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1. Introduction

This is the second paper discussing constant scalar curvature Kähler metrics.
We prove Donaldson’s conjecture (mentioned in the abstract) as well as the exis-
tence part of properness conjecture. For simplicity, we will first consider the case
Aut0(M,J) = 0 and then follow with the general case. Here Aut0(M,J) denotes
the identity component of the automorphism group and Aut0(M,J) = 0 means the
group is discrete. In the general setting, we will need to study the twisted cscK
equation with more subtle constraints. Our main method is to adopt the continuity
path introduced in [21] and we need to prove that the set of parameter t ∈ [0, 1] in
the continuity path is both open (c.f. [21]) and closed under suitable geometric con-
straints. The a priori estimates obtained in [22] and their modifications in Section
3 (where the scalar curvature takes twisted form as in the twisted path introduced
in [21]) are the crucial technical ingredients needed in this paper.

We will begin with a brief review of the history of this problem. In 1982 and
1985, E. Calabi published two seminal papers [12, 13] on extremal Kähler metrics
where he proved some fundamental theorems on extremal Kähler metrics. His
initial vision is that there should be a unique canonical metric in each Kähler class.
Levine (c.f. [60]) constructed examples on which there is no extremal metric in any
Kähler class. More examples and obstructions are found over the last few decades
and huge efforts are devoted to formulate the right conditions (in particular the
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algebraic conditions) under which we can “realize” Calabi’s original dream in a
suitable format. The well known Yau-Tian-Donaldson conjecture is one of the
important formulations which states that on projective manifolds, the cscK metrics
exist in a polarized Kähler class if and only if this class is K-stable. It is widely
expected among experts that the stability condition needs to be strengthened to a
stronger notion such as uniform stability or stability through filtrations, in order
to imply the existence of cscK metrics.

In the seminal paper [46], S. K. Donaldson proposed a beautiful program in
Kähler geometry, aiming in particular to attack Calabi’s renowned problem of ex-
istence of cscK metrics. In this celebrated program, Donaldson took the point of
view that the space of Kähler metrics is formally a symmetric space of non-compact
type and the scalar curvature function is the moment map from the space of almost
complex structures compatible with a fixed symplectic form to the Lie algebra of a
certain infinite dimensional symplectic structure group, where the said Lie algebra
is exactly the space of all real valued smooth functions on the manifold. With this
in mind, Calabi’s problem of finding a cscK metric is reduced to finding a zero of
this moment map in the infinite dimensional space setting. From this beautiful new
point of view, S. K. Donaldson proposed a network of problems in Kähler geometry
which have inspired many exciting developments over the last two decades, cul-
minating in the recent resolution of Yau’s stability conjecture on Kähler-Einstein
metrics [24–26].

Let H denote the space of Kähler potentials in a given Kähler class (M, [ω]). T.
Mabuchi [62], S. Semmes [65] and S. K. Donaldson [46] set up an L2 metric in the
space of Kähler potentials:

‖δϕ‖2ϕ =

∫
M

(δϕ)2ωn
ϕ, ∀ δϕ ∈ TϕH.

Donaldson [46] conjectured that H is a genuine metric space with the pathwise dis-
tance defined by this L2 inner product. In [18], the first named author established
the existence of C1,1 geodesic segment between any two smooth Kähler potentials
and proved this conjecture of S.K. Donaldson. He went on to prove (together with E.
Calabi) that such a space is necessarily non-positively curved in the sense of Alexan-
drov [14]. More importantly, S. K. Donaldson proposed Conjecture/Question 1.1
to attack the existence problem:

Conjecture/Question 1.1 ([46]). Assume Aut0(M,J) = 0. Then the following
statements are equivalent:

(1) There is no constant scalar curvature Kähler metric in H;
(2) There is a potential ϕ0 ∈ H0 and there exists a geodesic ray ρ(t)(t ∈ [0,∞))

in H0, initiating from ϕ0 such that the K-energy is non-increasing;
(3) For any Kähler potential ψ ∈ H0, there exists a geodesic ray ρ(t)(t ∈ [0,∞))

in H0, initiating from ψ such that the K-energy is non-increasing.

In the above, H0 = H ∩ {φ : I(φ) = 0}, where the functional I is defined by
(2.7). The reason we need to use H0 is to preclude the trivial geodesic ρ(t) = ϕ0+ct
where c is a constant.

In the original writing of S. K. Donaldson, he didn’t specify the regularity of
these geodesic rays in this conjecture. In this paper, we avoid this issue by working
in the space E1 (see Section 2 for definition) in which the potentials have only very
weak regularity but the notion of geodesic still makes sense. By Theorem 4.7 of [8],
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we can extend the notion of K-energy to the space E1. The precise version of the
result we prove is the following which amounts to a weak version of Donaldson’s
Geodesic stability conjecture:

Theorem 1.1. The following statements are equivalent.

(1) There exists no constant scalar curvature Kähler metrics in (M, [ω0]);
(2) Either the Calabi-Futaki invariant of (M, [ω0]) is nonzero or there exists

a Kähler potential ϕ0 ∈ E1
0 with K(ϕ0) < ∞, and a locally finite energy

geodesic ray in E1
0 initiating from ϕ where the K-energy is non-increasing

but it is not parallel to a holomorphic line;
(3) Either the Calabi-Futaki invariant of (M, [ω0]) is nonzero or for any Kähler

potential ϕ0 ∈ E1
0 with K(ϕ0) < ∞, there exists a locally finite energy

geodesic ray initiated from ϕ0 where K-energy is non-increasing but it is
not parallel to a holomorphic line.

In the above, holomorphic line means a continuous curve h : [0,∞) → E1
0 , such

that for any t > 0, the (1, 1) current ωh(t) := ω0 +
√
−1∂∂̄h(t) = σ∗

t ωh(0) for a one-

parameter family σt ∈ G and “parallelism” is defined as in Definition 1.4. E1 is the
metric completion of H under L1 geodesic distance, and E1

0 = E1 ∩ {φ : I(φ) = 0},
where the functional I is defined as in (2.7). We learned about the idea of using
locally finite energy geodesic ray from the recent beautiful work of Darvas-He [39] on
Donaldson conjecture in Fano manifolds where they use Ding functional instead of
the K-energy functional. From our point of view, both the restriction to canonical
Kähler class and the adoption of Ding functional are more of analytical nature.

We will introduce the notion of geodesic stability (c.f. Definition 1.5) and The-
orem 1.1 can be reformulated as an equivalence between existence of cscK and
geodesic stability. Let us first introduce � invariant associated with geodesic ray
and the notion of “parallelism” between two locally finite energy geodesic rays.
This invariant characterizes the growth of K-energy along a geodesic ray.

Definition 1.2 (c.f. Definition (3.10) in [20]). Let φ ∈ E1
0 with K(φ) < ∞. Let

ρ : [0,∞) → E1
0 be a locally finite energy geodesic ray with unit speed such that

K(ρ(t)) < ∞ for any t ≥ 0. We define:

�[ρ] = lim inf
k→∞

K(ρ(k))

k
.

Remark 1.3. From the convexity of K-energy along locally finite energy geodesic
ray (c.f. [8, Theorem 4.7]), we see that actually the above limit exists, namely

�[ρ] = lim
k→∞

K(ρ(k))

k
.

Moreover

�[ρ] = lim
k→∞

(
K(ρ(k + 1))−K(ρ(k))

)
.

Definition 1.4. Let ρi : [0,∞) → E1
0 be two continuous curves, i = 1, 2. We say

that ρ1 and ρ2 are parallel, if supt>0 d1(ρ1(t), ρ2(t)) < ∞.

Obviously, one can modify this according to dp topology for any p ≥ 1. We
can define a notion of geodesic stability/semi-stability in terms of � invariant as
follows:
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Definition 1.5. Let φ0 ∈ E1
0 be such that K(φ0) < ∞. We say (M, [ω0]) is geodesic

stable at φ0 if for any locally finite energy geodesic ray ρ : [0,∞) → E1
0 with unit

speed, exactly one of the following alternative holds:

(1) �[ρ] > 0,
(2) �[ρ] = 0, and ρ is parallel to another geodesic ray ρ′ : [0,∞) → E1

0 ,
generated from a holomorphic vector field X ∈ aut(M,J).

We say (M, [ω0]) is geodesic semistable at φ0 as long as �[ρ] ≥ 0 for all geodesic
ray ρ described above.

We say (M, [ω0]) is geodesic stable(resp. semistable) if it is geodesic stable (resp.
semistable) at every φ ∈ E1

0 .

We remark that the notion of geodesic stability/semi-stability is independent of
the choice of base potential φ0, in virtue of Theorem 1.4 (see below).

Remark 1.6. It is possible to define the � invariant for a locally finite energy
geodesic ray in Ep

0 with p > 1. Note that a geodesic segment in Ep
0 is automatically

a geodesic segment in Eq
0 for any q ∈ [1, p]. Following the preceding definition, one

can also define geodesic stability in Ep
0 (p > 1). Note that for a locally given finite

energy geodesic ray in Ep
0 (p > 1), the actual value of � invariant in Ep

0 might differ
by a positive multiple from the � invariant considered in E1

0 . However, it will not
affect the sign of the � invariant for a particular locally finite energy geodesic ray.
On the other hand, the collection of locally finite energy geodesic ray in Ep

0 (p > 1)
might be strictly contained in the collection of geodesic rays in E1

0 . Therefore,
the notion of geodesic stability in the E1

0 is strongest while the notion of geodesic
stability in E∞

0 is the weakest. Without going into technicality, we may define
geodesic stability in E∞

0 as the � invariant being strictly positive for any locally
finite energy geodesic ray which lies in

⋂
p≥1 E

p
0 . For interested readers, we refer

to the following works and references therein: J. Ross [63], G. Székelyhidi [68],
Berman-Boucksom-Jonsson [5], R. Dervan [44].

Using this notion of geodesic stability, we can re-formulate Theorem 1.1 as:

Theorem 1.2. There exists a cscK metric if and only if (M, [ω0]) is geodesic stable.

After we prove this theorem, we obtain the following characterization of geodesic
semi-stability.

Theorem 1.3. (M, [ω0]) is geodesic semistable if and only if the continuity path
t(Rϕ −R) = (1− t)(trϕω0 − n) has a solution for any t < 1.

Consequently, we deduce

Corollary 1.7. If the K-energy is bounded from below in (M, [ω0]), then (M, [ω0])
is geodesic semistable.

It is an interesting question to ask if the converse is also true. Namely if (M, [ω0])
is geodesic semistable, does it follow that K-energy is bounded from below? Note
even for the corresponding statement in the algebraic case, we don’t know how to
conclude the existence of a lower bound of K-energy from K-stability or uniform
stability except in the Fano manifolds where the authors proved it indirectly in
route of CDS’s theorem.

We have Theorem 1.4 which is useful to our characterization of borderline case.
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Theorem 1.4. Let ρ1(t) : [0,∞) → E1
0 be a locally finite energy geodesic ray with

unit speed. Then
(i) For any ϕ ∈ E1

0 , there exists at most one unit speed locally finite energy
geodesic ray ρ2(t) : [0,∞) → E1

0 initiating from ϕ which is parallel to ρ1. Moreover,
�[ρ1] = �[ρ2] for any such geodesic ray ρ2.

(ii) If �[ρ1] < ∞ and K(ϕ) < ∞, then there exists such a geodesic ray ρ2 as
described in point (i).

Remark 1.8. It is an interesting question whether such a parallel geodesic ray exists
in general, i.e. with no assumption on � invariant.

The uniqueness part and that � invariants for two rays are equal will be proved
in Appendix. For the existence part, we first give a proof in the special case with
ρ1(0), ϕ ∈ E2. This allows us to use the Calabi-Chen theorem (c.f. [14]) that (E2, d2)
is non-positively curved. Note that when p 
= 2, the infinite dimensional space
(Ep, dp) is no longer Riemannian formally. Recall that for ϕ0, ϕ1 ∈ H, dp(ϕ0, ϕ1) is

defined as the infimum of
∫ 1

0

( ∫
M

|∂tϕ|pωn
ϕ(t,·)

) 1
p dt, where the infimum is taken over

all smooth curves ϕ(t, ·) : [0, 1] → H. The space Ep is just the metric completion
of the space H under the distance dp.

