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Abstract In this paper, we study estimator inconsistency in Vision-aided Inertial

Navigation Systems (VINS). We show that standard (linearized) estimation ap-

proaches, such as the Extended Kalman Filter (EKF), can fundamentally alter the

system observability properties, in terms of the number and structure of the unob-

servable directions. This in turn allows the influx of spurious information, leading

to inconsistency. To address this issue, we propose an Observability-Constrained

VINS (OC-VINS) methodology that explicitly adheres to the observability proper-

ties of the true system. We apply our approach to the Multi-State Constraint Kalman

Filter (MSC-KF), and provide both simulation and experimental validation of the

effectiveness of our method for improving estimator consistency.

1 Introduction

Many estimation problems in robotics, and in particular localization, involve non-

linear process and measurement models. Existing estimators, such as the Extended

Kalman Filter (EKF), often suffer from inconsistency when applied to such tasks.

As defined in [2], a state estimator is consistent if the estimation errors are zero-

mean and have covariance smaller than or equal to the covariance calculated by the

filter. In other words, an inconsistent estimator is overconfident in the accuracy of

its estimates and its errors grow over time, possibly even causing divergence.

Julier and Uhlmann [14] first reported EKF inconsistency for 2D Simultaneous

Localization and Mapping (SLAM). Since then, others have developed methods that

seek to mitigate inconsistency in 2D SLAM (e.g., [1, 5]). However, little was known

about the causes of inconsistency until recently. Specifically, in [9, 11] we have

shown that a main cause of inconsistency is the mismatch between the observabil-
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ity properties of the linearized system used by the EKF [or the Unscented Kalman

Filter (UKF)] and the underlying (true) nonlinear system. As a remedy, after iden-

tifying the unobservable directions either analytically [9] or numerically [10], we

enforced them, either indirectly, by appropriately selecting the linearization points

where the Jacobians are evaluated [11], or directly, by projecting the Jacobians onto

the observable portion of the state space [10].

While most of the emphasis has been on 2D, very little is known about the incon-

sistency of 3D localization. This is primarily due to the complexity of the motion

and measurement models involved in estimating a 15 (instead of 3) dimensional

state. In this paper, we focus on Vision-aided Inertial Navigation Systems (VINS)

that fuse data from a camera and an Inertial Measurement Unit (IMU) to track the six

degrees-of-freedom (d.o.f.) pose of a sensing platform. Numerous VINS approaches

have been presented in the literature, including methods based on the EKF [4, 22],

UKF [6], and Batch-least Squares (BLS) [26]; however, these have not investigated

the issue of VINS inconsistency.

The main contributions of this paper are the following:

• We study the observability properties of VINS and analytically determine the

four unobservable directions (i.e., rotation about the gravity vector and global

translation).

• We identify and solve the conditions that the VINS propagation and measurement

Jacobians need to satisfy in order to ensure that the observability properties of

the estimator match those of the true linearized system.

• We validate the proposed approach and demonstrate its capability to improve

consistency through Monte-Carlo simulations and real-world experiments.

Although the proposed methodology is general enough to be applicable to any lin-

earized estimator (e.g., EKF, UKF), in regular or inverse filter form, and regardless

of the number of robot poses considered (smoother vs. filter), due to space limita-

tions, we hereafter focus on Visual-Inertial Odometry (VIO) using the Multi-State

Constraint Kalman Filter (MSC-KF) [22].

The remainder of this paper is organized as follows: We first review the related

work (Sect. 2), followed by a description of the VINS model and the observability

properties of VINS (Sect. 3). In Sect. 4, we introduce our Observability Constrained

(OC)-VINS methodology for mitigating inconsistency, which we apply to the MSC-

KF (Sect. 5). We validate our approach with simulation trials (Sect. 6) and real-

world experiments (Sect. 7). Lastly, we provide our concluding remarks and discuss

our future research directions (Sect. 8).

2 Related Work

For the task of IMU-camera extrinsic calibration, Mirzaei and Roumeliotis [19], as

well as Kelly and Sukhatme [15], have analyzed the system observability using Lie

derivatives [7] to determine when the IMU-camera transformation is observable.
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Jones and Soatto [13] studied VINS observability by examining the indistinguish-

able trajectories of the system [12] under different sensor configurations (i.e., in-

ertial only, vision only, vision and inertial). Martinelli [18] utilized the concept of

continuous symmetries to show that the IMU biases, 3D velocity, and absolute roll

and pitch angles are observable for VINS.

