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1. Introduction. Let 'J = {F(x, 0): 9 e @) be a stochastically 

increasing family of distributions such that the parameter space ® is 

a subset of the real line, for every 9 e@ F(x, e) is absolutely 

continuous w.r.t. a fixed (Lebesgue or counting) measure, and F(x, e) 

depends on 9 only through its functional form. Let 6: R
2 
~ R

1 
be 

the distance function considered by Bechhofer, Kiefer and Sobel (3: p.37] 

satisfying the following conditions: (i) 6(a, b) ~ O, (ii) &{a, b) = O 

iff a= b, {iii) &{a, b) = o{b, a) and o{a, b) is strictly increasing 

(decreasing) in a for fixed b when a~ b {a~ b). Then for any two 

members F(x, e
1

) and F(x, 9
2

) in J , the distance between them can 

be reasonably measured by 6(9
1

, 0
2

). In particular o(a, b) = ja - bl 

can be used for the location parameter family 

can be used for the scale parameter family. 

and 6{a, b) = I log ~I 

We note that in general 

6 is not a metric because the triangle inequality is not assumed. However, 

the triangle inequality is satisfied in most applications, including the 

location and scale parameter families and the exponential family. 

We first formulate the following ranking and selection problem in 

the usual way: Let n
1

, n
2

, ••• , TTk {k ~ 2) be_ k populations with distri­

butions F{x, 9i) e J (i = 1, 2, ••• , k), and let 9[l] ~ 9(2 ] ~ ••• ~ 9[k] 

denote the ordered parameter values. For arbitrary but preassigned * 6 > 0 

let O be a subset of the product parameter space such that 

(1.1) 

Then for every 1 e O the small parameters e[l]'•••, e[k-l] are sufficiently 

distinct from the large parameter e[k]· The statistical problem concerned 



is to find a procedure R for the selection of the "greatest" population 

associated with parameter 9[k]· Since there is no knowledge about 1, 

it is desired to have the probability of correct selection (cs) under R 

uniformly controlled in n such that 

(1.2) 

where 

inf P i[CS IR] ;::: y 
teO 

1 
ye (k, 1) is arbitrary but preassigned. 

Throughout this paper we shall consider only single-stage ranking 

procedures with an equal number of observations from each one of the k 

populations. For fixed n let (Xj} and {x
1

j} (j = 1, 2, ••• , n) be 

independent random variables with distributions F(x, 0) and F(x, e
1

) 

(i = 1, 2, ••• , k), respectively. Let 

valued statistic and 

t = t(n) = T(x1, x
2

, ••• , xn), 

T = T(n): R -+ R 
n 1 

be a real-

and denote G (y, B), g {y, B) to be the corresponding c.d.f. and density 
n n 

functi1n of t. It is well-known ([l] and [14]) that under reasonable 

assumptions about gn(y, B) the natural decision rule "always select the 

population corresponding to the maximum of {t
1

, t
2

, ••• ,. tk)" uniformly 

minimizes the risk among a class of invariant decision rules based on 

{t
1

, t
2

, ••• , tk). Hence if thl ranking procedure R depends on (X .. } 
l.J 

only through {t
1

, t
2

, ••• , tk), then R is completely specified by T. 

We say that 

Definition 1. T is consistent w.r.t. ( 3, 6) * if for every 6 > 0 and 

1 * every y e (k' 1) there exists an N = N(J, 6 , y) such that (1.2) holds 
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for every n > N. 

An equivalent statement to Definition 1 is that the probability on 

the 1.h.s. of (1.2) converges to 1 uniformly in 1 for 1 e O; i.e., 

(1.3) lim inf P
11
,[csjR] = 1. 

n- oo te:O ..t.. 

