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Abstract— Many Inter net protocolsand operational pro-
cedures use measurementsto guide futur e actions. This is
an effective strategy if the quantities being measured ex-
hibit a degree of constancy: that is, in somefundamental
sensethey are not changing In this paper we explorethree
differ ent notions of constancy: mathematical, operational,
and predictive. Using a largemeasurementdatasetgathered
from the NIMI infrastructur e, we then apply thesenotions
to threelnter net path properties: loss,delay, and thr ough-
put. Our aim is to provide guidanceasto whenassumptions
of various forms of constancyare sound, versuswhen they
might prove misleading

I. INTRODUCTION

There hasbeena recentsuge of interestin network
measurementsThesemeasurementhave deepenedur
understandingf network behaior andled to more ac-
curateandqualitatively differentmathematicamodelsof
network traffic. Network measurementare alsousedin
anoperationakenseyy variousprotocolsto monitor their
currentlevel of performanceandtake actionwhenmajor
changesaredetected.For instance RLM [MJV96] mon-
itors the paclet lossrate and, if it crossessomethresh-
old, decreaseds transmissiorrate. In addition, several
network protocolsand algorithmsuse network measure-
mentsto predictfuturebehaior; TCPusegdelaymeasure-
mentsto estimatevhenit shouldtime-outmissingpaclets,
andmeasurement-basedimissioncontrol algorithmsuse
measuresf pastloadto predictfutureloads.

Measurementsre inherently bound to the present—
they canmerelyreportthe stateof the network atthetime
of the measurement.However, measurementare most
valuablewhenthey are a usefulguideto the future; this
occurswhenthe relevant network propertiesexhibit what
we will term constancy We usea new term for this no-
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tion, ratherthanan existing termlik e “stationarity’ in an
attemptto convey our goal of examininga broad,general
view of the property“holds steadyanddoesnot changé,
ratherthana specificmathematicabr modelingview. We
will alsousethetermsteadyfor thesamenotion,whenuse
of “constang” would prove grammaticallyawkward.

In this papernwe investigatethreenotionsof constang:
mathematical operational,and predictve. We do soin
the context of measurementsf threequantitiesdescribing
Internetpaths:paclet loss,paclet delays,andthroughput.

We saythata datasebf network measuremenis math-
ematicallysteadyif it canbe describedvith asingletime-
invariantmathematicamodel. The simplestsuchexample
is describingthe datasetusing a single independenand
identically distributed (IID) randomvariable. More com-
plicatedformsof constang wouldinvolve correlationse-
tweenthe datapoints. More generally if one positsthat
the datasetis well-describedby somemodelwith a cer
tain setof parameterghenmathematicatonstang is the
statementhatthe datasets consistenwvith thatsetof pa-
rameterghroughouthe dataset.

One exampleof mathematicatonstang is the finding
by Floyd andPaxson[PF95]that sessiorarrivals arewell
describedy afixed-ratePoissorprocesover time scales
of tensof minutesto an hour However, they alsofound
that sessionarrivals on longer time scalescan only be
well-modeledusing Poissonprocesse# the rate param-
eteris adjustedo reflectdiurnalload patternsanexample
of mathematicahon-constancy

When analyzingmathematicatonstang, the key is to
find theappropriatemodel. Inappropriatenodelscanlead
to misleadingclaimsof non-constancbecauseéhe model
doesnt truly capturethe processat hand. For instancejf
onetriedtofit ahighly correlatecbut stationanarrival pro-
cessto a Poissormodel,it would appearthatthe Poisson
arrival ratevariedovertime.

Testingfor constang of the underlying mathematical
model is relevant for modeling purposes,but is often
too severe a testfor operationalpurposeshecausemary
mathematicahon-constanciearein reality irrelevant to
protocols. For instance,if the loss rate on a path was
completelyconstantat 10% for thirty minutes,but then
changedabruptly to 10.1% for the next thirty minutes,
onewould have to concludethat the loss datasetvas not
mathematicallysteady since its fundamentalparameter



haschangedyet onewould be hard-pressetb find anap-
plicationthatwould careaboutsucha change.Thus,one
mustadopta differentnotion of constang whenaddress-
ing operationalissues. The key criterion in operational,
ratherthan mathematicalconstang is whetheran appli-
cation (or other operationalentity) would careaboutthe
changesn thedatasetWewill call adatasebpeiationally
steadyif the quantitiesof interestremainwithin bounds
consideredperationallyequvalent. Note thatwhile it is
ohvious that operationalconstang doesnot imply math-
ematicalconstany, it is alsotrue that mathematicaton-
stang doesnotimply operationatonstanyg. Forinstance,
if thelossprocesss a highly bimodalprocesswith a high
degreeof correlation,but the lossratein eachmodedoes
not change,nor doesthe transition probability from one
modeto the other thenthe processwvould be mathemati-
cally steady;but an applicationwill seesharptransitions
from low-lossto high-lossregimesandbackwhich, from
the application$ perspectie, is highly non-steadybeha-
ior.

Operationalconstang involves changes(or the lack
thereof)in perceved applicationperformance.However,
protocolsandothernetwork algorithmsoften make useof
measurementsn afiner level of granularityto predictfu-
ture behaior. We will call a datasefpredictively steady
if pastmeasurementallow oneto reasonablypredictfu-
turecharacteristicsAs mentionechbore, onecanconsider
TCP'stime-outcalculationasusing pastdelaysto predict
future delays,and measurement-basedimissioncontrol
algorithmsdothe samewith lossandutilization. Sounlike
operationatonstang, which concernghedegreeto which
the network remainsin a particularoperatingregime, pre-
dictive constang reflectsthe degreeto which changesin
pathpropertiescanbetraclked.

Justaswe canhave operationatonstang but not math-
ematical,or vice versa,we alsocanhave predictve con-
stang andnoneor only oneof the others,andvice versa.
Indeed,aswe will illustrate,processesxhibiting the sim-
plest form of mathematicalkconstang, namelyIlID pro-
cessesaregenerallyimpossibleo predictwell, sincethere
areno correlationdn the procesdo leverage.

Anotherimportantpoint to consideris thatfor network
behaior, we anticipatethat constang is a more useful
conceptfor coarsertime scalesthanfor fine time scales.
This is becausehe effectsof numerougdeterministicnet-
work mechanismg§mediaaccesskIFO buffer drops.timer
granularities propagatiordelays)manifestthemseleson
fine time scalespftenleadingto abruptshiftsin behaior,
ratherthanstochastiorariations.

An importantissueto thenconsiderconcerndifferent
waysof how to look at our fine-grainedmeasurementsn

scalegnorecoarsethanindividual paclets. Oneapproach
is to aggrgateindividual measurementsito larger quan-
tities, suchas paclets lost per second. This approachis
quite useful,andwe useit repeatedlyin our study but it
is notideal, sinceby aggrgatingwe canloseinsightinto
the underlyingphenomenaAn alternatve approachis to
attemptto modelthefine-grainedorocessessinga model
thatprovidesaform of aggreation. With this approachif
themodelis soundwe canpresere theinsightinto theun-
derlyingphenomen&ecausét is capturedoy themodel.

For example,insteadof analyzingpaclet loss per sec-
ond,we shaw thatindividual losseventscomein episodes
of back-to-bacKosses(§ 111-B). We canthenseparately
analyzethe characteristicef individual lossepisodever
susthe constang of the procesof loss episodearrivals,
retainingthe insight that loss eventsoften comeback-to-
back,whichwouldbediminishedor lostif weinsteadvent
directly to analyzingpacletslost persecond.

Our basic model for varioustime seriesis of piece-
wise steadyregions delineatedby change-points With a
parameterizedamily of models(e.g. Poissonprocesses
with somerate), the time seriesin eachchange-freae-
gion (CFR) is modeledthrougha particularvalue of the
parameter(e.g., the Poissonarrival rate). In fitting the
time seriesto this model, we first identify the change-
points. Within eachCFR we determinewhetherthe pro-
cesscanbe modeledby IID processesWhenoccurring,
independencean be viewed as a vindication of the ap-
proachto refocusto coarsettime scalesshawving the sim-
plicity in modelingthat can be achieved after removing
small time scalecorrelations. Furthermore ,we can test
conformanceof inter-event times with a Poissonmodel
within eachCFR.Givenindependencehis entailstesting
whetherinter-event timesfollow an exponentialdistritu-
tion.

