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Abstract— Many Inter net protocolsand operational pro-
ceduresusemeasurementsto guide futur e actions. This is
an effective strategy if the quantities being measured ex-
hibit a degree of constancy: that is, in somefundamental
sense,they are not changing. In this paper we explore thr ee
differ ent notions of constancy: mathematical, operational,
and predictive. Usinga largemeasurementdatasetgathered
fr om the NIMI infrastructur e, we then apply thesenotions
to thr eeInter net path properties: loss,delay, and thr ough-
put. Our aim is to provide guidanceasto whenassumptions
of various forms of constancyare sound, versuswhen they
might provemisleading.

I . INTRODUCTION

There has beena recentsurge of interest in network
measurements.Thesemeasurementshave deepenedour
understandingof network behavior and led to more ac-
curateandqualitatively differentmathematicalmodelsof
network traffic. Network measurementsarealsousedin
anoperationalsenseby variousprotocolsto monitor their
currentlevel of performanceandtake actionwhenmajor
changesaredetected.For instance,RLM [MJV96] mon-
itors the packet loss rate and, if it crossessomethresh-
old, decreasesits transmissionrate. In addition, several
network protocolsand algorithmsusenetwork measure-
mentsto predictfuturebehavior; TCPusesdelaymeasure-
mentsto estimatewhenit shouldtime-outmissingpackets,
andmeasurement-basedadmissioncontrolalgorithmsuse
measuresof pastloadto predictfutureloads.

Measurementsare inherently bound to the present—
they canmerelyreportthestateof thenetwork at thetime
of the measurement.However, measurementsare most
valuablewhen they area usefulguide to the future; this
occurswhentherelevant network propertiesexhibit what
we will term constancy. We usea new term for this no-
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tion, ratherthananexisting term like “stationarity,” in an
attemptto convey our goalof examininga broad,general
view of theproperty“holds steadyanddoesnot change,”
ratherthana specificmathematicalor modelingview. We
will alsousethetermsteadyfor thesamenotion,whenuse
of “constancy” wouldprove grammaticallyawkward.

In this paperwe investigatethreenotionsof constancy:
mathematical,operational,and predictive. We do so in
thecontext of measurementsof threequantitiesdescribing
Internetpaths:packet loss,packet delays,andthroughput.

Wesaythatadatasetof network measurementsis math-
ematicallysteadyif it canbedescribedwith asingletime-
invariantmathematicalmodel.Thesimplestsuchexample
is describingthe datasetusing a single independentand
identicallydistributed(IID) randomvariable. More com-
plicatedformsof constancy wouldinvolvecorrelationsbe-
tweenthe datapoints. More generally, if onepositsthat
the datasetis well-describedby somemodelwith a cer-
tain setof parameters,thenmathematicalconstancy is the
statementthat thedatasetis consistentwith thatsetof pa-
rametersthroughoutthedataset.

Oneexampleof mathematicalconstancy is the finding
by Floyd andPaxson[PF95] thatsessionarrivalsarewell
describedby a fixed-ratePoissonprocessover time scales
of tensof minutesto an hour. However, they alsofound
that sessionarrivals on longer time scalescan only be
well-modeledusingPoissonprocessesif the rateparam-
eteris adjustedto reflectdiurnalloadpatterns,anexample
of mathematicalnon-constancy.

Whenanalyzingmathematicalconstancy, the key is to
find theappropriatemodel.Inappropriatemodelscanlead
to misleadingclaimsof non-constancy becausethemodel
doesn’t truly capturetheprocessat hand. For instance,if
onetriedtofit ahighlycorrelatedbut stationaryarrival pro-
cessto a Poissonmodel,it would appearthat thePoisson
arrival ratevariedover time.

Testingfor constancy of the underlyingmathematical
model is relevant for modeling purposes,but is often
too severe a test for operationalpurposesbecausemany
mathematicalnon-constanciesare in reality irrelevant to
protocols. For instance,if the loss rate on a path was
completelyconstantat 10% for thirty minutes,but then
changedabruptly to 10.1% for the next thirty minutes,
onewould have to concludethat the lossdatasetwasnot
mathematicallysteady, since its fundamentalparameter



haschanged;yet onewould behard-pressedto find anap-
plication thatwould careaboutsucha change.Thus,one
mustadopta differentnotionof constancy whenaddress-
ing operationalissues. The key criterion in operational,
ratherthanmathematical,constancy is whetheran appli-
cation (or otheroperationalentity) would careaboutthe
changesin thedataset.Wewill call adatasetoperationally
steadyif the quantitiesof interestremainwithin bounds
consideredoperationallyequivalent. Note that while it is
obvious that operationalconstancy doesnot imply math-
ematicalconstancy, it is alsotrue that mathematicalcon-
stancy doesnot imply operationalconstancy. For instance,
if thelossprocessis a highly bimodalprocesswith a high
degreeof correlation,but the lossratein eachmodedoes
not change,nor doesthe transitionprobability from one
modeto theother, thentheprocesswould be mathemati-
cally steady;but an applicationwill seesharptransitions
from low-lossto high-lossregimesandbackwhich, from
theapplication’s perspective, is highly non-steadybehav-
ior.

Operationalconstancy involves changes(or the lack
thereof)in perceived applicationperformance.However,
protocolsandothernetwork algorithmsoftenmake useof
measurementson a finer level of granularityto predictfu-
ture behavior. We will call a datasetpredictivelysteady
if pastmeasurementsallow oneto reasonablypredict fu-
turecharacteristics.As mentionedabove,onecanconsider
TCP’s time-outcalculationasusingpastdelaysto predict
future delays,andmeasurement-basedadmissioncontrol
algorithmsdothesamewith lossandutilization. Sounlike
operationalconstancy, whichconcernsthedegreeto which
thenetwork remainsin a particularoperatingregime,pre-
dictive constancy reflectsthe degreeto which changes in
pathpropertiescanbetracked.

Justaswecanhaveoperationalconstancy but notmath-
ematical,or vice versa,we alsocanhave predictive con-
stancy andnoneor only oneof theothers,andvice versa.
Indeed,aswe will illustrate,processesexhibiting thesim-
plest form of mathematicalconstancy, namely IID pro-
cesses,aregenerallyimpossibleto predictwell, sincethere
areno correlationsin theprocessto leverage.

Anotherimportantpoint to consideris that for network
behavior, we anticipatethat constancy is a more useful
conceptfor coarsertime scalesthanfor fine time scales.
This is becausetheeffectsof numerousdeterministicnet-
work mechanisms(mediaaccess,FIFObuffer drops,timer
granularities,propagationdelays)manifestthemselveson
fine time scales,oftenleadingto abruptshifts in behavior,
ratherthanstochasticvariations.

An importantissueto thenconsiderconcernsdifferent
waysof how to look at our fine-grainedmeasurementson

scalesmorecoarsethanindividual packets.Oneapproach
is to aggregateindividual measurementsinto largerquan-
tities, suchaspackets lost per second. This approachis
quite useful,andwe useit repeatedlyin our study, but it
is not ideal,sinceby aggregatingwe canloseinsight into
theunderlyingphenomena.An alternative approachis to
attemptto modelthefine-grainedprocessesusinga model
thatprovidesa form of aggregation.With thisapproach,if
themodelis sound,wecanpreservetheinsightinto theun-
derlyingphenomenabecauseit is capturedby themodel.

For example,insteadof analyzingpacket lossper sec-
ond,we show thatindividual losseventscomein episodes
of back-to-backlosses( � III-B). We canthenseparately
analyzethecharacteristicsof individual lossepisodesver-
susthe constancy of the processof lossepisodearrivals,
retainingthe insight that losseventsoften comeback-to-
back,whichwouldbediminishedor lostif weinsteadwent
directly to analyzingpacketslostpersecond.

Our basic model for various time seriesis of piece-
wise steadyregionsdelineatedby change-points. With a
parameterizedfamily of models(e.g. Poissonprocesses
with somerate), the time seriesin eachchange-freere-
gion (CFR) is modeledthrougha particularvalueof the
parameter(e.g., the Poissonarrival rate). In fitting the
time seriesto this model, we first identify the change-
points. Within eachCFR we determinewhetherthe pro-
cesscanbe modeledby IID processes.Whenoccurring,
independencecan be viewed as a vindication of the ap-
proachto refocusto coarsertime scales,showing thesim-
plicity in modelingthat can be achieved after removing
small time scalecorrelations. Furthermore,we can test
conformanceof inter-event times with a Poissonmodel
within eachCFR.Givenindependence,this entailstesting
whetherinter-event timesfollow an exponentialdistribu-
tion.