Under most circumstances the ranking statistic T is chosen to be a 

consistent estimator of e. In particular the means procedure {under 

which T is the sample mean) has been widely accepted for a large number 

of families of distributions. But in general a consistent estimator of 

e is not always consistent for the ranking and selection problem. More­

over, the consistency of a ranking statistic for a certain family of distri­

butions also depends on the distance function 6.· The following are some 

typical examples: 

(A) If· 'J is the Poisson family with parameter 0, then the means 

procedure is not consistent w.r.t. 6(0[k-l]' e[k]) = e[k]- e[k-1] or 

e[k] 
6(0[k-l]' e[k]) =loge {see (17]). 

[k-1] 
(B) If 3 is the Cauchy family with location parameter 0, then the 

means procedure is not consistent but the procedure based on the sample 

medians is consistent. 

(c) If J is the family of uniform distributions on (0, 0] for 

e e: 

log 

(~, oo), then the means procedure is consistent w.r.t. 6(0[k-l]' e[k]) = 

0[~~~] , but it is not consistent w.r.t. 6(0[k-l]' e[k]) = e[k]- e[k-l]" 

In Section 2 we consider the conditions for the consistency of single-

stage ranking procedures in general. It is first shown that the consistency 

of a ranking procedure does not depend on the number of populations involved; 

and that the consistency of a ranking procedure is related to the uniform 

- 3 -
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consistency of a testing hypothesis problem (Theorem 1). Sufficient 

conditions for the consistency of ranking procedures are also given in 

terms of convergence in distributions uniformly in e to a degenerate 

distribution {Theorem 2) or to the standard normal distribution (Theorem 3). 

The conditions on uniform convergence in e can be found in a paper of 

Parzen [ 16]. 

In Section 3 the general conditions are applied to investigate the 

consistency of individual ranking procedures which include the means 

procedure, the procedure based on the maximum likelihood estimator and 

the procedure based on linear combinations of order statistics for location 

parameter family. Consistency of ranking procedures for the exponential 

family is investigated in Section 4. 

2. Some General Results. We shall follow the notations developed in 

Section 1 and we shall assume that G (y, e) is continuous in y for 
n 

fixed e e· e. If G (y, B) 
n 

is discrete, randomized decision rules should 

be considered and most of the following results can be modified easily. 

We shall also assume that g = (Gn(y, e): e e @} is a stochastically in­

creasing (SI) family of distributions. However, the relationship between 

the SI property of J and the SI property of 8 is studied in the 

Appendix of this paper. It is shown that if t(n) satisfies the condition 

given in (A.1), then 3 is SI will imply Q is SI and the above assumption 

is not required. 

We first show that the consistency of a ranking statistic T does 

not depend on the number of populations involved. 

Lennna 1. T is consistent w.r.t. C:J, 6) for any k if£ T is consistent 

w.r.t. ( 3-' 6) for k = 2. 

- 4 -
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Proof: To consider the probability of correct selection under the procedure 

R based on T we can, without any loss, assume that ek = e[kJ· 

* 

For 

i = 1, 2, ••• , (k-1) let Oi = {(e1 , Bk): 6(0i' Bk)~ 6) and Ai= 

Then for every k and every 1 in the product parameter space the 

probability of correct selection is 
k-1 

P
1

[cs IRJ = Pi[ n A. J. 
i=l l. 

[t. < tk]. 
l. -

It suffices to show that if inf P(e.,e )(Ai) - 1 as n - oo for 
(e.,ek)en. 1. k k-1 

every i = 1, 2, ••• , (k-1), 
1 1 

then inf Pt.[ n Ai] - 1 as n - oo • 

.ten i=l 
Let e > O be arbitrarily small.but fixed. Then for every i there 

·exists an Ni such that for every n > Ni we have 

hence 

inf P( )(A.)> 1 - e 
(e e) n e.,ek 1. 

i' k e i 1. 

(
e s~p) ~ P(e.,ek)(Ai) < e. 
i' k €Hi l. 

