement with the surface at global and regional scales. It

has a larger impact on the fit to surface measurements in

terms of mole fractions, which is well improved when com-

pared to the default configuration. However, for the bias-

corrected configuration SC1
1CAF, the mean bias (23.4 ppb)

and rms (26.4 ppb) are slightly improved by this inversion,

when compared to the prior ones, but remain large. Such

a correction is needed for SCIAMACHY, albeit not sufficient

to reconcile the posterior state with the reference.

When comparing configuration TA1.5
0.075 with the other test

configuration (e.g. TA0.6
0.075), the fit to surface sites is sim-

ilar since mean bias and rms are very close. The two sets

of tuning experiments indicate that the information inferred

from TANSO-FTS is robust in our system in terms of mole

fractions and growth rates. IASI seems to be more sensi-

tive to prior error assignment as methane emissions vary by

19 Tgyr−1 and growth rates by 13 Tgyr−1 among all sen-

sitivity tests. Indeed, with a tuning specific to this satellite

instrument, one gets a stable agreement with independent

surface sites. Based on the fit to surface measurements, the

inversions TA0.6
0.075 and IA1.5

0.22 are taken as optimal configura-

tions obtained from the tuning procedure. The corresponding

emission and loss budgets are summarized in Fig. 10. For all

SCIAMACHY sensitivity tests, the mean bias and rms are

worse than the prior ones, meaning that the inversion pro-

cess does not improve the agreement with the surface mea-

surements for this satellite. It seems that SCIAMACHY can-

not agree with the reference by simply adjusting mean prior

and observation error variances. This points to a complicated

structure of the retrieval errors, at least for the period studied,

possibly linked to the progressive degradation of the instru-

ment. Direct conclusions regarding SCIAMACHY for earlier

time periods cannot be drawn from our study, which focuses

on years 2009–2010, the only overlap period between SCIA-

MACHY and GOSAT.

For all observing systems, the largest emissions are located

in region South American Tropical and may be explained by

methane emissions from wetlands and from biomass burn-

ing further to the severe drought in Amazonia in 2010. Large

emissions are inferred as well in region South Africa, which

are probably also caused by biomass burning. IASI differs

from the other two observing systems in some regions. An

overestimation of the emissions (when compared to the ref-

erence) in Indonesia compensates an underestimation of the

emissions in Asia, suggesting a misattribution of the emis-

sions in these regions likely due to the large footprint of the

mid-to-upper tropospheric column combined with a lack of

retrievals during the monsoon period, i.e. between June and

September. Another underestimation of the emissions in re-

gion South American Tropical is seen as well, also due to

a lack of IASI retrievals over this region between November

2009 and March 2010. This does not allow inferring the high

emissions found by TANSO-FTS and the surface data during

the drought of 2010.

The three observing systems (TANSO-FTS, IASI and

the surface sites) still show good consistency in terms of

emissions, meaning we can trust the main information re-

trieved from them. However, in the Southern Hemisphere
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the fit is not improved for the sites optimized during the

surface-based inversions. Interestingly, we found a similar

problem when inverting CO emissions from the Measure-

ments Of Pollution In The Troposphere (MOPITT) on board

NASA’s Terra satellite (Fortems-Cheiney et al., 2011). These

two results may be partly explained by the too small ex-

change time of this version of the LMDz transport model

from the Northern Hemisphere to the Southern Hemisphere

(Patra et al., 2011), which likely induces an artificial increase

of the sources inferred in the North and an increase of the loss

in the South to match the surface observations.

6 Conclusion

Using objective tuning methods for the error statistics, we

show that one can achieve improved consistency between

CH4 emission and loss inferred from different observing sys-

tems. An exception is SCIAMACHY, which seems to be par-

ticularly difficult to exploit over the period 2009–2010. The

tuned covariance matrix is more optimistic about the quality

of the prior fluxes than our initial estimates when assimilat-

ing the global TANSO-FTS or the global surface network,

whereas it is more conservative when assimilating the trop-

ical IASI data. The observation error, initially set at around

8 % for TANSO-FTS and around 3 % for IASI, is reduced

by 13-fold for TANSO-FTS and by 4-fold for IASI. The

global TANSO-FTS, IASI and surface data budgets from the

improved configurations are respectively 565 ± 21 Tgyr−1,

549±36 Tgyr−1 and 538±15 Tgyr−1 for the period August

2009–July 2010. To assess the current methane budget with

TANSO-FTS, IASI and the surface sites, one can keep one

or two of these observing systems out of the inversion for in-

dependent evaluation, as we propose here. Alternatively, one

can combine them together to better reduce uncertainties in

the methane cycle, provided the tuning of the prior error is

regionalized.
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