To focuson thenetwork issues,we deferdiscussionof
thestatisticalmethodologyfor thesetests—thepresenceof
change-points,IID processes,andexponentialinter-event
times—toAppendixA. However, oneimportantpoint to
note is that the two testswe found in the literature for
detectingchange-pointsare not perfect. The first test—�����	��

���������
���

—is biased towards sometimesfinding
extraneouschange-points.Theeffect of thebiasis to un-
derestimatethedurationof steadyregionsin our datasets.
Thesecondtest—

�����	����������� ��
�!
—doesnothavethebias.

However, it is lesssensitiveand thereforemissesactual
change-pointsmoreoften. The effect of the insensitivity
is to overestimatethedurationof steadyregionsandto un-
derestimatethenumberof CFRswithin whichtheunderly-
ing processcanbemodeledby IID processes.(See[Zh01]
for adetailedassessmentof theaccuracy of bothtests.)To



accommodatetheimperfection,weapplybothtestswhen-
everappropriateandthencomparetheresults.Ourhopeis
to givesomeboundon thedurationof steadyregions.

This paperis organizedas follows. We first describe
the sourcesof data in SectionII. We discussthe loss
dataandits constancy analysisin SectionIII, andthede-
lay and throughputdatain SectionsIV andV. Of these
threesections,the first oneis muchmoredetailed,aswe
develop a numberof our analysisandpresentationtech-
niquestherein. We then concludein SectionVI with a
brief summaryof our results.

I I . MEASUREMENT METHODOLOGY

We gatheredtwo basictypesof measurements:Poisson
packet streams,usedto assesslossanddelaycharacteris-
tics, andTCP transfersto assessthroughput.1 Our mea-
surementswereall madeusingtheNIMI measurementin-
frastructure[PMAM98]. NIMI is a follow-on to Paxson’s
NPDmeasurementframework, in whichanumberof mea-
surementplatformsare deployed acrossthe Internetand
usedto performend-to-endmeasurements,andit attempts
to addressthe limitations and resultingmeasurementbi-
asespresentin NPD [Pa99].

Wetooktwo mainsetsof data,oneduringWinter1999–
2000( "$# ), andoneduringWinter 2000–2001( "&% ). For
the first, the infrastructureconsistedof 31 hosts,80% of
which werelocatedin theUnited States,andfor the sec-
ond, 49 hosts,73% in the USA. About half are univer-
sity sites,andmostof theremainderresearchinstitutesof
differentkinds. Thus, the connectivity betweenthe sites
is stronglybiasedtowardsconditionsin the USA, and is
likely not representative of thecommercialInternetin the
large. That said, the pathsbetweenthe sitesdo traverse
thecommercialInternetfairly often,andwe might plausi-
bly arguethat our observationscould apply fairly well to
the betterconnectedcommercialInternetof the not-too-
distantfuture,if not today.

For Poissonpacket streamswe usedthe “zing” util-
ity, providedwith theNIMI infrastructure,to sourceUDP
packets at a meanrate of 10 Hz ( "$# ) or 20 Hz ( "&% ).
For the first of these,we used256 byte payloads,and
for the second,64 byte payloads. zing sendspackets
in selectablepatterns(payloadsize,numberof packetsin
back-to-back“flights,” distribution of flight interarrivals),
recordingtimeof transmissionandreception.Whilezing
is capableof using a packet filter to gatherkernel-level
timestamps,for avarietyof logisticalproblemsthisoption
doesnot work well on thecurrentNIMI infrastructure,so'

See[ZPS00] for relatedanalysisof end-to-endrouting basedon
traceroute measurements.

Dataset # pkt traces # pairs # pkts # thruput # xfers(*)
2,375 244 160M 58 16,900(,+
1,602 670 113M 111 31,700

TABLE I
SUMMARY OF DATASETS USED IN THE STUDY.

we useduser-level timestamps.
By usingPoissonintervalsfor sendingthepackets,time

averagescomputedfrom the measurementsareunbiased
[Wo82]. Packets weresentfor an hour betweenrandom
pairsof NIMI hosts,andwererecordedatbothsenderand
receiver, with somestreamsbeingunidirectionalandsome
bidirectional. We usedthe former to assesspatternsof
one-waypacket lossbasedontheuniquesequencenumber
presentin eachzing packet, andthelatter to assessboth
one-way lossandround-tripdelay. We did not undertake
any one-way delayanalysissincetheNIMI infrastructure
doesnotprovide synchronizedclocks.

For throughputmeasurementswe usedTCP transfers
betweenrandompairs of NIMI hosts,making a 1 MB
transferbetweenthe samepair of hostsevery minutefor
a 5-hourperiod. We took asthe total elapsedtime of the
transferthe interval observed at the receiver betweenac-
ceptingthe TCP connectionandcompletingthe closeof
the connection.Transfersweremadespecifying200 KB
TCP windows, thoughsomeof the systemsclampedthe
buffers at 64 KB becausethesystemswereconfiguredto
notactivatetheTCPwindow scalingoption[JBB92]. The
NIMI hostsall ranversionsof eitherFreeBSDor NetBSD.

Table I summarizesthe datasets.The secondcolumn
gives the numberof hour-long zing packet traces,the
third thenumberof distinctpairsof NIMI hostswe mea-
sured(lower in " # becausewe pairedsomeof the hosts
in "$# for an entire day, while all of the "&% measure-
mentsweremadebetweenhostspairedfor onehour),and
the total numberof measuredpackets. The fifth column
givesthe numberof throughputpairswe measured,each
for 5 hours,andthecorrespondingnumberof 1 MB trans-
ferswe recorded.

In our preliminaryanalysisof "$# , we discovereda de-
ficiency of zing thatbiasesour resultssomewhat: if the
zing utility received a “No route to host” error condi-
tion, then it terminated. This meansthat if therewas a
significantconnectivity outagethat resultedin the zing
hostreceiving anICMP unreachablemessage,thenzing
stoppedrunning at that point, and we misseda chance
to further measurethe problematicconditions. 47 of the"$# measurementhours(4%) sufferedfrom this problem.
We were able to salvage 6 as containing enoughdata



to still warrantanalysis;the otherswe rejected,though
somewould have beenrejectedanyway dueto NIMI co-
ordinationproblems. This omissionmeansthat the "$#
datais, regrettably, biasedtowardsunderestimatingsignif-
icantnetwork problems,andhow they correlatewith non-
constancies.This problemwasfixedprior to the " % data
collection.

Oneotheranomalyin the measurementsis that in "&%
someof thesendersandreceiversweremissynchronized,
suchthatthey werenotrunningtogetherfor theentirehour.
Thismismatchcouldleadto seriesof packetsat thebegin-
ningor endingof tracesbeingreportedaslostwhenin fact
theproblemwasthatthereceiver wasnot running.Were-
moved theanomalyby trimming the tracesto begin with
thefirst successfullyreceivedpacket andendwith thelast
such. This trimming potentially could bias our datato-
wardsunderestimatinglossoutages;however, inspection
of the tracesand the loss statisticswith and without the
trimmingconvincedusthatthebiasis quiteminor.

Finally, our focusin this paperis on constancy, but to
soundlyassessconstancy first requiressubstantialwork to
detectpathologiesandmodalbehavior in thedataand,de-
pendingon their impact, factor theseout. We then can
identify quantitiesthataremostappropriateto testfor con-
stancy. Due to spacerestrictionsand in the interestof
brevity, we refer the readerto [ZPS00] for many of the
particularsof thisassessmentof thedata.

I I I . LOSS CONSTANCY

Webegin ouranalysisof typesof constancy with a look
at packet loss. We devote significantly more discussion
to this sectionthan to the subsequentsectionsanalyzing
delayandthroughputbecausehereinwedevelopanumber
of ouranalysisandpresentationtechniques.

Correlation in packet loss was previously studied in
[Bo93], [Pa99], [YMKT99]. The first two of thesefo-
cuson conditionallossprobabilitiesof UDP packetsand
TCP data/ACK packets. [Bo93] found that for packets
sentwith a spacingof -/.�010 ms,a packet wasmuchmore
likely to belost if thepreviouspacketwaslost,too. [Pa99]
foundthatfor consecutive TCPpackets,thesecondpacket
was likewise muchmore likely to be lost if the first one
was.Thestudiesdid not investigatecorrelationson larger
timescalesthanconsecutivepackets,however. [YMKT99]
lookedat theautocorrelationof abinarytimeseriesrepre-
sentationof thelossprocessobservedin 128hoursof uni-
castandmulticastpacket traces. They found correlation
time scalesof 1000ms or less. However, they alsonote
that their approachtendsto underestimatethecorrelation
time scale.

While the focus of thesestudieswas different from

ours—inparticular, [YMKT99] explicitly discardednon-
steadysamples—someof our resultsbeardirectly upon
this previous work. In particular, in this sectionwe ver-
ify thefinding of correlationsin the lossprocess,but also
find that muchof the correlationcomesonly from back-
to-backlossepisodes,andnot from “nearby” losses.This
in turnsuggeststhatcongestionepochs(timeswhenrouter
buffersarerunningnearlycompletelyfull) arequiteshort-
lived,at leastfor pathsthatarenotheavily congested.

