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Abstract We present an investigation of the theoretical
uncertainties in parton distribution functions (PDFs) due to
missing higher-order corrections in the perturbative predic-
tions used in the fit, and their relationship to the uncertainties
in subsequent predictions made using the PDFs. We consider
in particular the standard approach of factorization and renor-
malization scale variation, and derive general results for the
consistent application of these at the PDF fit stage. To do
this, we use the fact that a PDF fit may be recast in a physical
basis, where the PDFs themselves are bypassed entirely, and
one instead relates measured observables to predicted ones.
In the case of factorization scale variation we find that in var-
ious situations there is a high degree of effective correlation
between the variation in the fit and in predicted observables.
In particular, including such a variation in both cases can lead
to an exaggerated theoretical uncertainty. More generally, a
careful treatment of this correlation appears mandatory, at
least within the standard scale variation paradigm. For the
renormalization scale, the situation is less straightforward,
but again we highlight the potential for correlations between
related processes in the fit and predictions to enter at the same
level as between processes in the fit or prediction alone.

1 Introduction

The history of the determination of parton distribution func-
tions (PDFs) from comparison to data goes back many
decades, see [1] for a recent review. For some years the pre-
cision in both the data and theory was such that no system-
atic uncertainty estimate on the PDF at all was warranted
or required. If some estimate of uncertainty were needed,
then a comparison of different PDFs from different groups,
or using different assumptions for one group, were thought
to be sufficient. The situation changed in the first years of the
new millennium. This was largely driven by the very precise
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measurements of structure function data over a wide range
of both x and Q2 by the HERA experiment (see [2] for the
final Run I + II combination). In addition, various apparent
observed excesses over the Standard Model predictions, such
as in high E⊥ inclusive jet production at CDF [3] were subse-
quently explained by a suitable modification of the PDFs [4],
rather than being due to new physics. A systematic evalua-
tion of PDF uncertainties therefore became essential, and the
first global PDFs with an estimate of the uncertainty due to
the experimental precision were released by CTEQ [5,6] and
MRST [7], building on earlier DIS—only fits [8–11].

In these first fits PDF uncertainties were a few percent at
best, and much larger for many PDF flavours and x regions.
Soon after this the full calculation of the next-to-next-to lead-
ing order (NNLO) splitting functions for the evolution of
PDFs were presented in full [12,13] and NNLO extractions of
PDFs became possible, as in e.g. [14,15] (with minor approx-
imations for some data sets). At this point it was assumed that
the theoretical precision on the PDFs was rather better than
the uncertainties from the data, as well as being more difficult
to quantify. Hence PDF uncertainties were always interpreted
as being an experimental uncertainty due to the statistical
and systematic uncertainties of the data included in the fit. In
recent years the understanding of the experimental uncertain-
ties on PDFs has improved, and as well as the Hessian-based
approach of the original PDF fitters an alternative approach
based on neural networks and generation of statistically dis-
tributed replicas of PDFs has reached full maturity, as imple-
mented in the NNPDF sets (see [16] for the most recent fit).
Good agreement between the two approaches, both for cen-
tral values and uncertainties is seen [17]. Indeed PDFs can
be combined and those generated via the Hessian procedure
can be converted to replicas and vice versa [18,19].

Any systematic consideration of theoretical uncertainties
in PDF fits was limited to variations due to changes in the
strong coupling αS(M2

Z ), quark masses and sometimes pos-
sible higher twist terms. In addition to this, the convergence
of different variants of variable flavour number schemes has
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been demonstrated [20], and some agreement on the influ-
ence of use of variable flavour as opposed to fixed flavour
schemes, and on fitting rather than imposing cuts for higher
twist effects has been demonstrated [21–23]. However, these
omit a potentially significant source of uncertainty, namely
due to the fact that fixed-order perturbative predictions are
used for the theoretical input to PDF fits. The uncertainty
due to the approximate form of these, namely due to missing
higher order (MHO) corrections, has until very recently not
been considered at all, even on a semi-quantitative basis. We
should note that introduction of a tolerance in PDF fits, such
as the dynamic tolerance procedure for �χ2 determination
introduced in [24], is largely introduced to take account of
tension between data sets in the fit, as justified in for exam-
ple [18]. However, some of the apparent tension between data
sets in a fixed order fit may in fact be due to these missing
higher order corrections. Such an effect is clearly seen in a
LO PDF fit, for example, where the NLO corrections to DIS
and Drell Yan cross sections are very different. Hence some
part of the tolerance can likely be attributed to this, although
in a NNLO fit this is probably a small component, and it
is certainly challenging to quantify this precisely. Nonethe-
less, it would be interesting to pursue a quantitative study of
the degree to which observed tensions between data sets in
the fit reduce as additional higher order corrections and/or
uncertainties due to the missing higher orders are included.

A more focussed study of the theoretical uncertainties in
PDFs has just begun in some quarters, and preliminary results
have been presented in [25]. This is based on a variation of
factorization and renormalization scales by a fixed factor of
two in the theory input for the fit, a method that is frequently
taken as the standard means of estimating MHO corrections
in QCD. The purpose of this article is to critically examine
a potentially important and quite general issue with taking
such an approach, based on the fact that the PDFs are not
themselves physical quantities. In particular, we argue that
this type of straightforward scale variation does not provide
a particularly obvious definition of what one means by ‘the-
oretical uncertainty’ for PDFs.

In more detail, in practice one obtains the PDFs by fitting
to data for one physical quantity (or more generally a set
of them), and then predicts another physical quantity from
these, using perturbatively calculated partonic cross sections
for these quantities. Ultimately it is the uncertainty on the
predicted quantity that is required. This clearly has a contri-
bution from the experimental uncertainty on the PDFs, and
this is included as standard. There is then also a theoretical
uncertainty on the prediction arising from the finite order of
the calculation for both the predicted cross section and for
the cross sections entering the PDF extraction. The former
of these is included as standard (normally using scale varia-
tions) while the latter is not. However, we will argue in this
article that for factorisation scale variation there is a highly

non-trivial interplay between the scale variation when obtain-
ing the PDF and when obtaining the required prediction, and
this can potentially lead to a misinterpretation of the ‘theory
uncertainty’ on the prediction. In short, the aim of the pro-
cess is to measure one physical quantity, and in terms of this
predict another quantity. If, as seems natural, one interprets
the ‘theory uncertainty’ as that inherent in expressing the
predicted quantity in terms of the measured quantity due to
MHOs in the relationship between the two, then we will show
that varying the factorisation scale by a set amount in both the
PDF extraction and also in the prediction in terms of PDFs
can lead to an effectively exaggerated factorisation scale vari-
ation when determining the full theoretical uncertainty. Our
arguments rely on the fact that it is possible, and sometimes
preferable (in principle at least), to bypass the intermediate
PDFs entirely, instead working purely at the level of physical
observables (structure functions and so on) and the relation-
ships between them. This was behind the original proposal of
the DIS factorisation scale [26], and has subsequently been
developed in for example [27–32] under the general name of
‘physical schemes’.