Nonetheless, we prove Theorem 1.5, which follows from the NPC (non-positively
curved) property when p = 2.

Theorem 1.5. Let 1 ≤ p < ∞. Let φ0, φ′
0, φ1, φ′

1 ∈ Ep. Denote {φ0,t}t∈[0,1],
{φ1,t}t∈[0,1] be the finite energy geodesics connecting φ0 with φ′

0 and φ1 with φ′
1

respectively. Then we have

dp(φ0,t, φ1,t) ≤ (1− t)dp(φ0, φ1) + tdp(φ
′
0, φ

′
1).

Remark 1.9. In [8, Proposition 5.1], the authors obtained Theorem 1.5 for the case
p = 1, using a representation formula of d1.

Given the central importance of the notion of K-energy in Donaldson’s beautiful
program, the first named author proposed the Conjecture/Question 1.10, shortly
after [18]:

Conjecture/Question 1.10. Assume Aut0(M,J) = 0. The existence of constant
scalar curvature Kähler metric is equivalent to the properness of K-energy in terms
of geodesic distance.

Here “properness” means that the K-energy tends to +∞ whenever the geodesic
distance tends to infinity (c.f. Definition 4.1). The original conjecture naturally
chose the distance introduced in [46] which we now call L2 distance. After a series of
fundamental work of T. Darvas on this subject (c.f. [38,?Darvas1403]), it becomes
clear that the L1 geodesic distance is a natural choice for the properness conjecture.
Indeed, the correct formulation appears earlier in Darvas-Rubinstein [40].

Definition 1.11 (c.f. [7, 40]). We say K-energy is proper with respect to L1

geodesic distance modulo G := Aut0(M,J), if

(1) For any sequence {ϕi} ⊂ H0, infσ∈G d1(ω0, σ
∗ωϕi

) → ∞ implies K(ϕi) →
+∞,

(2) K-energy is bounded from below.

Henceforth we will denote the group Aut0(M,J) by G. With this in mind, we
will prove that
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Theorem 1.6 (Theorem 4.3). There exists a constant scalar curvature Kähler
metric if and only if the K energy functional is proper with respect to the L1 distance
modulo G.

For properness conjecture, we remark that there is a more well known formu-
lation due to G. Tian where he conjectured that the existence of cscK metrics
is equivalent to the properness of K-energy in terms of Aubin functional J (c.f.
definition (2.7)). One may say that Tian’s conjecture is more of analytical na-
ture while Conjecture/Question 1.10 fits into Donaldson’s geometry program in the
space of Kähler potentials more naturally. According to T. Darvas (c.f. Theorem
5.5 of [38]), Aubin’s J functional and the L1 distance are equivalent. Therefore,
these two properness conjectures are equivalent. Nonetheless, the formulation in
Conjecture/Question 1.10 is essential to our proof.

The direction that existence of cscK implies properness has been established by
Berman, Darvas and Lu in [7]. For the converse direction, Darvas and Rubinstein in
[40] have reduced this problem to a problem of regularity of weak minimizers of K-
energy over the space E1, which we will resolve in Section 5. (In the special case of
toric varieties, Zhou-Zhu [77] proved the existence of toric invariant weak minimizers
of the modified K-energy under properness assumption and they first proposed the
properness definition modulo a group, similar to the one used in Darvas-Rubinstein
[40] and also in our paper.) Hence Theorem 1.6 has been established by combining
these results. Nonetheless, in this paper we will show how to obtain Theorem 1.6
by solving along the continuity path

t(Rϕ −R) = (1− t)(trϕω0 − n), t ∈ [0, 1].

For this purpose, we develop new estimates for scalar curvature type equations
which may be of independent interest.

The existence part of Theorem 1.6 also holds for twisted cscK metric as well (c.f.
Theorems 4.1 and 4.2), which is the solution to the equation

(1.1) t(Rϕ − R) = (1− t)(trϕχ− χ).

In the above, 0 < t ≤ 1, χ is a fixed Kähler form, and R is the average of scalar

curvature, and χ =
∫
M

nχ∧ωn−1
0∫

M
ωn

0
. It is well-known that R and χ depend only on the

Kähler classes [ω0] and [χ].
Now we recall an important notion introduced in [21]:

(1.2)
R([ω0], χ)=sup{t0 ∈ [0, 1] : the above equation can be solved for any 0≤t≤t0}

In the same paper, the first named author conjectured that this is an invariant of
the Kähler class [χ]. In this paper, as a consequence of Theorems 4.1 and 4.2, we
will show that if χ1 and χ2 are two Kähler forms in the same class, then one has

R([ω0], χ1) = R([ω0], χ2),

so that the quantity R([ω0], [χ]) is well-defined and gives rise to an invariant between
two Kähler classes [ω0], [χ]. Moreover, when the K-energy is bounded from below,
the twisted path (1.1) can be solved for any t < 1, as long as t = 0 can be solved.
Thus in this case we have

Theorem 1.7. Let χ be a Kähler form. If the K-energy is bounded from below on
(M, [ω0]), then R([ω0], [χ]) = 1 if and only if one can solve trϕχ = χ.
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As noted in [21], it is interesting to understand geometrically for what Kähler
classes this invariant is 1 but do not admit constant scalar curvature metrics. More
broadly, it is interesting to estimate the upper and lower bound of this invariant.
It is not hard to see the relation between the invariant introduced in [69] and the
invariant introduced above when restricted to the canonical Kähler class in Fano
manifolds, where we take [χ] to be the first Chern class in (1.2). Hopefully, the
method used there can be adapted to our setting to get estimate for this new
invariant, in particular an upper bound.

T. Darvas and Y. Rubinstein conjectured in [40, Conjecture 2.9] that any mini-
mizer of K-energy over the space E1 is actually a smooth Kähler potential. This is
a bold and imaginative conjecture which might be viewed as a natural generaliza-
tion of an earlier conjecture by the first named author that any C1,1 minimizer of
K-energy is smooth (c.f. [18, Conjecture 3]). Under an additional assumption that
there exists a smooth cscK metric in the same Kähler class, Darvas-Rubinstein con-
jecture is verified in [7]. In this paper, we establish this conjecture as an application
of properness theorem. Note that Euler-Lagrange equation is not available a priori
in our setting, so that the usual approach to the regularity problem in the calculus
of variations does not immediately apply. Instead, we need to use the continuity
path to overcome this difficulty.

Theorem 1.8 (Theorem 5.1). Let ϕ∗ ∈ E1 be such that K(ϕ∗) = infϕ∈E1 K(ϕ).

Then ϕ∗ is smooth and ωϕ∗ := ω0 +
√
−1∂∂̄ϕ∗ is a cscK metric.

We actually establish a more general result which allows us to consider more
general twisted K-energy and we can show the weak minimizers of twisted K-
energy are smooth as long as the twisting form is smooth, closed and nonnegative.
Previous result due to W. He and Y. Zeng [57] proved Chen’s conjecture on the
regularity of C1,1 minimizers of K-energy with some additional assumption on the
positivity of volume form.

E. Calabi believed that every Kähler class should have one canonical represen-
tative. E. Calabi’s vision has inspired generations of Kähler geometers to work on
this exciting problem and without it, this very paper will never exist. To celebrate
his vision, we propose to call such a manifold a Calabi manifold.

Definition 1.12. A Kähler manifold is called Calabi manifold if every Kähler
class on it admits an extremal Kähler metric.

Clearly, all compact Riemann surfaces, complex projective spaces CPn and all
compact Calabi-Yau manifolds [75] are Calabi manifolds. Our discussion above
asserts

Corollary 1.13. Any Kähler surface with C1 < 0 and no curve of negative self-
intersection is a Calabi surface.

It is fascinating to understand how large this family of Calabi surfaces is. Fol-
lowing this corollary, one should be able to construct more examples of Calabi
manifolds.

To prepare ourselves for the general case, we will need to study a general equation
first. As before, we continue our study of the twisted cscK equation

t(Rϕ −R) = (1− t)(trϕχ− χ), where t ∈ [0, 1],

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



944 XIUXIONG CHEN AND JINGRUI CHENG

but allow in more general form with χ being some fixed smooth real (1, 1) form in
[22]. In this paper, χ is allowed to vary in a fixed Kähler class with some constraints.
More specifically, we consider

(1.3) χ = χ0 +
√
−1∂∂̄f∗ ≥ 0, sup

M
f∗ = 0,

∫
M

e−pf∗ < ∞ for some p > 1.

We are able to extend many of our previous estimates in [22] to these more gen-
eral right hand side as (1.3) (some of those will require p to be sufficiently large
depending only on dimension n). These new a priori estimates are crucial for us to
extend our proof of Donaldson’s conjecture on geodesic stability and the Proper-
ness conjecture for K-energy to the setting with general automorphism group. For
simplicity, we only state and prove the results on constant scalar curvature Kähler
metrics in this paper. Analogous results for extremal Kähler metrics can be proved
in a similar way using our estimates.

Theorem 1.9 (Theorem 3.3). Let ϕ be a smooth solution to (3.1), (3.2), with
assumptions in (1.3) hold. Suppose additionally that p ≥ κn for some constant κn

depending only on n. Then for any p′ < p,

||F + f∗||W 1,2p′ ≤ C25.1, ||n+Δϕ||Lp′ (ωn
0 ) ≤ C25.1.

Here C25.1 depends only on an upper bound of entropy
∫
M

log
(ωn

ϕ

ωn
0

)
ωn
ϕ, p, p

′, the

bound for
∫
M

e−pf∗dvolg, ||R||0, maxM |β0|g and background metric ω0.

In a series of three fundamental papers [48–50], S. Donaldson proved that on
toric Kähler surfaces, the existence of cscK metric is indeed equivalent to the K-
stability. This is partially generalized in [15] to extremal Kähler metrics (c.f. [17]
and reference therein for interior regularity estimates on Kähler toric varieties).
However, in general algebraic Kähler manifolds, one expects that the K-stability
might fall short of the existence of cscK metrics; see the evidence provided by [2].
In the special case of Toric Kähler manifold, we prove the YTD conjecture:

Theorem 1.10. On toric Kähler manifold, the existence of cscK metric is equiv-
alent to uniform stability.

The above “uniform version” of the YTD conjecture was made by Donaldson
[48]. That the existence of cscK implies uniform stability was shown by Chen-
Li-Sheng [15] in the toric setting. The general case (algebraic manifolds) follows
from combining Corollary B in [11] and Theorem 1.5 in [7]. Note that [43] proved
similar implications on algebraic manifolds for twisted cscK when the twisting form
is strictly positive. For general Kähler manifolds, Dervan and Ross [45] introduced
a notion of uniform stability in non-algebraic settings and proved that uniform
stability follows from the properness of the K-energy.

Finally we explain the organization of the paper:
In Section 2, we recall the necessary preliminaries needed for our proof, including

the continuity path we will use to solve the cscK equation and the theory of geodesic
metric spaces established by Darvas and others.

In Section 3, we derive estimates for scalar curvature type equations with more
general right hand side.

In Section 4, we prove the properness conjecture using continuity path. First
we handle the special situation when Aut0(M,J) = 0, for which we only need the
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estimates already established in [22]. Then we move on to the general case, for
which the generalized estimates obtained in Section 3 become necessary.

In Section 5, we prove that the weak minimizer of K-energy over the metric
space (E1, d1) (c.f. Section 2.2) is given by a smooth cscK potential.

In Sections 6 and 7, we show that the existence of cscK metric is equivalent to
geodesic stability. Again we first prove it under the special case when Aut0(M,J) =
0, where the notion of geodesically stability is simpler. Then in Section 7, we move
on to the general case. The YTD conjecture for toric setting is treated in Section
7.1.

In the Appendix, we prove some results about the non-positively curved proper-
ties of the metric space (Ep, dp) which will be useful to us. Such results may be of
independent interest.

2. Preliminaries

In this section, we will review some basic concepts in Kähler geometry as well as
some fundamental results involving finite energy currents, which will be needed for
our proof of Theorems 1.1 and 1.3. In particular, it includes the characterization
of the space (E1, d1), a compactness result on bounded subsets of E1 with finite
entropy. We also include results on the convexity of K-energy along C1,1 geodesics
as well as its extension to the space E1. For more detailed account on these topics,
we refer to a recent survey paper by Demailly [41].