As discussedin the previous section,we measureda
large volume (270M) of Poissonpackets sent between
several hundredpairs of NIMI hosts, yielding binary-
valuedtime seriesindexedby sendingtime andindicating
whethereachpacket arrivedat thereceiver or failed to do
so. For this analysis,we consideredpackets that arrived
but with badchecksumsaslost.

Thereweretwo artifactsin the datathat we hadto ex-
plicitly adjustfor. First,asdetailedin [ZPS00],oneof the
sitesexhibitedstrong60-secondperiodicitiesin its losses.
As we did not find suchperiodicitiesfor any of theother
sites,weremovedthesetracesfrom ouranalysisasanoma-
lous. Second,if a packet was replicatedby the network
suchthatmultiplecopiesarrivedat thereceiver, wetreated
this asa singlearrival, discardingthelatearrivals. In gen-
eral,wefoundpacket replicationveryrare,but in onetrace
16%of thepacketsarrivedtwice.

Packet lossin thedatasetswasin generallow. Over all
of "$# , 0.87%of thepacketswerelost,andfor "&% , 0.60%.
However, asis commonwith Internetbehavior, we find a
widerange:11–15%of thetracesexperiencednoloss;47–
52%hadsomeloss,but at a rateof 0.1%or less;21–24%
hadlossratesof 0.1–1.0%;12–15%hadlossratesof 1.0–
10%;and0.5–1%hadlossratesexceeding10%.

Becausewesourcedtraffic in bothdirectionsduringour
measurementruns,thedataaffordsuswith anopportunity
to assesssymmetriesin loss rates. We find for "$# that,
similar to asreportedin [Pa99], lossratesin a path’s two
directionsareonly weaklycorrelated,with acoefficientof
correlationof 0.10for the70%of tracesthatsufferedsome
lossin bothdirections.However, thelogarithmsof theloss
ratesarestronglycorrelated(0.53),indicatingthat theor-
derof magnitudeof thelossrateis indeedfairly symmet-
ric. While time-of-dayandgeographic(trans-continental
versusintra-USA) effectscontribute to the correlation,it
remainspresentto a degree even with thoseeffects re-
moved.For "&% , theeffectisweaker: thecoefficientof cor-
relationis -0.01,andfor thelogarithmof thelossrate,0.23.

A. Individual lossvs.lossepisodes

Previously we discussedhow an investigationof math-
ematicalconstancy shouldincorporatelooking for a good



0 2 4 6 8 10 120.
00

1
0.

00
5

0.
05

0
0.

50
0

Duration (sec)

P[
X 

>=
 x

]

Fig. 1. Examplelog-complementarydistribution functionplot
of durationof loss-freeruns.

model. In this section,we apply this principle to under-
standingtheconstancy of packet lossprocesses.

The traditional approachfor studying packet loss is
to examine the behavior of individual losses [Bo93],
[Mu94], [Pa99], [YMKT99]. Thesestudiesfound corre-
lation at time scalesbelow 200–1000ms, and left open
thequestionof independenceat larger time scales.We in-
troducea simplerefinementto suchcharacterizationsthat
allows us to identify thesecorrelationsas due to back-
to-backloss ratherthan “nearby” loss,andwe relatethe
result to the extendedGilbert loss model family [Gi60],
[SCK00], [JS00]. We do so by consideringnot the loss
processitself, but the lossepisodeprocess,i.e., the time
seriesindicatingwhenaseriesof consecutivepackets(pos-
sibly only of lengthone)werelost.

For loss processes,we expect congestion-induced
eventsto be clusteredin time, so to assessindependence
among events, we use the autocorrelation-based Box-
Ljung testdevelopedin � A-B, as it is sensitive to near-
termcorrelations.We chosethemaximumlag

�
to be10,

sufficient for usto studythecorrelationatfinetimescales.
Moreover, to simplify theanalysis,we uselag in packets
insteadof timewhencomputingautocorrelations.

We first revisit the questionof loss correlationsas al-
readyaddressedin the literature. In "$# , for example,we
examineda total of 2,168traces,265of whichhasno loss
atall. In theremaining1,903traces,only 27%areconsid-
eredIID at 5% significanceusingtheBox-Ljung 2 statis-
tic. The remainingtracesshow significantcorrelationsat
lagsunder10, correspondingto time scalesof 500–1000
ms,consistentwith thefindingsin theliterature.

Thesecorrelationsimply thatthelossprocessis not IID.
We now consideran alternative possibility, that the loss
episodeprocessis IID, and,furthermore,is well modeled
asa Poissonprocess.We againuseBox-Ljung to testthe
hypothesis.Amongthe1,903traceswith at leastoneloss
episode,64%areconsideredIID, significantlylarger than
the27%for thelossprocess.Moreover, of the1,380traces
classifiedas non-IID for the loss process,half have IID
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Fig. 2. Distribution of lossrundurations.

lossepisodeprocesses.In contrast,only 1% of the traces
classifiedasIID for thelossprocessareclassifiedasnon-
IID for thelossepisodeprocess.

Figure1 illustratesthePoissonnatureof thelossepisode
processfor eightdifferentdatasetsmeasuredfor thesame
hostpair. TheX-axis givesthe lengthof the loss-freepe-
riods in eachtrace,which is essentiallythe lossepisode
interarrival time, sincenearlyall lossepisodesconsistof
only onelost packet. The Y-axis givesthe probability of
observinga loss-freeperiodof agivenlengthor more,i.e.,
thecomplementarydistribution function.SincetheY-axis
is log-scaled,a straight line on this plot correspondsto
an exponentialdistribution. Clearly, the lossepisodein-
terarrivals for eachtraceare consistentwith exponential
distributions, even thoughthe meanloss episoderate in
thetracesvariesfrom 0.8%–2.7%,andthis in turn argues
stronglyfor Poissonlossepisodearrivals.

If we increasethe maximumlag in the Box-Ljung test
to 100, the proportionof traceswith IID loss processes
dropsslightly to 25%,while thosewith IID lossepisodes
falls to 55%.Thedeclineillustratesthatthereis somenon-
negligible correlationover timesscalesof a few seconds,
but evenin itspresence,thedatabecomessignificantlybet-
ter modeledas independentif we considerlossepisodes
ratherthanlossesthemselves.

If we continueout to still larger time scales,above
roughly10 sec,thenwe find exponentialdistributionsbe-
come a considerablypoorer fit for loss episodeinterar-
rivals; this effect is widespreadacrossthe traces. It does
not, however, indicatecorrelationson time scalesof 10’s
of seconds(which in fact we generallyfind are absent),
but rathermixturesof exponentialsarisingfrom differing
lossratespresentat differentpartsof a trace,asdiscussed
below. Note that,werewe not opento consideringa loss
of constancy on thesetime scales,we might insteadwind
up misattributing the failure to fit to an exponentialdis-
tribution asevidenceof theneedfor a morecomplex, but
steady, process.

All in all, thesefindings argue that in many casesthe
fine time scalecorrelationreportedin thepreviousstudies



is causedby trainsof consecutive losses,ratherthaninter-
vals over which lossratesbecomeelevatedand“nearby”
but not consecutive packetsarelost. Therefore,losspro-
cessesarebetterthoughtof asspikesduringwhich there’s
a short-termoutage,ratherthanepochsover which a con-
gestedrouter’s buffer remainsperilously full. A spike-
like lossprocessaccordswith the Gilbert model [Gi60],
which postulatesthat lossoccursaccordingto a two-state
process,wherethe statesareeither “packets not lost” or
“packetslost,” thoughseebelow for necessaryrefinements
to thismodel.

A relatedfinding concernsthe size of loss runs. Fig-
ure2 shows thedistribution of thedurationof lossrunsas
measuredin seconds.We seethatvirtually all of theruns
arevery short-lived (95% are220 ms or shorter),and in
fact nearthe limit of what our 20 Hz measurementscan
resolve. Similarly, we find that lossrun sizesareuncorre-
latedaccordingto Box-Ljung. We alsoconfirm the find-
ing in [YMKT99] that loss run lengthsin packets often
arewell approximatedby geometricdistributions, in ac-
cordancewith the Gilbert model, thoughthe larger loss
runsdo not fit this description,nor do traceswith higher
lossrates( 354 %); seebelow.

B. Mathematicalconstancyof thelossepisodeprocess

While in the previous section we homed in on un-
derstandingloss from the perspective of looking at loss
episodesratherthanindividual loss,we alsohadthefind-
ing thatonlongertimescales,thelossepisoderatesappear
to changing,i.e.,non-constancy.

To assessthe constancy of the loss episodeprocess,
we apply change-pointanalysisto the binary time series687:9 ;=<>9@?