Since t
1

, t
2

, ..• , tk are independent it is easy to see that for every 

1 in the product parameter space P.l(Ai) depends on 1 only through 

Therefore for every n > N = max N we have 
l~i~(k-1) i 

k-1 k-1 k-1 
inf p '" [ n Ai] = 1 - sup p ,,, [ u Ai] > 1 - sup ~ P1(A. ) 
ten .t. i=l ten ..t. 61 .ten i=l 1. 

k-1 
> 1 - _6 sup Pi(Ai) 

1.=l t_eni 

> 1 - (k-l)e 

which completes the proof. 

Following from this lemma we shall, without loss of generality, 

restrict our attention to the case k = 2 for the remainder of this paper. 

We first observe a relationship between the consistency of ranking procedures 

- 5 -
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and the uniform consistency of hypothesis-testing procedures. Consider 

a two-sample testing hypothesis problem H
1

: e
1 
~ e

2 
v.s. H

2
: e

1 
> e

2 

where the test $ depends on (xij }, j = 1, 2, ••• , n; i = 1, 2 only 

through (tl' t2) and 

(2.1) ~ = ~(tl, t2) 
.f 1 if tl ~ t2 = 
l 0 otherwise, 

where H
1 

is accepted iff ~ = 1. Then for every t in the product 

parameter space the expected value of ~ is 
00 

J Gn(t, e
1

)dGn(t, e
2

). Denote 
-00 

(2.2) 

The test ~ is said to be uniformly consistent on n(l) U n<2 ) if 

converges to one and sup(
2

) El~ converges to zero as 

ten 
n - oo. 

Theorem 1. T is consistent w.r.t. (C,, 6) iff the test 

(2.1) is uniformly consistent on O(l) U 0<2) for every 

~ defined in 

* 

Proof: We first note that 

but fixed o* > O, since 

6 > o. 

n
2 

is selected iff ~ = 1. For arbitrary 

0 = 0< 1) U n<2 ) the probability of correct 

selection of the ranking procedure based on T is at least (1 - e) iff 

and This completes the proef. 

The necessary and sufficient conditions for the existence of uniformly 

consistent tests have been studied.by Berger [4], Kraft [10] and others. 

Some of those conditions require the compactness of the parameter space @. 

In many applications it is not easy in general to justify whether a certain 
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test is uniformly consistent even if it is known that a uniformly consistent 

test exists. However, if the power of the test depends on (e
1

, e
2

) only 

through 6(0
1

, e
2

) and it has the desired monotone property, then a 

consistent test will be uniformly consistent. In particular, if the 

test is consistent and has certain invariant property, then it is uniformly 

consistent. 

Corollary. Let there exist a group G of transformations on )t = ((t
1

, t
2

)} 

and let a be the induced group of transformations on the product 

parameter space. If the test ~ defined in (2.1) is invariant and if the 

distance function 5 is a maximal invariant w.r.t. G,, then T is 

consistent w.r.t. ( j, 6)iff (1) the test ~ is consistent, (2) the 

power of the test $ is monotonically increasing (decreasing) in 

5 ( e 
1 

, e 
2 

) for ( e 1 , e 
2 

) e ri 1 ) ( o ( 2 ) ) • 

Proof: Let U be a maximal invariant w.r.t. a. If $ is invariant 

and .6 is a maximal invariant w.r.t. a, then $ depends on ( tl' t2) 

only through u and the distribution of u depends on (el, e2) only 

through o(e
1

, e
2

)'. Hence the power of $ depends on (el, e2) only 

through 5(e
1

, e
2

) and $ is uniformly consistent on 0< 1) U 0<2 ) iff 

$ is consistent and the power function of $ has the desired monotone 

property. 

We note that in particular the above corollary applies to location 

and scale parameter families. 

We now observe f nature of -the ranking and selection problems. If 

a ranking statistic T is consistent, then any linear transformation 

T' = aT + b (a> 0) of T is also consistent. We say 

Definition 2. Two ranking statistics T and T' are equivalent if 

- 7 -
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(2.3) 

holds for every n and every i in the product para.meter space. 