We also consider the case of the renormalization scale vari-
ation, which we find to be less amenable to this treatment,
implying that the conventional approach should be reliable
here. Nonetheless, one basic implication of working in this
physical basis where one considers a PDF fit to be a (com-
plex) relation between physical observables does follow in
this case. Namely, any correlation between renormalization
scale variations that one assumes is present in related physical
processes entering the fit, should also in principle be included
at the same level between fit and predicted processes.

The outline of this paper is as follows. In Sect. 2 we con-
sider the simplest possible case of fitting to a non-singlet
structure function observable, and then predicting a second
such structure function, and a non-singlet Drell–Yan cross
section, in Sects. 2.1 and 2.2, respectively. In Sect. 3 we gen-
eralise this to the case of structure functions involving both
quark and gluon contributions, and comment on the corre-
sponding high and low x limits. In Sect. 4 we discus the case
of renormalization scale variation. In Sect. 5 we discuss the
implications of our findings and conclude. In Appendix A
we briefly summarise the case of DGLAP evolution in the
diagonal basis at NLO.

2 A simple example: the non-singlet quark

2.1 Structure functions

To illustrate the key issue, we start with the simplified case
of a fit to a non-singlet structure function, and corresponding
prediction of a second (distinct) non-singlet structure func-
tion. This represents the simplest example of our general
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argument, and having done this we will show how the case
of a predicted hadronic observables, namely the non-singlet
Drell–Yan cross section, follows straightforwardly.

The structure function we consider is given purely in terms
of the quark non-singlet distribution. A concrete example of
this is the neutral current structure function FNC

3 due to Z
exchange, but we will for the sake of generality refer to the
observable as FNS. We write this to NLO as

FNS(x, Q2) = xqNS(x, μ2) + α̃SC
(1)
q ⊗ xqNS(x, μ2)

+ α̃S ln

(
Q2

μ2

)
P(0)
qq ⊗ xqNS(x, μ2), (1)

where α̃S ≡ αS/2π , μ is the factorization scale, C (n)
q is the

order n coefficient function, and we consider for simplic-
ity only one quark flavour. Note that for now we assume a
fixed renormalization scale, the argument of which is sup-
pressed for simplicity, and do not consider any issues related
to its variation.1 To keep the expressions which follow sim-
pler we have also taken the leading order coefficient function
as C (0)

q = 1, which can always be achieved by a suitable
redefinition of the normalisation of FNS. We use the short-
hand

g ⊗ f (x) =
∫ 1

x

dz

z
f (z)g

(
x

z

)
, (2)

throughout. The non-singlet quark combination qNS = q−q
obeys the usual NLO DGLAP evolution

∂qNS(x, μ2)

∂ ln μ2 = α̃S

(
P(0)
qq + α̃S P

(1)
qq

)
⊗ qNS(x, μ2). (3)

We now consider an idealised PDF fit of qNS to the structure
function, that is we assume that FNS has been measured to
arbitrary accuracy over the x region we are interested in. We
are free to do this as we are only considering the impact
of theoretical uncertainties on the fit, and the inclusion of
the (unrelated) experimental sources of uncertainty will not
qualitatively effect the argument which follows. Indeed, we
are precisely most interested in the case where the former
dominates over the latter. Defining the ratio ai = μ2/Q2, we
can rewrite (1) as

1 We are implicitly using the “standard” convention, see e.g. [33], that
in the PDF evolution the scale of the coupling is taken to be the same as
the factorization scale, i.e the PDFs depends on only one scale. However,
the arguments all remain the same if this scale of the coupling in the
evolution is related to the factorization scale by μR = cμF if c is the
same for all physical quantities, i.e. the scale choice in the coupling for
PDF evolution is not process-dependent.

xqNS(x, μ2) = FNS(x, μ2/ai ) − α̃SC
(1)
q ⊗ xqNS(x, μ2)

+ α̃S ln ai P
(0)
qq ⊗ xqNS(x, μ2), (4)

= FNS(x, μ2/ai ) − α̃SC
(1)
q ⊗ FNS(x, μ2/ai )

+ α̃S ln ai P
(0)
qq ⊗ FNS(x, μ2/ai ), (5)

where in the second line we consistently drop terms of O(α2
S).

Note a ‘standard’ fit, i.e. where one does not consider any
scale variation and takes the conventional choice of μ2 =
Q2, simply corresponds to

xqNS(x, μ2) = FNS(x, μ2) − α̃SC
(1)
q ⊗ FNS(x, μ2), (6)

while for example a standard factor of 2 scale variation about
the central scale μ = Q would correspond to taking ai ∈
( 1

4 , 4).
We now use this to predict a second, distinct, non-singlet

structure function, F ′
NS:

F ′
NS(x, Q2) = xqNS(x, μ2) + α̃SC

′(1)
q ⊗ xqNS(x, μ2)

+ α̃S ln

(
Q2

μ2

)
P(0)
qq ⊗ xqNS(x, μ2),

= xqNS(x, a f Q
2) + α̃SC

′(1)
q ⊗ xqNS(x, a f Q

2)

− α̃S ln a f P
(0)
qq ⊗ xqNS(x, a f Q

2), (7)

where we have defined a f = μ2/Q2. We now consider the
standard fit approach, that is using (6) to express the quark
distribution in terms of the structure function, giving

F ′
NS(x, Q2) = FNS(x, a f Q

2)

+ α̃S

(
C ′(1)
q − C (1)

q

)
⊗ FNS(x, a f Q

2)

− α̃S ln a f P
(0)
qq ⊗ xFNS(x, a f Q

2), (8)

Thus we can rewrite our prediction so that no reference is
made to the intermediate PDFs, and instead we express one
observable quantity, F ′

NS, in terms of the another, FNS. This
expression is accurate to O(αS) and following the standard
rule of thumb approach we can then evaluate the theoretical
uncertainty from MHOs by performing a scale variation with
a f ∈ ( 1

4 , 4).
We now consider the case that the scale is allowed to vary

in the fit as well, which simply corresponds to keeping the
ai dependence as in (5). We find

F ′
NS(x, Q2) = FNS(x, a f i Q

2)

+ α̃S

(
C ′(1)
q − C (1)

q

)
⊗ FNS(x, a f i Q

2)

− α̃S ln a f i P
(0)
qq ⊗ xFNS(x, a f i Q

2), (9)

where we have defined a f i ≡ a f /ai . Thus the a f and ai
dependence is entirely contained in the ratio a f /ai , such that
(9) is identical to (8) upon the replacement a f → a f i . Of
course, if we expand out about e.g. fixed scale Q2, then
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FNS(x, a f i Q
2) = FNS(x, Q2)