, where
7:9

is thetimeof the A th observationand
<B9

is anindicatorvariabletakingthevalue1 if a lossepisode
beganat that time, 0 otherwise.In constructingthis time
series,note that we collapseloss episodesand the non-
lostpacket thatfollows theminto asinglepoint in thetime
series.(For example,if the original binary lossseriesis:0 ; 0 ; 4 ; 0 ; 4 ; 4 ; 4 ; 0 ; 0 ; 4 ; 0 ; 0 ; 0 , thenthecorrespondingloss
episodeseriesis: 0 ; 0 ; 4 ; 4 ; 0 ; 4 ; 0 ; 0 .) I.e.,

687 9DC # ;=< 9EC # ?
reflectsthe observation of the secondpacket after the A th
lossepisodeended.We do this collapsingbecauseif the
seriesincludedtheobservationof thefirst packet after the
lossepisode,then

< 9EC # wouldalwaysbe0, sinceepisodes
arealwaysendedby anon-lostpacket,andwe would thus
introduceanegative correlationalbiasinto thetimeseries.

Using the methodologydevelopedin � A-A, we then
divide eachtraceup into 1 or more change-freeregions
(CFRs),during which the lossepisoderateappearswell-
modeledas steady. Figure 3 shows the cumulative dis-
tribution function (CDF) for the size of the largestCFR
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present. “Lossy traces” is the sameanalysisrestrictedto
tracesfor which theoverall lossrateexceeded1%.

found for eachtracein " # (solid) and " % (dashed).We
alsoplot CDFsrestrictedto just thosetracesfor which the
overall loss rate exceeded1% (“Lossy traces”). We see
thatmorethanhalf thetracesaresteadyover thefull hour.
Of theremainder, the largestperiodof constancy runsthe
whole gamutfrom just a few minuteslong to nearly the
full hour. However, thesituationchangessignificantlyfor
lossytraces,with half of thetraceshaving no CFRlonger
than20 minutesfor

�:�G�	��

�������	�H���
(or 30 minutesfor�����	���	�	�����I��
�!

). The behavior is clearly the samefor
both datasets.Meanwhile,the differencebetweenthe re-
sults for

�����	��
H���������
���
and thosefor

�����	����������� ��
�!
is also relatively small—about10-20% more tracesare
change-freeover theentirehourwith

�:���	�����	�I���I�	
�!
than

with
�����	��
H���������
���

. This suggeststhe effect of the
bias/insensitivity is notmajor.

We alsoanalyzedtheCDFsof theCFRsizesweighted
to reflecttheproportionof thetracethey occupied.For ex-
ample,atracewith one10-minuteCFRandone50-minute
CFR would be weightedas #J 4K0�LNMJPO 0RQTSVUHWXU minutes,
meaningthatif we pick a randompoint in a trace,we will
on averageland in a CFR of 43.3minutestotal duration.
TheCDFsfor theweightedCFRshaveshapesquitesimilar
to thoseshown above, but shiftedto the left about7 min-
utes,exceptfor the60-minutespike on therighthandside,
whichof coursedoesnot changebecauseits weightis 1.

Thebottomhalf of thefigureshows the distribution of
the numberof CFRsper trace. Again, the two datasets
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gions.

agreeclosely. Over all the tracesthereareusually just a
handfulof CFRs,but for lossy tracesthe figure is much
larger, with theaveragerisingfrom around5 overall traces
to around20 over the lossy traces. Clearly, oncewe are
in a high-lossregime, we alsoare in a regime of chang-
ing conditions.In addition,sometimeswe observe a huge
numberof CFRs.Figure4 shows anexampleof thelatter,
a tracewhoselossepisodeprocessdividesinto morethan
400CFRs.

Oncewe have divided tracesinto one or more CFRs,
we canthenanalyzeeachregion separatefrom theothers,
having confidencethat within the region the overall loss
episoderate doesnot change. Upon applying the Box-
Ljung test, we find that 88-92%of the regions are con-
sistentwith an absenceof lag 1 correlation,and77-86%
areconsistentwith no correlationup to lag 100. Clearly,
within a CFRthe lossepisodeprocessis well modeledas
IID betterthanover theentiretrace(previoussection).In
addition, applying the Anderson-Darlingtest ( � A-C) to
theinterarrivalsbetweenlossepisodesin aregion,wefind
that77-85%of theregionsareconsistentwith exponential
interarrivals.

Together, these findings solidly support modeling
loss episodesas homogeneousPoissonprocesseswithin
change-freeregions.In particular, correlationsin losspro-
cessesaredueto thepresenceof consecutive losses,rather
thannearbylosses.

It remainsto describethestructureof lossepisodes.We
do soin thecontext of theaforementionedGilbert andex-
tendedGilbert models.For thetwo-stateGilbert modelto
hold, we shouldfind thatwithin a lossepisodetheproba-
bility of observingeachadditionallossremainsthesame.
In particular, the probability that we observe a 2nd loss
in an episode,given that we’ve seenthe initial lossof an
episode,shouldbethesameastheprobabilityof observing
a3rdlossgiventhatwe’veseenthe2ndloss.Similarly, the
extendedGilbertmodelallowsfor

�
differentlossratesfor

thefirst
�

lossesafter the initial loss,eachcorresponding
to adifferentstatein themodel.
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Fig. 5. Operationalconstancy for packet lossandlossepisodes,
conditionedon theconstancy lasting50 minutesor less.

Accordingly, we canassesswhether
�

statessuffice to
describea givenlossprocessby seeingwhetherthe

� LY4
loss after the initial loss occurs(conditionedon the

�
th

loss)with thesameprobabilityasthe
�
th lossdoes(con-

ditioned on the
�*Z 4 loss). We madethesetestsusing

Fisher’s Exact Test [Ri95], and found that, for both " #
and "&% , 40% of the tracesareconsistentwith Bernoulli
loss; 89% with the Gilbert two-statemodel; 98% with
3 states(extendedGilbert); and99%with 4 states.How-
ever, themodelswork lesswell for lossytraces:only 6%
are well-modeledas Bernoulli, 68% with 2 states,85%
with 3 states,and96%with 4 states.

C. Operational constancyof lossrate

We now turn to analyzinga differentnotionof lossrate
constancy, namelyfrom an operational viewpoint. To do
so, we partition loss ratesinto the following categories:
0–0.5%,0.5–2%,2–5%,5–10%,10–20%,and20+%.The
role of thesecategories is to capturequalitative notions
suchas“no loss,” “minor loss,” “tolerableloss,” “serious
loss,” “very seriousloss,” and“unacceptableloss.”

For eachtracewethenanalyzehow longthelossratere-
mainedin thesamecategory. Figure5 plots theweighted
CDF for four different loss seriesassociatedwith each
tracein " # : thelossepisoderatecomputedover1-minute
intervals, theraw packet lossrateover 1-minuteintervals,
andthesamebut computedover10-secondintervals. (Re-
sultsfor "&% arevirtually identical.)TheCDF is weighted
by thesizeof theconstancy interval, asmentionedabove;
thus, we interpret the plot as showing the unconditional
probability that at any given momentwe would find our-
selves in a constancy interval of duration

7
or less. For

example,about50%of thetimewewill find ourselvesin a
constancy interval of 10min or less,if whatwecareabout
is the constancy of lossepisodescomputedover minute-
long intervals(solid line).

An importantpoint is thatwe truncatedtheplot to only
show the distribution of intervals 50 minutesor less. We
characterizelonger intervals separately, as thesereflect



entiredatasetsthat wereoperationallysteady. Sinceour
datasetsspannedat most one hour, constancy over the
whole datasetprovidesa lower boundon the durationof
constancy, rather than an exact value, and hencediffers
from thedistributionsin Figure5.

For the four loss series,the correspondingprobabili-
tiesof observinga constancy interval of 50 or moremin-
utes are 71%, 57%, 25%, and 22%. Thus, if we only
careaboutconstancy of lossviewed over 1-minuteperi-
ods,thenabouttwo-thirds(57–71%)of the time, we will
find we are in a constancy period of at leastan hour in
duration—itcould be quite a bit longer, asour measure-
mentslimited usto observingatmostanhourof constancy.

We alsoseethat thekey differencebetweenthe10 sec
and1 min resultsis the likelihoodof beingin a periodof
long constancy: it takes only a single10-secondchange
in lossrateto interruptthehour-long interval, muchmore
likely thana single1-minutechange.If we conditionon
beingin a shorterperiodof constancy, thenwe find very
similar curves. In particular, if we arenot in a periodof
long-livedconstancy, then,pertheplot, we find thatabout
half thetimewearein a10-minuteinterval or shorter, and
thereis not a greatdeal of differencein the durationof
constancy, regardlessof whetherwe considerone-minute
or 10-secondconstancy, or lossrunsor lossepisodes.