2.1. K-energy and twisted K-energy. Let (M,ω0) be a fixed Kähler class on
M . Then we can define the space H of Kähler metrics cohomologous to ω0 as:

(2.1) H = {ϕ ∈ C∞(M) : ωϕ := ω0 +
√
−1∂∂̄ϕ > 0}.

We can introduce the K-energy in terms of its derivative:

(2.2)
dK

dt
(ϕ) = −

∫
M

∂ϕ

∂t
(Rϕ −R)

ωn
ϕ

n!
, ϕ ∈ H.

Here Rϕ is the scalar curvature of ωϕ, and

R =
[C1(M)] · [ω][n−1]

[ω][n]
=

∫
M

Rϕω
n
ϕ∫

M
ωn

.

Following [18], we can write down an explicit formula for K(ϕ):

(2.3) K(ϕ) =

∫
M

log

(
ωn
ϕ

ωn
0

)
ωϕn

n!
+ J−Ric(ϕ),

where for a (1, 1) form χ, we define

Jχ(ϕ) =

∫ 1

0

∫
M

ϕ

(
χ ∧

ωn−1
λϕ

(n− 1)!
− χ

ωn
λϕ

n!

)
dλ

=
1

n!

∫
M

ϕ

n−1∑
k=0

χ ∧ ωk
0 ∧ ωn−1−k

ϕ − 1

(n+ 1)!

∫
M

χϕ

n∑
k=0

ωk
0 ∧ ωn−k

ϕ .

(2.4)

Here

χ =

∫
M

χ ∧ ωn−1
0

(n−1)!∫
M

ωn
0

n!

.
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Following formula (2.19), we have

dJχ
dt

=

∫
M

∂tϕ(trϕχ− χ)
ωn
ϕ

n!
.

It is well-known that K-energy is convex along smooth geodesics in the space of
Kähler potentials.

Let β ≥ 0 be a smooth closed (1, 1) form, we define a “twisted K-energy with
respect to β” by

(2.5) Kβ(ϕ) = K(ϕ) + Jβ(ϕ).

The critical points of Kβ(ϕ) satisfy the following equations:

(2.6) Rϕ −R = trϕβ − β, where β =

∫
M

β ∧ ωn−1
0

(n−1)!∫
M

ωn
0

n!

.

For later use, we also define the functionals I(ϕ), J(ϕ), given by

(2.7) I(ϕ) =
1

(n+ 1)!

∫
M

ϕ

n∑
k=0

ωk
0 ∧ ωn−k

ϕ , J(ϕ) =

∫
M

ϕ(ωn
0 − ωn

ϕ).

We also need to consider the more general twisted K-energy, which is defined to
be

(2.8) Kχ,t = tK + (1− t)Jχ.

Following [18], we can write down Euler-Lagrange equation for twisted K-energy:

(2.9) t(Rϕ −R) = (1− t)(trϕχ− χ), t ∈ [0, 1].

Following [21], for t > 0, we can rewrite this into two coupled equations:

det(gij̄ + ϕij̄) = eF det gij̄ ,(2.10)

ΔϕF = −(R− 1− t

t
χ) + trϕ(Ric− 1− t

t
χ).(2.11)

In the following, we will assume χ > 0, that is, χ is a Kähler form. The equation
(2.9) with t ∈ [0, 1] is the continuity path proposed in [21] to solve the cscK equa-
tion. More generally, one can consider similar twisted paths in order to solve (2.6).
Namely we consider

(2.12) t(Rϕ −R) = t(trϕβ − β) + (1− t)(trϕχ− χ).

The solution to (2.12) is a critical point of tKβ + (1− t)Jχ. We will see later that
it is actually a minimizer. For t > 0, this again can be equivalently put as

det(gij̄ + ϕij̄) = eF det gij̄ ,(2.13)

ΔϕF = −(R− β − 1− t

t
χ) + trϕ

(
Ric− β − 1− t

t
χ
)
.(2.14)

An important question is whether the set of t for which (2.12) can be solved is open.
The cited result is only for (2.9), but the same argument would work for (2.12).

Lemma 2.1 ([21,56,76]). Let β ≥ 0 be nonnegative closed smooth (1, 1) form and
χ be a Kähler form. Suppose that for some 0 ≤ t0 < 1, (2.12) has a solution
ϕ ∈ C4,α(M) with t = t0, then for some δ > 0, (2.12) has a solution in C4,α for
any t ∈ (t0 − δ, t0 + δ)

⋂
[0, 1).
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We observe that we can always make sure (2.9) or (2.12) can be solved for t = 0
by choosing χ = ω0 or any Kähler form in [ω0].

Remark 2.2. Clearly if χ is smooth, it is easy to see by bootstrap that a C4,α

solution to (2.9) is actually smooth.
Hence Lemma 2.1 shows the set of t for which (2.9) has a smooth solution is

relatively open in [0, 1).

From the Theorem 5.3 of [22], we can conclude that

Proposition 2.3. Let ϕ be a smooth solution to (2.9) or (2.12) with t > δ0 > 0,
normalized so that supM ϕ = 0. Then the higher derivatives of ϕ can be estimated

in terms of an upper bound of entropy, defined as
∫
M

log(
ωn

ϕ

ωn
0
)ωn

ϕ, as well as δ0.

Proof. This follows directly from Theorem 5.3 of [22], by taking f = R−β− 1−t
t χ,

and η = Ric(ω0)− β − 1−t
t χ. Note that the assumption t being bounded below by

δ0 guarantees f and η is bounded. �
2.2. The complete geodesic metric space (Ep, dp). In Section 3.3 of [54] intro-
duced the following space for any p ≥ 1:

(2.15) Ep = {ϕ ∈ PSH(M,ω0) :

∫
M

ωn
ϕ =

∫
M

ωn
0 ,

∫
M

|ϕ|pωn
ϕ < ∞}.

In the above, ϕ ∈ PSH(M,ω0) means that ω0 +
√
−1∂∂̄ϕ ≥ 0 in the sense of

currents. A fundamental conjecture of V. Guedj [53] stated that the completion of
the space H of smooth potentials equipped with the L2 metric is precisely the space
E2(M,ω0) of potentials of finite energy. This has been shown by Darvas [37]. In
[38], he has shown similar characterization holds for general Lp metric. Note that
the extension to the L1 metric is essential and fundamental to our work.

Following Mabuchi, T. Darvas [38] introduced the notion of d1 on H.

(2.16) ||ξ||ϕ =

∫
M

|ξ|
ωn
ϕ

n!
, ∀ ξ ∈ TϕH = C∞(M).

Using this, we can define the path-length distance d1 on the space H, i.e. d1(u0, u1)
equals the infimum of length of all smooth curves in H, with α(0) = u0, α(1) = u1.
T. Darvas [38, Theorem 2] proved, following Chen [18] in the case of d2, that (H, d1)
is a metric space.

We have the following characterization for (E1, d1):

Theorem 2.1 ([38, Theorem 5.5]). Define

I1(u, v) =

∫
M

|u− v|ω
n
u

n!
+

∫
M

|u− v|ω
n
v

n!
, u, v ∈ H.

Then there exists a constant C > 0 depending only on n, such that

(2.17)
1

C
I1(u, v) ≤ d1(u, v) ≤ CI1(u, v), for any u, v ∈ H.

For later use, here we describe how to obtain “finite energy geodesics” from the
C1,1 geodesics between smooth potentials.

Theorem 2.2 ([38, Theorem 2]). The metric completion of (H, d1) equals (E1, d1)
where

d1(u0, u1) =: lim
k→∞

d1(u
k
0 , u

k
1),
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for any smooth decreasing sequence {uk
i }k≥1 ⊂ H converging pointwise to ui ∈ E1.

Moreover, for each t ∈ (0, 1), define

ut := lim
k→∞

uk
t , t ∈ (0, 1),

where uk
t is the C1,1 geodesic connecting uk

0 and uk
1 (c.f. [18]). We have ut ∈ E1,

the curve [0, 1] � t �→ ut is independent of the choice of approximating sequences
and is a d1-geodesic in the sense that for some c > 0, d1(ut, us) = c|t− s|, for any
s, t ∈ [0, 1].

The above limit is pointwise decreasing limit. Since the sequence {uk
i }k≥1 is

decreasing sequence for i = 0, 1, we know {uk
t }k≥1 is also decreasing for t ∈ (0, 1),

by comparison principle.
We say ut : [0, 1] � t → E1 connecting u0, u1 is a finite energy geodesic if it is

given by the procedure described in Theorem 2.2. The following result shows the
limit of finite energy geodesics is again a finite energy geodesic.

Proposition 2.4 ([8, Proposition 4.3]). Suppose [0, 1] � t → ui
t ∈ E1 is a se-

quence of finite energy geodesic segments such that d1(u
i
0, u0), d1(u

i
1, u1) → 0. Then

d1(u
i
t, ut) → 0, for any t ∈ [0, 1], where [0, 1] � t �→ ut ∈ E1 is the finite energy

geodesic connecting u0, u1.

Finally we record the following compactness result which will be useful later.
This result was first established in [6]. The following version is taken from [8],
which is the form most convenient to us.

Lemma 2.5 ([6, Theorem 2.17], [8, Corollary 4.8]). Let {ui}i ⊂ E1 be a sequence
for which the following condition holds:

sup
i

d1(0, ui) < ∞, sup
i

K(ui) < ∞.

Then {ui}i contains a d1-convergent subsequence.

2.3. Convexity of K-energy. In this subsection, we record some known results
about the convexity of K-energy and Jχ functional along C1,1 geodesics and also
finite energy geodesics. In [18], the first named author proved the following result
about the convexity of the functional Jχ.

Theorem 2.3 ([18, Proposition 2]). Let χ ≥ 0 be a closed (1, 1) form. Let u0, u1 ∈
H. Let {ut}t∈[0,1] be the C1,1 geodesic connecting u0, u1. Then [0, 1] � t �→ Jχ(ut)
is convex.

The convexity of K-energy along smooth geodesics was first observed by T.
Mabuchi, c.f. [62]. However, such convexity over non-smooth geodesics is more
challenging, and is conjectured by the first named author:

Conjecture/Question 2.6 (Chen). Let u0, u1 ∈ H. Let {ut}t∈[0,1] be the C1,1

geodesic connecting u0, u1. Then [0, 1] � t �→ K(ut) is convex.

This conjecture was verified by the fundamental work of Berman and Berndtsson
[4] (c.f. Chen-Li-Pǎun [29] also).

Theorem 2.4. Conjecture/Question 2.6 is true.

It turns out that the K-energy and also the functional Jχ can be extended to
the space (E1, d1) and is convex along finite energy geodesics. More precisely,
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Theorem 2.5 ([8, Theorem 4.7]). The K-energy defined in (2.3) can be extended
to a functional K : E1 → R ∪ {+∞}. Besides, the extended functional K|E1 is
the greatest d1-lower semi-continuous extension of K|H. Moreover, K|E1 is convex
along finite energy geodesics of E1.

Theorem 2.6 ([8, Propositions 4.4 and 4.5]). The functional Jχ as defined by (2.4)
can be extended to be a d1-continuous functional on E1. Besides, Jχ is convex along
finite energy geodesics.

2.4. Chen’s decomposition formula for K-energy. In view of Theorem 1.3,
it is important to study, under what conditions, the K-energy functional is proper
in a given Kähler class. In [18], the first named author proposed a decomposition
formula for K-energy:

(2.18) K(ϕ) =

∫
M

log

(
ωn
ϕ

ωn
0

)
ωn
ϕ

n!
+ J−Ric(ϕ),

where the functional J−Ric is defined through its derivatives:

(2.19)
d J−Ric

d t
=

∫
M

∂ϕ

∂t
(−Ric ∧

ωn−1
ϕ

(n− 1)!
+R

ωn
ϕ

n!
).