To focuson the network issueswe deferdiscussiorof
thestatisticaimethodologyfor theseests—theresencef
change-pointslID processesandexponentialinterevent
times—toAppendixA. However, oneimportantpoint to
note is that the two testswe found in the literature for
detectingchange-pointare not perfect. The first test—
CP/RankOrder—is biasedtowards sometimesfinding
extraneouschange-pointsThe effect of the biasis to un-
derestimatehe durationof steadyregionsin our datasets.
Thesecondest—€ P/ Bootstrap—doesnothavethebias.
However, it is lesssensitiveand thereforemissesactual
change-pointsnore often. The effect of the insensitvity
is to overestimatehe durationof steadyregionsandto un-
derestimatéhenumberof CFRswithin whichtheunderly-
ing processanbemodeledby IID processeqSeg[Zh01]
for adetailedassessmemif theaccurag of bothtests.)To



accommodat¢heimperfectionwe applybothtestswhen-
ever appropriateandthencompargheresults.Our hopeis
to give someboundon thedurationof steadyregions.

This paperis organizedas follows. We first describe
the sourcesof datain Sectionll. We discussthe loss
dataandits constang analysisin Sectionlll, andthe de-
lay andthroughputdatain SectionslV andV. Of these
threesectionsthe first oneis muchmoredetailed,aswe
develop a numberof our analysisand presentatiorntech-
niquestherein. We then concludein SectionVI with a
brief summaryof ourresults.

[l. MEASUREMENT METHODOLOGY

We gatheredwo basictypesof measurement$?oisson
paclet streamsusedto assessossanddelaycharacteris-
tics, and TCP transfersto assesshroughput Our mea-
surementsvereall madeusingthe NIMI measuremenh-
frastructurdPMAM98]. NIMI is afollow-on to Paxsons
NPD measuremerftamenork, in whichanumberof mea-
surementplatformsare deplo/ed acrossthe Internetand
usedto performend-to-endneasurementsndit attempts
to addresghe limitations and resulting measurementi-
asegpresenin NPD [Pa99].

Wetooktwo mainsetsof data,oneduringWinter 1999—
2000(W1), andoneduring Winter 2000—2001(Ws). For
the first, the infrastructureconsistedof 31 hosts,80% of
which werelocatedin the United States andfor the sec-
ond, 49 hosts,73% in the USA. About half are univer
sity sites,andmostof the remainderesearchnstitutesof
differentkinds. Thus,the connectiity betweenthe sites
is strongly biasedtowardsconditionsin the USA, andis
likely notrepresentate of the commercialinternetin the
large. That said, the pathsbetweenthe sitesdo traverse
the commerciallnternetfairly often,andwe might plausi-
bly aguethat our obserationscould apply fairly well to
the betterconnectedcommerciallnternetof the not-too-
distantfuture,if nottoday

For Poissonpaclet streamswe usedthe “zi ng” util-
ity, providedwith the NIMI infrastructurefo sourceUDP
paclets at a meanrate of 10 Hz (W;) or 20 Hz (Ws).
For the first of these,we used256 byte payloads,and
for the second,64 byte payloads. zi ng sendspaclets
in selectablepatterngpayloadsize,numberof pacletsin
back-to-bacKflights,” distribution of flight interarrivals),
recordingtime of transmissiorandreception While zi ng
is capableof using a paclet filter to gatherkernel-level
timestampsfor avarietyof logisticalproblemshis option
doesnot work well on the currentNIMI infrastructureso

1See[zPS00] for relatedanalysisof end-to-endrouting basedon
t racer out e measurements.

| Dataset|| #pkttraces| # pairs | # pkts || #thruput | # xfers |

Wi 2,375 2441 160M 58 | 16,900
Wa 1,602 670 | 113M 111 | 31,700
TABLE |

SUMMARY OF DATASETS USED IN THE STUDY.

we useduserlevel timestamps.

By usingPoissorintenalsfor sendinghepaclets,time
averagescomputedfrom the measurementare unbiased
[Wo082]. Pacletswere sentfor an hour betweenrandom
pairsof NIMI hosts,andwererecordedatbothsendeand
recever, with somestreamseingunidirectionalandsome
bidirectional. We usedthe former to assesgatternsof
one-way pacletlosshasedntheuniquesequencaumber
presenin eachzi ng paclet, andthelatterto assessoth
one-vay lossandround-tripdelay We did not undertak
ary one-way delayanalysissincethe NIMI infrastructure
doesnot provide synchronizealocks.

For throughputmeasurementsve used TCP transfers
betweenrandompairs of NIMI hosts, makinga 1 MB
transferbetweenthe samepair of hostsevery minute for
a 5-hourperiod. We took asthe total elapsedime of the
transferthe intenal obsered at the recever betweenac-
ceptingthe TCP connectionand completingthe close of
the connection. Transferswere madespecifying200 KB
TCP windows, thoughsomeof the systemsclampedthe
buffers at 64 KB becausdhe systemswere configuredto
notactivatethe TCPwindow scalingoption[JBB92]. The
NIMI hostsall ranversionsof eitherFreeBSDor NetBSD.

Table| summarizeghe datasets. The secondcolumn
gives the numberof hourlong zi ng paclet traces,the
third the numberof distinct pairsof NIMI hostswe mea-
sured(lower in W; becauseave pairedsomeof the hosts
in W; for an entire day while all of the W, measure-
mentsweremadebetweerhostspairedfor onehour),and
the total numberof measuredaclets. The fifth column
givesthe numberof throughputpairswe measuredeach
for 5 hours,andthe correspondinghumberof 1 MB trans-
ferswe recorded.

In our preliminaryanalysisof W, we discovereda de-
ficiengy of zi ng thatbiasesour resultssomeavhat: if the
Zi ng utility receved a “No route to host” error condi-
tion, thenit terminated. This meansthatif therewasa
significantconnectiity outagethat resultedin the zi ng
hostreceving anICMP unreachablenessagethenzi ng
stoppedrunning at that point, and we misseda chance
to further measurdhe problematicconditions. 47 of the
W1 measuremertiours(4%) sufferedfrom this problem.
We were able to sahage 6 as containing enoughdata



to still warrantanalysis;the otherswe rejected,though
somewould have beenrejectedanyway dueto NIMI co-
ordination problems. This omissionmeansthat the W,

datais, regrettably biasedowardsunderestimatingignif-

icantnetwork problemsandhow they correlatewith non-
constanciesThis problemwasfixed prior to the W, data
collection.

Oneotheranomalyin the measurementis thatin W,
someof the sendersandreceversweremissynchronized,
suchthatthey werenotrunningtogetheifor theentirehour.
This mismatchcouldleadto seriesof pacletsatthe begin-
ning or endingof tracesbeingreportedaslostwhenin fact
the problemwasthatthe recever wasnot running. We re-
moved the anomalyby trimming the tracesto begin with
thefirst successfullyreceved paclet andendwith the last
such. This trimming potentially could bias our datato-
wardsunderestimatindoss outages;however, inspection
of the tracesand the loss statisticswith and without the
trimming corvincedusthatthe biasis quite minor.

Finally, our focusin this paperis on constang, but to
soundlyassessonstanyg first requiressubstantialvork to
detectpathologiesandmodalbehaior in thedataand,de-
pendingon their impact, factor theseout. We then can
identify quantitieghataremostappropriatdo testfor con-
stang. Due to spacerestrictionsand in the interestof
brevity, we refer the readerto [ZPS00] for mary of the
particularsof this assessmermdf the data.

We bagin our analysisof typesof constang with alook
at paclet loss. We devote significantly more discussion
to this sectionthanto the subsequensectionsanalyzing
delayandthroughpubecauséereinwe developanumber
of our analysisandpresentatiotiechniques.

Correlationin paclet loss was previously studiedin
[B093], [Pa99], [YMKT99]. The first two of thesefo-
cuson conditionalloss probabilitiesof UDP pacletsand
TCP data/ACK paclets. [Bo93] found that for paclets
sentwith a spacingof < 200ms, a paclet wasmuchmore
likely to belostif thepreviouspacletwaslost,too. [Pa99]
foundthatfor consecutie TCP paclets,the secondpaclet
was likewise muchmorelikely to be lost if the first one
was. The studiesdid not investigatecorrelationson larger
time scalegshanconsecutie paclets,hovever. [YMKT99]
looked attheautocorrelatiorof abinarytime seriesrepre-
sentatiorof thelossprocessbseredin 128 hoursof uni-
castand multicastpaclet traces. They found correlation
time scalesof 1000 ms or less. However, they also note
thattheir approachtendsto underestimate¢he correlation
time scale.