+ α̃S ln a f i P
(0)
qq ⊗ xFNS(x, Q2), (10)

and the dependence on ln(a f i ) in (9) vanishes at O(αS) due
to cancellations between the first and third terms, and only
appears at O(α2

S), where higher-order terms beyond those
shown in (9) would be required for further cancellations. We
note also, that at this stage the distinction between a f i and a f

is really entirely artificial. There is only one physical relation
between the two structure functions

F ′
NS(x, Q2) = FNS(x, aQ2) + α̃S

(
C ′(1)
q − C (1)

q

)

⊗FNS(x, aQ2) − α̃S ln aP(0)
qq

⊗xFNS(x, aQ2), (11)

where a corresponds to the relative difference in scale at
which we evaluate FNS and F ′

NS. In other words, we can see
that the effect of varying the scale in the fit (5) is the same as
the previous approach, but with a larger range of variation,
a = a f i ∈ ( 1

16 , 16).
How should we interpret this result? The rule of thumb

variation is applied to a broad category of observables, under
the expectation that this will provide an estimate of the
MHO uncertainty. Concretely, one varies the logarithms in
a within a reasonable range, in order to track of the decreas-
ing dependence on these with increasing perturbative order,
but nonetheless keeping the argument a to be O(1) in order
to avoid spoiling the overall perturbative convergence. The
precise choice of a ∈ ( 1

4 , 4) above is of course arbitrary, but
is nonetheless guided by these principles.

We have seen in the above scenario that the intermedi-
ate PDFs themselves can be bypassed entirely in favour of
a straightforward and arguably more fundamental relation
between the physical observables FNS and F ′

NS. This simply
reflects the fact that the PDFs are not themselves observables,
and follows in a similar way to the physical factorization
approach discussed elsewhere [27–29,32]. In terms of this
relation, there is only one degree of freedom for scale vari-
ation, namely a in (11). Within the context of the standard
rule of thumb variation, the only reasonable and consistent
choice appears to be to take (11) and vary a ∈ ( 1

4 , 4).
Now of course from a practical point of view one will

not in general work explicitly in this physical framework,
but rather in terms of the PDFs. The aim should therefore be
to be consistent with the above results when doing so and
evaluating a theoretical uncertainty on the PDFs themselves.
We have seen above that in our example one should either
vary the factorization scale in the prediction by the canonical
factor of 2, or equivalently in the fit, but not in both. One
may clearly call into question the reliability of such simple
scale variations, but nonetheless at least under the assumption
that this a ∈ ( 1

4 , 4) variation provides an accurate estimate of

the theoretical uncertainty for general observables, this result
will hold.

While the above result is demonstrated at NLO for sim-
plicity, this remains true at arbitrary order. This becomes
clearest when we work in Mellin space, where we can write
the DGLAP evolution (3) in the simple form

qNS( j, μ2) = qNS( j, Q2)

(
μ2

Q2

)α̃sγqq ( j,α̃s )

, (12)

where j denotes the Mellin moment. Then, our expression
for FNS, at a scale Q, can be written in the form

FNS( j, Q2) = qNS( j + 1, μ2)

(
Q2

μ2

)α̃sγqq ( j,α̃s )

cq( j, α̃s),

= qNS( j + 1, μ2)a
−α̃sγqq ( j,α̃s )
i cq( j, α̃s), (13)

where we define ai = μ2/Q2 as before. In the above expres-
sion, and in what follows, it is understood that the result at any
arbitrary order in perturbation theory is given by expanding
this out to the desired order in αS . Here

γqq ( j, α̃s) =
n∑

k=0

(α̃s)
kγ

(k)
qq ( j), cq ( j, α̃s) =

n∑
k=0

(α̃s)
kc(k)q ( j),

(14)

correspond to the non-singlet qq anomalous dimension and
Mellin transform of the coefficient function at order n,
respectively. Note that we have defined c(0)

q ≡ 1 in the struc-
ture function case above, but we leave the expression com-
pletely general here. Now if we consider the second structure
function at the same scale Q, we have

F ′
NS( j, Q2) = qNS( j + 1, μ2)a

α̃sγqq ( j,α̃s )
i c′

q( j, α̃s), (15)

and so expressing F ′
NS( j, Q2) in terms of FNS( j, Q2) we

obtain the very simple result

F ′
NS( j, Q2) = c′

q( j, α̃s)

cq( j, α̃s)
FNS( j, Q2). (16)

We can see that there is now no explicit dependence on the
factorization scale, μ, at all. The above situation is however
defined for the quite specific case that we wish to relate the
two observables at exactly the same scale. More generally,
we have the freedom to express F ′

NS( j − 1, Q2
f ) in terms

of FNS( j − 1, Q2
i ), that is choose to express the predicted

quantity a different physical scale, Q f , to the scale at which
we express the measured quantity, Qi . In this case we have

F ′
NS( j, Q2

f ) = c′
q( j, α̃s)

cq( j, α̃s)

(
Q2

f

Q2
i

)α̃sγqq ( j,α̃s )

FNS( j, Q2
i ).

(17)
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Hence, we see that to any arbitrary order the relation-
ship between the prediction and the measurement can be
expressed as a ratio of scales, and that the relationship
between the factorization scale chosen when fitting the PDF
to that chosen when making the prediction becomes equiva-
lent to the relationship between the scale at which one pre-
dicts the physical quantity and that at which one evaluates the
physical quantity entering the fit. To be completely explicit,
we can suggestively define Q2 ≡ Q2

f and μ2 ≡ Q2
i , in terms

of which we have

F ′
NS( j, Q2) = c′

q( j, α̃s)

cq( j, α̃s)

(
Q2

μ2

)α̃sγqq ( j,α̃s )

FNS( j, μ2), (18)

where FNS obeys the same DGLAP evolution Eq. (12) as
qNS, up to terms in the ratio of the coefficient function which
depend on the running of the coupling; indeed, if we more
correctly re-introduce the scale dependence of αS into the
above results, these would follow in precisely the same way,
up to this difference in evolution. Thus, we can express this
at any arbitrary order, as is done in (1) at NLO, and we have
an analogous freedom to vary the scale μ at which one eval-
uates FNS as in the case of the standard factorization scale.
However, as we have only one ratio of scales involved in this
relation, there is only one such degree of freedom, and not the
two implied by varying the factorization scale independently
in the fit and prediction.

Finally, we note that while it might seem most direct in
the above expression to choose the scale of FNS (μ = Qi )
equal to the scale at which the measurement is made, this is,
of course, not mandatory. If the scale at which one structure
function is fit is significantly different to that at which the
second is to be predicted (Q = Q f ) it would normally be
assumed to be more sensible to express the measured quan-
tity at a scale similar to the predicted quantity, relying on
the validity of the evolution equation and avoiding obvious
large logarithms in the expression relating the two physical
quantities.