One key observation in [18] (based on this decomposition formula) is that K-energy
has a lower bound if the corresponding J−Ric functional has a lower bound. Note
that when the first Chern class is negative, one can choose a background metric such
that −Ric > 0. Then, J−Ric is convex along C1,1 geodesics in H and is bounded
from below if it has a critical point. In [73], Song-Weinkove further pointed out that
J−Ric functional being bounded from below is sufficient to imply the properness of
K-energy. The research in this direction has been very active and intense (c.f. Chen
[18], Fang-Lai-Song-Weinkove [52], Song-Weinkove [74], Li-Shi-Yao [61], R. Dervan
[42], and references therein). Combining these results with Properness Theorem
4.1, we have Corollary 2.7.

Corollary 2.7. There exists a cscK metric in (M, [ω]) if any one of the following
conditions holds:

(1) There exists a constant ε ≥ 0 such that ε < n+1
n αM ([ω]) and πC1(M) < ε[ω]

such that(
−n

C1(M) · [ω]n−1

[ω]n
+ ε

)
· [ω] + (n− 1)C1(M) > 0.

Here αM (ω) denotes the α-invariant of the Kähler class (M, [ω]) (c.f. [70]).
(2) If

αM ([ω]) >
C1(M) · [ω]n−1

[ω]n
· n

n+ 1

and

C1(M) ≥ C1(M) · [ω]n−1

[ω]n
· n

n+ 1
· [ω].

Here part (1) of Corollary 2.7 follows from Li-Shi-Yao [61] (c.f. Fang-Lai-Song-
Weinkove [52], Song-Weinkove [74]), part (2) of Corollary 2.7 follows from R. Dervan
[42].
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Following Donaldson’s observation in [47], if a Kähler surface M admits no curve
of negative self intersections and has C1(M) < 0, then the condition

2[ω] · [−C1(M)]

[ω]2
· [ω]− [−C1(M)] > 0

is satisfied automatically for any Kähler class [ω] (c.f. Song-Weinkove [73]). Con-
sequently, on any Kähler surface M with C1(M) < 0 with no curve of negative
self-intersection, the K-energy is proper for any Kähler class (c.f. Song-Weinkove
[74]). It follows that on these surfaces, every Kähler class admits a cscK metric.

Corollary 2.8. Any Kähler surface with C1 < 0 and no curve of negative self-
intersection is a Calabi surface.

It is fascinating to understand how large this family of Calabi surfaces is. It is
possible to construct such examples explicitly.

3. Scalar curvature type equations with singular right hand side

Let (M,J, ω0) be a compact Kähler manifold. We consider the following scalar
curvature type equation:

det(gij̄ + ϕij̄) = eF det gij̄ ,(3.1)

ΔϕF = trϕ(Ric− β)−R0.(3.2)

In the above, β = β0 +
√
−1∂∂̄f∗ ≥ 0. Also we assume that β0 is a real bounded

(1, 1) form and f is normalized to be supM f∗ = 0, e−f∗ ∈ Lp0(M) for some p0 > 1.
R0 is a bounded function. Here β0 is bounded just means that if we write β0 in
coordinates as β0 =

√
−1(β0)ij̄dzi ∧ dz̄j , the coefficients (β0)ij̄ are bounded.

As before, ϕ should be such that gij̄+ϕij̄ > 0 on M , so that ωϕ := ω0+
√
−1∂∂̄ϕ

defines a new Kähler metric in the same class as ω0. We note that (4.28), (4.29)
can be combined to give the following scalar curvature type equation:

(3.3) Rϕ = trϕβ +R0.

Here Rϕ denotes the scalar curvature of the metric ωϕ. In the following, we will
always assume that the solution ϕ is smooth and our goal is to derive a priori
estimates.

3.1. Boundedness of F + f∗. The estimate in this subsection only requires a
bound for

∫
M

e−p0f∗dvolg for some p0 > 1. In particular, we don’t need any posi-
tivity assumption on the form β.

Lemma 3.1. Let ψ be the solution to the following equation:

det(gij̄ + ψij̄) =
eF

√
F 2 + 1∫

M
eF

√
F 2 + 1dvolg

det gij̄ ,(3.4)

sup
M

ψ = 0.(3.5)

Suppose also supM ϕ = 0. Then for any 0 < ε0 < 1, there exists a constant C0,
such that

F + f∗ + ε0ψ − 2(max
M

|Ric− β0|g + 1)ϕ ≤ C0.

Here C0 depends only on ε0, the upper bound of the entropy
∫
M

FeF dvolg, the bound
for maxM |β0|g, ||R||0 and the background metric (M,ω0).
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Proof. Similar to the cscK case, the proof is by Alexandrov maximum principle.
Observe from (3.2) that

(3.6) Δϕ(F + f∗) = trϕ(Ric− β0)−R.

Denote C = 2(maxM |Ric− β0|g + 1) and we compute

(3.7) Δϕ(F + f∗ + ε0ψ − Cϕ) = trϕ(Ric− β0)−R+ ε0Δϕψ − Cn+ Ctrϕg.

Using arithmetic-geometric mean inequality, we have

Δϕψ = gij̄ϕ (gij̄ + ψij̄)− trϕg ≥ A− 1
n (F 2 + 1)

1
2n − trϕg.

Here A =
∫
M

eF
√
F 2 + 1dvolg . Also due to our choice of the constant C, we obtain

from (3.7) that

(3.8) Δϕ(F + f∗ + ε0ψ − Cϕ) ≥ C

2
trϕg + ε0A

− 1
n (F 2 + 1)

1
2n − C1.

Here C1 has the said dependence as stated in the lemma. By Proposition 2.1 in
[70], there exists α > 0, and a constant C2, such that for any ω0-psh function φ, we
have ∫

M

e−α(φ−supM φ)dvolg ≤ C2.

Now denote u = F + f∗ + ε0ψ −Cϕ, δ = α
2nC , and let 0 < θ < 1 to be determined.

First for any p ∈ M , we can construct a cut-off function ηp, so that ηp(p) = 1,

ηp ≡ 1 − θ outside the ball Bd0
(p), and |∇ηp| ≤ 2θ

d0
, |∇2η| ≤ 2θ

d2
0
. Here d0 is

a sufficiently small constant depending only on the background metric (M,ω0).
Assume that the function u achieves maximum at the point p0, then we compute

Δϕ(e
δuηp0

) = eδuδ2|∇ϕu|2ϕηp0
+ eδuηp0

δΔϕu+ eδuΔϕηp0
+ 2eδuδ∇ϕu ·ϕ ∇ϕηp0

≥ eδuδ2|∇ϕu|2ϕηp0
+ eδuδηp0

(
C

2
trϕg + ε0A

− 1
n (F 2 + 1)

1
2n − C1)

− eδu|∇2ηp0
|trϕg − eδuδ2|∇ϕu|2ϕηp0

− eδu
|∇ϕηp0

|2ϕ
ηp0

≥ eδuηp0

(δC
2

− 2θ

d20(1− θ)
− 4θ2

d20(1− θ)

)
trϕg + eδuδηp0

(
ε0A

− 1
n (F 2 + 1)

1
2n − C1

)
.

(3.9)

Choose θ small enough so that (note that δC = α
2n )

δC

2
− 2θ

d20(1− θ)
− 4θ2

d20(1− θ)
> 0.

With this choice of θ, (3.9) gives

(3.10) Δϕ(e
δuηp0

) ≥ eδuδηp0
(ε0A

− 1
n (F 2 + 1)

1
2n − C1) ≥ −eδuδηp0

C1χ{F≤C3}.

Here χ{F≤C3} is the indicator function of the set {F ≤ C3}, and C3 is a constant
determined by the inequality

ε0A
− 1

n

(
F 2 + 1

) 1
2n − C1 ≤ 0 implies F ≤ C3.

Hence C3 depends only on ε0, C1 and A. We wish to apply Alexandrov maximum
principle to (3.10) inside Bd0

(p0), and with a similar derivation as (5.16) in the first
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paper [22], we obtain:

eδuηp0
(p0) ≤ sup

∂Bd0
(p0)

eδuηp0

+ Cnd0

( ∫
Bd0

(p0)

δ2ne2F e2nδu
(
(ε0A

− 1
n (F 2 + 1)

1
2n − C1)

−)2n
dvolg

) 1
2n

.

(3.11)

To estimate the integral appearing above, observe that f ≤ 0, ψ ≤ 0, then we have∫
Bd0

(p0)

e2F e2nδu
(
(ε0A

− 1
n (F 2 + 1)

1
2n − C1)

−)2n
dvolg

≤
∫
M

e2F+2nδF e−2nCδϕχ{F≤C3}C
2n
1 dvolg ≤ e(2+2nδ)C3C2(C1)

2n.

(3.12)

Since ηp0
≤ 1 − θ on ∂Bd0

(p0), the result follows from (3.11). Indeed, since eδu

achieves maximum at p0, we have

eδu(p0) ≤ (1− θ)eδu(p0) + Cnd0δe
(2+2nδ)C3C2(C1)

2n.

The desired estimate then follows. �

Corollary 3.2. There exists a constant C4, such that

F + f∗ ≤ C4.

In particular, if ϕ is normalized so that supM ϕ = 0, then

||ϕ||0 ≤ C4.5.

Here C4 and C4.5 depend only on the upper bound for the entropy
∫
M

eFFdvolg,
the bound for maxM |β0|g, ||R||0, p0 (uniform for p0 > 1 as long as p0 − 1 bounded
away from 0), the bound

∫
M

e−p0f∗dvolg and the background metric (M,ω0).

Proof. First we obtain from Lemma 3.1 that

(3.13)
α

ε0

(
F + f∗ − 2(max

M
|Ric− β0|g + 1)ϕ

)
≤ −αψ +

αC0

ε0
.

Hence for any p > 1, if we choose ε0 so that p = α
ε0
, then we obtain

(3.14)

∫
M

ep(F+f∗)dvolg ≤ C5.

The constant C5 has the dependence as described in Lemma 3.1 with additional
dependence on p, but will be uniform in p as long as p remains bounded. Choose
ε1 = p0−1

2 , then we can estimate∫
M

e(1+ε1)Fdvolg =

∫
M

e(1+ε1)(F+f∗) · e−(1+ε1)f∗dvolg

≤
( ∫

M

e−p0f∗dvolg

) 1+ε1
p0

·
( ∫

M

e
p0

p0−(1+ε1)
(F+f∗)dvolg

)1− 1+ε1
p0

≤ C5.5.

(3.15)

Here C5.5 is uniform in p0 as long as p0 − 1 is bounded away from 0. Then we can
conclude from (3.15) and Kolodziej’s main result (c.f. [59]) that

(3.16) ||ϕ||0, ||ψ||0 ≤ C6.
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The result now follows from Lemma 3.1, with choice of ε0 so that α
ε0

= p0

p0−(1+ε1)
=

2p0

p0−1 . �

Next we would like to estimate the lower bound for F + f∗.

Lemma 3.3. There exists a constant C7 such that

F + f∗ ≥ −C7.

Here C7 depends only on ||ϕ||0, maxM |β0|g, ||R||0, the background metric g, the
bound for

∫
M

e−p0f∗dvolg, and p0 (uniform in p0 as long as p0 − 1 bounded away
from 0). In particular

F ≥ −C7.

Proof. We choose C = 2(maxM |Ric− β0|g + 1). Then we have

(3.17) Δϕ(F+f∗+Cϕ) = trϕ(Ric−β0)−R0+Cn−Ctrϕg ≤ −trϕg+||R0||0+Cn.

In [22, Proposition 2.1], we estimated trϕg from below by ne−
F
n and the result fol-

lows from maximum principle. Here one cannot do a pointwise maximum principle
as before and needs to argue differently.

Choose ε2 = p0

2n(p0−1) , and the cut-off function ηp as in the proof of Lemma 3.1

(with a parameter θ to be chosen later), and denote u1 = F + f∗ + Cϕ. Assume
the function u1 achieves minimum at p1 ∈ M . We may compute

Δϕ(e
−ε2u1ηp1

) = e−ε2u(ε22|∇ϕu1|2ϕηp1

− ε2Δϕu1ηp1
+Δϕηp1

− 2ε2∇ϕu1 ·ϕ ∇ϕηp1
)

≥ e−ε2u
(
ε22|∇ϕu1|2ϕηp1

+ ε2trϕgηp1
− ε2(||R||0 + Cn)− |∇2ηp1

|gtrϕg

− ε22|∇ϕu1|2ϕηp1
−

|∇ϕηp1
|2ϕ

ηp1

)
≥ e−ε2u

(
trϕgηp1

(ε2 −
2θ

d20(1− θ)
− 4θ2

d20(1− θ)
)

− ε2(||R0||0 + Cn)
)
.