While the focus of thesestudieswas different from

L OSS CONSTANCY

ours—inparticular [YMKT99] explicitly discardechon-
steadysamples—somef our resultsbeardirectly upon
this previous work. In particular in this sectionwe ver
ify thefinding of correlationdn thelossprocessbut also
find that much of the correlationcomesonly from back-
to-backlossepisodesandnot from “nearby” losses.This
in turnsuggestshatcongestiorepochgtimeswhenrouter
buffersarerunningnearlycompletelyfull) arequiteshort-
lived, atleastfor pathsthatarenotheavily congested.

As discussedn the previous section,we measureda
large volume (270M) of Poissonpaclets sent between
several hundred pairs of NIMI hosts, yielding binary-
valuedtime seriesindexed by sendingtime andindicating
whethereachpaclet arrived at the recever or failedto do
so. For this analysis,we consideredaclets that arrived
but with badchecksumsslost.

Thereweretwo artifactsin the datathatwe hadto ex-
plicitly adjustfor. First,asdetailedin [ZPS00],oneof the
sitesexhibited strong60-secongeriodicitiesin its losses.
As we did not find suchperiodicitiesfor ary of the other
sites,weremovedthesdracesrom ouranalysisasanoma-
lous. Second,f a paclet wasreplicatedby the network
suchthatmultiple copiesarrivedattherecever, we treated
thisasasinglearrival, discardingthelatearrivals. In gen-
eral,wefoundpacletreplicationveryrare,butin onetrace
16%of the pacletsarrivedtwice.

Paclet lossin the datasetsvasin generallow. Over all
of Wy, 0.87%0f thepacletswerelost,andfor W5, 0.60%.
However, asis commonwith Internetbehaior, we find a
widerange:11-15%of thetracesexperiencedoloss;47—
52%hadsomeloss,but atarateof 0.1%or less;21-24%
hadlossratesof 0.1-1.0%;:12—-15%hadlossratesof 1.0—
10%;and0.5-1%hadlossratesexceedingl0%.

Becauseave sourcedraffic in bothdirectionsduringour
measuremenuns,thedataaffordsuswith anopportunity
to assessymmetriesn lossrates. We find for W that,
similar to asreportedin [Pa99],lossratesin a paths two
directionsareonly weakly correlatedwith a coeficient of
correlationof 0.10for the70%o0f traceghatsufferedsome
lossin bothdirections.However, thelogarithmsof theloss
ratesarestronglycorrelated0.53),indicatingthatthe or-
derof magnitudeof thelossrateis indeedfairly symmet-
ric. While time-of-dayandgeographiqtrans-continental
versusintra-USA) effects contrikute to the correlation,it
remainspresentto a degree even with thoseeffects re-
moved. ForWs, theeffectis wealer: thecoeficientof cor
relationis -0.01,andfor thelogarithmof thelossrate,0.23.

A. Individuallossvs.lossepisodes

Previously we discussedow aninvestigationof math-
ematicalconstang shouldincorporatdooking for a good
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model. In this section,we apply this principle to under
standingthe constang of pacletlossprocesses.

The traditional approachfor studying paclet loss is
to examine the behaior of individual losses [B093],
[Mu94], [Pa99],[YMKT99]. Thesestudiesfound corre-
lation at time scalesbelov 200-1000ms, and left open
the questionof independencat largertime scalesWein-
troducea simplerefinemento suchcharacterizationthat
allows us to identify thesecorrelationsas due to back-
to-backlossratherthan “nearby” loss, and we relatethe
resultto the extendedGilbert loss model family [Gi60],
[SCKO0Q], [JS00]. We do so by consideringnot the loss
processtself, but the loss episodeprocessij.e., the time
seriegndicatingwhenaseriesof consecutie paclets(pos-
sibly only of lengthone)werelost.

For loss processes,we expect congestion-induak
eventsto be clusteredin time, soto assessndependence
among events, we use the autocorrelation-b&sl Box-
Ljung testdevelopedin § A-B, asit is sensitve to near
term correlations We chosethe maximumlag & to be 10,
sufiicient for usto studythecorrelationatfine time scales.
Moreover, to simplify the analysis,we uselagin paclets
insteadof time whencomputingautocorrelations.

We first revisit the questionof loss correlationsas al-
readyaddresseth theliterature. In Wy, for example,we
examinedatotal of 2,168traces 265 of which hasnoloss
atall. In theremainingl,903tracesonly 27%areconsid-
eredlID at5% significanceusingthe Box-Ljung @ statis-
tic. Theremainingtracesshaw significantcorrelationsat
lagsunderl0, correspondindo time scalesof 500-1000
ms, consistentvith thefindingsin theliterature.

Thesecorrelationgmply thatthelossprocesss notlID.
We now consideran alternatve possibility that the loss
episodeprocesss IID, and,furthermorejs well modeled
asa Poissorprocess.We againuseBox-Ljung to testthe
hypothesis Amongthe 1,903traceswith atleastoneloss
episode 4% areconsideredID, significantlylargerthan
the27%for thelossprocessMoreover, of the1,380traces
classifiedas non-1ID for the loss process half have IID
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Fig. 2. Distribution of lossrundurations.

lossepisodeprocessesin contrast,only 1% of thetraces
classifiedaslID for thelossprocessareclassifiedasnon-
IID for thelossepisodeprocess.

FigurelillustrateshePoissomatureof thelossepisode
procesdor eightdifferentdatasetsneasuredor the same
hostpair. The X-axis givesthelengthof the loss-freepe-
riods in eachtrace,which is essentiallythe loss episode
interarrival time, sincenearlyall loss episodesonsistof
only onelost paclet. The Y-axis givesthe probability of
observingaloss-fregperiodof agivenlengthor more,i.e.,
the complementaryglistribution function. Sincethe Y-axis
is log-scaled,a straightline on this plot correspondgo
an exponentialdistribution. Clearly the loss episodein-
terarrvals for eachtraceare consistentwith exponential
distributions, even thoughthe meanloss episoderate in
thetracesvariesfrom 0.8%—2.7%andthis in turn agues
stronglyfor Poissorlossepisodearrivals.

If we increasehe maximumlag in the Box-Ljung test
to 100, the proportionof traceswith IID loss processes
dropsslightly to 25%, while thosewith IID lossepisodes
fallsto 55%. Thedeclineillustratesthatthereis somenon-
negligible correlationover timesscalesof a few seconds,
but evenin its presencethedatabecomesignificantlybet-
ter modeledas independentf we considerloss episodes
ratherthanlosseghemseles.

If we continueout to still larger time scales,abore
roughly 10 sec,thenwe find exponentialdistributionsbe-
come a considerablypoorerfit for loss episodeinterar
rivals; this effect is widespreadacrossthe traces. It does
not, however, indicatecorrelationson time scalesof 10’s
of secondgwhich in fact we generallyfind are absent),
but rathermixturesof exponentialsarising from differing
lossratespresentt differentpartsof atrace,asdiscussed
belov. Notethat, werewe not opento consideringa loss
of constang on thesetime scaleswe might insteadwind
up misattrikuting the failure to fit to an exponentialdis-
tribution asevidenceof the needfor a morecomple, but
steadyprocess.

All in all, thesefindings argue that in mary casesthe
fine time scalecorrelationreportedn the previous studies



is causedyy trainsof consecutie lossesratherthaninter
vals over which lossratesbecomeelevatedand “nearby”
but not consecutie pacletsarelost. Therefore Josspro-
cessesrebetterthoughtof asspikesduringwhich theres
a short-termoutage ratherthanepochsover which a con-
gestedrouters buffer remainsperilously full. A spike-
like loss processaccordswith the Gilbert model [Gi60],
which postulateghatlossoccursaccordingto a two-state
processwherethe statesare either “packets not lost” or
“packetslost; thoughseebelow for necessaryefinements
to thismodel.