Clearly if T' is a strictly monotonically, incTeasing function of T, then 

T and T ' · 1 d T ' are equiva ent an is consiste~t w.r.t. ('J, 6) iff T 

is. Hence to consider the consistency of different ranking procedures 

we need to consider only those statistics which are not equivalent. In 

most cases T is such that converges to 'T'(e) in probability 

as n - oo where 'T' is a continuous, strictly increasing function of e. 

Let T' = ~-l(T). Since convergence in probability is preserved by 

continuous mappings, it follows that t'{n) converges to 8 in probability 

as n - oo. Hence without any loss we can consider T to be a consistent 

estimator of e in the following theorem. 

Theorem 2. Assume that 6 is a metric, i.e., in addition to conditions 

{i) - {iv) on 6 the triangle inequality is also satisfied. If, as 

n - oo, o(t{n), e) converges ·to O in probability uniformly in e, 

then T is cons is tent w. r. t. ( j , 6). 

Proof: Let (e
1

, e
2

) be a poi~t in the product parameter space. For 

* arbitrary but fixed 5 > O denote 

* 
{x: o(x, 6 

Al = 81) < 2} and 

* 
A2 = fx: o{x, e2) < ~ }. 

Then by conditions (i) - {iv) on 6 both A
1 

and A
2 

are intervals on 

the real line and e
1 

(e
2

) is an interior point of A
1

(A
2

). Following 

from the triangle inequality if there is an s e A
1 

n A
2

, then we must have 

* o(e
1

, e
2

) ~ o{s, e
1

) + o{s, e
2

) < o. 

- 8 -
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... 

Therefore 1 = (e
1

, e
2

) e O implies A
1 

n A
2 

= $. For arbitrary but 

fixed e > 0 since there exists an N such that 

(2.4) 
* 

P
8
[o(t(n), e) < ~ ] ~ 1 - e 

for every e e e whenever n > N, it follows that for every le O(l) 

we have 

whenever n > N. Similar argument holds for t e 0<
2

). 

An equivalent statement of (2.4) is that the sequencesof distributions 
i 

of o(t(n), e) converges to the distribution function 

(2.5) K(x) = { O 
1 

for x < 0 

X > 0 

uniformly in e. Some general conditions on the convergence of a family 

of sequence of distributions to a limiting distribution H{x) uniformly 

in a parameter e have been studied by Parzen (16] and others. In 

particular if H(x) = K(x), then the conditions for the convergence of 

o(t(n), e) to O in probability uniformly in e can be found in Parzen's 

paper. 

Another tnteresting case is to take H{x) = ~(x) where f is the 

standard normal distribution, because in many ranking problems the distri-

butions of the ranking statistics are asymptotically normal. It is we'll-

known that for fixed e if the sequence of distributions H (x, e), n = 1, 
n 

converges to t(x), then the convergence is uniform in x. However, for 

fixed X the convergence may not be uniform in e for e in e. We 

first observe in the following lemma that if for fixed x the convergence 

- 9 -
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is uniform in 0, then the convergence is uniform both in x and in 0 

(in fact, we need only the continuity of t(x) in the proof of the h~mma). 

Lemma~~. Let (H (x, 0): e e e}, n = 1, 2,... be a family of sequences 
n 

of distributions and let t(x) denote the standard normal distribution. 

If for every x there exists an N' = N'{x, e) such that 

(2.6) IHn(x, 0) - t(x)I < 3' for every 0 

whenever n > N', then there exists an N = N(e) such that 

(2.7) IHn{x, 0) - t(x}I < e for every x and every e 

whenever n > N. 

Proof: For arbitrary but fixed e > 0 let C be large enough so that 

t(-c) < ~ and i(C) > 1 - ! . Let M be large enough so that for every 

x', x" in [-C, C] Ix' - x"I ::: ~C implies I t(x' ) ~ t(x") I < .§. ( this 
5 

is obviously possible because i(x) is uniformly continuous in [-C, C]). 