(3.18)

Since ηp1
≥ 1− θ, we may choose θ sufficiently small so that

(1− θ)ε2 −
2θ

d20(1− θ)
− 4θ2

d20(1− θ)
> 0.

With this choice, we then have

(3.19) Δϕ

(
e−ε2u1ηp1

)
≥ −ε2e

−ε2u(||R0||0 + Cn).

Hence if we apply the Alexandrov maximum principle in Bd0
(p0), we have

e−ε2u1ηp1
(p1) ≤ sup

∂Bd0
(p1)

e−ε2u1ηp1

+ Cnd0

(∫
M

e2F e−2nε2u1ε2n2 (||R0||0 + Cn)2ndvolg

) 1
2n

.

(3.20)
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To estimate the integral appearing above, we may calculate:∫
M

e2F e−2nε2u1ε2n2 (||R0||0 + Cn)2ndvolg ≤ C8

∫
M

e(2−2nε2)F−2nε2f∗dvolg

= C8

∫
M

e
p0−2
p0−1F · e−

p0
p0−1 f∗dvolg

≤ C8

( ∫
M

eF dvolg

) p0−2
p0−1

·
( ∫

M

e−p0f∗dvolg

) 1
p0−1

.

(3.21)

Since we have ηp1
= 1 − θ on ∂Bd0

(p1), the desired estimate then follows in the
same way as in the last part of the proof for Lemma 3.1. �

3.2. W 2,p estimate. In this subsection, we will need to assume β ≥ 0 (or more
generally a lower bound for β), besides assuming a bound for

∫
M

e−p0fdvolg for
some p0 > 1.

Theorem 3.1. Assume β ≥ 0 in (3.1), (3.2). For any p ≥ 1, there exists a
constant Cp, depending only on ||F + f∗||0, ||R0||0, maxM |β0|g, the background
metric (M,ω0), a bound for

∫
M

e−p0f∗dvolg, ||ϕ||0 and p, such that

∫
M

e(p−1)f∗(n+Δϕ)pdvolg ≤ Cp.

Proof. Let κ > 0, C > 0, 0 < δ < 1 be constants to be chosen later, we will
compute:

Δϕ

(
e−κ(F+δf∗+Cϕ)(n+Δϕ)

)
=Δϕ

(
e−κ(F+δf∗+Cϕ)

)
(n+Δϕ)+e−κ(F+δf∗+Cϕ)Δϕ(Δϕ)

− 2κe−κ(F+δf∗+Cϕ)∇ϕ(F + δf∗ + Cϕ) ·ϕ ∇ϕ(Δϕ).

(3.22)

We can compute

Δϕ

(
e−κ(F+δf∗+Cϕ)

)
= e−κ(F+δf∗+Cϕ)

(
κ2|∇ϕ(F + δf∗ + Cϕ)|2ϕ

− κΔϕ(F + f∗ + Cϕ) + κ(1− δ)Δϕf∗
)

= e−κ(F+δf∗+Cϕ)κ2|∇ϕ(F + δf∗ + Cϕ)|2ϕ
+ e−κ(F+δf∗+Cϕ)κ

(
Ctrϕg − trϕ(Ric− β0)

)
+ e−κ(F+δf∗+Cϕ)(κR0 − κCn) + κ(1− δ)e−κ(F+δf∗+Cϕ)Δϕf∗.

(3.23)

We choose C ≥ 2(maxM |Ric− β0|g + 1), then we obtain from above:

Δϕ

(
e−κ(F+δf∗+Cϕ)

)
≥ e−κ(F+δf∗+Cϕ)κ2|∇ϕ(F + δf∗ + Cϕ)|2ϕ

+ e−κ(F+δf∗+Cϕ) κC

2
trϕg + κe−κ(F+δf∗+Cϕ)(1− δ)Δϕf∗

− κe−κ(F+δf∗+Cϕ)C9.

(3.24)

The constant C9 appearing above will depend on our choice of C. On the other
hand, let p ∈ M , we choose normal coordinate in a neighborhood of p so that

gij̄(p) = δij , ∇gij̄(p) = 0, ϕij̄ = ϕīiδij .
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We have computed in our first paper [22] (following Yau [75]) that

Δϕ(Δϕ) =
Rīiαᾱ(1 + ϕīi)

1 + ϕαᾱ
+

|ϕαβ̄i|2

(1 + ϕαᾱ)(1 + ϕββ̄)
+ ΔF −R

≥ −C10trϕg(n+Δϕ) +
|ϕαβ̄i|2

(1 + ϕαᾱ)(1 + ϕββ̄)
+ ΔF −R.

(3.25)

Here C10 depends only on the curvature bound of g. Also we notice the complete
square similar to our calculation in cscK case:

κ2|∇ϕ(F + δf∗ + Cϕ)|2ϕ(n+Δϕ) +
|ϕαβ̄i|2

(1 + ϕαᾱ)(1 + ϕββ̄)

− 2κ∇ϕ(F + δf∗ + Cϕ) ·ϕ ∇ϕ(Δϕ)

≥ κ2|∇ϕ(F + δf∗ + Cϕ)|2ϕ(n+Δϕ) +
|∇ϕ(Δϕ)|2ϕ
n+Δϕ

− 2κ∇ϕ(F + δf∗ + Cϕ) ·ϕ ∇ϕΔϕ ≥ 0.

Combining (3.22), (3.24) and (3.25), we conclude

Δϕ

(
e−κ(F+δf∗+Cϕ)(n+Δϕ)

)
≥ e−κ(F+δf∗+Cϕ)

(κC
2

− C10

)
trϕg(n+Δϕ)

+ κe−κ(F+δf∗+Cϕ)(1− δ)Δϕf∗(n+Δϕ) + e−κ(F+δf∗+Cϕ)ΔF

− e−κ(F+δf∗+Cϕ)(C9κ+R).

(3.26)

In the following, we will always choose κ ≥ 1, hence if we choose C ≥ 4C10, we
obtain for some constant C11, it holds:

Δϕ

(
e−κ(F+δf∗+Cϕ)(n+Δϕ)

)
eκ(F+δf∗+Cϕ) ≥ κC

4
trϕg(n+Δϕ)

+ κ(1− δ)Δϕf∗(n+Δϕ) + ΔF − κC11.
(3.27)

The constant C11 above will depend on our choice of C. Let p ≥ 1, denote v =
e−κ(F+δf∗+Cϕ)(n+Δϕ), we have∫

M

(p− 1)vp−2|∇ϕv|2ϕdvolϕ =

∫
M

vp−1(−Δϕv)dvolϕ

≤ −
∫
M

vp−1
(κC

4
vtrϕg + e−κ(F+δf∗+Cϕ)κ(1− δ)Δϕf∗(n+Δϕ)

+ e−κ(F+δf∗+Cϕ)ΔF − κC11e
−κ(F+δf∗+Cϕ)

)
dvolϕ.

(3.28)

We will handle the term involving ΔF via integrating by parts, but somewhat
differently from the calculation for cscK(here we assume κ > 1):

−
∫
M

vp−1e−κ(F+δf∗+Cϕ)ΔFdvolϕ = −
∫
M

vp−1e(1−κ)F−κδf∗−κCϕΔFdvolg

= −
∫
M

vp−1e(1−κ)F−κδf∗−κCϕ 1

1− κ
Δ

(
(1− κ)F − κδf∗ − κCϕ

)
dvolg

−
∫
M

vp−1e(1−κ)F−κδf∗−κCϕκδΔf∗ + κCΔϕ

1− κ
dvolg.

(3.29)
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For the first term in (3.29), we have

−
∫
M

vp−1e(1−κ)F−κδf∗−κCϕ 1

1− κ
Δ

(
(1− κ)F − κδf∗ − κCϕ

)
dvolg

= −
∫
M

vp−1e(1−κ)F−κδf∗−κCϕ

κ− 1
|∇

(
(1− κ)F − κδf∗ − κCϕ

)
|2dvolg

−
∫
M

p− 1

κ− 1
vp−2e(1−κ)F−κδf∗−κCϕ∇v · ∇

(
(1− κ)F − κδf∗ − κCϕ

)
dvolg

≤
∫
M

(p− 1)2

2(κ− 1)
vp−3e(1−κ)F−κδf∗−κCϕ|∇v|2dvolg

≤
∫
M

(p− 1)2

2(κ− 1)
vp−3e−κ(F+δf∗+Cϕ)|∇ϕv|2ϕ(n+Δϕ)dvolϕ

=

∫
M

(p− 1)2

2(κ− 1)
vp−2|∇ϕv|2ϕdvolϕ.

(3.30)

From 3rd line to 4th line above, we observed that

− p− 1

κ− 1
vp−2e(1−κ)F−κδf∗−κCϕ∇v · ∇

(
(1− κ)F − κδf∗ − κCϕ

)

≤ vp−1e(1−κ)F−κδf∗−κCϕ

2(κ− 1)
|∇

(
(1− κ)F − κδf∗ − κCϕ

)
|2

+
(p− 1)2

2(κ− 1)
vp−3e(1−κ)F−κδf∗−κCϕ|∇v|2.

Combining (3.29), (3.30), we see

−
∫
M

vp−1e−κ(F+δf∗+Cϕ)ΔFdvolϕ ≤
∫
M

(p− 1)2

2(κ− 1)
vp−2|∇ϕv|2ϕdvolϕ

−
∫
M

vp−1e−κ(F+δf∗+Cϕ) κδΔf∗ + κCΔϕ

1− κ
dvolϕ.

(3.31)

Plugging (3.31) back to (3.28), we obtain∫
M

(
p− 1− (p− 1)2

2(κ− 1)

)
vp−2|∇ϕv|2ϕdvolϕ ≤ −

∫
M

κC

4
trϕgv

pdvolϕ

+

∫
M

vp−1e−κ(F+δf∗+Cϕ)
(
− κ(1− δ)Δϕf∗(n+Δϕ)− κδΔf∗

1− κ

)
dvolϕ

+

∫
M

vp−1e−κ(F+δf∗+Cϕ)
(
κC11 −

κCΔϕ

1− κ

)
dvolϕ.

(3.32)

Now we choose δ = κ−1
κ , then we have

−κ(1− δ)Δϕf∗(n+Δϕ)− κδΔf∗
1− κ

= −Δϕf∗(n+Δϕ) + Δf∗

= −
∑
i 
=j

(f∗)īi(1 + ϕjj̄)

1 + ϕīi

≤
∑
i 
=j

(β0)īi(1 + ϕjj̄)

1 + ϕīi

≤ max
M

|β0|gtrϕg(n+Δϕ).

(3.33)

We also have for κ ≥ 2,

(3.34) κC11 −
κCΔϕ

1− κ
≤ κ(C12 + C)(n+Δϕ).
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Here we used the fact that n+Δϕ ≥ e
F
n , which is bounded from below in terms of

||f∗ + F ||0. Indeed, F ≥ −f∗ − ||f∗ + F ||0 ≥ −||f∗ + F ||0. Hence if we plug (3.33),
(3.34) back to (3.32), we conclude that for p ≥ 1, κ ≥ 2, C chosen sufficiently large
depending only on the curvature bound of the background metric and maxM |β0|g,
we have

∫
M

(
p− 1− (p− 1)2

κ− 1

)
vp−2|∇ϕv|2ϕdvolϕ +

∫
M

(κC
4

−max
M

|β0|g
)
trϕgv

pdvolϕ

≤
∫
M

κ(C12 + C)vpdvolϕ.

(3.35)

Next we choose κ so that κ ≥ 2 and κ ≥ p, with this choice, we have

p− 1− (p− 1)2

κ− 1
≥ 0.

Choose C sufficiently so as to satisfy C ≥ 8(maxM |β0|g + 1), with this choice, we
can guarantee

κC

4
−max

M
|β0|g ≥ κC

8
≥ κ.