A relatedfinding concernsthe size of lossruns. Fig-
ure 2 shaws the distribution of the durationof lossrunsas
measuredn secondsWe seethatvirtually all of theruns
are very short-lved (95% are 220 ms or shorter),andin
fact nearthe limit of what our 20 Hz measurementsan
resohe. Similarly, we find thatlossrun sizesareuncorre-
latedaccordingto Box-Ljung. We also confirm the find-
ing in [YMKT99] that loss run lengthsin paclets often
are well approximatedby geometricdistributions, in ac-
cordancewith the Gilbert model, thoughthe larger loss
runsdo not fit this description,nor do traceswith higher
lossrates(> 1%); seebelow.

B. Mathematicakonstancyof thelossepisodeprocess

While in the previous sectionwe homedin on un-
derstandindoss from the perspectie of looking at loss
episodesatherthanindividual loss,we alsohadthe find-
ing thatonlongertime scalesthelossepisodeatesappear
to changingj.e., non-constancy

To assesghe constang of the loss episodeprocess,
we apply change-poinanalysisto the binary time series
(T;, E;), whereT; is thetime of theith obserationand E;
is anindicatorvariabletakingthevaluel if alossepisode
beganat thattime, O otherwise.In constructingthis time
series,note that we collapseloss episodesand the non-
lost pacletthatfollows theminto asinglepointin thetime
series. (For example,if the original binary loss seriesis:
0,0,1,0,1,1,1,0,0,1,0,0,0, thenthecorrespondindopss
episodeseriesis: 0,0,1,1,0,1,0,0.) l.e., (Ti+1, Eit1)
reflectsthe obsenration of the secondpaclet after the sth
lossepisodeended. We do this collapsingbecausef the
seriesincludedthe obsenration of thefirst paclet afterthe
lossepisodethen F;; would alwaysbe0, sinceepisodes
arealwaysendedby anon-lostpaclet, andwe would thus
introducea neggative correlationabiasinto thetime series.

Using the methodologydevelopedin § A-A, we then
divide eachtraceup into 1 or more change-freaegions
(CFRs),during which the lossepisoderate appearsvell-
modeledas steady Figure 3 shavs the cumulatve dis-
tribution function (CDF) for the size of the largestCFR
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Fig. 3. CDF of largestchange-freeregion (CFR) for loss
episodesin W; and W, datasetsand numberof CFRs
present. “Lossy traces”is the sameanalysisrestrictedto
tracedfor which the overall lossrateexceededl%.

foundfor eachtracein W, (solid) and W, (dashed).We
alsoplot CDFsrestrictedo justthosetracesfor whichthe
overall loss rate exceededl% (“Lossy traces”). We see
thatmorethanhalf the tracesaresteadyover thefull hour
Of the remainderthe largestperiodof constang runsthe
whole gamutfrom just a few minuteslong to nearly the
full hour However, the situationchangesignificantlyfor
lossytraceswith half of thetraceshaving no CFRlonger
than 20 minutesfor CP/RankOrder (or 30 minutesfor
CP/Bootstrap). The behaior is clearly the samefor
both datasets Meanwhile,the differencebetweenthe re-
sultsfor CP/RankOrder andthosefor CP/Bootstrap
is also relatively small—about10-20% more tracesare
change-fre@vertheentirehourwith CP/Bootstrap than
with CP/RankOrder. This suggestghe effect of the
bias/insensitiity is not major.

We alsoanalyzedhe CDFsof the CFR sizesweighted
to reflecttheproportionof thetracethey occupied For ex-
ample atracewith onel0-minuteCFRandone50-minute
CFRwould be weightedas 10 + 250 = 43.3 minutes,
meaningthatif we pick arandompointin atrace,we will
on averagelandin a CFR of 43.3 minutestotal duration.
TheCDFsfor theweightedCFRshave shapesgjuitesimilar
to thoseshavn abore, but shiftedto the left about7 min-
utes,exceptfor the 60-minutespike on therighthandside,
which of coursedoesnot changebecausdts weightis 1.

The bottom half of the figure shawvs the distribution of
the numberof CFRsper trace. Again, the two datasets
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agreeclosely Over all the tracesthereareusuallyjust a
handful of CFRs, but for lossytracesthe figure is much
larger, with theaveragerising from arounds overall traces
to around20 over the lossytraces. Clearly, oncewe are
in a high-lossregime, we alsoarein a regime of chang-
ing conditions.In addition,sometimesve obsere a huge
numberof CFRs.Figure4 shavs anexampleof thelatter,

atracewhoselossepisodeprocesdlividesinto morethan
400CFRs.

Oncewe have divided tracesinto one or more CFRS,
we canthenanalyzeeachregion separatérom the others,
having confidencethat within the region the overall loss
episoderate doesnot change. Upon applying the Box-
Ljung test, we find that 88-92% of the regions are con-
sistentwith an absenceof lag 1 correlation,and 77-86%
are consistentwith no correlationup to lag 100. Clearly,
within a CFRthe lossepisodeprocesss well modeledas
IID betterthanoverthe entiretrace(previous section).In
addition, applying the Anderson-Darlingtest (§ A-C) to
theinterarrvals betweernossepisodesn aregion, we find
that77-85%0f theregionsareconsistentvith exponential
interarrvals.

Together these findings solidly support modeling
loss episodesas homogeneou$oissonprocessesvithin
change-freeegions.In particular correlationsn losspro-
cessesredueto thepresencef consecutie lossesrather
thannearbylosses.

It remaingto describehestructureof lossepisodesWe
dosoin the contet of theaforementionedilbert andex-
tendedGilbert models.For the two-stateGilbert modelto
hold, we shouldfind thatwithin alossepisodethe proba-
bility of observingeachadditionallossremainsthe same.
In particular the probability that we obsere a 2nd loss
in an episode given that we've seenthe initial lossof an
episodeshouldbethesameastheprobabilityof observing
a3rdlossgiventhatwe've seerthe2ndloss. Similarly, the
extendedGilbertmodelallows for & differentlossratesfor
thefirst k& lossesaftertheinitial loss,eachcorresponding
to adifferentstatein the model.
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Fig.5. Operationatonstanyg for pacletlossandlossepisodes,
conditionedon the constang lasting50 minutesor less.

Accordingly we canassessvhetherk statessufiice to
describea givenlossprocesdyy seeingwhetherthek + 1
loss after the initial loss occurs(conditionedon the kth
loss)with the sameprobability asthe kth lossdoes(con-
ditionedon the &k — 1 loss). We madethesetestsusing
Fishers Exact Test[Ri95], and found that, for both W,
and W,, 40% of the tracesare consistentwith Bernoulli
loss; 89% with the Gilbert two-statemodel; 98% with
3 stateqextendedGilbert); and99% with 4 states.How-
ever, the modelswork lesswell for lossytraces:only 6%
are well-modeledas Bernoulli, 68% with 2 states,85%
with 3 statesand96%with 4 states.

C. Opentional constancyof lossrate

We now turnto analyzinga differentnotionof lossrate
constanyg, namelyfrom an opetional viewpoint. To do
so, we partition loss ratesinto the following cateyories:
0-0.5%,0.5-2%,2-5%,5-10%,10-20% and20+%. The
role of thesecatayoriesis to capturequalitatve notions
suchas“no loss; “minor loss; “tolerableloss; “serious
loss, “veryserioudoss, and“unacceptabléoss’

For eachtracewethenanalyzehow longthelossratere-
mainedin the samecategyory. Figure5 plotsthe weighted
CDF for four different loss seriesassociatedvith each
tracein Wi : thelossepisodaatecomputedver 1-minute
intenals, theraw paclet lossrateover 1-minuteintenals,
andthe samebut computedover 10-secondntenals. (Re-
sultsfor W, arevirtually identical.) The CDF is weighted
by the sizeof the constang intenval, asmentionedabore;
thus, we interpretthe plot as shawving the unconditional
probability that at ary given momentwe would find our
selwesin a constang interval of durationT or less. For
example,about50%of thetimewewill find oursehesin a
constang interval of 10 min or less,if whatwe careabout
is the constang of loss episodescomputedover minute-
longintenvals (solid line).

An importantpointis thatwe truncatedhe plot to only
shaw the distribution of intenals 50 minutesor less. We
characterizdonger intenals separately as thesereflect



entire datasetghat were operationallysteady Sinceour
datasetsspannedat most one hour, constang over the
whole dataseprovides a lower boundon the durationof
constany, ratherthan an exact value, and hencediffers
from thedistributionsin Figure5.