VINS inconsistency was recently investigated by Li and Mourikis [16]. Specif-

ically, they studied the link between the VINS observability properties and estima-

tor inconsistency for the bias-free case, and leveraged the First-Estimates Jacobian

(FEJ) methodology of [9] to mitigate inconsistency in VIO. In contrast to their work,

our approach has the advantage that any linearization method can be employed (e.g.,

computing Jacobians analytically, numerically, or using sample points) by the esti-

mator. Additionally, we show that our approach is flexible enough to be applied in

a variety of VINS problems such as VIO or SLAM.

In this work, we study the observability properties of the ideal linearized VINS

model (i.e., the one whose Jacobians are evaluated at the true states), and show it has

four unobservable d.o.f., corresponding to three-d.o.f. global translations and one-

d.o.f. global rotation about the gravity vector. Due to linearization errors, the number

of unobservable directions is reduced in a standard EKF-based VINS approach, al-

lowing the estimator to gain spurious information and leading to inconsistency. To

address this problem, we introduce a modification of the EKF-based VINS where

its estimated Jacobians are updated so as to ensure that the number of unobserv-

able directions is the same as when using the true Jacobians. In this manner, the

global rotation about the gravity vector remains unobservable (as it should) and the

consistency of the VINS EKF is significantly improved.

3 VINS Model

In what follows, we present an overview of the propagation and measurement mod-

els that describe the general case of a VINS, along with the main results of our ob-

servability analysis. For simplicity, we consider the case of a single physical feature

being observed over multiple time steps; however, the analysis is straightforward to

extend to the multiple feature case.

3.1 State vector and propagation model

The 19×1 system state includes the IMU pose and linear velocity together with the

time-varying IMU biases and the 3D coordinates of the feature (see Fig. 1), i.e.,

x =
[

I q̄T
G bT

g
GvT

I bT
a

GpT
I | GfT

]T
(1)
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Fig. 1: Sensor platform comprising an IMU and a camera. {I q̄G,
GpI} are the quater-

nion of orientation and position vector describing the pose of the sensing frame {I}
with respect to the global frame {G}. The feature’s 3D coordinates in {G} and {I}
are denoted as Gf, and If, respectively.

where I q̄G(t),
GpI(t), and GvI(t) are the orientation, position, and velocity of the IMU

frame {I} with respect to the global frame {G}, bg(t) and ba(t) are the gyroscope

and accelerometer biases, and Gf is the feature’s position expressed in {G}.

The system model describing the time evolution of the state is (see [27]):

I ˙̄qG(t) =
1
2
Ω(Iω(t))I q̄G(t),

GṗI(t) =
GvI(t),

Gv̇I(t) =
Ga(t) (2)

ḃg(t) = nwg(t), ḃa(t) = nwa(t),
G ḟ(t) = 0 , (3)

where Iω and Ga are the rotational velocity and linear acceleration, and

Ω(ω),

[
−⌊ω ×⌋ ω
−ωT 0

]
, ⌊ω ×⌋,




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (4)

Here, ⌊ω ×⌋ denotes the skew-symmetric matrix parameterized by ω . The time-

varying biases are modeled as random-walk processes driven by white zero-mean

Gaussian noise nwg(t) and nwa(t), respectively, with autocorrelations E[nwg(t)nwg
T (τ)] =

Qwgδ (t − τ) and E[nwa(t)nwa
T (τ)] = Qwaδ (t − τ). The gyroscope and accelerom-

eter measurements, ωm and am, are:

ωm(t) =
Iω(t)+bg(t)+ng(t) (5)

am(t) = C(I q̄G(t))(
Ga(t)− Gg)+ba(t)+na(t). (6)

The noise terms, ng and na, are modeled as zero-mean white Gaussian random pro-

cesses. The gravitational acceleration Gg is known with respect to the global frame

{G}. The matrix C(q̄) is the rotation matrix corresponding to the quaternion q̄.

Lastly, the time derivative of Gf is zero, since the camera observes a static scene.