Consider the partition 
2C 

-C = xO < x1 < ••• < ~ = C where xi+l - xi = M 

and denote N~ = N!(x., e) such that (2.6) is satisfied whenever 
::L ::L ::L 

n > Ni for i = O, 1, ••• , M. Let N = 
O

~ Ni. Then for every e and 

every x e [-C, C] there is an i such that x. < x < x. 
1 

and 
1. - - 1.+ 

whenever n > N. The cases that x < -C and x > C can easily be taken 

care of. Hence the lemma is proved. 

- 10 -
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We now proceed to investigate the consistency of a class of ranking 

statistics which have asymptotically normal distributions. Let T be 

the ranking statistic under consideration and denote Tn(e) = E
0
t{n), 

c,2(e) = E
8
[/n)_ T (e)F, 

n n 

/n)_ 1' (8) 

Hn{x, 0) =Pe[ 
0 

(e) ::::x]. 
n 

Since by assumption the family of distributions ( G ( y, 8) : 8 e (8)} is a 
n 

Theorem 3. Assume H {x, 8) - t{x) 
n 

uniformly in e. Then T is 

consistent w.r.t. {J, 6) iff the absolute value of 

(2.8) 
[Tn(e2) - Tn(el)] 

1-

[~(el) + o:_ce2)]2 

approaches to oo uniformly in ! for i e O. In particular, if t{n) 

is an unbiased estimator of e and 6(8
1

, e
2

) = IB
1 

- e
2

1, then the 

above condition reduces to 

(2.9) c,2(8) - O uniformly in e. 
n 

Proof: Let .t = (e
1

, e
2

) be any point in the product parameter space. 

Without any loss assume e
1 

< e
2

• Then the probability of correct selection 

at i is 

00 

=J H {r x + s, e
1

)dH {x, e
2

) 
n n n n 

-00 

where 
t.-T (8.) 

1. n 1. 

zi = cr (e.) 
n 1. 

for i = 1, 2 

- 11 -



-

and By Lemma 2 there exists an N
1 

(which does not depend on x and 0) so that (2.7) holds whenever n > N
1

. 

Thus for every n > N
1 

we have 

00 00 

(2.10) IJ Hn(rnx + Sn, e1 )dHn(x, 02 ) - J t(r x + S )dH (x, 0
2

)1 < 2e. 
n n n 

-oo -00 

Now we claim that there exists an N
2 

(which does not depend on i) such 

that for every n > N
2 

we have 

00 

(2.11) IJ 
-00 

00 

t(r x + s )dH {x, 0
2

) - r i(r x + s )dt{x}I < e. 
n n n J n n 

..0:, 

This is not an iunnediate consequence of the well-known Helly-Bray Theorem 

or the uniform version of the Helly-Bray Theorem given by Parzen [16: p.3O], 

because Hn(x, e
2

) depends on .t through 0
2 

and the integrand 

t(r x + S ) depends on both i and n. However, since t(x) is 
n n 

uniformly continuous on the real line and H (x, 0) converges to t{x) 
n 

uniformly in x and in 0, the proof of (2.11) is similar to the proof 

of the Helly-Bray Theorem; so the detail is -omitted here. 

Since for every fixed i and n 

00 

r t ( r X + s ) d t ( X ) = t ( C (t) ) ' 
J n n n 
-00 

combining (2.10) and (2.11) for every n >·N = max(N
1

> N
2

} we have 

(2.12) 

where N does not depend on !: Hence lim inf Pl[CS] - 1 iff 
n- 00 .ten 

lim inf Cn(1) = oo and the proof of the theorem is completed. 
n- oo 1~0 
Remark. We make the following remark which can easily be justified from 

the way we prove the above theorem: Let there be k populations involved 

- 12 -
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in a ranking problem for any k > 2. If the ranking statistic T is 

such that Hn(x, e) - ~(x) uniformly in e, then for every 1 = (e1, e2, ... , ek) 

in the product parameter space the probability of correct selection 

P.i[CS] converges to 

00 k-1 

f [ TT i(r 1x + S .)]di(x) 
i=l n, n, 1. 