2.2 Drell–Yan cross section

As a second simple example of the above argument, and to
demonstrate how the above result can readily be generalised
to the case of hadronic observables, we can use the same fit as
above to predict the non-singlet Drell–Yan production cross
section, i.e. qNS(x1)qNS(x2) → l+l−. We can write this at
NLO as

dσDY
NS

dQ2 =
∫ 1

0
dx1dx2dz δ(x1x2z−τ)qNS(x1, μ

2)qNS(x2, μ
2)

·
[
δ(1 − z) + 2α̃S

(
P0
qq(z) ln

Q2

μ2 + C (1)
DY,q(z)

)]
,

(19)

where Q2 is the dilepton invariant mass and τ = Q2/s. As
before, for simplicity we normalise our cross section so that
the LO coefficient function is unity. Defining a f = μ2/Q2,
to the order we are calculating we can rewrite this as

dσDY
NS

dQ2 =
∫ 1

τ

dx1

x1

(
qNS(x1, a f Q

2) − α̃S ln a f P
0
qq

⊗ qNS(x1, a f Q
2) + C (1)

DY,q ⊗ qNS(x1, a f Q
2)

)

·
(
qNS(x2, a f Q

2) − α̃S ln a f P
0
qq

⊗ qNS(x2, a f Q
2) + C (1)

DY,q ⊗ qNS(x2, a f Q
2)

)
.

where x2 = τ/x1. Proceeding as before, and expressing the
quark distribution in terms of the non-singlet structure func-
tion, we have

dσDY
NS

dQ2 =
∫ 1

τ

dx1

x1

(
FNS(x1, aQ

2) − α̃SC
1
q ⊗ FNS(x1, aQ

2)

− α̃S ln aP0
qq ⊗ FNS(x1, aQ

2)

+ C (1)
DY,q ⊗ FNS(x1, aQ

2)
)(

FNS(x2, aQ
2)

− α̃SC
1
q ⊗ FNS(x1, aQ

2)

− α̃S ln aP0
qq ⊗ FNS(x2, aQ

2) + C (1)
DY,q ⊗ FNS(x2, aQ

2)
)
,

(20)

where a = a f for the case that we vary the scale only in the
prediction, and a = a f i if we vary in both cases. In other
words, the argument follows through in exactly the same way.

Exactly as in the previous example, we note that the above
results can be more simply expressed in Mellin space. In
particular, taking the Mellin transform with respect to τ the
DY cross section simply becomes

dσDY
NS ( j, Q2)

dQ2 =
(
qNS( j, μ2)a

α̃sγqq ( j,α̃s )
f

)2 [
1+2α̃Sc

DY
q ( j)+· · ·

]
,

=
(
FNS( j − 1, a f i Q

2)a
α̃sγqq ( j,α̃s )
f i

)2

×
[
1 + 2α̃Sc

DY
q ( j) + · · ·

]
, (21)

where the anomalous dimension can be calculated at any
arbitrary order, and the ‘· · · ’ indicate these higher order con-
tributions to the coefficient function.

3 A more general example: the quark singlet and gluon

3.1 Set-up

The above examples considered the special case of observ-
ables given in terms of a single non-singlet quark distribu-
tion. This leads to a simple and transparent result, but it is
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not immediately clear how it will generalise to the case that
includes both quark and gluon partons, which obey the fully
coupled DGLAP equation.

For the sake of generality and demonstration, we consider
a PDF fit to a pair of arbitrary ‘structure function’ observables
F and H , which are then used to predict a third such observ-
able, K . The generalisation to the case of hadronic observ-
ables would render the corresponding analysis a great deal
more complex in practice, but in principle should not change
the basic argument. We will also work in Mellin space, as this
will simplify the calculation, although all the results which
follow hold analogously in x space as well. We write

F( j, Q2) = �q( j + 1, μ2)Fq

(
j,

Q2

μ2

)

+ g( j + 1, μ2)Fg

(
j,

Q2

μ2

)
,

H( j, Q2) = �q( j + 1, μ2)Hq

(
j,

Q2

μ2

)

+ g( j + 1, μ2)Hg

(
j,

Q2

μ2

)
. (22)

Thus, we assume that these observables depend on the gluon
(g) and total quark singlet (�q ) PDFs only. In other words,
any dependence on non-singlet quark combinations, which
would be introduced by e.g. including a quark flavour-
dependence (due typically to the quark EW charges), is omit-
ted to limit the observables we need to consider, although the
set-up can readily be generalised to include these.

We will drop the Mellin moment argument j for brevity in
what follows. We can write the coefficient functions at NLO
as

Fq

(
Q2

μ2

)
= c(0)

q + α̃Sc
(1)
q + α̃Sc

(0)
q ln

(
Q2

μ2

)
γ (0)
qq

+ α̃Sc
(0)
g ln

(
Q2

μ2

)
γ (0)
gq , (23)

Fg

(
Q2

μ2

)
= c(0)

g + α̃Sc
(1)
g + α̃Sc

(0)
q ln

(
Q2

μ2

)
γ (0)
qg

+ α̃Sc
(0)
g ln

(
Q2

μ2

)
γ (0)
gg , (24)

and similarly for H . Note that the q ↔ g mixing introduces
a corresponding mixing in the coefficients cq,g of the expan-
sions of the Fq,g , and similarly for Hq,g . This simplifies if we
instead use the basis of eigenvectors of the DGLAP equation,
which we denote �±. In terms of these we can write

F(Q2) = �+(μ2)

(
Q2

μ2

)α̃Sγ+
F+ + �−(μ2)

(
Q2

μ2

)α̃Sγ−
F−,

(25)

H(Q2) = �+(μ2)

(
Q2

μ2

)α̃Sγ+
H+ + �−(μ2)

(
Q2

μ2

)α̃Sγ−
H−,

(26)

at arbitrary order. Here the diagonal anomalous dimen-
sions γ± and the PDF eigenvectors are given explicitly in
Appendix A. These then define the coefficients F± and H±
above, which are given in terms of Fq and Fg , and similarly
for H .

We now consider a PDF fit to these observables, for which
we take the factorization scales μ2 = a f Q2 and μ2 = ahQ2.
In this case we have (see 47)

F

(
μ2

a f

)
= �+(μ2)

(
a f

)−α̃Sγ+ F+ + �−(μ2)
(
a f

)−α̃Sγ− F−,

(27)

H

(
μ2

ah

)
= �+(μ2) (ah)

−α̃Sγ+ H+ + �−(μ2) (ah)
−α̃Sγ− H−,

(28)

which we can then invert to give

�+(μ2) =
H−F

(
μ2

a f

) (
a f

)α̃Sγ− − F−H
(

μ2

ah

)
(ah)α̃Sγ−

F+H−
(
a f

)α̃S(γ−−γ+) − F−H+ (ah)α̃S(γ−−γ+)
,

(29)

�−(μ2) =
H+F

(
μ2

a f

) (
a f

)α̃Sγ+ − F+H
(

μ2

ah

)
(ah)α̃Sγ+

F−H+
(
a f

)−α̃S(γ−−γ+) − F+H− (ah)−α̃S(γ−−γ+)
.