For the four loss series,the correspondingprobabili-
ties of observinga constang intenal of 50 or moremin-
utesare 71%, 57%, 25%, and 22%. Thus, if we only
careaboutconstang of lossviewed over 1-minute peri-
ods,thenabouttwo-thirds (57—-71%)of the time, we will
find we arein a constang period of at leastan hourin
duration—itcould be quite a bit longer as our measure-
mentdimited usto observingatmostanhourof constany.

We alsoseethatthe key differencebetweernthe 10 sec
and1 min resultsis thelikelihood of beingin a period of
long constang: it takesonly a single 10-seconcchange
in lossrateto interruptthe hourlong interval, muchmore
likely thana single 1-minutechange.If we conditionon
beingin a shorterperiod of constang, thenwe find very
similar curves. In particular if we arenotin a periodof
long-lived constany, then,pertheplot, we find thatabout
half thetime we arein a 10-minuteintenal or shorterand
thereis not a greatdeal of differencein the durationof
constany, regardlessof whetherwe considerone-minute
or 10-secondatonstang, or lossrunsor lossepisodes.

Finally, we repeatedhis assessmentsinga setof cut-
pointsfor the losscatayoriesthatfell in the middle of the
above cutpoints(e.g.,3.5-7.5%) to testfor possiblebin-
ning effectsin which sometracesstraddlea particularloss
boundary Theresultsarehighly similar.

D. Comparingmathematicabndopemtional constancy

We now briefly assesghe degree to which we find
that the notion of mathematicalconstang of loss coin-
cides with the notion of operationalconstang of loss.
While thereare mary dimensionsn which we could un-
dertale suchan assessmentye aim hereto only explore
the coarse-grainecklationship.

We bagin by cateyorizing eachtraceaseither“steady”
or “not steady wherethedistinctionbetweerthetwo con-
cernswhetherthe trace hasa 20-minuteregion of con-
stang; i.e., for mathematicatonstang, a 20-minuteCFR
for therateof thelossepisodgorocessandfor operational
constanyg, a 20-minuteperiod during which the lossrate
did not strayoutsideoneof theparticularregions.We then
assessvhat proportionof the traceswere neithermathe-
matically nor operationallysteady(A/ O), mathematically
but not operationally(A/ O), vice versa(M O), and both
(MO).

For operationalconstang evaluatedusing loss com-
putedover 1 min, we find MO = 6-9%,M O = 6-15%,

MO = 2-5%,and MO = 74-83%. (The minor varia-
tion in thefiguresdepend®nwhetherfor operationaton-
stany welook atlossrateor lossepisodeate,andwhether
we usethefirst or the secondsetof losscatgoriesasdis-
cussedattheendof § I1I-C.) Clearly thenotionsof math-
ematicalandoperationatonstang mostly coincide.

However, if we insteadevaluateoperationalconstang
usinglossratescomputedover 10 secintenals, thefigures
aresignificantlydifferent: MO = 11%, MO = 37-45%,
MO = 0.1%,and MO = 44-52%. We cansummarize
thedifferenceas: Opemtional constancyof padetlossco-
incideswith mathematicatonstancyon large time scales
sud as viewing how losschangsfrom oneminuteto the
next; but not nearlysowell on mediumimescalessud as
lookingat 10-secondntervals.

E. Predictiveconstancyoflossrate

The lastnotion of paclet loss constang we exploreis
that of predictive constany, i.e., to what degreecanan
estimatompredictfuturelossevents?

Therearea numberof differentloss-relatedaventswe
could be interestedn predicting. Here, we confineour
selhesto predictingthelengthof thenext loss-freerun. We
chosethis event for two reasonsfirst, we do not have to
bin thetime seriegwhich predictinglossrateoverthenext
T secondsvouldrequire);andsecondthereareknown ap-
plicationsfor suchprediction,suchasTFRC[FHPWOQO].

The next questionis whattype of estimatorto use. We
assesshreedifferenttypespopularin the literature: mov-
ing average(MA), exponentially-weightednoving aver
age (EWMA) suchas usedby TCP [Ja88], and the S-
shapedmoving averageestimator(SMA) usedby TFRC.
Thislastis a classof weightedmoving averageestimators
thatgive higherweightsto morerecentsampleswe usea
subclasghat givesequalweightto the mostrecenthalf of
the window, andlinearly decayedweightsfor the earlier
half; see[FHPWOO]for discussion.

For eachof theseestimatorsthereis a parameteithat
governstheamountof memoryof pasteventsusedby the
estimator For MA and SMA, we usedwindow sizesof
2,4,8,16,32; andfor EWMA, o = 0.5,0.25,0.125, and
0.01, wherea = 0.5 correspondso weightingeachnewn
sampleaquallyto thecumulatve memoryof previoussam-
ples,anda = 0.01 weightsthe previous sample®9 times
asmuchaseachnewn sample.

Oncewe've definedwhatestimatoito use we next have
to decidehow to assessiow well it performed.To do so,
we compute:

predictionerror= FE [

(predicted«alue)‘ ]
log | —————
actualvalue
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Fig. 6. CDFsof the meanerrorfor alarge numberof losspre-
dictors,computedover entiretraces(top) or change-freee-
gions(bottom).

wherethe expectationwhichis computedver eachof the

events(loss-freeruns)in atrace reflectstheratio by which

theestimatoitypically misseghetamget. We thencompute
CDFsthat shav the rangeof how well a given estimator
performsover all of thetraces.

Figure 6 shaws the resulting CDFs, computedfor all
traceqtop plot) andfor all CFRswithin thetracegbottom
plot). The vertical line in eachplot reflectsa prediction
error of 1, correspondingo overestimatingor underesti-
mating by a factorof e. (It turns out that the bestone
can achiere, on average,for predictinglID exponential
randomvariablesis a predictionerror of 1.02.) We have
plotted CDFsfor all of the different estimatorsand sets
of parametersandthe plot doesnot distinguishbetween
thembecausehe main point to consideris that virtually
all of the estimatorgerformaboutthe same—the param-
eters dont matter nor doesthe avemging scheme

We interpretthis asreflectingthatthe processloesnot
have significant structureto its short-rangecorrelations
that canbe exploited betterby particulartypesof predic-
tors or window sizes;all that the estimatorsare doing is
trackingthemearnof the processwhichvariesmoreslowly
thando thewindows. Therearetwo exceptions however.
First, in thetop plot, the CDF markedly belowv all the oth-
erscorrespondso EWMA with o = 0.01. Thatestimator
hasa lengthy memory(on the orderof 100 paclets),and
accordinglycannotadaptto rapid fluctuationsin the loss
process. In addition, that estimatorwill do particularly
poorly during a transitionbetweentwo CFRs,becauset
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Mean Prediction Error

Fig. 7. CDFsof themeanerrorfor EWMA (a = 0.25) estima-
tor computedover setsof lossytraceswith differenttypesof
constany.

will rememberthe behaior in the older CFR for much
longerthanthe otherestimators.We seethatin the lower
plot, it faresbetter becaus¢hatplot doesnotincludetran-
sitionsbetweernCFRs.

Also, in thesecondlot we have addedan“oracular”’ es-
timator (dotted). This estimatorknows the meanloss-free
lengthduringthe CFR,andalwayspredictsthatvalue.We
canseethatit doesnoticeablybetterthanthe otherestima-
torsabouthalf the time, andcomparabldhe otherhalf. A
significantelementof its improved performancés thatthe
lower plotis heavily skewedto favoring estimatorghatdo
well over tracesthat are highly non-steadymary CFRs),
becausesachof the CFRswill contritute a point to the
CDF. Thesucces®f the oraclealsosuggestshatit might
be a goodgeneralstratgy to constructestimatorghatin-
cludeanexplicit decisionwhetherto restartthe estimatoy
sothey canadaptto level shiftsin a nimblefashion.

Finally, we repeatedhe analysisafter applying a ran-
dom shufle to the tracesto remove their correlational
structure. Doing so makes only a slight differencein
the estimatorsperformancereducingthediscrepang be-
tweenthe a = 0.01 estimatorandthe others,andwe find
thatthe variousestimatorsdo only slightly worsethanan
oracularestimatorappliedto thenow-1ID time series.

We finish with a look at the relationshipbetweenhow
well we canpredictlossversusthe presencer absencef
mathematicahnd/oroperationaconstang. Asin § 1l1-D,
we aimonly to understandhe coarse-grainettlationship,
andagainwe considera tracemathematicallysteadyif it
hasa maximumCFR of at least20 minutes,and opera-
tionally steadyif it stayswithin aparticularlossregionfor
atleast20 minutes.