Linearizing at the current estimates and applying the expectation operator on

both sides of (2)-(3), we obtain the state estimate propagation model
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I ˙̄̂qG(t) =
1

2
Ω(Iω̂(t))I ˆ̄qG(t),

G ˙̂pI(t) =
Gv̂I(t) ,

G ˙̂vI(t) = CT (I ˆ̄qG(t)) â(t)+ Gg (7)

˙̂bg(t) = 03×1 ,
˙̂ba(t) = 03×1,

G ˙̂
f (t) = 0 (8)

where â(t)=am(t)−b̂a(t), and Iω̂(t)=ωm(t)−b̂g(t).
The 18×1 error-state vector is defined as

x̃ =
[

Iδθ T
G b̃T

g
GṽT

I b̃T
a

Gp̃T
I

G f̃T

]T

. (9)

For the IMU position, velocity, biases, and the observed feature, an additive error

model is utilized (i.e., ỹ = y− ŷ is the error in the estimate ŷ of a quantity y), while

for the quaternion we employ a multiplicative error model [27]. The main advantage

of such an error model is that it allows us to represent the attitude uncertainty by a

3×3 covariance matrix, which is a minimal representation.

The linearized continuous-time error-state equation is

˙̃x(t) =

[
Fs(t) 015×3

03×15 03

]
x̃(t)+

[
Gs(t)
03×12

]
n = Fc(t) x̃(t)+Gc(t)n (10)

where n =
[
nT

g nT
wg nT

a nT
wa

]T
, Fc is the error-state transition matrix, and Gc is the

input noise matrix, with

Fs =




−⌊ω̂(t)×⌋ −I3 03 03 03

03 03 03 03 03

−CT (I ˆ̄qG(t))⌊â(t)×⌋ 03 03 −CT (I ˆ̄qG(t)) 03

03 03 03 03 03

03 03 I3 03 03


 , Gs =




−I3 03 03 03

03 I3 03 03

03 03 −CT (I ˆ̄qG(t)) 03

03 03 03 I3

03 03 03 03


 .

The discrete-time state transition matrix from time t1 to t, Φ (t, t1), is com-

puted in analytical form [8] as the solution to the matrix differential equation

Φ̇ (t, t1) = Fc (t)Φ (t, t1), with initial condition Φ (t1, t1) = I18. As we show in [8],

the structure of Φ (tk+1, tk) = Φ (tk+1, t1)Φ (tk, t1)
−1

when the state contains the

IMU pose, velocity, biases, and a single landmark is given by

Φk+1 = Φ (tk+1, tk) =




Φ11 Φ12 03 03 03 03

03 I3 03 03 03 03

Φ31 Φ32 I3 Φ34 03 03

03 03 03 I3 03 03

Φ51 Φ52 δ tI3 Φ54 I3 03

03 03 03 03 03 I3



. (11)

In the ensuing analysis, we consider k ≥ 1 and define Φ1 := Φ (t1, t1) = I18.
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3.2 Measurement model

As the sensor platform moves in the environment, the camera observes point fea-

tures, which are tracked across images. Generally, in a VINS [21], these measure-

ments are exploited to concurrently estimate the motion of the sensing platform and,

optionally, the structure of the environment.

We employ the pinhole camera model to describe the perspective projection of

the 3D point f on the image plane and model the measurement zk at time step tk, i.e.,

zk = 1/z
[
x y

]T
+ηk,

[
x y z

]T
= If = C(IqG)

(
Gf− GpI

)
, (12)

where C(IqG) is the rotation matrix from {G} to {I} and ηk follows a Gaussian

distribution with E[ηk] = 02×1 and E[ηkηT
k ] = σ2

η I2. Note also that, without loss of

generality, we express the image measurement in normalized pixel coordinates, and

consider the camera frame to be coincident with the IMU1. By differentiating the

nonlinear measurement model (12), we obtain the measurement Jacobian:

Hk = Hcam

[
HθG

03×9 HpI
| Hf

]
(13)

Hcam =
1

z

[
1 0 −x

z

0 1
−y
z

]
, HθG

= ⌊If×⌋, HpI
=−C(I q̄G) , Hf = C(I q̄G) .

3.3 System observability analysis

In order to compute the analytical expressions of the four unobservable directions,

we form the observability matrix M(x∗) =M, as a function of the linearization point

x∗, for a system observing a feature over time steps t1 . . . tN , i.e.,

M =




H1Φ1

H2Φ2Φ1

...

HNΦN · · ·Φ1


 . (14)

Lemma: In VINS, when using the true state to evaluate H and Φ , each block row

of the observability matrix has the following form

Mk = Hcam,kC
(

I q̄G,k

)[
⌊Gf−GpI,1 −

GvI,1δ tk−1 +
1
2

Ggδ t2
k−1×⌋C(I q̄G,1)

T
Dk −Iδ tk−1 Ek −I3 I3

]
,

where δ tk−1 = (k−1)δ t, and Dk and Ek are time-varying matrices.