(30)

Substituting these into the third structure function K at scale
μ2 = akQ2, at NLO we find

K (Q2) = 1

F+H− − F−H+

{
K+H− − H+K−

+ α̃S ln

(
a f

ak

) [
γ+K+H− − γ−K−H+

]

+ α̃S(γ− − γ+) ln

(
ah
a f

)
H+H−

F+H− − F−H+

× (K+F− − K−F+)

}
F

(
ak
a f

Q2
)

+ 1

H+F− − H−F+

{
K+F− − F+K− + α̃S

× ln

(
ah
ak

) [
γ+K+F− − γ−K−F+

]

− α̃S(γ− − γ+) ln

(
ah
a f

)
F+F−

H+F− − H−F+

× (K+H− − K−H+)

}
H

(
ak
ah

Q2
)

, (31)

123



Eur. Phys. J. C (2019) 79 :225 Page 7 of 13 225

where it is understood that the fixed-order coefficients, H±
and so on, should also be expanded out to the appropriate
order, but we omit this for clarity. For comparison, if we do
not vary the scales in the fit, i.e. we take a f = ah = 1, then
we have

K (Q2) = F
(
akQ

2
) 1

F+H− − F−H+

{
K+H− − H+K−

− α̃S ln ak
[
γ+K+H− − γ−K−H+

] }

+ H
(
akQ

2
) 1

H+F− − H−F+

{
K+F− − F+K−

− α̃S ln ak
[
γ+K+F− − γ−K−F+

] }
. (32)

Thus we can immediately see that the situation is somewhat
more complex then in the simplified purely non-singlet case
considered in the previous section. In particular, our general
expression (31) contains the two ratios a f,h/ak correspond-
ing to the arguments of the F, H , similar to the non-singlet
case we considered before. However in addition we can see
that the result includes a contribution that depends on the
ratio ah/a f , which is purely due to the scale variation in the
fit stage, and is completely absent in the prediction without
this variation. We note that while the above expression is writ-
ten in terms of three ratios, only two of these are independent,
exactly as we would expect following the discussion towards
the end of Sect. 2.1. In particular, we are now expressing
one predicted physical quantity defined at one scale in terms
of two measured physical quantities, each of which may be
evaluated at a different scale. There are therefore two inde-
pendent scale ratios, and two physically meaningful ratios of
factorization scales. On the other hand, while the ratio ah/a f

can be written in terms of the independent ratios a f,h/ak , we
can see that this results in a mixing of these two ratios which
does not immediately reduce to the simple situation we had
in the case of the non-singlet structure functions.

We note that in [25] it was advocated that, as all phys-
ical quantities share common PDFs, the factorization scale
should be varied in a fully correlated way across all processes
entering the fit. In the above analysis, we can see that this cor-
responds to taking a f = ah , and we are left with (32), after
replacing ak → ak/a f = a f /ah . In other words, our situa-
tion and conclusions are exactly the same as for the simpler
non-singlet case, i.e. variations of factorization scale in the
predictions are entirely equivalent to those in the fitting and
vice versa. We fully expect this to hold in the more general
case appropriate to a global fit, as here too we will only have
one independent ratio of scales for any given predicted pro-
cess. Thus, if one makes this assumption, one could bypass
the complication of including these variations at the fit stage
entirely and simply include them in the prediction, with the

assumption of full correlations implying that this should be
done in the same way for different predictions at the same
time. On the other hand, varying the factorization scale in
both the fit and prediction would be a type of double count-
ing, i.e varying the scale by a factor of two more than may
naively be expected.

However, as discussed further below, in general this
appears to be an overly constraining assumption, given there
is the question of the central choice of scale to consider and,
potentially more significantly, the fact that the partons and
x range probed by the fit processes can be rather different.
With this in mind, how do we interpret our above result if we
do not make this simplifying assumption of fully correlated
factorization scales for quantities in the PDF fit? We will
first consider this result in various kinematic limits, before
discussing the more general implications.

3.2 The low and high x limits

One can simplify the full result (31) by for example assuming
that F− = 0 and H+ = 0, in other words that F, H are
only sensitive to the contribution from either the negative or
positive eigenvectors. In this case we have

K (Q2) = K+
F+

{
1 + α̃S ln

(
a f

ak

)
γ+

}
F

(
ak
a f

Q2
)

+K−
H−

{
1 + α̃S ln

(
ah
ak

)
γ−

}
H

(
ak
ah

Q2
)

, (33)

and the terms proportional to the ratio a f /ah vanish. As an
aside, if in addition the prediction is only sensitive to one
eigenvector, then this will reduce to a single ratio, in precisely
the same way we saw for the non-singlet distribution.

While at first glance it may appear somewhat arbitrary to
consider these limits, in fact in the low and high x regions
this can be precisely the situation we find ourselves in. As
discussed further in Appendix A, if we take the high x limit,
we have the well known result that

�+( j, μ2) = g( j, μ2), �−( j, μ2) = �q( j, μ
2), (34)

that is the quark distribution (∼ �q , qNS) and gluon are inde-
pendent eigenvectors of the DGLAP evolution. In the alter-
native low x ( j ∼ 1) limit we have

g( j, μ2) ∼ q( j, μ2) ∼ �+( j, μ2), (35)

for sufficiently high scale μ. That is, the positive eigenvector
is dominant.

These regimes play a direct role in PDF phenomenology
at the LHC and elsewhere. For example, a topical case is the
high x gluon, which is relatively poorly determined, and in
which there is currently a great deal of interest in placing
further constraints. This typically involves the use of LHC
observables such as inclusive jet and t t production, and the
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Z boson p⊥ distribution, for which the high x gluon plays
a dominant role. Although a global fit includes of course a
wider dataset, the extracted high x gluon will to a signifi-
cant extent be driven by these. One can then take the result
of this fit and predict the gluon-initiated production of e.g.
a high mass BSM object. In such a scenario the gluon evo-
lution will be effectively decoupled and both the fit and pre-
dicted observables will be dominated by the positive eigen-
vector �+. In other words, we are in an analogous situation
to Sect. 2, where the factorization scales for the fit and predic-
tion are fully correlated, and varying the factorization scale in
both will lead to and effective double counting of the theoret-
ical uncertainty. The corresponding situation for the high x
quark, where both the singlet and non-singlet are decoupled
from the gluon, is similar.