Partitioningthelossy(> 1% loss)tracesonthatcriteria,
usingEWMA with a = 0.25 we attainthe predictorerror
CDFsshawvn in Figure 7. We seethat the quality of the
predictoris virtually unchangedf we have neithermath-
ematicalnor operationalconstany, or just one of them.
But if we have both, thenthe predictors performanceds
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worse Thisis becausén thisregimethelossepisodepro-
cessresemblesan 1ID processwithout significantshort-
term variations,and the recentsamplesseenby the esti-
matorprovide no helpin predictingthe next event. In ad-
dition, notethatif welook at all tracesratherthanjustthe
lossytracestheestimatorsagaindoworse becauséor the
type of eventwe arepredicting(interval until the next loss
episode)iraceswith low losslevelsprovide very few sam-
plesto theestimator However, low lossis alsoa condition
underwhich we generallywon’t careaboutthe precise-
nessof the estimatoy sincelosseventswill be quiterare.
In summarypredictors do equallywell whetheror notwe
haveotherformsof constancyunlesswe haveconstancy
resemblingan [ID processwith little short-termvariation

IV. DELAY CONSTANCY

We next turn to exploring the typesof constang asso-
ciatedwith paclet delays. Mukherjeefound that paclet
delay along several Internetpathswas well-modeledus-
ing a shiftedgammadistribution, but the parametersf the
distribution variedfrom pathto pathandon time scalesof
hours[Mu94]. Similarly, Claffy andcolleaguedoundthat
one-way delaysmeasuredlongfour Internetpathsexhib-
ited clearlevel shiftsandnon-constanciesver the course
of aday[CPB93].

For ouranalysiswe againusethezi ng Poissorpaclet
streamamneasuredn the NIMI hosts. Becausahe NIMI
hostslack synchronizedlocks,we confineour analysisto
thosedatasetsvith bidirectionalpaclet streamsTheseare
generatedy zi ng on host A sending“request”paclets
hostB, andthezi ng on host B immediatelyresponding
to eachof theseby sendingoackmatching‘reply” paclets,
facilitating round-tripmeasuremenrdit host A. The delay
in zi ng’sresponsés short,usuallytaking 100-200usec,
occasionallyrising to afew ms.

A. Delay“spikes”

The datatotaled 130M RTT measurementsade be-
tween613 distinct pairsof hosts.In analyzingit, thefirst

phenomenorwe hadto dealwith is the presenceof de-
lay spikes Theseareintenals (oftenquite short)of highly
elevatedRTTs. They arerare,but if unaddressedanseri-
ously skew our analysisdueto their magnitude.Figure 8
corveys the sizeandprevalenceof spikes. For eachtrace,
we computedhe medianof all of the RTT measurements,
andthennormalizedeachRTT measuremeniy dividing it
by the median.This allows usto thenplot all of the mea-
surementsogetherto assesdn highlevel terms,themag-
nitudeof RTT variationpresentn thedata.Theplot shavs
the complementarygistribution of the RTT-to-medianra-
tio; this style of plot emphasizethe uppertail. For refer
encewe have drawn linesreflectinga ratio of 10:1 (verti-
cal) anda probability of 102 (horizontal). Clearly, there
areasignificantnumberof very large RTTs, thoughnot so
mary thatwe would considerthemarything otherthanan
extremeuppertail phenomenon.

To proceedwvith separatingpikesfrom regularRTT be-
havior, we needto devise a definition for cateyorizing an
RTT measuremenasone or the other We were unable
to find a crisp modality to exploit—the only one present
in theplot is for ratiosabove or belowv 100:1,but that cut-
off pointomitsmary spikesthatwe foundvisually—sowe
settledonthefollowing imperfectprocedurefor eachnewn
RTT measuremen®’, we comparedt to the previousnon-
spike measurement®. If R’ > max(k - R,250ms), then
we considerthe new measuremerd spike; otherwise we
setR « R' andcontinueto the next measuremertt. We
thenappliedthis classificatiorfor k = 2 andk = 4. Doing
sorevealedtwo anomaliesa high lateny pathplaguedoy
rapid RTT fluctuationsrangingfrom 200 msto 1 sec,and
a pair of hoststhat periodicallyjumpedtheir clocks. With
the anomaliesremoved, we find that k. = 2 cateyorized
1.1-1072 of theW, RTTs asspikes,andk = 4 catejo-
rized3.4 - 1074,

Oncewe had the definition in place,we could check
it in termsof “yes, thesearereally outliers; asfollows:
for eachtracewe computedz ando, the meanandstan-
dard deviation of the RTT measurementwith the spikes
remoed We thenfor eachspike assessetiov mary o
it wasabore 7. For Wy, the k = 2 definition leadsto
spikesthataretypically (median)16.% above the mean,
with 80% beingmorethan5.60. For k = 4, thesefigures
riseto 280 and6.6o.

B. Constancyof bodyof RTTdistribution

The degree to which RTT spikes are indeed outliers
points up a heedto assesghe constang of the body of

2We foundthe 250 mslower boundnecessaryor applyingthe clas-
sifierto traceswith quitelow RTTSs.
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the RTT distribution separatdrom thatof the RTT spikes.
We do soby applyingchange-poinanalysisto themedian
andinter-quartilerange(IQR) of thedistribution 3

Figure 9 shavs CDFsof the size of the largestcorre-
spondingCFRs. We seethat, overall, the medianis less
steadythan the IQR (indeed,we find that IQR change-
points appearto often be a subsetof medianchange-
points),andbothdistributionsshift about5 minutesto the
left for lossytraces.Thestriking differencewith Figure3,
though, is the absenceof entire hourswith no change-
points. Thus we find that overall, delay is less steady
thanloss andthat,while theres awide rangein thelength
of steadydelayregions,in generaldelayappearsvell de-
scribedassteadyontime scalesof 10-30minutes.We can
alsotestthe medianand IQR (computedover 10-second
intenals) for independencevithin eachCFR. Using the
Box-Ljung testfor up to 6 lags,we find very goodagree-
ment(90-92%)with independence.

C. Constancyf RTTspikes

Having characterizedhe constang of the paclet delay
distribution’s body we now turn to the constang of the
RTT spike process Analogousto our approachor paclet
loss,we groupconsecutie spikesinto spike episodesnot-
ing thatin generalthe episodesare quite shortlived: for
example, the mediandurationof a spike episode(using
k = 2)in W; was150ms,andthemean275ms.

3ThelQR of adistribution is the distancebetweerthe 25thand75th
percentilesit senesasa robustcounterparto standardieviation. For
IQR change-pointsye computethe IQR over ten-secondntenalsand
look for achangen the medianof thattime series.
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Fig. 10. CDFsof the meanerror for a large numberof delay
predictors.

Upon applying change-pointdetectionto the spike
episodeprocesswe find spike episodesven moresteady
thanlossepisodesthe processs steadyacrossthe entire
hour 75% of the time for £ = 2 spikes, and 90% of the
timefor k = 4 spikes. In addition,wefind theinterarrivals
betweerspikesarewell-modeledas|ID exponential,i.e.,
Poisson.

D. Opemtional constancyof RTT

Similar to our analysisfor loss(§ IlI-C), we assesshe
operationalconstang of RTTs by partitioningthe delays
into a setof categoriesandthenassessinghe durationof
regionsoverwhichthemeasured®TT stayswithin asingle
catgory.

Differentapplicationscanhave quite differentviews as
to what constitutesgood, fair, poor, etc.,delay To have
concretecatgories,we used TU Recommendatiofs.114
[ITU96], whichdefineghreeregions: 0-150ms (“Accept-
able for mostuserapplications”),150—-400ms (“Accept-
ableprovidedthat Administrationsareawareof the trans-
missiontimeimpactonthetransmissiomuality of userap-
plications”),400+ms (“Unacceptabldor generahetwork
planningpurposes”).Becausgheserecommendationare
for one-vay delaysandwe areanalyzingRTTs, we dou-
bledthemto form RTT cateyories,andthen sub-dvided
0-300msinto 0—100ms, 100-200ms, and 200—-300ms,
to allow asomevhatfiner-grainedassessment.