Proof: See [8].

Theorem: The right nullspace of the observability matrix of a VINS spans four

directions, i.e.,

1 We perform both intrinsic and extrinsic camera/IMU calibration off-line [3, 19].
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MN1 = 0, N1 =




03 C(I q̄G,1)
Gg

03 03×1

03 −⌊GvI,1×⌋Gg

03 03×1

I3 −⌊GpI,1×⌋Gg

I3 −⌊Gf×⌋Gg



=

[
NR,1

N f ,1

]
(15)

where the 15× 4 matrix NR,1 comprises the nullspace elements corresponding to

the sensor platform (robot) state, and the 3× 4 matrix N f ,1 corresponds to the fea-

ture. We note that, the first three columns of the matrix N1 correspond to global

translations, while its fourth column corresponds to global rotations about Gg.

Proof: See [8].

In the preceding analysis, the system is linearized at the true state, hence, the

aforementioned unobservable directions correspond to the true linearized system

model. In practice, we do not have access to the true state and hence we typically

linearize at the current state estimate. However, this causes the observability matrix

of the estimated system M̂ = M(x̂) to have higher rank (a fact that can be easily

verified by numerically evaluating M̂ during any experiment).

4 Observability-Constrained VINS (OC-VINS)

Ideally, we would like to design a filter that adheres to the true unobservable direc-

tions of the system. However, this would require knowledge of the true sensor pose

and landmark position, which is clearly unrealizable in practice. Alternatively, we

require that the estimator adheres to the number and structure of nullspace direc-

tions by ensuring that M̂N̂1 = 0 is satisfied for every block row of M̂, i.e.,

ĤkΦ̂k . . .Φ̂1N̂1 = 0, k ≥ 1. (16)

We do so by appropriately modifying Φ̂k and Ĥk at each time step so that2

N̂k+1 = Φ̂k+1N̂k , ĤkN̂k = 0, k ≥ 1 (17)

where N̂k, k ≥ 1 is computed analytically based on (15). We hereafter present our

method for initializing the nullspace (Sect. 4.1), and employing the nullspace to

preserve the system observability properties during the propagation (Sect. 4.2) and

update (Sect. 4.3) steps of the filter.

2 Although this could also be accomplished by appropriate selection of the linearization points (as

in [9]), we instead choose to employ information projections of the Jacobians Ĥk and Φ̂k since this

allows more freedom in the way that we compute these matrices (e.g., analytically, using sample

points as in the UKF, or through numerical integration for Φ̂k).
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4.1 Nullspace definition at time step k

At each time step, we compute the nullspace N̂k as a function of the state estimate,

and use it to enforce the unobservable directions. For the robot state, the initial

nullspace as well as the nullspace at all subsequent times are [8]

N̂R,1 =




03 C
(

I ˆ̄qG,1|1

)
Gg

03 03×1

03 −⌊Gv̂I,1|1×⌋Gg

03 03×1

I3 −⌊Gp̂I,1|1×⌋Gg




, N̂R,k =




03 C
(

I ˆ̄qG,k|k−1

)
Gg

03 03×1

03 −⌊Gv̂I,k|k−1×⌋Gg

03 03×1

I3 −⌊Gp̂I,k|k−1×⌋Gg



, (18)

where the notation x̂i| j denotes the estimate of quantity x at time-step i computed

using measurements up to time-step j. For each feature, the corresponding nullspace

block element is

N̂ f ,k =
[
I3 −⌊G f̂ℓ|ℓ×⌋Gg

]
, (19)

where G f̂ℓ|ℓ is the first estimate of the feature’s position, initialized at time step ℓ.