At low x , as we increase the scale of the observed process
we find that the quark and gluon contribution are completely
correlated by evolution, and only the positive eigenvector
contributes. This is equally true for observables such as scal-
ing violations of the structure function, dF2/d ln Q2, which
only depends on the positive eigenvector at low x , for all
scales. Thus, for fit processes such as a dF2/d ln Q2 and pre-
dicted processes such as Drell–Yan production at the LHC
(in particular in the lower mass region), we will expect a large
degree of correlation.

We note that in a realistic PDF fit we will in general include
multiple observables at the fit stage which may be dominated
by a particular PDF eigenvector. This will therefore introduce
a common set of factorization scale dependent logarithms in
to the corresponding predictions, or equivalently the scale
evolution of these observables will be same up to running
coupling effects. It therefore seems natural in such a case to
vary the factorization scale about some fixed central value for
each data set in a correlated way across these observables,
either in the fit or prediction stage (but not both). However,
the choice of central/best fit is not obvious, e.g. μ = Q2 may
be more appropriate for DIS data and μ = M/2 may be more
appropriate for Drell Yan production. Further to this, while
one might argue that if one varies the scale for one type of
structure function from a central value of μ = Q to μ = 2Q,
then one does it for all structure functions, it does not seem so
clear that e.g. for some jet data related observable one should
simultaneously vary the scale from a central value of e.g.
μ = pT to μ = 2pT .2 Such scale allocations are therefore
not in any clear sense correlated, and certainly the degree
of variation in the cross section when applying the rule of
thumb variation of the scale will depend on the central scale,
the precise ‘preferred’ value of which is not necessarily clear.

2 Indeed, for some quantities the choice between μ = pT , μ = pT,max

or μ = ĤT is also open in principle, see e.g. [34] for a recent discussion
for the case of inclusive jets. For dijets one has additionally has the
choice of a pT -based scale or the invariant mass m j j .

We do not advocate strictly fitting the best scale for each type
of process, but advise that some note, based on experience,
should probably be taken to use central scales that provide
good fits for a given process (or at the very least, to avoid
those known not to be optimal).

As described above, even for processes that depend dom-
inantly on the same eigenvector, the correlation of the scale
variation between these between processes is not entirely
trivial. However, if two quantities (either fit and predicted, or
both fit) are dominated by alternative PDF eigenvectors and
therefore completely independent, then clearly the variation
of scales, in either fit or prediction, is not correlated. In this
case imposing correlation between scale variations in these
processes can result in artificial correlations between the pre-
dicted processes (depending on how they depend on the ini-
tial PDFs), or in the context of a fit, the PDFs themselves. In
general, most predictions will depend on combinations of fit
PDFs where full correlation is, to a lesser or greater degree,
an overly restrictive assumption.

4 Renormalization scale variation

In this section we will discuss how the issues presented above
for factorization scale variation apply to the separate ques-
tion of renormalization scale variation. We define a physical
quantity beginning at O(αS):

A(Q2) = α̃S(μ
2
i )A1+α̃2

S(μ
2
i )

(
A2 − ln β(0)A1

(
Q2

μ2
i

))
,

(36)

where μi is the renormalization scale. We first consider this
to be the quantity we measure in order to determine the value
of the coupling. With this, we wish to predict the second
quantity

B(Q2) = α̃S(μ
2
f )B1+α̃2

S(μ
2
f )

(
B2−β(0)B1 ln

(
Q2

μ2
f

))
.

(37)

As with the PDFs and structure functions one can invert (36)
to obtain

α̃S(μ
2) = A(μ2/ai )

A1

(
1 − αS(μ

2)

A1

(
A2 + β(0)A1 ln ai

))
,

= A(μ2/ai )

A1

(
1− A(μ2/ai )

A2
1

(
A2+β(0)A1 ln ai

))
,

(38)

where as usual ai = μ2
i /Q

2 and we drop terms of O(α2
S);

note that while the physical quantities begin at O(αS), the
relation between them is one order lower, and is accurate to
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O(αS). For B(Q2), taking a f = μ2
f /Q

2 and substituting in

our expression for A(Q2), we get

B(Q2) = A(a f i Q2)

A1

(
B1 + A(a f i Q2)

A1

×
[
B2 − B1A2

A1
+ β(0)B1 ln a f i

])
, (39)

Hence, we can indeed derive a final result which is expressed
only in terms of a single ratio a f i = a f /ai , as in the structure
function case.

In the above example we have used our initial physical
quantity in order to determine the coupling constant, not the
PDFs. This is really the most natural thing to to when thinking
about renormalization scale variation, since the scale is that
used for the definition of the coupling, while the factorization
scale is that used for the definition of the PDFs. However, in
a PDF fit one instead uses the physical quantity A(Q2) to
determine the PDFs. To see how this changes the result, we
now assume our toy observables depend on a single PDF q
(the non-singlet quark, say, although this is not essential).
Implicitly we work in Mellin space to avoid complications
with convolutions, but as before this does not change the basic
argument. We consider the case of a fixed factorization scale
μ2
F = Q2, while setting μ2

i = ai Q2 for the renormalization
scale. We have

A(Q2) = α̃S(μ
2
i )A1

[
1 + α̃S(μ

2
i )

A1

×
(
A2 + β(0)A1 ln ai

)]
q(Q2). (40)

In terms of this the PDF can be written as

q(Q2) = A(Q2)

A1α̃S(μ
2
i )

[
1 − α̃S(μ

2
i )

A1

(
A2 + β(0)A1 ln ai

)]
,

(41)

Inserting this into the expression for B(Q2), we obtain

B(Q2) = α̃S(μ
2
f )B1

[
1 + α̃S(μ

2
f )

B1

(
B2+β(0)B1 ln a f

)]
q(Q2)

= B1A(Q2)

A1

α̃S(μ
2
f )

α̃S(μ
2
i )

[
1 + β(0)

(
α̃S(μ

2
f ) ln a f

−α̃S(μ
2
i ) ln ai

) + B2

B1
α̃S(μ

2
f ) − A2

A1
α̃S(μ

2
i )

]
. (42)

We see that now the expression is certainly not just a func-
tion of the ratio of scales μ2

f /μ
2 = a f i . Let us examine

the explicit consequence of this. For example, in our earlier
case of factorisation scale variation, the choice of μ2

f = μ2
i

i.e. a f i = 1 resulted in no change in the expression for the
prediction compared to choosing both ai = a f = 1. In fact

for the first term in (42) this equivalent result appears, and
similarly for the sum of the second and third terms. How-
ever, for the fourth and fifth terms, i.e. those dependent on
the coefficients of the scale-independent parts of the NLO
expressions for A(Q2) and B(Q2), this is not the case. In
this limit each becomes proportional to α̃s(μ

2
f ), but depends

on the absolute value of the scale. This term depends on
the difference in the relative size of these NLO corrections
(compared to the LO contributions to each quantity), so the
violation of the dependence on ratios is violated by the scale
independent NLO corrections. If we consider other types of
scale variation, e.g. multiplying μ f by 2 but dividing μi by
2 we see that even though the effect in the combination of
the first, second and third terms is close to effect of either
multiplying μ f by 4 or dividing μi by 4, it is not identical,
and the discrepancy is larger in the fourth and fifth terms.