We find that more than half of the traceshave maxi-
mum CFRsunder10 min, and80% areunder20 min. We
found virtually no differencewhetheror notwe left RTT
spikesin thetraceqsincethey arerare),or whenwe tested
a “shifted” versionof the categyoriessimilar to the shifted
versionof lossratesdiscussedn § 11I-C. Thus, not only
are padet delaysnot mathematicallysteadythey alsoare
not opemtionally steady

E. Predictiveconstancyof delay

Wefinishourassessmeimif differenttypesof delaycon-
stang with a brief look attheefficagy of predictingfuture



RTT values. We againusethe families of estimatorgdis-
cussedn § llI-E. The eventsthey processareRTT mea-
surementsand our assessmentoncernshow well they
predictthe next measurementFigure 10 shavs that the
estimatorsagainall performvirtually identically andthat
theirperformances very good:theverticalline ontheplot
marksa meanpredictionerror of 0.2, which corresponds
to estimatinghe next valuewithin afactorof %2 ~ 22%,
andthe horizontalline marks95% of the distribution. We
attainvirtually identicalresultswhetheror notwe include
RTT spikesin the measurementsThus, we find that, in
contrastwith loss (Figure 6), in geneal, delayis highly
predictable Of course for someapplicationsthe conse-
guenceof mispredictingdelay can be significant(e.g.,a
bad TCP retransmissioimeout); we arenot blithely as-
sertingthatapplicationswill find highly predictablehose
facetsof delaythatthey particularlycareabout,only that
delayin generalis highly predictable.

V. THROUGHPUT CONSTANCY

Thelastfacetof Internetpathconstang we studyis end-
to-endthroughput. Comparedo lossanddelay through-
put is a higherlevel path property a productof the first
two plus the dynamicsof the transportprotocolused. In
addition,applicationshave a wide rangeof throughpute-
guirementsTo keepouranalysidractablewe confineour
selvesto asimplenotionof throughputconstang, namely
the minute-to-minutevariationsobsered in 1 MB TCP
transfers. The datawe analyzedconsistedof 169 runs
of 5 hourseach,comprisinga total of 49,000connections
measurealongl45distinctinternetpaths.

Basedon a very large paclet-level trace collectedat
a single busy Web sener, [BPSSK98] found that the
throughpubf Webtransfersexhibitedsignificanttemporal
(several minutes)and spatialstability despitewide varia-
tionsin termsof end-hostocationandtime of day Their
studydiffersfrom oursin thatthe sener wasa singlesite,
thereweremary moreclients,andtheanalysisfocusedon
the throughputof Web transfers which are usuallymuch
shorterthanour transfers.In otherpreviouswork, Paxson
found that for a measureof available bandwidthderived
from timing patternsin TCP connectionsthe predictve
power of the estimatomwasfairly goodfor time periodsup
to severalhours[Pa99].

A. Mathematicakonstancyof throughput

We appliedchange-poinanalysiso the meanof the se-
riesof perminutethroughputmeasurements eachtrace.
Figure 11 shavs the cumulatve distribution of the maxi-
mum CFR andtheweightedaverageof the durationof the
CFRs(perthe discussiorof Figure 3 previously). We see
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Fig. 12. Distribution of maximumoperationalconstang re-
gionsfor p = 1.2 (leftmost),. .., p = 10 (rightmost).

that few tracesare steadyover the entire 5-hour period,
andfor 60-70%,the largestCFRis 2.5 hourslong or less.
Theweightedaveragesareshiftedover about45 minutes;
half of thetime we find ourselesin a change-fregegion
of underl.5hoursduration.

Ontheotherhand,throughputdoesnotwildly fluctuate
minute-by-minute:only 10% of the time do we find our
sehesin a CFR of under20 minutesduration. Similarly,
the mediannumberof change-pointsn a traceis 8. Fi-
nally, within CFRs,we find thatthe individual throughput
measurementarewell modeledas|ID, 92% passingthe
Box-Ljungtestfor autocorrelatioupto 6 lags;over entire
traceshowever, thisfigurefalls to 24%.

B. Opeimtional constancyof throughput

Weadoptasimplenotionof operationathroughputon-
stang, namelywhetherthe obsered bandwidthstaysin a
regionfor which theratio betweerthe maximumandmin-
imum obseredvaluesis lessthanafactorof p. Figure12
shaws the distribution of the size of the maximumsteady
regions,for p = 1.2 throughp = 10. We seethatif ourop-
erationalrequirements for bandwidthnotto vary by more
than20% peak-to-peakthenwe will only have afew min-
utesof constany, but asp increasessotoo doesthe max-
imal constang, fairly steadily;for peak-to-peakariation
of afactorof 3, it is oftenseveralhours.

We alsofind that, dueto the wide rangein operational
constang aswe vary p, thereis no simple relationship
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betweenthe mathematicaland operationalconstang of
throughput. For example,if we classifya traceasopera-
tionally steadyif it hasamaximumCFRof atleast2 hours,
thenfor p = 1.2, we find MO = 53%, MO = 39%,
MO = 2.4%,and MO = 5.9%.But for p = 10, we have
MO = 3.6%,MO = 1.2%,MO = 51.5%,and MO =
43.8%,completelydifferent.

C. Predictiveconstancyof throughput

We finish our look at differenttypesof throughputcon-
stang with alook athow well anestimatorcanpredictthe
next obsered throughputmeasurementFigure 13 shavs
how the families of estimatorsdiscussedn § IlI-E per
formedin estimatingthe next throughputvalue over each
5-hourtracein its entirety Almost all of the estimators
performequally well, with 95% of their estimateghori-
zontalline) yielding anerrorof 0.4 (verticalline) or lower,
correspondingo estimatingthe next value within a fac-
tor of €24 ~ 50%. However, threeestimatorsio poorly:
EWMA with @ = 0.01, andMA andSMA with windows
of 128. Theseeflectestimatorsvith longmemory asindi-
catedon the plot (the otherestimatordhadwindows of 16
or less,or o > 0.125), indicating that when predicting
throughput,rememberingpbserationsfrom a numberof
minutesin the pastis fine, but rememberingor morethan
an hour canmisleadthe estimator Finally, we note that
for tracesthatare mathematicallysteady(maximumCFR
> 1 hour), the short-memoryestimatorsdo nearly twice
aswell (half the meanerror) asthey do on all the traces.
(We do not attempta comparisorbetweenpredictionand
operationalconstany, sincefor throughputthereis such
a wide rangeof operationalconstang dependingon the
parametep.)

~
~

V1. CONCLUSIONS

Applicationsandprotocolsarebecomingmoreadaptive
andnetwork-consciousNetwork operatorsandalgorithms
are increasinglyrelying on measurementto assessur
rentconditions.Mathematicamodelsareplayingalarger

role in the discussionsof Internettraffic characteristics.
For eachof thesedevelopmentspone of the key issuesis
the degreeto which the relevant Internetpropertieshold
steady;yet eachalsoinvolves a quite different notion of
constang. We have discussechow mathematicaloper
ational,and predictive constang sometimesverlap,and
sometimedgliffer substantially Thatthey candiffer signifi-
cantlyhighlightshow it remainsessentiato beclearwhich
notionof constang is relevantto thetaskat hand.

This papercanbereadon two levels. On onelevel, we
have attemptedo shedlight on the currentdegreeof con-
stang found in threekey Internetpath properties:loss,
delay andthroughput. One surprisein our findings is
thatmary of the processearewell-modeledasl!ID, once
we identify change-pointsn the process median(loss,
throughput)and aggrgate fine-grainedphenomenanto
episodegqlossruns, delay spikes). However, [ID models
area mixedblessing;they arevery tractable but [ID pro-
cessegrevery hardto predict.

The needto refinethe analysisby looking for change-
pointsandidentifying episodedlustrateshow importantit
is to find theright model. For example,while thelosspro-
cesgtselfis bothcorrelatedcandnon-steadywhenreduced
to the lossepisodeprocessthe lID natureof the databe-
comesvident. Thisillustratestheimportanceof consider
ing the constang of a pathpropertynot asa fundamental
propertyin its own right, but only ashaving meaningin
the context of amodel,or anoperationabr protocolneed.

Anothergenerafindingis thatalmostall of thedifferent
classeof predictorsfrequentlyusedin networking (maov-
ing average EWMA, S-shapednoving average)produce
very similar error levels. Sometimeghe predictorsper
form well, suchaswhenpredictingRTTs, andsometimes
poorly, becausef thellD natureof thedata(loss,through-
put).