Hence we obtain from (3.35) that for some constant C13

(3.36)

∫
M

e−
F

n−1 (n+Δϕ)
1

n−1 vpdvolϕ ≤
∫
M

trϕgv
pdvolϕ ≤

∫
M

C13v
pdvolϕ.

Recall our definition for v, this means:

∫
M

e(
n−2
n−1−pκ)F−p(κ−1)f∗−pκCϕ(n+Δϕ)p+

1
n−1 dvolg

≤ C13

∫
M

e(1−pκ)F−p(κ−1)f∗−pκCϕ(n+Δϕ)pdvolg.

(3.37)

From the boundedness of F + f and ϕ proved in Corollary 3.2 and Lemma 3.3, we
obtain for p ≥ 1:

(3.38)

∫
M

e(p−
n−2
n−1 )f∗(n+Δϕ)p+

1
n−1 dvolg ≤ C14

∫
M

e(p−1)f∗(n+Δϕ)pdvolg.

Take p = 1 + k 1
n−1 in (3.38) with k ≥ 0, the result follows from induction on

k. �

As a consequence of above calculation, we obtain:

Corollary 3.4. For any 1 < q < p0, there exists a constant C̃q, depending only
on the bound

∫
M

e−p0f∗dvolg, ||R||0, maxM |β|g, the bound ||F + f∗||0, ||ϕ||0, the
background metric (M,ω0), and q, such that∫

M

(n+Δϕ)qdvolg ≤ C̃q.

Besides, C̃q is uniform in q as long as q is bounded away from p0 and remains
bounded.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



958 XIUXIONG CHEN AND JINGRUI CHENG

Proof. Choose s = (q−1)p0

p0−1 , then we can calculate∫
M

(n+Δϕ)qdvolg =

∫
M

e−sf∗ · esf∗(n+Δϕ)qdvolg

≤
(∫

M

e−p0f∗dvolg

) s
p0

·
(∫

M

e
sp0

p0−s f∗(n+Δϕ)
p0q

p0−s dvolg

)1− s
p0

.

Notice our choice of s makes sp0

p0−s = p0q
p0−s − 1, so the result follows from Theorem

3.1. �

3.3. Estimate on ∇(F +f∗). In this section, we continue to assume β ≥ 0. More-
over, we also need p0 to be sufficiently large depending only on n. Our goal is to
obtain the following estimate.

Theorem 3.2. There exists κn, depending only on n, such that as long as p0 > κn,
we have

|∇ϕ(F + f∗)|ϕ ≤ C14.

Here C14 is a constant with the same dependence as in Theorem 3.1.

Proof. Denote w = F + f∗, we need to calculate:

Δϕ

(
e

1
2w|∇ϕw|2ϕ

)
= Δϕ(e

1
2w)|∇ϕw|2ϕ

+ e
1
2wΔϕ(|∇ϕw|2ϕ) + e

1
2w∇ϕw ·ϕ ∇ϕ(|∇ϕw|2ϕ)

=
1

4
e

1
2w|∇ϕw|4ϕ +

1

2
e

1
2wΔϕw|∇ϕw|2ϕ

+ e
1
2wΔϕ(|∇ϕw|2ϕ) + e

1
2w∇ϕw ·ϕ ∇ϕ(|∇ϕw|2ϕ).

(3.39)

Now we have

(3.40) Δϕw = trϕ(Ric− β0)−R0.

Also

Δϕ(|∇ϕw|2ϕ) = gij̄ϕ gκβ̄ϕ w,κiw,β̄j̄ + gij̄ϕ gκβ̄ϕ w,αj̄w,β̄i + 2∇ϕw ·ϕ ∇ϕΔϕw

+ gij̄ϕ gαβ̄ϕ Ricϕ,iβ̄wαwj̄ .
(3.41)

Besides,

(3.42) ∇ϕw ·ϕ ∇ϕ(|∇ϕw|2) = Re
(
gij̄ϕ gαβ̄ϕ wi(w,αj̄wβ̄ + wαw,β̄j̄)

)
.

In the above, w,iα denotes the covariant derivative under the metric gϕ. Again
observe the complete square:

1

4
|∇ϕw|4ϕ + gij̄ϕ gαβ̄ϕ w,αiw,β̄j̄ +Re

(
gij̄ϕ gαβ̄ϕ wiwαw,β̄j̄

)

= gij̄ϕ gαβ̄ϕ (w,iα +
1

2
wiwα)(w,j̄β̄ +

1

2
wj̄wβ̄).

Hence we obtain from (3.39):

Δϕ(e
1
2w|∇ϕw|2ϕ) ≥

1

2
e

1
2w|∇ϕw|2ϕ

(
trϕ(Ric− β0)−R

)
+ e

1
2wgij̄ϕ gαβ̄ϕ w,αj̄w,β̄i

+ e
1
2w2∇ϕw ·ϕ ∇ϕΔϕw + gij̄ϕ gαβ̄ϕ Ricϕ,iβ̄wαwj̄ +Re

(
gij̄ϕ gαβ̄ϕ wiwβ̄w,αj̄

)
.

(3.43)

Note that

Ricϕ,iβ̄ = Riciβ̄ − Fiβ̄ .
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Hence

gij̄ϕ gαβ̄ϕ Ricϕ,iβ̄wαwj̄ +Re
(
gij̄ϕ gαβ̄ϕ wiwβ̄w,αj̄

)
= gij̄ϕ gαβ̄ϕ Riciβ̄wαwj̄ +Re

(
gij̄ϕ gαβ̄ϕ wiwβ̄(w,αj̄ − Fαj̄)

)
= gij̄ϕ gαβ̄ϕ Riciβ̄wαwj̄ +Re

(
gij̄ϕ gαβ̄ϕ wiwβ̄fαj̄

)
≥ gij̄ϕ gαβ̄ϕ Riciβ̄wαwj̄ −Re

(
gij̄ϕ gαβ̄ϕ wiwβ̄(β0)αj̄

)
.

(3.44)

In the last line, we use the fact that
√
−1∂∂̄f∗ = β − β0 ≥ −β0, hence (f∗)ij̄ ≥

−(β0)ij̄ . Hence we obtain from (3.43):

Δϕ(e
1
2w|∇ϕw|2ϕ) ≥

1

2
e

1
2w|∇ϕw|2ϕ

(
trϕ(Ric− β0)−R

)
+ e

1
2w2∇ϕw ·ϕ ∇ϕΔϕw

+ e
1
2wgij̄ϕ gαβ̄ϕ Riciβ̄wαwj̄ − e

1
2wRe

(
gij̄ϕ gαβ̄ϕ wiwβ̄(β0)αj̄

)
.

(3.45)

Next we estimate:

(3.46) trϕ
(
Ric− β0

)
−R ≥ −C15(trϕω0 + 1) ≥ −C15(e

−F (n+Δϕ)n−1 + 1).

Also

gij̄ϕ gαβ̄ϕ Riciβ̄wαwj̄ ≥ −C14.5(trϕω0)
2|∇w|2 ≥ −C15(trϕω0)

2(n+Δϕ)|∇ϕw|2ϕ
≥ −C15e

−2F (n+Δϕ)2n−1|∇ϕw|2ϕ.

(3.47)

We can also estimate

−Re
(
gij̄ϕ gαβ̄ϕ wiwβ̄(β0)αj̄

)
≥ −C14.5(trϕω0)

2|∇w|2

≥ −C15e
−2F (n+Δϕ)2n−1|∇ϕw|2ϕ.

(3.48)

Hence we may conclude from (3.45) that

Δϕ(e
1
2w|∇ϕw|2ϕ) ≥ 2e

1
2w∇ϕw ·ϕ ∇ϕΔϕw − e

1
2w|∇ϕw|2ϕ

× C15

(
2e−2F (n+Δϕ)2n−1 + e−F (n+Δϕ)n−1 + 1

)
.

(3.49)

Denote u = e
1
2w|∇ϕw|2ϕ +1, G̃ = C15

(
2e−2F (n+Δϕ)2n−1 + e−F (n+Δϕ)n−1 +1

)
.

Then we have

(3.50) Δϕu ≥ 2e
1
2w∇ϕw ·ϕ ∇ϕΔϕw − uG̃.

Now let p ≥ 1, then we have

∫
M

(p− 1)up−2|∇ϕu|2ϕdvolϕ =

∫
M

up−1(−Δϕu)dvolϕ

≤
∫
M

upG̃dvolϕ −
∫
M

2up−1e
1
2w∇ϕw ·ϕ ∇ϕΔϕwdvolϕ.

(3.51)
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We need to integrate by parts to handle the last term above. We have

−
∫
M

2up−1e
1
2w∇ϕw ·ϕ ∇ϕΔϕwdvolϕ =

∫
M

2up−1e
1
2w(Δϕw)

2dvolϕ

+

∫
M

up−1e
1
2w|∇ϕw|2ϕΔϕwdvolϕ +

∫
M

2(p− 1)up−2e
1
2w∇ϕu ·ϕ ∇ϕwΔϕwdvolϕ

≤
∫
M

2up−1e
1
2w(Δϕw)

2dvolϕ +

∫
M

upΔϕwdvolϕ −
∫
M

up−1Δϕwdvolϕ

+

∫
M

p− 1

2
up−2|∇ϕu|2ϕdvolϕ +

∫
M

2(p− 1)up−2ew|∇ϕw|2ϕ(Δϕw)
2dvolϕ

≤
∫
M

2pup−1e
1
2w(Δϕw)

2dvolϕ +

∫
M

up
(
(Δϕw)

2 + 1
)
dvolϕ

+

∫
M

p− 1

2
up−2|∇ϕu|2ϕdvolϕ.

(3.52)

Some explanations of above calculations are in order.
In the first inequality, we observed that

up−1e
1
2w|∇ϕw|2ϕΔϕw = upΔϕw − up−1Δϕw,

from our definition of u. Also we observed that

2(p− 1)up−2e
1
2w∇ϕu ·ϕ ∇ϕwΔϕw

≤ p− 1

2
up−2|∇ϕu|2ϕ + 2(p− 1)up−2ew|∇ϕw|2ϕ(Δϕw)

2.

In the second inequality, we noticed that

upΔϕw − up−1Δϕw ≤ 1

2
(up + up−1)

(
1 + (Δϕw)

2
)
≤ up

(
1 + (Δϕw)

2
)
.

Hence we conclude from (3.51):

∫
M

p− 1

2
up−2|∇ϕu|2ϕdvolϕ ≤

∫
M

up
(
G̃+ (Δϕw)

2 + 1
)
dvolϕ

+

∫
M

2pup−1e
1
2w(Δϕw)

2dvolϕ

≤
∫
M

up
(
G̃+ (Δϕw)

2 + 1
)
dvolϕ +

∫
M

2pupe
1
2w(Δϕw)

2dvolϕ.

(3.53)

From 1st line to 2nd line above, we noticed u ≥ 1. Now denote G = G̃+(Δϕw)
2 +

1 + 2e
1
2w(Δϕw)

2, we have

∫
M

p− 1

2
up−2|∇ϕu|2ϕdvolϕ ≤

∫
M

pupGeFdvolg .(3.54)

For the left hand side, we have

(3.55)

∫
M

p− 1

2
up−2|∇ϕu|2ϕdvolϕ ≥ 1

C16

∫
M

2(p− 1)

p2
|∇ϕ(u

p
2 )|2ϕdvolg.
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Let ε > 0 to be determined, we can also estimate∫
M

|∇(u
p
2 )|2−εdvolg ≤

∫
M

|∇ϕ(u
p
2 )|2−ε

ϕ (n+Δϕ)1−ε/2dvolg

≤
( ∫

M

|∇ϕ(u
p
2 )|2ϕdvolg

) 2−ε
2

×
( ∫

M

(n+Δϕ)
2
ε−1dvolg

) ε
2

.

(3.56)

Denote

(3.57) Kε =

( ∫
M

(n+Δϕ)
2
ε−1dvolg

) ε
2−ε

.