Finally, we repeatedthis assessmentusinga setof cut-
pointsfor the losscategoriesthat fell in themiddleof the
above cutpoints(e.g.,3.5–7.5%),to testfor possiblebin-
ningeffectsin whichsometracesstraddleaparticularloss
boundary. Theresultsarehighly similar.

D. Comparingmathematicalandoperational constancy

We now briefly assessthe degree to which we find
that the notion of mathematicalconstancy of loss coin-
cides with the notion of operationalconstancy of loss.
While therearemany dimensionsin which we could un-
dertake suchan assessment,we aim hereto only explore
thecoarse-grainedrelationship.

We begin by categorizing eachtraceaseither“steady”
or “not steady,” wherethedistinctionbetweenthetwo con-
cernswhetherthe tracehasa 20-minuteregion of con-
stancy; i.e., for mathematicalconstancy, a20-minuteCFR
for therateof thelossepisodeprocess,andfor operational
constancy, a 20-minuteperiodduring which the lossrate
did notstrayoutsideoneof theparticularregions.Wethen
assesswhat proportionof the traceswereneithermathe-
maticallynor operationallysteady( [ �

), mathematically
but not operationally( [ �

), vice versa( [ �
), andboth

( [ �
).

For operationalconstancy evaluatedusing loss com-
putedover 1 min, we find [ � Q 6–9%, [ � Q 6–15%,

[ � Q 2–5%,and [ � Q 74–83%. (The minor varia-
tion in thefiguresdependsonwhetherfor operationalcon-
stancy welookatlossrateor lossepisoderate,andwhether
we usethefirst or thesecondsetof losscategoriesasdis-
cussedat theendof � III-C.) Clearly, thenotionsof math-
ematicalandoperationalconstancy mostlycoincide.

However, if we insteadevaluateoperationalconstancy
usinglossratescomputedover10secintervals,thefigures
aresignificantlydifferent: [ � Q 11%, [ � Q 37–45%,[ � Q 0.1%,and [ � Q 44–52%. We cansummarize
thedifferenceas:Operationalconstancyof packet lossco-
incideswith mathematicalconstancyon large timescales
such asviewing how losschangesfrom oneminuteto the
next; but notnearlysowell onmediumtimescalessuch as
lookingat 10-secondintervals.

E. Predictiveconstancyof lossrate

The last notion of packet lossconstancy we explore is
that of predictiveconstancy, i.e., to what degreecan an
estimatorpredictfuturelossevents?

Therearea numberof different loss-relatedeventswe
could be interestedin predicting. Here,we confineour-
selvesto predictingthelengthof thenext loss-freerun. We
chosethis event for two reasons:first, we do not have to
bin thetimeseries(whichpredictinglossrateoverthenext7

secondswouldrequire);andsecond,thereareknown ap-
plicationsfor suchprediction,suchasTFRC[FHPW00].

Thenext questionis what typeof estimatorto use.We
assessthreedifferenttypespopularin theliterature:mov-
ing average(MA), exponentially-weightedmoving aver-
age (EWMA) such as usedby TCP [Ja88], and the \ -
shapedmoving averageestimator(SMA) usedby TFRC.
This lastis a classof weightedmoving averageestimators
thatgive higherweightsto morerecentsamples;we usea
subclassthatgivesequalweight to themostrecenthalf of
the window, and linearly decayedweightsfor the earlier
half; see[FHPW00]for discussion.

For eachof theseestimatorsthereis a parameterthat
governstheamountof memoryof pasteventsusedby the
estimator. For MA andSMA, we usedwindow sizesof. ; S ;^]H; 4�_ ; U1. ; andfor EWMA, `/Qa0bW O ; 0bWX. O ; 0bWE4�. O ; and0bWc0d4 , where `eQN0bW O correspondsto weightingeachnew
sampleequallyto thecumulativememoryof previoussam-
ples,and `fQ50bWc0d4 weightstheprevioussamples99 times
asmuchaseachnew sample.

Oncewe’vedefinedwhatestimatorto use,wenext have
to decidehow to assesshow well it performed.To do so,
we compute:

predictionerror Q <hgjiiii kDl1mon predictedvalue
actualvalue p iiiirq
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Fig. 6. CDFsof themeanerror for a largenumberof losspre-
dictors,computedoverentiretraces(top) or change-freere-
gions(bottom).

wheretheexpectation,which is computedovereachof the
events(loss-freeruns)in atrace,reflectstheratioby which
theestimatortypically missesthetarget.Wethencompute
CDFsthat show the rangeof how well a given estimator
performsover all of thetraces.

Figure 6 shows the resultingCDFs, computedfor all
traces(topplot) andfor all CFRswithin thetraces(bottom
plot). The vertical line in eachplot reflectsa prediction
error of 1, correspondingto overestimatingor underesti-
mating by a factor of

�
. (It turns out that the bestone

can achieve, on average,for predicting IID exponential
randomvariablesis a predictionerror of 1.02.) We have
plotted CDFs for all of the different estimatorsand sets
of parameters,andthe plot doesnot distinguishbetween
thembecausethe main point to consideris that virtually
all of theestimatorsperformaboutthesame—theparam-
eters don’t matter, nor doestheaveraging scheme.

We interpretthis asreflectingthat theprocessdoesnot
have significant structureto its short-rangecorrelations
that canbe exploited betterby particulartypesof predic-
tors or window sizes;all that the estimatorsaredoing is
trackingthemeanof theprocess,whichvariesmoreslowly
thando thewindows. Therearetwo exceptions,however.
First, in thetop plot, theCDF markedly below all theoth-
erscorrespondsto EWMA with `sQY0bWc0d4 . Thatestimator
hasa lengthymemory(on the orderof 100 packets),and
accordinglycannotadaptto rapid fluctuationsin the loss
process. In addition, that estimatorwill do particularly
poorly during a transitionbetweentwo CFRs,becauseit
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Fig. 7. CDFsof themeanerrorfor EWMA ( tvuswVx y�z ) estima-
tor computedoversetsof lossytraceswith differenttypesof
constancy.

will rememberthe behavior in the older CFR for much
longerthantheotherestimators.We seethat in the lower
plot, it faresbetter, becausethatplot doesnot includetran-
sitionsbetweenCFRs.

Also, in thesecondplot wehaveaddedan“oracular”es-
timator(dotted).This estimatorknows themeanloss-free
lengthduringtheCFR,andalwayspredictsthatvalue.We
canseethatit doesnoticeablybetterthantheotherestima-
torsabouthalf thetime,andcomparabletheotherhalf. A
significantelementof its improvedperformanceis thatthe
lowerplot is heavily skewedto favoring estimatorsthatdo
well over tracesthatarehighly non-steady(many CFRs),
becauseeachof the CFRswill contribute a point to the
CDF. Thesuccessof theoraclealsosuggeststhat it might
bea goodgeneralstrategy to constructestimatorsthat in-
cludeanexplicit decisionwhetherto restarttheestimator,
sothey canadaptto level shiftsin a nimblefashion.

Finally, we repeatedthe analysisafter applyinga ran-
dom shuffle to the tracesto remove their correlational
structure. Doing so makes only a slight differencein
theestimators’performance,reducingthediscrepancy be-
tweenthe `&Q{0bWc0d4 estimatorandtheothers,andwe find
that thevariousestimatorsdo only slightly worsethanan
oracularestimatorappliedto thenow-IID timeseries.

We finish with a look at the relationshipbetweenhow
well we canpredictlossversusthepresenceor absenceof
mathematicaland/oroperationalconstancy. As in � III-D,
weaimonly to understandthecoarse-grainedrelationship,
andagainwe considera tracemathematicallysteadyif it
hasa maximumCFR of at least20 minutes,and opera-
tionally steadyif it stayswithin aparticularlossregion for
at least20minutes.

Partitioningthelossy( | 1%loss)tracesonthatcriteria,
usingEWMA with `sQ}0bWX. O we attainthepredictorerror
CDFsshown in Figure7. We seethat the quality of the
predictoris virtually unchangedif we have neithermath-
ematicalnor operationalconstancy, or just one of them.
But if we have both, then the predictor’s performanceis
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worse. This is becausein this regimethelossepisodepro-
cessresemblesan IID processwithout significantshort-
term variations,and the recentsamplesseenby the esti-
matorprovide no help in predictingthenext event. In ad-
dition, notethatif we look at all tracesratherthanjust the
lossytraces,theestimatorsagaindoworse,becausefor the
typeof eventwearepredicting(interval until thenext loss
episode),traceswith low losslevelsprovideveryfew sam-
plesto theestimator. However, low lossis alsoacondition
underwhich we generallywon’t careabout the precise-
nessof theestimator, sincelosseventswill be quite rare.
In summary, predictors do equallywell whetheror not we
haveother formsof constancy, unlesswe haveconstancy
resemblingan IID processwith little short-termvariation.