The fact that the expression of the predicted physical quan-
tity in terms of the measured physical quantity does not break
down into an expression depending on the ratio of the renor-
malization scales used for each calculation is a consequence
of the fact that the renormalization scale is fundamentally
associated to the scale of the coupling, but here we do not
directly relate the physical quantities to the coupling con-
stant, but to the PDF. It is also the case that different physical
quantities depend on the coupling in different ways, i.e. the
perturbative order starts at zeroth, first or second order for
very standard quantities (and higher order for more exclu-
sive quantities). Here we have given perhaps the simplest
example of two quantities which each start at first order.
However, the common input in PDF fits of the F2,3 struc-
ture functions starts at zeroth order, so at lowest order has no
renormalization scale dependence in the hard cross section.
The renormalization scale dependence of F2 will therefore
be suppressed by a power of αS relative to the case of e.g. top-
pair production in hadron–hadron scattering, which begins at
O(α2

S). In contrast, all cross sections are linear in the PDF of
any of the hadrons participating in the scattering.

Finally, we can also consider the case of two related phys-
ical observables. This could be for example, jet production
at ATLAS and CMS, or more generally W and Z boson pro-
duction, for which the LO results are of course uncorrelated
in normalization, but the effect of higher-order QCD correc-
tions is similar. Considering the latter example, for our toy
observables above we would have

A2

A1
∼ B2

B1
≡ CNLO, (43)

and so (42) can be written as

B(Q2)

A(Q2)
= B1

A1

[
1 + β(0)

(
α̃S(μ

2
f ) ln a f − α̃S(μ

2
i ) ln ai

)

+CNLO

(
α̃S(μ

2
f ) − α̃S(μ

2
i )

)]
. (44)
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Now to maintain consistency with our requirement that this
ratio should be approximately constant under inclusion of
higher-order QCD corrections, we can see that we must take
μ f = μi (a f = ai ), i.e. vary the renormalization scale in the
fit and prediction in a correlated way. It is of course a well-
known procedure to vary QCD renormalization scales in such
a way when predicting this type of ratio (of e.g. the W to Z
boson cross sections.3) In [25] this argument is extended to
hold between processes at the fit stage. It is perhaps not partic-
ularly surprising to find an equivalent requirement between
the fit and prediction here, and clearly the inclusion of this
in a global fit would be intractable. Nonetheless, we can see
that this correlation enters in principle at the same level as
that between processes entering the fit, and so the question
of whether it is necessary or sensible to include one without
the other requires further investigation. Certainly, the rela-
tive importance of the correlation between processes in the
fit stage and between the fit and prediction will in general
depend on the specific data sets being considered.

5 Summary and conclusions

In this paper we have discussed the inclusion of theoretical
uncertainties in PDFs due to missing higher-order terms in
the pQCD results for the processes entering the fit. Such
uncertainties, while routinely included in the predictions,
have previously not been explicitly included in the PDF fit
itself. We are now firmly in the high precision LHC era, both
in terms of the available data for PDF fitting and the standard
for phenomenology which applies these PDFs. Therefore,
such an approach may be increasingly called into question,
and certainly requires careful consideration.

As a first step towards this, we have considered the stan-
dard approach to evaluating MHO uncertainties, namely due
to QCD factorization and renormalization scale variation
around a central value by some set factor. Focussing on the
case of the factorization scale, we have in particular shown
that if we take this standard criterion seriously and apply it
consistently to both a PDF fit and the predicted observables
resulting from that fit, then in general there is a strong over-
lap between the variation in the fit and prediction stage. To
demonstrate this, we have considered in Sect. 2 the simplest
possible case of a fit to a non-singlet structure function, before
generalising to include coupled quark and gluon contribu-
tions in Sect. 3. We have shown how the explicit dependence
on the PDFs can be removed entirely, and the outcome of the
fit recast instead in terms of observable quantities only. We

3 See for example [35] for the example of vector boson plus jets. In this
study an additional, conservative, process dependent uncertainty is also
introduced to account for the difference between the K -factors of the
different quantities.

have then found that written in this way, scale variation in
the fit corresponds to precisely a scale variation in the predic-
tion in certain regimes, in particular at low or high enough
x . Our results have relied on the basic fact that it is pos-
sible, and sometimes preferable, to bypass the intermediate
PDFs entirely, instead working purely at the level of physical
observables (structure functions and so on) and the relation-
ships between them. This idea of working in such a ‘physical
basis’ is in fact quite an old one; here we simply derive the
implications of this for scale variation uncertainties in PDF
fits.

We have also briefly considered the case of renormaliza-
tion scale variation, finding that the situation is not as straight-
forward. This is unsurprising, given the quite different roles
that the the QCD coupling and PDFs play in fits. However,
one basic implication of working in a physical basis is that
the motivation for including correlated renormalization scale
variations between related processes in the fit or prediction
state, is equally present between processes entering both the
fit and prediction. While including such correlations in a
realistic global fit would certainly in practice be impossi-
ble, clearly this raises questions if for example one wishes to
include such correlations at the fit stage.

Now, the true situation in a global fit is certainly signifi-
cantly more complicated than the examples we have consid-
ered explicitly in this paper. Here, we fit a very wide array
of structure function and hadron collider data, sensitive to
a range of different (and overlapping) x values and scales.
Indeed, while in the simple non-singlet case of Sect. 2 we
find a complete overlap between the fit and prediction, we
have seen that in the somewhat more general (although still
simplified) scenario of Sect. 3 the situation is not as straight-
forward. Nonetheless, as mentioned above in certain (e.g.
low and high x) regimes the same conclusion holds, and
more generally these considerations serve as clear guidance
for the case of a genuine PDF fit. In particular, a naive varia-
tion of factorization scales in both the PDF fit and prediction
will certainly correspond to a degree of overestimation in the
total theoretical error, and should be avoided. On the other
hand, the considerations of Sec. 3 also suggest that variation
of the overall factorization scale in the prediction alone does
not capture the full degree of uncertainty due to MHOs in the
problem. This suggests that the correct approach, maintain-
ing generality while avoiding overlap in the regimes where it
may occur, would be to consider scale variations only in the
fit and not in the prediction.