-00 

uniformly in 

and 

r . 
n, 1. 

1, where 

s 
n,i 

is the ordered 0 values; this limiting 

probability can be computed from nrultivariate normal probabilities. 

3. Consistency of Some Commonly-Used Ranking Procedures. In this section 

we apply the results developed in Section 2 to investigate the consistency 

of some individual ranking statistics which have been used or can be 

used· in most cases •. 

A. The Means Procedure. It appears that the means procedure (under 

which the ranking statistic is the sample mean) has been the most important 

ranking procedure considered among the literature of ranking and selection 

problems. Individual applications of this procedure have been made to 

normal (2), Binomial (18), Poisson (17), Gannna [7] and location parameter 

family [13). Applications to other families· of distributions have also 

been considered.· 

Perhaps the importance of the means procedure can be partially 

justified by the Weak Law of Large Numbers. If the family of distributions 

3 = {F ( x , e) : e e @} 

Eff = ~(0) exists for 

is a stochastically increasing family and if 

e €@,then 
-{n) 
X converges to 

- 13 -
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as n ~ oo and T(e) is a monotonically increasing function- of e. 

Following from the argument in Section 2 again we can assume, without 

loss of generality, that 

parameter family, then 

T(e) = e. If J is a location {or scale) 

( ) ( ) ( ) -{n) 
6(X n, e) =·Ix n -Bl {or 5(X n, e) = llog ¾- I) 

converges to O in probability uniformly in e. It follows from Theorem 2 

and the Weak Law of Large Numbers that if the first moment exists, then 

the means procedure is consistent w.r.t. location and scale parameter 

families. 

Another important case of the means procedure is a consequence of 

the Uniform Central Limit Theorem. If the second moment also exists, then 

P [ 
,Jn"(x(n)_ 0) < x] 

0 
o{e) _ ~ t(x) as n - oo for every e e ® when EeX = e 

and E
0
(x - 0) 2 = cr2(0). It follows from Theorem 3 that if the convergence 

is uniform in 0, then the means procedure is consistent iff a2(e) is 

bounded in @. If c,2(0) is continuous in 0, then the means procedure 

is consistent if the parameter space @ is bounded. We note that the 

conditions for the Uniform Central Limit Theorem given in [16] can be 

easily verified in many applications. 

B. The Procedure Based on the Maximum Likelihood Estimator of e. The 

maximum likelihood principle has played an important role in statistical 

estimation theory and the asymptotic behavior of the maximum likelihood 

estimator has been fully studied •. But the role of the procedure based 

on the maximum likelihood estimator in ranking and selection problems has 

not been clarified yet because among most of the ranking problems considered 

this procedure is identical to the means procedure. It was shown in (16) 

that under certain conditions the maximum likelihood estimator converges 

to e in pt;obability uniformly in e, and the c.d.f. of the standardized 

- 14 - . 
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maximum likelihood estimator (with mean O and variance 1) converges 

to t(x) uniformly in e. Hence if those conditions in (16] are satisfied, 

then the ranking procedure based on the maximum likelihood estimator is 

consistent when the distance function 6(0
1

, 0
2

) = 10
1

- 0
2

j is used. 

C. The Procedure Based on Linear Combination of Order Statistics for 

Location Parameter Family. We first look at the estimators for 0 for 

the location parameter family J = (F(x, 0) = F(x - 0): e e @}. If the 

first moment exists and Eft' = e, then certainly the sample mean -(n) 
X 

can serve as an estimator of 0. However, in several occasions either 

the first moment does not exist or the estimator :x(n} is inefficient, 

other estimators have been considered. The estimator of 0 based on 

linear combinations of order statistics and its asymptotic behavior has 

been studied recently by Chernoff, Gastwirth and Johns [5] and others. 