4.2 OC propagation: modification of the state transition matrix Φ

During each propagation step, we must ensure that N̂k+1 = Φ̂k+1N̂k. We note that

the first block-column of this constraint is automatically satisfied by the structure of

Φ̂k+1 [see (20)], so we focus on the fourth column of N̂k+1 = Φ̂k+1N̂k, which we

write element-wise as:




C
(

I ˆ̄qG,k+1|k

)
Gg

03×1

−⌊Gv̂I,k+1|k ×⌋Gg

03×1

−⌊Gp̂I,k+1|k ×⌋Gg

−⌊G f̂ℓ|ℓ×⌋Gg



=




Φ̂11 Φ̂12 03 03 03 03

03 I3 03 03 03 03

Φ̂31 Φ̂32 I3 Φ̂34 03 03

03 03 03 I3 03 03

Φ̂51 Φ̂52 δ tI3 Φ̂54 I3 03

03 03 03 03 03 I3







C
(

I ˆ̄qG,k|k−1

)
Gg

03×1

−⌊Gv̂I,k|k−1×⌋Gg

03×1

−⌊Gp̂I,k|k−1×⌋Gg

−⌊Gf̂ℓ|ℓ×⌋Gg



. (20)

This results in constraints on the block-elements Φ̂11, Φ̂31, and Φ̂51 (see [8]). Specif-

ically, for Φ̂11 we require that:

C
(

I ˆ̄qG,k+1|k

)
Gg = Φ̂11C

(
I ˆ̄qG,k|k−1

)
Gg ⇒ Φ̂11 = C

(
I,k+1|k ˆ̄qI,k|k−1

)
. (21)

The constraints for Φ̂31 and Φ̂51 are
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Φ̂31C
(

I ˆ̄qG,k|k−1

)
Gg = ⌊Gv̂I,k|k−1 −

Gv̂I,k+1|k ×⌋Gg (22)

Φ̂51C
(

I ˆ̄qG,k|k−1

)
Gg = ⌊δ tGv̂I,k|k−1 +

Gp̂I,k|k−1 −
Gp̂I,k+1|k ×⌋Gg (23)

both of which are in the form Au = w, where u and w are nullspace elements that

are known. We seek to find a perturbed A∗, for A = Φ̂31 and A = Φ̂51 that fulfills

the constraints (22) and (23). We formulate this as a minimization problem:

min
A∗

||A∗−A||2F , subject to A∗u = w (24)

where || · ||F denotes the Frobenius matrix norm. Applying the method of Lagrange

multipliers, we solve (24) in closed form as A∗ = A− (Au−w)(uT u)−1uT .

We compute Φ̂11 from (21), and Φ̂31 and Φ̂51 from (24) and construct the ob-

servability constrained discrete-time propagation Jacobian matrix.

4.3 OC update: modification of the measurement matrix H

During each update step, the measurement Jacobian must satisfy ĤkN̂k = 0, i.e.,

Ĥcam

[
ĤθG

03×9 ĤpI
| Ĥf

]




03 C
(

I ˆ̄qG,k|k−1

)
Gg

03 03×1

03 −⌊Gv̂I,k|k−1×⌋Gg

03 03×1

I3 −⌊Gp̂I,k|k−1×⌋Gg

I3 −⌊G f̂ℓ|ℓ×⌋Gg



= 0. (25)

The first block column of N̂k dictates that Ĥf = −ĤpI
. We substitute this equality,

and rewrite the fourth column of (25) in a compact form as

Ĥcam

[
ĤθG

ĤpI

][ C
(

I ˆ̄qG,k|k−1

)
Gg

⌊G f̂ℓ|ℓ−
Gp̂I,k|k−1×⌋Gg

]
= 0. (26)

This is a constraint of the form Au = 0, where u is a fixed quantity determined

by elements in the nullspace, and A comprises elements of the measurement Jaco-

bian. We compute the optimal perturbed matrix A∗ that fulfills (26), by solving a

problem of the same form as (24) to obtain the modified elements of the measure-

ment Jacobian. Specifically, after computing A∗ = A−Au(uT u)−1
uT , we recover

the measurement Jacobian elements as

ĤcamĤθG
= A∗

1:2,1:3 , ĤcamĤpI
= A∗

1:2,4:6 , ĤcamĤf =−A∗
1:2,4:6 (27)

where the subscripts (i:j, m:n) denote the submatrix spanning rows i to j, and

columns m to n.
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5 Application: Observability-Constrained MSC-KF

(OC-MSC-KF)

The MSC-KF [20] is a VINS that performs tightly-coupled visual-inertial odometry

over a sliding window of m poses, while maintaining linear complexity in the num-

ber of observed features. The key advantage of the MSC-KF is that it utilizes all the

constraints for each feature observed by the camera over m poses, without requir-

ing to build a map or estimate the features as part of the state vector. We hereafter

describe how to apply our OC-VINS methodology to the MSC-KF.