Further to this, we have also seen that if one considers
factorization scales between all quantities to be fully cor-
related in the fit, then the factorization scale variation can
equivalently be performed entirely in the calculation of the
predictions, with the first assumption implicitly leading to
full correlation also being maintained between the factoriza-
tion scale across different predictions. As discussed earlier,
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this seems to be a overly strong assumption in general, but
as the arguments in Section 3 suggest it may, in practice,
not be such a bad assumption for certain specific physical
quantities. Therefore, for factorisation scale variations, the
current approach of only varying the scale in the prediction
is certainly an underestimate of the full uncertainty from this
source, but probably not as significant an underestimate as
might naively be expected. The arguments in this article then
suggest it is more reliable to consider factorization scale in the
fit alone, but this should in general include a variation which
is only correlated for physical processes which depend on
the same independent PDF combinations. This type of proce-
dure would clearly need significant compromise in practice,
as few physical processes depend on exactly the same PDFs,
so many sets of processes will either be weakly correlated,
strongly correlated, or somewhere in between. We note that
in all cases the choices of central scale is largely a separate
issue: this should be taken independent for different quanti-
ties, allowing for something close to the best possible fit at a
fixed theoretical order, and possibly relieving some tensions
between data sets in a fit. Indeed, such an approach also has
the likely benefit of reducing the sensitivity of the fit quality,
χ2, to MHOs, which may confuse the interpretation of PDF
fits.

The eventual interpretation of these results has the poten-
tial to be a matter of some debate, given the known issues
with the ‘rule of thumb’ scale variation approach and avail-
ability of alternative, potentially superior, approaches (see
for example [36–38]). Nonetheless the initial investigations
of the inclusion of theoretical uncertainties in PDF fits cur-
rently apply the scale variation paradigm [25,33,39], and
so this result is certainly directly relevant to these studies.
Thus, one is free to apply a potentially more complete and
reliable approach than scale variation to evaluating the theo-
retical uncertainty due to missing higher orders in the PDF fit.
Indeed, our result may be taken as further evidence that such
an approach is preferable. In such a case, the analysis above
will not directly apply, although some element of the basic
approach, namely expression of the predicted observables
directly in terms of the fit observables, will certainly be rel-
evant. If, on the other hand, one does apply the standard fac-
torization scale variation approach, then clearly considerable
care is necessary to maintain consistency with the require-
ments demonstrated in this paper. Future work will consider
the impact of such variations, consistently performed, within
the context of the global MMHT fit and its interplay with the
tolerance criteria to evaluate the PDF uncertainties.
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A DGLAP evolution in the diagonal basis

In this appendix, we summarise a few standard formulae
for the DGLAP evolution in a diagonal basis. The coupled
DGLAP equation for the quark singlet �q and gluon g PDF
reads

∂

∂ ln μ2

(
g

�q

)
= α̃S

(
γgg γgq

2n f γqg γqq

)(
g

�q

)
, (45)

in Mellin space, where we leave the scale and moment argu-
ments implicit. This can be diagonalized to give

∂

∂ ln μ2

(
�+
�−

)
= α̃S

(
γ+ 0
0 γ−

)(
�+
�−

)
, (46)

allowing us to write

�±( j, μ2) = �±( j, Q2)

(
μ2

Q2

)α̃Sγ±
, (47)

where

�+( j, μ2) = 1

r− − r+

[
r−g( j, μ2) − �q( j, μ

2)
]
, (48)

�−( j, μ2) = 1

r− − r+

[
−r+g( j, μ2) + �q( j, μ

2)
]
, (49)

with

γ± = 1

2

[
γgg + γqq ±

√
(γgg − γqq)2 + 8n f γqgγgq

]
,

r± = 2n f γqg

γ± − γqq
. (50)

The LO splitting functions are given by

γqq( j) =CF

⎡
⎣−1

2
+ 1

j ( j + 1)
− 2

j∑
k=2

1

k

⎤
⎦ , (51)

γqg( j) =TR

[
(2 + j + j2)

j ( j + 1)( j + 2)

]
, (52)

γgq( j) =CF

[
(2 + j + j2)

j ( j + 1)( j − 1)

]
, (53)
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γgg( j) =2NC

⎡
⎣ − 1

12
+ 1

j ( j − 1)
+ 1

( j + 1)( j + 2)

−
j∑

k=2

1

k

⎤
⎦ − 2

3
nFTR, (54)

while the NLO case is given in [40]. In the high x ( j 
 1)
limit, we then have at LO

γqq = −2CF ln j, γgg = −2NC ln j, γqg, γgq = 0, (55)

with the same scaling present at NLO. In other words, (45)
is already diagonal and we can simply write

�+( j, μ2) = g( j, μ2), �−( j, μ2) = �q( j, μ
2), (56)

up to overall normalisation factors. In the low x ( j ∼ 1)
limit, (see [41] for further discussion) we have at LO

γgq = 2CF

j − 1
, γgg = 2NC

j − 1
, γqq = 0, γqg = 2

3
TR,(57)

so that

γ+ = γgg ∼ 1

j − 1
, γ− = −2n f

γqgγgq

γgg
∼ const., (58)

and

r+ = 1

9
n f ( j − 1), r− = −9

4
. (59)

Thus, if we consider the evolution of the quark singlet and
gluon at the low input scale μ0 ∼ 1 GeV, and a larger scale
μ, e.g. characteristic of an LHC process, we have

g( j, μ2) = �+( j, μ2
0)

(
μ2

μ2
0

)α̃Sγ+
+ �−( j, μ2

0)
μ2
μ2

0

→�+( j, μ2
0)

(
μ2

μ2
0

)α̃Sγ+
, (60)

and

�q ( j, μ
2) = −9

4
�−( j, μ2

0) + 1

9
n f ( j − 1)�+( j, μ2

0)

(
μ2

μ2
0

)α̃Sγ+
,

= �q ( j, μ
2
0) + 1

9
n f ( j − 1)

(
g( j, μ2

0) + 4

9
�q ( j, μ

2
0)

)

×
⎡
⎣

(
μ2

μ2
0

)α̃Sγ+
− 1

⎤
⎦ ,

μ2
μ2
0→ 1

9
n f ( j − 1)

(
g( j, μ2

0) + 4

9
�q ( j, μ

2
0)

) (
μ2

μ2
0

)α̃Sγ+
.

(61)

Thus at high scale the positive eigenvector dominates for both
the gluon and quark singlet, in the latter case overcoming
the normalization due to the power of j − 1 compared to the

negative eigenvector input. At NLO, the γ− eigenvector picks
up a ∼ αS/( j − 1) pole, but this is nonetheless suppressed
by a power of αS relative to γ+ and thus the leading high μ2

scaling is still driven by the latter eigenvector, with the O(αS)

coefficient of the �+ contribution �q being non-vanishing
as j → 1.

We therefore have that for sufficiently high scales an
observable will be given dominantly by the �+ eigenvector,
with g ∼ �q due to the low-x PDF evolution. Alternatively,
if the our observable is given by the rate of change with scale
Q2, e.g. dF2/dQ2, then the input �− component will give no
contribution, and the positive eigenvector will be dominant
at all scales.
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