Following their notations let Y
1 
~ Y

2 
~ .•• ~ Yn be the order statistics 

of n random samples from a population with c.d.f. F(x - 0) and let 

t ( n) = .!. f c . Y. where · c = ( ) can be found in [ 5] • Then n . 1 J J - cl, c2,•••, en 
J= . 0 

it is easy to check that (1) c2 = E
0

[
00 

log f(x - 0)] 2 does not depend 
, (n) 

on e and (2) for every £_ Hn(x, 0} = P
0

[ t ~ T(
0

) ~ x] does not depend 

on 0 where T(0) = E
0
t(n). Results in [5] assert that if the regularity 

conditions are satisfied, then H (x, 0) - ~(x) for every e e @. This 
n 

implies that H (x, 0) - ~(x) n , 
I 

uniformly in 0 and {by Theorem 3) the 

ranking procedure.based on this linear combination of order statistics 

is consistent for location parameter family. 

4. Remarks on the Exponential Family. Consider a family\of distributions 

J with density functions {f(x, e): e e @}. J is said to be in the 

exponential family if f(x, e) has the form 

- 15 -
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-
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-
-
-
-
_, 

ta 

,... 

.. 

.. 
\at 

... 

.. 

.. 

.. 

f(x, 0) = A(x)B(0)eQ(0)R(x) 

where A, B, Q, R are real-valued functions. Let (x .. 1, j = 1, 2 , ..• , n; 
1J 

i = 1, 2 be random samples taken from two populations with densities 

f(x, e
1

) and f(x, e
2
), respectively and let (0~, 0~) be any constant 

vector such that e~ < 0~. Then in the testing hypothesis problem 

Hi : ( e 1 , e 
2

) = ( 0~ , e~) , v • s • 

H2: (0
1

, e
2

) = (e~, e~) 

H' 
1 

is accepted iff 
n 

(4.1) 

_n [f{x1 ., e~)f(x2 ., e~)] 
J=l J J 

A =log 
n n 

_TT [f(x1., 0~)f(x2j, 8~)] 
J=l J 

n n 

= [Q(0~) -Q(8~)][.~ R(X1j) - .,:R(X2 .)] >C 
J=l J=l J 

where C is a real number. If Q(0) is monotonically increasing in 0 

the test 
n n 

(4.2) 

.l 

th - f 
't' - l 0 

if 6 R(X
1

.) :S /J R(X
2

.) 
j=l J j=l J 

otherwise 

is uniformly most powerful for the hypothesis 

H
1

: e
1 

:S e
2 

v.s. 

H2: 01 > 02 

where H
1 

is accepted iff ~ = 1; and ~ is uniformly consistent on 

0 iff 

- 16 -



.. 
1 

n 
<! 

n 

inf p ![ - ~ R(X
1 

.) _Li R(X2 j)] .... 1, 

_te01 
n . 1 J -n 

J= J=l 

(4.3) 

1 
n 

<! 
n 

sup Pi[ ~ R(X .. ) ~ R(X
2
j)] - 0 

1e02 
n . 1 l.J -n 

j=l J= 

as n - oo, where o
1 

and o
2 

are defined in (2.2). 

In many ranking and selection problems for families of distributions 

in the exponential family the distance function 

(4.4) 

has been used when Q is monotonically increasing in e. It follows 

from Theorem 1 that the ranking procedure for the exponential family 

based on 0 R(X.) is consistent iff (4.3) holds when 

j J * 
for arbitrary but fixed 5 > O. 

We note that Bechhofer, Kiefer and Sobel have defined a "Rankability 

Condition" in their book [3: p.41] for sequential ranking procedures. 

It can be seen that under their .rankabil~ty condition the o.c. curve of 

the Sequential Probability Ratio Test for our hypothesis H1 v.s. H~ 

defined by ~n depends on (e~, 0~) only through 6(0~, 0~); hence a 

solution for the identification problem will lead to a solution for the 

ranking problem. In particular they have proved that the rankability con­

dition is satisfied for all the families of distributions in the exponential 

family. But we do not have this advantage when single-stage ranking pro­

cedures are used. Because under the single-stage sampling rule the power 

of the test ~ defined in (4.2) does not always depend on (e
1

, e
2

) only 

through &(0
1

, e
2

). In fact, for some families.of distributions (4.3) can 
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not be satisfied and the single-stage ranking procedure is not consistent 

(the Poisson family is one of the exampies). 