IV. DELAY CONSTANCY

We next turn to exploring the typesof constancy asso-
ciatedwith packet delays. Mukherjeefound that packet
delay alongseveral Internetpathswas well-modeledus-
ing ashiftedgammadistribution,but theparametersof the
distribution variedfrom pathto pathandon time scalesof
hours[Mu94]. Similarly, Claffy andcolleaguesfoundthat
one-way delaysmeasuredalongfour Internetpathsexhib-
ited clearlevel shiftsandnon-constanciesover thecourse
of aday[CPB93].

For ouranalysis,weagainusethezing Poissonpacket
streamsmeasuredon the NIMI hosts. Becausethe NIMI
hostslacksynchronizedclocks,weconfineouranalysisto
thosedatasetswith bidirectionalpacketstreams.Theseare
generatedby zing on host ~ sending“request”packets
host

�
, andthezing on host

�
immediatelyresponding

to eachof theseby sendingbackmatching“reply” packets,
facilitating round-tripmeasurementat host ~ . The delay
in zing’s responseis short,usuallytaking100–200� sec,
occasionallyrising to a few ms.

A. Delay“spikes”

The data totaled130M RTT measurementsmadebe-
tween613distinctpairsof hosts.In analyzingit, thefirst

phenomenonwe had to deal with is the presenceof de-
lay spikes. Theseareintervals(oftenquiteshort)of highly
elevatedRTTs. They arerare,but if unaddressedcanseri-
ouslyskew our analysisdueto their magnitude.Figure8
conveys thesizeandprevalenceof spikes. For eachtrace,
we computedthemedianof all of theRTT measurements,
andthennormalizedeachRTT measurementby dividing it
by themedian.This allows usto thenplot all of themea-
surementstogetherto assess,in high level terms,themag-
nitudeof RTT variationpresentin thedata.Theplot shows
the complementarydistribution of the RTT-to-medianra-
tio; this styleof plot emphasizestheuppertail. For refer-
encewe have drawn linesreflectinga ratio of 10:1 (verti-
cal) anda probabilityof 4K0H��� (horizontal).Clearly, there
areasignificantnumberof very largeRTTs,thoughnotso
many thatwe would considerthemanything otherthanan
extremeupper-tail phenomenon.

To proceedwith separatingspikesfrom regularRTT be-
havior, we needto devise a definition for categorizing an
RTT measurementas one or the other. We were unable
to find a crisp modality to exploit—the only onepresent
in theplot is for ratiosabove or below 100:1,but thatcut-
off pointomitsmany spikesthatwefoundvisually—sowe
settledonthefollowing imperfectprocedure:for eachnew
RTT measurement

���
, wecomparedit to thepreviousnon-

spike measurement,
�

. If
� � |����	��� ����� ; . O 0 ms� , then

we considerthenew measurementa spike; otherwise,we
set

����� �
andcontinueto thenext measurement.2 We

thenappliedthisclassificationfor
� Qe. and

� Q/S . Doing
sorevealedtwo anomalies:ahigh latency pathplaguedby
rapidRTT fluctuationsrangingfrom 200msto 1 sec,and
a pair of hoststhatperiodicallyjumpedtheir clocks.With
the anomaliesremoved, we find that

� Q�. categorized4�WE4 � 4K0 ��� of the "$# RTTs asspikes,and
� Q�S catego-

rized UHW�S � 4K0H��� .
Oncewe had the definition in place,we could check

it in termsof “yes, theseare really outliers,” as follows:
for eachtracewe computed� and � , the meanandstan-
darddeviation of the RTT measurementswith the spikes
removed. We then for eachspike assessedhow many �
it was above � . For "$# , the

� Q�. definition leadsto
spikes that aretypically (median)16.9� above the mean,
with 80%beingmorethan5.6� . For

� Q}S , thesefigures
riseto 28� and6.6� .

B. Constancyof bodyof RTTdistribution

The degree to which RTT spikes are indeedoutliers
points up a needto assessthe constancy of the body of�

We foundthe250mslower boundnecessaryfor applyingtheclas-
sifier to traceswith quitelow RTTs.
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Fig. 9. CDFof largestCFRfor medianandIQR of packetRTT
delays.“Lossy” is thesameanalysisrestrictedto tracesfor
which theoverall lossrateexceeded1%.

theRTT distribution separatefrom thatof theRTT spikes.
Wedosoby applyingchange-pointanalysisto themedian
andinter-quartilerange(IQR) of thedistribution.3

Figure9 shows CDFs of the sizeof the largestcorre-
spondingCFRs. We seethat, overall, the medianis less
steadythan the IQR (indeed,we find that IQR change-
points appearto often be a subsetof median change-
points),andbothdistributionsshift about5 minutesto the
left for lossytraces.Thestriking differencewith Figure3,
though, is the absenceof entire hours with no change-
points. Thus we find that overall, delay is less steady
thanloss, andthat,while there’sawiderangein thelength
of steadydelayregions,in generaldelayappearswell de-
scribedassteadyontimescalesof 10–30minutes.Wecan
also test the medianand IQR (computedover 10-second
intervals) for independencewithin eachCFR. Using the
Box-Ljung testfor up to 6 lags,we find very goodagree-
ment(90–92%)with independence.

C. Constancyof RTTspikes

Having characterizedtheconstancy of thepacket delay
distribution’s body, we now turn to the constancy of the
RTT spike process.Analogousto our approachfor packet
loss,wegroupconsecutive spikesinto spikeepisodes,not-
ing that in generalthe episodesarequite short lived: for
example, the mediandurationof a spike episode(using� Qe. ) in "$# was150ms,andthemean275ms.�

TheIQR of a distribution is thedistancebetweenthe25thand75th
percentiles.It servesasa robustcounterpartto standarddeviation. For
IQR change-points,we computetheIQR over ten-secondintervalsand
look for a changein themedianof thattimeseries.
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Fig. 10. CDFsof the meanerror for a large numberof delay
predictors.

Upon applying change-pointdetection to the spike
episodeprocess,we find spike episodesevenmoresteady
thanlossepisodes:theprocessis steadyacrosstheentire
hour 75% of the time for

� Q�. spikes,and90% of the
timefor

� Q�S spikes.In addition,wefind theinterarrivals
betweenspikesarewell-modeledasIID exponential,i.e.,
Poisson.

D. Operational constancyof RTT

Similar to our analysisfor loss( � III-C), we assessthe
operationalconstancy of RTTs by partitioningthe delays
into a setof categoriesandthenassessingthedurationof
regionsoverwhichthemeasuredRTT stayswithin asingle
category.

Differentapplicationscanhave quitedifferentviews as
to what constitutesgood, fair, poor, etc., delay. To have
concretecategories,weusedITU RecommendationG.114
[ITU96], whichdefinesthreeregions:0–150ms(“Accept-
able for mostuserapplications”),150–400ms (“Accept-
ableprovidedthatAdministrationsareawareof thetrans-
missiontimeimpactonthetransmissionqualityof userap-
plications”),400+ms(“Unacceptablefor generalnetwork
planningpurposes”).Becausetheserecommendationsare
for one-way delaysandwe areanalyzingRTTs, we dou-
bled themto form RTT categories,and thensub-divided
0–300ms into 0–100ms,100–200ms,and200–300ms,
to allow asomewhatfiner-grainedassessment.

We find that more than half of the traceshave maxi-
mumCFRsunder10 min, and80%areunder20 min. We
found virtually no differencewhetheror not we left RTT
spikesin thetraces(sincethey arerare),or whenwetested
a “shifted” versionof thecategoriessimilar to theshifted
versionof lossratesdiscussedin � III-C. Thus,not only
are packet delaysnot mathematicallysteady, they alsoare
notoperationally steady.

E. Predictiveconstancyof delay

Wefinishourassessmentof differenttypesof delaycon-
stancy with abrief look at theefficacy of predictingfuture



RTT values.We againusethe familiesof estimatorsdis-
cussedin � III-E. The eventsthey processareRTT mea-
surements,and our assessmentconcernshow well they
predict the next measurement.Figure10 shows that the
estimatorsagainall performvirtually identically, andthat
theirperformanceis verygood:theverticalline ontheplot
marksa meanpredictionerror of 0.2, which corresponds
to estimatingthenext valuewithin a factorof

����� %>� .1.P� ,
andthehorizontalline marks95%of thedistribution. We
attainvirtually identicalresultswhetheror not we include
RTT spikes in the measurements.Thus,we find that, in
contrastwith loss (Figure 6), in general, delay is highly
predictable. Of course,for someapplications,theconse-
quenceof mispredictingdelay canbe significant(e.g., a
badTCP retransmissiontimeout);we arenot blithely as-
sertingthatapplicationswill find highly predictablethose
facetsof delaythat they particularlycareabout,only that
delayin generalis highly predictable.