Each time the camera records an image, the MSC-KF creates a stochastic

clone [24] of the sensor pose. This enables the MSC-KF to utilize delayed image

measurements; in particular, it allows all of the observations of a given feature fi

to be processed during a single update step (when the first pose that observed the

feature is about to be marginalized). Whenever the current pose is cloned, we also

clone the corresponding nullspace elements to obtain an augmented nullspace, i.e.,

N̂
aug
k =

[
N̂k

N̂k,clone

]
, where N̂k,clone =

[
03 C

(
I ˆ̄qG,k|k−1

)
Gg

I3 −⌊Gp̂I,k|k−1×⌋Gg

]
. (28)

During propagation, the current state estimate evolves forward in time by inte-

grating (7)-(8), while the current clone poses are static. We employ (21)-(23) to

compute the observability-constrained discrete-time state transition matrix Φ̂k, and

propagate the covariance as

P
aug

k+1|k =

[
Φ̂k 015×6m

06m×15 I6m

]
P

aug

k|k

[
Φ̂

T

k 015×6m

06m×15 I6m

]
+

[
Qk 015×6m

06m×15 06m

]
(29)

where P
aug

i| j denotes the covariance of the augmented state (corresponding to m

cloned poses, along with the current state).

During the MSC-KF update step, we process all measurements of the features

observed by the m-th clone (i.e., the one about to be marginalized from the sliding

window of poses). We utilize (26) to compute the observability-constrained mea-

surement Jacobian, Ĥk, for each measurement and stack all observations of the i-th

feature across m time steps into a large measurement vector




z̃k

...

z̃k−m


=




Ĥk

...

Ĥk−m



[

x̃aug

f̃

]
+




ηk
...

ηk−m


= Ĥxx̃aug + Ĥ f f̃+η (30)

where Ĥx and Ĥ f are the Jacobians corresponding to the augmented state vector

x̃aug, and to the feature, respectively. To avoid including f into the state, we marginal-

ize it on-the-fly by projecting (30) onto the left nullspace of Ĥ f , W. This yields

WT z̃ = WT Ĥxx̃aug +WT η ⇔ z̃′ = Ĥ′
xx̃aug +η ′, (31)
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which we employ to update the state estimate and covariance using the standard

EKF update equations.3

Fig. 2: The average RMSE and NEES over 30 Monte-Carlo simulation trials for

orientation (above) and position (below). Note that the OC-MSC-KF attains perfor-

mance indistinguishable from the Ideal-MSC-KF.

6 Simulation Results

We conducted Monte-Carlo simulations to evaluate the consistency of the proposed

method applied to the MSC-KF [22]. Specifically, we compared the standard MSC-

KF (Std-MSC-KF) with the Observability-Constrained MSC-KF (OC-MSC-KF)

(see Sect. 4 and Sect. 5). We employed the Ideal-MSC-KF, whose Jacobians are

linearized at the true states, as a benchmark, since it fulfills the observability prop-

erties of the true linearized system.

We evaluated the Root Mean Squared Error (RMSE) and Normalized Estimation

Error Squared (NEES) over 30 trials (see Fig. 2) in which the camera-IMU plat-

form traversed a circular trajectory of radius 5 m at an average speed of 60 cm/s,

and observed 50 randomly distributed features per image. The camera was modeled

with a 45 deg field of view, and measurement noise with ση = 1 px. The IMU was

modeled with MEMS quality sensors. As evident from Fig. 2, the OC-MSC-KF out-

performs the Std-MSC-KF and attains performance almost indistinguishable from

the Ideal-MSC-KF in terms of RMSE and NEES. This indicates that ensuring an

3 The interested reader is referred to [20] for a more complete perspective.
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estimator respects the observability properties of the true system, plays a key role in

improving both the accuracy and consistency of VINS.

(a) (b)

Fig. 3: (a) The experimental testbed comprises a light-weight InterSense NavChip

IMU and a Point Grey Chameleon Camera. The dimensions of the sensing package

are approximately 6 cm tall, by 5 cm wide, by 8 cm deep. (b) An AscTech Pelican

on which the camera-IMU package was mounted during the experiment.

7 Experimental Results

We further validated the proposed OC-MSC-KF on real-world data. Our hard-

ware testbed consists of a Point Grey monochrome monocular camera with reso-

lution 640x480 pixels and an InterSense NavChip IMU, both of which were rigidly

mounted on an AscTec Pelican quadrotor (see Fig. 3). We begin with an overview

of our image processing approach, followed by the experimental evaluation.