5. Acknowledgement. I wish to thank P.rofessors Milton Sobel and Michael n. 

Perlman for ·some co.nunents. 
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APPENDIX 

On a Property of Stochastically Increasing Families 

Let J = (F(x, 0): e e @} be a family of distribution functions 

such that for every e e@ F(x, 0) is absolutely continuous with respect 

to a fixed (Lebesgue or counting) measure ~, and F(x, 0) depends qn 

e only through its functional form (@ is referred as the parameter 

space and is usually an interval on the real line). j is said to be a 

stochastically increasing (SI) family of distributions if e
1

, 0
2 

e@ 

and e
1 

< e
2 

implies F(x, 0
2

) ~ F(x, e
1

) for every x. It is well-known 

that the class of SI families contains most of the familiar distributions; 

also, in most cases the distribution of a statistic with random samples 

from a SI family also belongs to a SI family. Hence it is a natural thing 

to ask: under what condition(s) this SI property will be preserved? 

In this appendix we apply some results of Lehmann in [11], [12] to 

give a solution to this problem. It is shown that a certain monotone 

property of the statistic serves as a sufficient condition. For n > 1 

let t = t(n): Rn - R
1 

be a Borel measurable function such that for every 

i = 1, 2, ••• , n, 

(A.1) x. 
1 

for every fixed (x
1

, ... , x
1

_
1

, x
1
+

1
, ••• , x

0
) (where t means non-decreasing). 

Let x
1

, x
2

, ••• , Xn be independently, identically distributed random 

variables with distribution function F(x, e)· e3, and let Gn(y, 0) 

denote the distribution function of t(n)(~) = t(X
1

, x
2

, ••• , Xn). 

- 19 -



Theorem. If 3 is a SI family and t satisfies (A.l), then 
n 

8= {Gn (y' 0): e e @} is a SI family. 

Proof: We need to show that if J is SI, then for every el' e e @ 
2 

such tha
1
~ el< e2 and every real number C the inequality 

(A.2) 

holds. 

By a lemma of [12: p.73], there exist two non-decreasing, real-valued 

functions h
1 

and h
2 

and independently, identically distributed random 

variables z
1

, z
2

, ••• , Zn such that 

for every z, 

and for i = 1, 2, ••• , n 

for every x. 

' ' gl = g2 = •.• 

-1 
Hence by taking g

1 
= g

2 
= ••• = gn = h

1 
and 

= g~ = h;
1 

the Condition {A) in [11] is satisfied. For 

arbitrary but fixed real number c let the Borel measurable set S in 

R be 
n 

Then by the condition imposed on t(n) in (A.1) the set S is an 

increasing set. Hence by Theorem 1 of [11] we have 

Pe (s) ~ Pe (s), 
1 2 

- 20 -



... 

or equivalently, 

which completes the proof of the theorem. 

We observe that (11] defines a large class of statistics including 

the mean (or any linear combination of the observations with non-negative 

coefficients), the median, the maxinrum or mininrum or any other order 

statistics. We also observe the property of the distributions of the 

A 

maximum likelihood estimators 0, which play an important role in esti-

mation theory. Assume the regular conditions are satisfied so that e 
n o 

is the solution of the equation ~ 
00 

log f(x., 0) = O; where f(x, e) 
i=l 

1 

denotes the corresponding density function. If f(x, 0) depends on x 

and e only through u = u(x, e) and if (~ u(x, 0))(~ u(x, e)) < o, 

then ~ satisfies(A.l)and the distribution of 8 belongs to a SI 

family. In particular, this applies to location and scale (of non­

negative random variables) parameter families. 
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