V. THROUGHPUT CONSTANCY

Thelastfacetof Internetpathconstancy westudyis end-
to-endthroughput.Comparedto lossanddelay, through-
put is a higher-level path property, a productof the first
two plus the dynamicsof the transportprotocolused. In
addition,applicationshave a wide rangeof throughputre-
quirements.Tokeepouranalysistractable,weconfineour-
selvesto asimplenotionof throughputconstancy, namely
the minute-to-minutevariationsobserved in 1 MB TCP
transfers. The data we analyzedconsistedof 169 runs
of 5 hourseach,comprisinga total of 49,000connections
measuredalong145distinctInternetpaths.

Basedon a very large packet-level trace collectedat
a single busy Web server, [BPSSK98] found that the
throughputof Webtransfersexhibitedsignificanttemporal
(several minutes)andspatialstability despitewide varia-
tions in termsof end-hostlocationandtime of day. Their
studydiffersfrom oursin thattheserver wasa singlesite,
thereweremany moreclients,andtheanalysisfocusedon
the throughputof Web transfers,which areusuallymuch
shorterthanour transfers.In otherpreviouswork, Paxson
found that for a measureof available bandwidthderived
from timing patternsin TCP connections,the predictive
powerof theestimatorwasfairly goodfor timeperiodsup
to severalhours[Pa99].

A. Mathematicalconstancyof throughput

Weappliedchange-pointanalysisto themeanof these-
riesof per-minutethroughputmeasurementsin eachtrace.
Figure11 shows the cumulative distribution of the maxi-
mumCFRandtheweightedaverageof thedurationof the
CFRs(per thediscussionof Figure3 previously). We see
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Fig. 11. CDF of maximumand weightedaverageCFRsfor
throughputachievedtransferring1 MB usingTCP.
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Fig. 12. Distribution of maximumoperationalconstancy re-
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that few tracesare steadyover the entire 5-hour period,
andfor 60-70%,thelargestCFRis 2.5hourslong or less.
Theweightedaveragesareshiftedover about45 minutes;
half of the time we find ourselvesin a change-freeregion
of under1.5hoursduration.

On theotherhand,throughputdoesnotwildly fluctuate
minute-by-minute:only 10% of the time do we find our-
selvesin a CFRof under20 minutesduration. Similarly,
the mediannumberof change-pointsin a traceis 8. Fi-
nally, within CFRs,we find that theindividual throughput
measurementsarewell modeledasIID, 92% passingthe
Box-Ljungtestfor autocorrelationupto 6 lags;overentire
traces,however, this figurefalls to 24%.

B. Operational constancyof throughput

Weadoptasimplenotionof operationalthroughputcon-
stancy, namelywhethertheobservedbandwidthstaysin a
region for which theratiobetweenthemaximumandmin-
imum observedvaluesis lessthana factorof ¥ . Figure12
shows thedistribution of thesizeof themaximumsteady
regions,for ¥�Q{4�WX. through¥¦Q§4K0 . Weseethatif ourop-
erationalrequirementis for bandwidthnot to varyby more
than20%peak-to-peak,thenwewill only havea few min-
utesof constancy, but as ¥ increases,sotoo doesthemax-
imal constancy, fairly steadily;for peak-to-peakvariation
of a factorof 3, it is oftenseveralhours.

We alsofind that,dueto the wide rangein operational
constancy as we vary ¥ , there is no simple relationship
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betweenthe mathematicaland operationalconstancy of
throughput.For example,if we classifya traceasopera-
tionally steadyif it hasamaximumCFRof atleast2hours,
then for ¥}Q¨4�WX. , we find [ � Q 53%, [ � Q 39%,[ � Q 2.4%,and [ � Q 5.9%.But for ¥rQ©4K0 , we have[ � Q 3.6%, [ � Q 1.2%, [ � Q 51.5%,and [ � Q
43.8%,completelydifferent.

C. Predictiveconstancyof throughput

We finish our look at differenttypesof throughputcon-
stancy with a look athow well anestimatorcanpredictthe
next observed throughputmeasurement.Figure13 shows
how the families of estimatorsdiscussedin � III-E per-
formedin estimatingthenext throughputvalueover each
5-hour tracein its entirety. Almost all of the estimators
performequallywell, with 95% of their estimates(hori-
zontalline) yieldinganerrorof 0.4(verticalline) or lower,
correspondingto estimatingthe next value within a fac-
tor of

� ��� � � O 0 %. However, threeestimatorsdo poorly:
EWMA with `ªQ�0bWc0d4 , andMA andSMA with windows
of 128.Thesereflectestimatorswith longmemory, asindi-
catedon theplot (theotherestimatorshadwindows of 16
or less,or `�|�0bWE4�. O ), indicating that when predicting
throughput,rememberingobservationsfrom a numberof
minutesin thepastis fine,but rememberingfor morethan
an hour canmisleadthe estimator. Finally, we note that
for tracesthataremathematicallysteady(maximumCFR|«4 hour), the short-memoryestimatorsdo nearly twice
aswell (half the meanerror) asthey do on all the traces.
(We do not attempta comparisonbetweenpredictionand
operationalconstancy, sincefor throughputthereis such
a wide rangeof operationalconstancy dependingon the
parameter¥ .)

VI. CONCLUSIONS

Applicationsandprotocolsarebecomingmoreadaptive
andnetwork-conscious. Network operatorsandalgorithms
are increasinglyrelying on measurementsto assesscur-
rentconditions.Mathematicalmodelsareplayinga larger

role in the discussionsof Internet traffic characteristics.
For eachof thesedevelopments,oneof the key issuesis
the degreeto which the relevant Internetpropertieshold
steady;yet eachalso involves a quite differentnotion of
constancy. We have discussedhow mathematical,oper-
ational,andpredictive constancy sometimesoverlap,and
sometimesdiffer substantially. Thatthey candiffer signifi-
cantlyhighlightshow it remainsessentialto beclearwhich
notionof constancy is relevantto thetaskat hand.

This papercanbereadon two levels. On onelevel, we
have attemptedto shedlight on thecurrentdegreeof con-
stancy found in threekey Internetpath properties: loss,
delay, and throughput. One surprisein our findings is
thatmany of theprocessesarewell-modeledasIID, once
we identify change-pointsin the process’s median(loss,
throughput)and aggregate fine-grainedphenomenainto
episodes(lossruns,delayspikes). However, IID models
area mixedblessing;they arevery tractable,but IID pro-
cessesarevery hardto predict.

The needto refinethe analysisby looking for change-
pointsandidentifyingepisodesillustrateshow importantit
is to find theright model.For example,while thelosspro-
cessitself is bothcorrelatedandnon-steady, whenreduced
to the lossepisodeprocess,the IID natureof thedatabe-
comesevident.This illustratestheimportanceof consider-
ing theconstancy of a pathpropertynot asa fundamental
propertyin its own right, but only ashaving meaningin
thecontext of amodel,or anoperationalor protocolneed.

Anothergeneralfindingis thatalmostall of thedifferent
classesof predictorsfrequentlyusedin networking (mov-
ing average,EWMA, \ -shapedmoving average)produce
very similar error levels. Sometimesthe predictorsper-
form well, suchaswhenpredictingRTTs,andsometimes
poorly, becauseof theIID natureof thedata(loss,through-
put).

Finally, the answerto the question“how steadyis the
Internet?”dependsgreatlyon theparticularaspectof con-
stancy and the datasetunderconsideration.However, it
appearsthatfor all threeaspectsof constancy, andall three
quantitiesweinvestigated,onecangenerallycountoncon-
stancy onat leastthetimescaleof minutes.

Onanotherlevel, ourpapertriesto carefullydistinguish
betweenthe threedifferentnotionsof constancy: mathe-
matical,operational,andpredictive. Oneof the goalsof
ourstudywasto gathertheappropriatesetof conceptsand
toolsneededto understandeachof thesedifferentaspects
of constancy. While thedetailedresultsfrom ourmeasure-
mentsmay soonprove ephemeral(due to changingtraf-
fic conditions),or renderedobsolete(by subsequentand
bettermeasurementefforts), we hopethat the fundamen-
tal conceptsandtoolsdevelopedheremight prove longer-



lived.
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APPENDIX

I . STATISTICAL METHODOLOGY

In this appendixwe discussthe threemain statisticaltech-
niquesweusein ouranalysis,testsfor: change-points,indepen-
dence,andexponentialinterarrivals.

A. Testingfor change-points

We apply two different tests, ¬�­¯®K°²±	³�´Pµ·¶K¸�¹�¶ and¬�­¯®Kº�»K»K¼¾½£¼¿¶K±�À , to detectchangesin themedian.Both testsde-
tect change-pointsin a two stepapproach:first identifying a
candidatechange-point,thenapplyinga statisticaltestto deter-
minewhetherit is significant.Thecombinedapproach[La96],
[Ta00] usesan analysisof ranksin order to detectchangesin
the median[SC88]. Being basedon ranks,the methodis re-
sistant,i.e., tolerantto the presenceof outliers. Furthermore,
thehypothesesunderlyingthesetestarequiteweak;equalityof
variancesis not required.