Then we have

||∇(u
p
2 )||2L2−ε(ωn

0 ) ≤ Kε‖|∇ϕ(u
p
2 )|ϕ‖2L2(ωn

0 ) ≤
KεC16p

2

4

∫
M

up−2|∇ϕu|2ϕdvolϕ

≤ KεC16p
3

2(p− 1)

∫
M

upGeFdvolg.

(3.58)

In the above, the first inequality follows from (3.56). The second inequality follows
from (3.55), and the last inequality uses (3.54).

Apply the Sobolev inequality with exponent 2− ε to conclude

||u
p
2 ||2

L
2n(2−ε)
2n−2+ε

≤ Cε

(
||∇(u

p
2 )||2L2−ε + ||u

p
2 ||2L2−ε

)

≤ Cε

(KεC16p
3

2(p− 1)

∫
M

upGeFdvolg + ||u
p
2 ||2L2−ε

)

≤ Dε

(KεC16p
3

2(p− 1)

( ∫
M

u
2p

2−ε dvolg

) 2−ε
2

×
( ∫

M

G
2
ε e

2F
ε dvolg

) ε
2

+ ||u
p
2 ||2

L
4

2−ε

)
.

(3.59)

In the last line above, we use Hölder’s inequality to estimate ||u p
2 ||L2−ε , and Dε

depends on Cε and vol(M). Denote

(3.60) Lε =

( ∫
M

G
2
ε e

2F
ε dvolg

) ε
2

.

Also we choose ε to be sufficiently small so that the following holds:

(3.61)
2n(2− ε)

2n− 2 + ε
>

4

2− ε
.

Hence we may conclude from (3.59) that

(3.62) ||u
p
2 ||2

L
2n(2−ε)
2n−2+ε

≤ C18
p3

p− 1
(KεLε + 1)||u

p
2 ||2

L
4

2−ε
.

We need to have a bound for Kε, Lε. Choose ε = 1
2n , it is clear that this ε verifies

(3.61) since n ≥ 2. With this choice, from the expressions of Kε and Lε in (3.57)
and (3.60), we need

∫
M
(n + Δϕ)4n−1dvolg,

∫
M

G4ne4nF dvolg is bounded. First

from Corollary 3.4, if p0 ≥ 4n, then
∫
M
(n+Δϕ)4n−1dvolg is bounded.
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While for
∫
M

G4ne4nF dvolg, first we have

G = C15

(
2e−2F (n+Δϕ)2n−1 + e−F (n+Δϕ)n−1 + 1

)
+

(
Δϕ(F + f∗)

)2
+ 1

+ 2e
1
2 (F+f∗)(Δϕ(F + f∗))

2 ≤ C21(n+Δϕ)2n−1 + C21(trϕg) + C21(trϕg)
2

≤ C21(n+Δϕ)2n−1 + C21e
−F (n+Δϕ)n−1 + C21e

−2F (n+Δϕ)2n−2

≤ C22(n+Δϕ)2n−1.

(3.63)

Here we used that F has a lower bound, thanks to Lemma 3.3. Hence∫
M

G
2
ε e

2F
ε dvolg ≤

( ∫
M

G8ndvolg
) 1

2 ×
( ∫

M

e8nF dvolg
) 1

2

≤
( ∫

M

C8n
22 (n+Δϕ)8n(2n−1)dvolg

) 1
2 ×

( ∫
M

e8nF dvolg
) 1

2 .

By Corollaries 3.2 and 3.4, it’s enough to assume that p0 ≥ 8n(2n− 1) + 1. With
this choice, we know that Kε and Lε given by (3.57), (3.60) are bounded with the
said dependence in the theorem. Then we can iterate (3.62) as in cscK case to
deduce ||u||L∞ is bounded in terms of ||u||L1(ωn

0 ).
To see that we have an estimate for ||u||L1 , we can compute

(3.64) Δϕ(e
1
2w) =

1

4
e

1
2w|∇ϕw|2ϕ +

1

2
e

1
2wΔϕw.

Hence∫
M

e
1
2w|∇ϕw|2ϕdvolg ≤ C23

∫
M

e
1
2w|∇ϕw|2ϕdvolϕ ≤ C23

∫
M

2e
1
2w(−Δϕw)dvolϕ

≤
∫
M

C24(trϕω0 + 1)dvolϕ = (n+ 1)C24vol(M). �

As an immediate consequence, we observe

Corollary 3.5. Assume β ≥ 0 in (3.1), (3.2). Suppose p0 ≥ κn, where κn is as in
Theorem 3.2, then for any p < p0, we have

||∇(F + f∗)||L2p(ωn
0 ) ≤ C25.

Here C25 has the same dependence as in Theorem 3.1, but additionally on p. Be-
sides, the bound is uniform in p as long as p is bounded away from p0.

Proof. We know from Theorem 3.2 that |∇ϕ(F + f∗)|ϕ ≤ C14. On the other hand,
we have

(3.65) |∇(F + f∗)|2 ≤ |∇ϕ(F + f∗)|2ϕ(n+Δϕ) ≤ C2
14(n+Δϕ).

Hence the result follows from Corollary 3.4. �

Combining the estimates in this section, we can formulate Theorem 3.3.

Theorem 3.3. Assume β ≥ 0 in (3.1), (3.2). Let ϕ be a smooth solution to (3.1),
(3.2). Suppose p0 ≥ κn for some constant κn depending only on n. Then for any
p < p0,

||F + f∗||W 1,2p ≤ C25.1, ||n+Δϕ||Lp(ωn
0 ) ≤ C25.1.

Here C25.1 depends only on an upper bound of entropy
∫
M

log
(ωn

ϕ

ωn
0

)
ωn
ϕ, p0 > 1,

p < p0, the bound for
∫
M

e−p0f∗dvolg, ||R||0, maxM |β0|g and background metric

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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ω0. Besides, the bound is uniform in p0 as long as p0 is bounded away from 1 and
p bounded away from p0.

4. K-energy proper implies existence of cscK

4.1. The case Aut0(M,J) = 0. Let the functional I be as given by (2.7), we define

H0 = {ϕ ∈ H : I(ϕ) = 0}.

Following [40, 72] , we introduce the following notion of properness:

Definition 4.1. We say theK-energy is proper with respect to L1 geodesic distance
if for any sequence {ϕi}i≥1 ⊂ H0, limi→∞ d1(0, ϕi) = ∞ implies limi→∞ K(ϕi) =
∞.

The goal of this section is to prove the following existence result of cscK metrics.

Theorem 4.1. Let β ≥ 0 be a smooth closed (1, 1) form. Let Kβ be defined as in
(2.5). Suppose Kβ is proper with respect to geodesic distance d1, then there exists
a twisted cscK metric with respect to β (i.e., solves (2.6)).

For the converse direction, we have

Theorem 4.2 (Main theorem of [7] and Theorem 4.13 of [8]). Let β be as in the
previous theorem. Suppose that either

(1) β > 0; or
(2) β = 0 and Aut0(M,J) = 0. Suppose there exists a twisted cscK metric

with respect to β (i.e., solves (2.6)), then the functional Kβ is proper with
respect to geodesic distance d1.

In this theorem, the case β = 0 and Aut0(M,J) = 0 is the main result of [7], and
the case with β > 0 follows from the uniqueness of minimizers of twisted K-energy
when the twisting form is Kähler (c.f. [8, Theorem 4.13]). For completeness, we
will reproduce the proof in this paper.

First we prove Theorem 4.1. For this we will use the continuous path (2.12) to
solve (2.6). Put χ = ω0 in (2.12), define

(4.1) S = {t0 ∈ [0, 1] : (2.12) has a smooth solution for any t ∈ [0, t0]}.

Remark 4.2. One may also consider the set S′, consisting of t0 ∈ [0, 1] for which
(2.12) has a solution with t = t0. In general, t0 ∈ S′ does not imply [0, t0] ⊂ S′.
For instance, in [?chen-Zeng14], it is shown that if a cscK metric exists (i.e., (2.12)
can be solved at t = 1), then we can solve this equation for all t sufficiently close
to 1, for any β > 0. However, we can always find a χ > 0 such that (2.12) has no
solution with t = 0.

By Lemma 2.1, we know the set S is relatively open in [0, 1]. Also when t = 0,
(2.12) has a trivial solution, namely ϕ = 0. In particular S 
= ∅. The only remaining
issue for the continuity method is the closeness of S. Due to Proposition 2.3, we
can conclude the following criterion for closeness:

Lemma 4.3. Suppose ti ∈ S, ti ↗ t∗ > 0, and let ϕi be a solution to (2.12) with

t = ti. Denote Fi = log
ωn

ϕi

ωn
0
. Suppose that supi

∫
M

eFiFidvolg < ∞, then t∗ ∈ S.
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Proof. We just need to show (2.12), or equivalently the coupled equations (2.13),
(2.14) have a smooth solution with t = t∗. The assumption implies that we can
assume ti ≥ δ0 > 0 for some δ0 > 0. Moreover, we can normalize the solution ϕi

to (2.12) so that supM ϕi = 0 and the assumption implies that we have a uniform
upper bound of entropy. Then Proposition 2.3 implies that we have a uniform
bound for all higher derivative bounds of ϕi. Hence we may take a subsequence of
ϕi which converges smoothly. Say ϕi → ϕ∗. Then we know that ϕ∗ solves (2.12)
with t = t∗. �

To connect this criterion with properness, we need some estimates connecting
the L1 geodesic distance d1 and the I , Jχ functional defined in (2.7), (2.4).

Lemma 4.4. There exists a constant C > 0, depending only on n and the back-
ground metric ω0, such that for any ϕ ∈ H0, we have

| sup
M

ϕ| ≤ C(d1(0, ϕ) + 1), |Jχ(ϕ)| ≤ Cmax
M

|χ|ω0
d1(0, ϕ).(4.2)

Proof. This is well known in the literature and we give a proof for completeness
here. We now prove the first estimate. Let G(x, y) be the Green’s function defined
by the metric ω0, then we can write:

(4.3) ϕ(x) =
1

vol(M,ω0)

∫
M

ϕ(y)
ωn
0

n!
(y) +

1

vol(M,ω0)

∫
M

G(x, y)Δω0
ϕ(y)

ωn
0

n!
(y).

We know that supM×M G(x, y) ≤ C15, hence

∫
M

G(x, y)Δω0
ϕ(y)

ωn
0

n!
(y) =

∫
M

(G(x, y)− C15)(Δω0
ϕ(y) + n)

ωn
0

n!

−
∫
M

nG(x, y)
ωn
0

n!
+ C15n

∫
M

ωn
0

n!
≤ −n inf

x∈M

∫
M

G(x, y)
ωn
0

n!

+ C15n

∫
M

ωn
0

n!
:= C16vol(M,ω0).

(4.4)

Take sup in (4.3),

(4.5) sup
M

ϕ ≤ 1

vol(M,ω0)

∫
M

ϕ
ωn
0

n!
+ C16 ≤ Cd1(0, ϕ) + C16.

On the other hand, since I(ϕ) = 0, it follows from (2.7) that supM ϕ ≥ 0, so the
first estimate follows. For the second estimate, first we can calculate

∫
M

ϕ

n−1∑
k=0

χ ∧ ωk
0 ∧ ωn−1−k

ϕ − n

∫
M

ϕχ ∧ ωn−1
0

=

∫
M

ϕ
n−2∑
k=0

χ ∧ ωk
0 ∧ (ωn−1−k

ϕ − ωn−1−k
0 )

=

∫
M

−
√
−1∂ϕ ∧ ∂̄ϕ ∧

n−2∑
l=0

(n− 1− l)χ ∧ ωn−2−l
0 ∧ ωl

ϕ.

(4.6)
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Thus,

|
∫
M

ϕ
n−1∑
k=0

χ ∧ ωk
0 ∧ ωn−1−k

ϕ −
∫
M

nϕχ ∧ ωn−1
0 |

≤ nmax
M

|χ|ω0

∫
M

√
−1∂ϕ ∧ ∂̄ϕ ∧

n−1∑
l=0

ωn−1−l
0 ∧ ωl

ϕ

= nmax
M

|χ|ω0

∫
M

ϕ(ωn
ϕ − ωn

0 ).