Finally, the answerto the question“how steadyis the
Internet?”’dependgreatlyon the particularaspecbf con-
stangy and the datasetunderconsideration. However, it
appearshatfor all threeaspect®f constang, andall three
guantitiesveinvestigatedpnecangenerallycounton con-
stang on atleastthetime scaleof minutes.

Onanothelevel, our papertriesto carefullydistinguish
betweenthe threedifferentnotionsof constang: mathe-
matical, operational,and predictive. One of the goalsof
our studywasto gathertheappropriatesetof conceptand
tools neededo understanatachof thesedifferentaspects
of constang. While thedetailedresultsfrom our measure-
mentsmay soon prove ephemeraldue to changingtraf-
fic conditions),or renderedobsolete(by subsequenand
bettermeasuremergfforts), we hopethat the fundamen-
tal conceptsandtools developedheremight prove longer



lived.
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APPENDIX
|. STATISTICAL METHODOLOGY

In this appendixwe discussthe three main statisticaltech-
nigueswe usein our analysistestsfor: change-pointandepen-
dence andexponentialinterarrivals.

A. Testingfor change-points

We apply two different tests, CP/RankOrder and
C P/ Bootstrap, to detectchangesn the median.Both testsde-
tect change-pointsn a two step approach:first identifying a
candidatechange-pointthenapplyinga statisticaltestto deter
mine whetherit is significant. The combinedapproacHLa96],
[Ta00] usesan analysisof ranksin orderto detectchangesn
the median[SC88]. Being basedon ranks,the methodis re-
sistant,i.e., tolerantto the presenceof outliers. Furthermore,
the hypothesesinderlyingthesetestarequite weak;equalityof
variancess notrequired.

Consideffirst asetof n values(x;);=1,... ., cOmprisingaseg-
mentof a giventime series. Constructthe rank r; of eachz;
within theset,i.e., 1 for thesmallestandn for thelargest.Com-
pute the cumulatve rank sumss; = Z;.:l r;. The basisof
thetestis thatif no changepointis presentthecumulative rank
sumss; shouldincreaseaoughlylinearlywith i. Indeed suppose
we form the adjustedsum:

s; = |si — il

asthedifferencebetweens;, andits presumedneans; = i(n +
1)/2 assumingno change-pointo be present. Thens; should
staycloseto zero.If, however, achange-poinis presenthigher
ranksshouldpredominatén eithertheearlieror laterpartof the
set,andhences’, will climb to amaximumbeforedecreasingo
zeroati = n. We identify themaximizingindex i for s} andi
runningover {1, ..., n} asacandidatechange-point.

In the secondstage,to test equality of two sets X —
{Z1,.. . Tjp—1} @and X+ = {z;,41,...,2,}, CP/Bootstrap
usesthe bootstrapanalysisprocedureoutlinedin [Ta00], while
CP/RankOrder usesheFlignerPolicelloRokustRank-Order
Test[SC88].

« Bootstap analysis(usedin CP/Bootstrap). The bootstrap
analysisprocedureoutlined in [Ta00] uses Sy;sf, definedas
(max s; — min s;), to estimatethe magnitudeof the changeat
the candidatechange-point.It determineshe confidencdevel
of changeby testinghow often the bootstrapdifferenceS&mc

of abootstrapsample{z? }—arandompermutatiorof {z; }—is
lessthanthe original differenceS;ss.

« Fligner-Policello RolustRank-OderTest(usedn C P/RankOrder).
The test statisticis constructedas follows. For z € X de-

fine r} astherankof z in X+ U X~ minustherankof z in

X T, with rankties handledby assigninghe averagerankto all
memberf atie set. Definerankmeanr™ = %", rf/n*
wherent = #X*, and sumsof squareddifferencesv™ =

Y eex+(rd —rT)?. Definen~, r~, andv™ symmetrically
Thentheteststatistic:

ntrt —nr
Wt e e

has,asymptoticallyasn — oo, a standarchormaldistribution.
Thus we can associate significancelevel with the candidate
changepointig in theusualmanner By choosingasignificance
level ¢ (we use5% throughoutthis thesis)we specify our ac-
ceptableprobability £ of incorrectlyrejectingthe null hypothe-
sis. Thetestacceptghe null hypothesigin a two-sidedtest)if
F(|z]) < 1—¢/2 whereF is thecumulative distribution func-
tion of the standardnormal distribution. (However, note that
thelarge n asymptoticis not sufficiently accuratevheni, and
n—ig < 12;inthiscaseTableK in Appendixl of [SC88]should
be used.)In somecaseswve shallusethis teston binarydata,in
which caset reducedo atestof theequalityof the expectations
correspondingo binary stateson either side of the candidate
change-point.

The above canbe extendedto the identificationof multiple
changepoints, asfollows [La96], [Ta00]. First, choosea sig-
nificancelevel. Second,apply the abore methodrecursvely
to the two sggments{1,...,io} and{ip + 1,...,n} until no
more changepointsare found at the chosensignificancelevel.
Third, apply backwardeliminationto reinspecthe setof candi-
datechangepointsin orderto eliminatefalsedetectionsasfol-
lows. Let therebem change-pointandidateg; < -+ < jpm.
Let jo andj,,+1 be0andn respectrely. Startingwith the first
identified candidatecall it ji, (1 < ko < m), reinspectfor
change-pointentheset{jy,—1 + 1,..., jk,+1}, andadjustor
deletenon-significantthange-pointsRepeafor all candidates
in order of identification. Repeatbackward elimination until
the numberof change-pointss stable. By reestimatingeach
change-pointisingonly the databetweenthe two surrounding
change-pointshackward elimination avoids the contamination
causedy the presencef multiple change-pointsit the time of
recursionandconsequentihelpsto reducetherateof falsede-
tections.

Zz =

B. Testingfor independence

We assessndependenceising the Box-Ljung test [LB78].
For atime serieswith n elementsthe Box-Ljung statisticQy, is
aweightedsumof square®f measuredutocorrelations; from
lags1 upto k:

k
’1“2

Qr=nn+2)> —*

n—1

=1

Underthe null hypothesighat the processcomprisesndepen-
dent Gaussianrandomvariables,the distribution of @, con-



verges,for largen, to a x? distribution with k& degreesof free-
dom. Thusby comparingthe test statisticQ);, with thel — ¢
guantileof the appropriatex? distribution, we cantestwhether
theautocorrelationsf thetime seriediffer atsignificancdevel
£ from thoseof independenGaussiamandomvariables.In fact,
asremarledin [LB78], thetestis relatively insensitve to depar

turesfrom the Gaussiarhypothesisn the underlyingprocess.

Thisis becausghe measurecutocorrelations; areasymptoti-
cally Gaussiarprovidedthe maminal distribution of the under
lying processhasfinite variance (While infinite variancg heary
tails) aboundin networking behaior, the time serieswe con-
siderherearegenerallywell boundedandcertainlyhave finite
variance.)

C. Testingfor exponentialdistributions

An exploratorytestfor an exponentialdistribution of inter-
eventtimesis to plot the log-complementarglistribution func-
tion; for an exponentialdistribution this is linear with slope
equalto the negative of thereciprocalof themean.A statistical
testis thatof Anderson-Darling.This testhasbeenfoundto be
more powerful thaneitherthe Kolmogoros-Smirnov or the x?2
tests,i.e., its probability of correctlyrejectingthe null hypoth-
esis(thatthedistribution is exponential)is greater;see[DS86].
This is, in part, dueto the fact that the Anderson-Darlingest
employs the full empiricaldistribution (ratherthanbinning, as
in a x? test),allowing it to give moreweight to larger sample
valueswhosepresencecan leadto a violation of the null hy-
pothesis.

For a setof n rank-orderedntereventtimest; < --- < t,,
theappropriateAnderson-Darlingstatisticis:

n

A2 =—p— %Z(Qz -1) {log(l - e_t"/f) - tn+1—i/f}

i=1

wheret = n=1 Y | ¢; is theempiricalmeaninter-eventtime.
We rejectthe null hypothesisat significancelevel £ if the test
statisticexceedgthe tabulatedvaluesappropriatefor thatlevel,
seege.g.,Table4.11in [DS86]. We notetheimportanceof using
thetableappropriatdo the presentasein whichthemeanis es-
timatedfrom thesampleratherthanbeingspecifiedn advance.
Moreover, thetable explicitly takesinto accountthe effect of a
finite samplesizen.
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