Considerfirst asetof ³ valuesÁÃÂ
ÄÆÅÆÄÈÇ )IÉ�Ê�Ê�Ê�É Ë
comprisingaseg-

mentof a given time series. Constructthe rank ¶£Ä of each Â
Ä
within theset,i.e., ¡ for thesmallestand ³ for thelargest.Com-
pute the cumulative rank sums ½£Ä¦u�Ì ÄÍ Ç ) ¶£Ä . The basisof
thetestis thatif no changepoint is present,thecumulativerank
sums½£Ä shouldincreaseroughlylinearlywith Î . Indeed,suppose
we form theadjustedsum:½£ÏÄ u�Ð ½£Ä�Ñ ½�ÄIÐ
asthedifferencebetween½�Ä , andits presumedmean½£ÄÒuÓÎ�ÁE³>Ô¡ÕÅÖ®�y assumingno change-pointto be present.Then ½ ÏÄ should
staycloseto zero.If, however, achange-pointis present,higher
ranksshouldpredominatein eithertheearlieror laterpartof the
set,andhence½ ÏÄ will climb to a maximumbeforedecreasingto
zeroat Î×us³ . We identify themaximizingindex ÎÙØ for ½ ÏÄ and Î
runningover Ú�¡�¤^x£x^x=¤Ö³:Û asacandidatechange-point.

In the secondstage, to test equality of two sets ÜÞÝßuÚ£Â ) ¤£x^x^x£¤@ÂHÄáà Ý ) Û and Üoâ/uãÚ£ÂHÄáà â ) ¤£x^x£x=¤@Â Ë Û , ¬�­¯®Kº�»K»K¼¾½�¼¿¶Õ±�À
usesthebootstrapanalysisprocedureoutlinedin [Ta00],while¬�­¯®K°²±	³�´Pµ·¶K¸�¹�¶ usestheFligner-PolicelloRobustRank-Order
Test[SC88].ä Bootstrap analysis(usedin ¬�­¯®Kº�»K»K¼¾½£¼¿¶K±�À ). The bootstrap
analysisprocedureoutlined in [Ta00] uses å diff , definedasÁEæ�ç�èé½ Ä Ñ,æ�êÈë¯½ Ä Å , to estimatethe magnitudeof the changeat
the candidatechange-point.It determinesthe confidencelevel
of changeby testinghow often the bootstrapdifference å Ø

diff

of abootstrapsampleÚ£Â Ø Ä Û —arandompermutationof Ú�Â
Ä@Û —is
lessthantheoriginaldifferenceå diff .ä Fligner-PolicelloRobustRank-OrderTest(usedin ¬�­¯®K°²±	³�´Pµ·¶K¸	¹£¶ ).
The test statistic is constructedas follows. For Âeì$Üoâ de-
fine ¶Õâí asthe rank of Â in ÜoâvîïÜÞÝ minus the rank of Â inÜoâ , with ranktieshandledby assigningtheaveragerankto all
membersof a tie set. Definerankmean¶Kâsu Ì í�ð�ñóò ¶Kâí ®K³�â
where ³�âãu�ô>Üoâ , and sumsof squareddifferencesõ	âauÌ í�ð�ñöò ÁE¶ âí Ñs¶ â Å + . Define ³ Ý , ¶ Ý , and õ Ý symmetrically.
Thentheteststatistic:÷ u ³�â:¶KâvÑï³:Ý�¶	Ýy	ø ¶ â ¶ Ý Ôùõ â Ôùõ Ý
has,asymptoticallyas ³Fúüû , a standardnormaldistribution.
Thus we can associatea significancelevel with the candidate
changepoint Î Ø in theusualmanner. By choosingasignificance
level ý (we use z	þ throughoutthis thesis)we specifyour ac-
ceptableprobability ý of incorrectlyrejectingthenull hypothe-
sis. The testacceptsthenull hypothesis(in a two-sidedtest)ifÿ ÁÖÐ ÷ Ð Å���¡¯Ñvý�®�y where

ÿ
is thecumulative distribution func-

tion of the standardnormal distribution. (However, note that
the large ³ asymptoticis not sufficiently accuratewhen Î¿Ø and³öÑ²ÎÙØ��ª¡�y ; in thiscaseTableK in AppendixI of [SC88]should
beused.)In somecaseswe shallusethis teston binarydata,in
whichcaseit reducesto atestof theequalityof theexpectations
correspondingto binary stateson either side of the candidate
change-point.

The above canbe extendedto the identificationof multiple
changepoints,as follows [La96], [Ta00]. First, choosea sig-
nificancelevel. Second,apply the above methodrecursively
to the two segments Ú�¡�¤^x£x^x�¤@Î Ø Û and Ú�Î Ø Ô�¡�¤£x^x^x^¤@³:Û until no
morechangepointsarefound at the chosensignificancelevel.
Third, applybackwardeliminationto reinspectthesetof candi-
datechangepointsin orderto eliminatefalsedetections,asfol-
lows. Let therebe � change-pointcandidates� ) �����	�
���
� .
Let �£Ø and �
� â )

be0 and ³ respectively. Startingwith thefirst
identified candidate,call it ���Ià ( ¡��a´ Ø ��� ), reinspectfor
change-pointson theset Ú����Ià Ý ) ÔR¡�¤£x^x£x^¤����Ià â ) Û , andadjustor
deletenon-significantchange-points.Repeatfor all candidates
in order of identification. Repeatbackward elimination until
the numberof change-pointsis stable. By reestimatingeach
change-pointusingonly the databetweenthe two surrounding
change-points,backward eliminationavoids the contamination
causedby thepresenceof multiple change-pointsat thetime of
recursionandconsequentlyhelpsto reducetherateof falsede-
tections.

B. Testingfor independence

We assessindependenceusing the Box-Ljung test [LB78].
For a timeserieswith ³ elements,theBox-Ljungstatistic ��� is
aweightedsumof squaresof measuredautocorrelations¶£Ä from
lags ¡ up to ´ :

� � u ³�ÁÃ³�ÔFy�Å �� ÄáÇ ) ¶ +Ä³ ÑrÎ x
Underthe null hypothesisthat the processcomprisesindepen-
dent Gaussianrandomvariables,the distribution of � � con-



verges,for large ³ , to a � + distribution with ´ degreesof free-
dom. Thus

�
by comparingthe test statistic ��� with the ¡�Ñ ý

quantileof theappropriate� + distribution, we cantestwhether
theautocorrelationsof thetimeseriesdiffer atsignificancelevelý from thoseof independentGaussianrandomvariables.In fact,
asremarkedin [LB78], thetestis relatively insensitiveto depar-
turesfrom the Gaussianhypothesisin the underlyingprocess.
This is becausethemeasuredautocorrelations¶ Ä areasymptoti-
cally Gaussianprovidedthemarginal distribution of theunder-
lying processhasfinite variance.(While infinite variance(heavy
tails) aboundin networking behavior, the time serieswe con-
siderherearegenerallywell bounded,andcertainlyhave finite
variance.)

C. Testingfor exponentialdistributions

An exploratory test for an exponentialdistribution of inter-
event timesis to plot the log-complementarydistribution func-
tion; for an exponentialdistribution this is linear with slope
equalto thenegativeof thereciprocalof themean.A statistical
testis thatof Anderson-Darling.This testhasbeenfoundto be
morepowerful thaneither the Kolmogorov-Smirnov or the � +
tests,i.e., its probability of correctlyrejectingthe null hypoth-
esis(that thedistribution is exponential)is greater;see[DS86].
This is, in part, due to the fact that the Anderson-Darlingtest
employs the full empiricaldistribution (ratherthanbinning,as
in a � + test),allowing it to give moreweight to larger sample
valueswhosepresencecan lead to a violation of the null hy-
pothesis.

For a setof ³ rank-orderedinter-eventtimes ¼ ) ���	�	���ª¼ Ë ,
theappropriateAnderson-Darlingstatisticis:

� + u Ñé³ Ñ ¡³ Ë� ÄáÇ ) ÁÙyKÎ�Ñ*¡ÕÅ����! #"HÁ@¡éÑï¹ Ý�$&%(' $ Å Ñv¼ Ë â ) Ý Ä¿® ¼	)
where ¼éu ³:Ý ) Ì ËÄÈÇ ) ¼ Ä is theempiricalmeaninter-eventtime.
We reject the null hypothesisat significancelevel ý if the test
statisticexceedsthe tabulatedvaluesappropriatefor that level;
see,e.g.,Table4.11in [DS86]. Wenotetheimportanceof using
thetableappropriateto thepresentcasein whichthemeanis es-
timatedfrom thesample,ratherthanbeingspecifiedin advance.
Moreover, thetableexplicitly takesinto accounttheeffect of a
finite samplesize ³ .
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