After acquiring image k, it is inserted into a sliding window buffer of m images,

{k−m+1,k−m+2, . . . ,k}. We then extract features from the first image in the

window using the Shi-Tomasi corner detector [25] and track them pairwise through

the window using the KLT tracking algorithm [17]. To remove outliers from the

resulting tracks, we use a two-point algorithm to find the essential matrix between

successive frames. Specifically, given the filter’s estimated rotation (from the gyro-

scopes’ measurements) between image i and j, i ˆ̄q j, we estimate the essential matrix

from only two feature correspondences. This approach is more robust than the five-

point algorithm [23] because it provides two solutions for the essential matrix rather

than up to ten. Moreover, it requires only two data points, and thus it reaches a

consensus with fewer hypotheses when used in a RANSAC framework.

At every time step, the robot poses corresponding to the last m images are kept

in the state vector, as described in [24]. Upon completion of the image processing,

all the features that first appeared at the oldest robot pose (corresponding to image

k−m+1) are processed following the MSC-KF approach, as discussed in Sect. 5.
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The sensor platform traversed three loops of total lenght 50 m in an indoor area

and finally returned to its initial position. At the end of the trajectory, the Std-MSC-

KF had a position error of 18.73 cm, while the final error for the OC-MSC-KF was

16.39 cm (approx. 0.38% and 0.33% of the distance traveled, respectively). In order

to assess the impact of inconsistency on the orientation estimates of both methods,

we used as ground truth the rotation between the first and last images computed

independently using BLS and feature point matches. The Std-MSC-KF had final

orientation error
[
0.15 −0.23 −5.13

]
deg for roll, pitch, and yaw (rpy), while the

rpy errors for the OC-MSC-KF were
[
0.19 −0.20 −1.32

]
deg, respectively.

In addition to achieving higher accuracy, for yaw in particular, the OC-MSC-KF

is more conservative since it strictly adheres to the unobservable directions of the

system. This is evident in both the position and orientation uncertainties. We plot the

y-axis position and yaw angle uncertainties in Fig. 4, as representative results. Most

notably, the yaw uncertainty of the OC-MSC-KF remains approximately 1.13 deg

(3σ ), while for the Std-MSC-KF it reduces to 0.87 deg (3σ ). This indicates that the

Std-MSC-KF gains spurious orientation information, which leads to inconsistency.

Lastly, we also show the 3D trajectory along with an overhead (x-y) view. It is

evident that the Std-MSC-KF yaw error impacts the position accuracy, as the Std-

MSC-KF trajectory exhibits a rotation with respect to the OC-MSC-KF.

Fig. 4: (above) The position and orientation uncertainties (3σ bounds) for the yaw

angle and the y-axis, which demonstrate that the Std-MSC-KF gains spurious infor-

mation about its orientation. (below) The 3D trajectory and corresponding overhead

(x-y) view.
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8 Conclusion

In this paper, we analyzed a root cause of inconsistency in VINS, specifically, the

gain of spurious information due to incorrect system observability properties of an

EKF-based VINS estimator. We introduced an observability-constrained framework

for explicitly enforcing the correct number and structure of unobservable directions

by modifying the system and measurement Jacobians. We applied this methodology

to the MSC-KF, and showed improved consistency both in simulations and through

real-world experiments. Our future research directions include investigating other

sources of VINS inconsistency, such as the existence of local minima, and extending

our work to systems with multiple exteroceptive sensing modalities.

Acknowledgment

This work was supported by the University of Minnesota (UMN) through the Digital

Technology Center (DTC) and the Air Force Office of Scientific Research (FA9550-

10-1-0567). J. A. Hesch was supported by the UMN Doctoral Dissertation Fellow-

ship.

References

1. T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot. Consistency of the EKF-SLAM

algorithm. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages

3562–3568, Beijing, China, Oct. 9–15, 2006.

2. Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with Applications to Tracking and

Navigation. John Wiley & Sons, New York, NY, 2001.

3. J.-Y. Bouguet. Camera calibration toolbox for matlab, 2006.

4. M. Bryson and S. Sukkarieh. Observability analysis and active control for airborne SLAM.

IEEE Trans. on Aerospace and Electronic Systems, 44(1):261–280, Jan. 2008.

5. J. A. Castellanos, R. Martivez-Cantin, and J. Neira. Robocentric map joining: Improving the

consistency of EKF-SLAM. Robotics and Autonomous Systems, 55(1):21–29, 2007.

6. S. Ebcin and M. Veth. Tightly-coupled image-aided inertial navigation using the unscented

Kalman filter. Technical report, Air Force Institute of Technology, Dayton, OH, 2007.

7. R. Hermann and A. Krener. Nonlinear controllability and observability. IEEE Trans. on

Automatic Control, 22(5):728–740, Oct. 1977.

8. J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis. Observability-constrained

vision-aided inertial navigation. Technical Report 2012-001, University of Minnesota, Dept.

of Comp. Sci. & Eng., MARS Lab, Feb. 2012.

9. G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis. A first-estimates Jacobian EKF for im-

proving SLAM consistency. In Proc. of the Int. Symposium on Experimental Robotics, pages

373–382, Athens, Greece, July 14–17, 2008.

10. G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis. On the complexity and consistency of

UKF-based SLAM. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 4401–

4408, Kobe, Japan, May 12–17, 2009.



On the consistency of Vision-aided Inertial Navigation 15

11. G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis. Observability-based rules for designing

consistent EKF SLAM estimators. Int. Journal of Robotics Research, 29(5):502–528, Apr.

2010.

12. A. Isidori. Nonlinear Control Systems. Springer-Verlag, 1989.

13. E. S. Jones and S. Soatto. Visual-inertial navigation, mapping and localization: A scalable

real-time causal approach. Int. Journal of Robotics Research, 30(4):407–430, Apr. 2011.

14. S. J. Julier and J. K. Uhlmann. A counter example to the theory of simultaneous localization

and map building. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 4238–

4243, Seoul, Korea, May 21–26, 2001.

15. J. Kelly and G. S. Sukhatme. Visual-inertial sensor fusion: Localization, mapping and sensor-

to-sensor self-calibration. Int. Journal of Robotics Research, 30(1):56–79, Jan. 2011.

16. M. Li and A. I. Mourikis. Improving the accuracy of EKF-based visual-inertial odometry. In

Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 828–835, St. Paul, MN, May

14–18, 2012.

17. B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo

vision. In Proc. of the Int. Joint Conf. on Artificial Intelligence, pages 674–679, Vancouver,

B.C., Canada, Aug. 24–28, 1981.

18. A. Martinelli. Vision and IMU data fusion: Closed-form solutions for attitude, speed, absolute

scale, and bias determination. IEEE Trans. on Robotics, 28(1):44–60, Feb. 2012.

19. F. M. Mirzaei and S. I. Roumeliotis. A Kalman filter-based algorithm for IMU-camera

calibration: Observability analysis and performance evaluation. IEEE Trans. on Robotics,

24(5):1143–1156, Oct. 2008.

20. A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint Kalman filter for vision-aided

inertial navigation. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 3565–

3572, Rome, Italy, Apr. 10–14, 2007.

21. A. I. Mourikis and S. I. Roumeliotis. A dual-layer estimator architecture for long-term local-

ization. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops,

pages 1–8, Anchorage, AK, June 2008.

22. A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E. Johnson, A. Ansar, and L. Matthies. Vision-

aided inertial navigation for spacecraft entry, descent, and landing. IEEE Trans. on Robotics,

25(2):264–280, Apr. 2009.

23. D. Nistér. An efficient solution to the five-point relative pose problem. In Proc. of the IEEE

Conf. on Computer Vision and Pattern Recognition, pages 195–202, Madison, WI, June 16–

22, 2003.

24. S. I. Roumeliotis and J. W. Burdick. Stochastic cloning: A generalized framework for process-

ing relative state measurements. In Proc. of the IEEE Int. Conf. on Robotics and Automation,

pages 1788–1795, Washington D.C., May 11-15, 2002.

25. J. Shi and C. Tomasi. Good features to track. In Proc. of the IEEE Conf. on Computer Vision

and Pattern Recognition, pages 593–600, Washington, DC, June 27–July 2, 1994.

26. D. W. Strelow. Motion estimation from image and inertial measurements. PhD thesis, Carnegie

Mellon University, Pittsburgh, PA, Nov. 2004.

27. N. Trawny and S. I. Roumeliotis. Indirect Kalman filter for 3D attitude estimation. Technical

Report 2005-002, University of Minnesota, Dept. of Comp. Sci. & Eng., MARS Lab, Mar.

2005.