Using Theorem 2.1, we conclude

|
∫
M

ϕ
n−1∑
k=0

χ ∧ ωk
0 ∧ ωn−1−k

ϕ −
∫
M

nϕχ ∧ ωn−1
0 | ≤ Cn max

M
|χ|ω0

d1(0, ϕ).

Similar calculation shows

|
∫
M

χϕ

n∑
k=0

ωk
0 ∧ ωn−k

ϕ − (n+ 1)

∫
M

χϕωn
0 | ≤ Cn max

M
|χ|ω0

d1(0, ϕ).

On the other hand, the quantities
∫
M

nϕχ∧ωn−1
0 and

∫
M

χϕωn
0 can be bounded in

terms of maxM |χ|ω0
d1(0, ϕ), again due to Theorem 2.1. Now the claimed estimate

follows from (2.4). �

From Theorem 2.2, any two elements in E1 can be connected by a “locally finite
energy geodesic” segment. On the other hand, from Theorem 4.7 in [8], we know Kβ

is convex along locally finite energy geodesic segment. This implies tKβ+(1−t)Jω0

is convex along locally finite energy geodesics. In view of this, we can observe:

Corollary 4.5. Let ϕ be a smooth solution to (2.12) for some t ∈ [0, 1], then ϕ
minimizes the functional tKβ + (1− t)Jω0

over E1.

Proof. Observe that it is sufficient to show that ϕ minimizes tKβ + (1− t)Jω0
over

H, in view of the fact that an element in E1 can be approximated (under distance
d1) using smooth potentials with convergent entropy, as proved in Theorem 3.2 in
[8], while the Jχ functional is continuous under d1, as shown by Proposition 4.1
and Proposition 4.4 in [8].

Next we can write tKβ + (1 − t)Jω0
= tK + Jtβ+(1−t)ω0

. Take ψ ∈ H. Let

{us}s∈[0,1] be the C1,1 geodesic connection ϕ and ψ, with u0 = ϕ, u1 = ψ. From

Lemma 3.5 of [4] and the convexity of K-energy along C1,1 geodesics, we conclude:

(4.7) K(ψ)−K(ϕ) ≥ lim
s→0+

K(us)−K(u0)

s
≥

∫
M

(R−Rϕ)
dus

ds
|s=0

ωn
ϕ

n!
.

The first inequality used the convexity of K-energy along C1,1 geodesics, proved by
Berman-Berndtsson [4], and the second inequality is Lemma 3.5 of [4].
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On the other hand, let {ϕs}s∈[0,1] be any smooth curve in H with ϕ0 = ϕ,
ϕ1 = ψ, and let χ ≥ 0, we know from the calculation in [18, Proposition 2], that

Jχ(ψ)− Jχ(ϕ) =

∫
M

(trϕχ− χ)
dϕs

ds
|s=0

ωn
ϕ

n!
+

∫ 1

0

(1− s)
d2

ds2
Jχ(ϕs)ds

=

∫
M

(trϕχ− χ)
dϕs

ds
|s=0

ωn
ϕ

n!
+

∫ 1

0

(1− s)ds

∫
M

(
∂2ϕ

∂s2
− |∇ϕs

∂ϕs

∂s
|2ϕs

)
trϕs

χ
ωn
ϕs

n!

+

∫ 1

0

(1− s)ds

∫
M

gij̄ϕs
gkl̄ϕs

χil̄

(∂ϕ
∂s

)
,k

(∂ϕ
∂s

)
,j̄

ωn
ϕs

n!
.

(4.8)

Now we choose ϕs = uε
s, namely the ε-geodesic(which is smooth by [18]), which

means (
∂2ϕs

∂s2
− |∇ϕs

∂ϕs

∂s
|2ϕs

)
det gϕs

= εdet g0 ≥ 0.

Hence we obtain from (4.8) that

(4.9) Jχ(ψ)− Jχ(ϕ) ≥
∫
M

(trϕχ− χ)
duε

s

ds
|s=0

ωn
ϕ

n!
.

Also we know that uε
s → us weakly in W 2,p for any p < ∞ as ε → 0. This implies

duε
s

ds |s=0, as a function on M , is uniformly bounded with its first derivatives. Hence

we may conclude
duε

s

ds |s=0 → dus

ds |s=0 uniformly. This convergence is sufficient to
imply ∫

M

(trϕχ− χ)
duε

s

ds
|s=0

ωn
ϕ

n!
→

∫
M

(trϕχ− χ)
dus

ds
|s=0

ωn
ϕ

n!
, as ε → 0.

Therefore,

(4.10) Jχ(ψ)− Jχ(ϕ) ≥
∫
M

(trϕχ− χ)
dus

ds
|s=0

ωn
ϕ

n!
.

Take χ = tβ + (1 − t)ω0 in (4.10). Then multiply (4.7) by t, add to (4.10), we
conclude (

tKβ + (1− t)Jω0

)
(ψ)−

(
tKβ + (1− t)Jω0

)
(ϕ)

≥
∫
M

(
t(R−Rϕ) + (trϕχ− χ)

)
dus

ds
|s=0

ωn
ϕ

n!
= 0.

(4.11)

The last equality using that ϕ solves (2.13), (2.14). �

Using this fact, we can obtain the following improvement of Lemma 4.3, which
asserts that having control over the geodesic distance d1 along the path of continuity
ensures we can pass to limit.

Lemma 4.6. Suppose ti ∈ S, ti ↗ t∗ > 0, and let ϕi be the solution to (2.12) with
t = ti, normalized so that I(ϕi) = 0. Suppose supi d1(0, ϕi) < ∞, then t∗ ∈ S.

Proof. As before, we assume ti ≥ δ > 0. First observe that supi(tiKβ + (1 −
ti)Jω0

)(ϕi) < ∞. Indeed, we know from Corollary 4.5 that ϕi are minimizers of
tiKβ + (1− ti)Jω0

, hence

tiKβ(ϕi) + (1− ti)Jω0
(ϕi) ≤ Kχ,ti(0) = tiKβ(0) + (1− ti)Jω0

(0)

≤ max(Kβ(0), Jω0
(0)).

(4.12)
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On the other hand, we know
(4.13)

tiKβ(ϕi) + (1− ti)Jω0
(ϕi) = ti

∫
M

eFiFidvolg + tiJ−Ric+β(ϕi) + (1− ti)Jω0
(ϕi).

Since we assumed supi d1(0, ϕi)<∞, Lemma 4.4 then implies that supi |J−Ric+β(ϕi)|
+ |Jω0

(ϕi)| < ∞. Consequently, supi
∫
M

eFiFidvolg < ∞ since ti ≥ δ > 0. The
result then follows from Lemma 4.3. �

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let S be defined as in (4.1), we just need to prove S = [0, 1].
First we know from Lemma 2.1 that t∗ > 0. We want to show that t∗ = 1 and
1 ∈ S. Indeed, if t∗ < 1, then we can take a sequence ti ∈ S, such that ti ↗ t∗. Let
ϕi be the solution to (2.9) so that I(ϕi) = 0.

As observed in (4.12), supi
(
tiKβ + (1 − ti)Jω0

)
(ϕi) < ∞. On the other hand,

since 0 ∈ H is a critical point of Jω0
, we know from Corollary 4.5 that Jω0

(ϕi) ≥
Jω0

(0). Therefore we know supi Kβ(ϕi) < ∞. By properness, we can then conclude
supi d1(0, ϕi) < ∞. From Lemma 4.6 we see t∗ ∈ S. But then from Lemma 2.1 and
Remark 2.2 we know t∗+δ′ ∈ S for some δ′ > 0 small. This contradicts t∗ = supS.
Hence we must have t∗ = 1. Repeating the argument in this paragraph, we can
finally conclude 1 ∈ S. �

For completeness, we also include here the proof of Theorem 4.2, following [7,8].

Proof of Theorem 4.2. First we assume that β = 0 and Aut0(M,J) = 0. Let
ϕ0 ∈ H0 be such that ωϕ0

:= ω0 +
√
−1∂∂̄ϕ0 is cscK. We will show that for some

ε > 0, and for any ψ ∈ H0, d1(ϕ0, ψ) ≥ 1, we have K(ψ) ≥ εd1(ψ, ϕ0) +K(ϕ0).
Indeed, if this were false, we will have a sequence of ψi ∈ H0, such that

d1(ϕ0, ψi) ≥ 1, but εi := K(ψi)−K(ϕ0)
d1(ψi,ϕ0)

→ 0. Let ci : t ∈ [0, d1(ϕ0, ψi)] → E1

be the unit speed C1,1 geodesic segment connecting ϕ0 and ψi [18]. Let φi = ci(1),
then d1(φi, ϕ0) = 1. On the other hand, from the convexity of K-energy, we have

(4.14) K(φi) ≤
(
1− 1

d1(ψi, ϕ0)

)
K(ϕ0) +

1

d1(ψi, ϕ0)
K(ψi) = K(ϕ0) + εi.

By the compactness result Lemma 2.5, there exists a subsequence of {φi}i≥1 ⊂ E1,

denoted by φij , such that φij
d1→ φ∞. Hence d1(ϕ0, φ∞) = 1. From the lower

semi-continuity of K-energy(Theorem 4.7 of [8]), we obtain:

(4.15) K(φ∞) ≤ lim
j→∞

infK(φij ) ≤ K(ϕ0).

But since ϕ0 is a minimizer of K-energy over E1, it follows that φ∞ is also a
minimizer. From Theorem 1.4 of [7], we know φ∞ is also a smooth solution to
cscK equation, and there exists g ∈ Aut0(M,J), such that g∗ωφ∞ = ωϕ0

. But we
assumed Aut0(M,J) = 0, hence ωφ∞ = ωϕ0

. Therefore φ∞ − ϕ0 is constant. But
from the normalization I(φ∞) = I(ϕ0) = 0, we know ϕ0−φ∞ = 0, this contradicts
d1(ϕ0, φ∞) = 1.

Next we assume β > 0. Let ϕβ solves (2.12), normalized so that I(ϕβ) = 0. We
show that for some ε > 0, one has Kβ(ψ) ≥ εd1(ϕ

β, ψ) +Kβ(ϕ
β) for any ψ ∈ H0

with d1(ϕ
β, ψ) ≥ 1.
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Indeed, if this were false, then there exists a sequence of ψi ∈ H0, such that

d1(ϕ
β, ψi) ≥ 1, but ε′i :=

Kβ(ψi)−Kβ(ϕ
β)

d1(ψi,ϕβ)
→ 0. Note that K-energy is lower semi-

continuous with respect to d1 convergence and Jβ is continuous ([8, Proposition
4.4]). Hence Kβ is lower semicontinuous as well. So the same argument as last
paragraph applies and we get a minimizer of Kβ , denoted as ψ∞ ∈ H0, such that
d1(ψ∞, ϕβ) = 1. But by [8, Theorem 4.13], we know ψ∞ and ϕβ should differ by a
constant. Because of the normalization I(ψ∞) = I(ϕβ) = 0, we know that actually
ψ∞ = ϕβ. This contradicts d1(ψ∞, ϕβ) = 1. �

As a corollary to this theorem, we show that the supreme of t for which (2.9)
can be solved depends only on cohomology class of χ. More precisely,

Corollary 4.7. Let χ1, χ2 be two Kähler forms in the same cohomology class. We
define

Si = {t0 ∈ [0, 1] : (2.9) with χ = χi has a smooth solution for any t ∈ [0, t0]}.

Then S1 = S2. In particular, if we define R([ω0], χi) = supSi, then R([ω0], χ1) =
R([ω0], χ2).

Proof. First we know from [36, Proposition 21 and Proposition 22], that existence
of smooth solutions to trϕχi = χ

i
, i = 1, 2 are equivalent. So we may assume both

equations are solvable. Then it follows from Lemma 2.1 that R([ω0], χi) > 0. In
virtue of Theorem 4.1 and Theorem 4.2, we just need to show for any 0 < t0 ≤ 1:

(4.16) Kχ1,t0 is proper ⇔ Kχ2,t0 is proper.

Here Kχi,t0 is defined as in (2.8).
Indeed, suppose t0 ∈ S1 and t0 < 1, then for any 0 < t ≤ t0, (2.9) with χ = χ1

has a solution. From Theorem 4.2 applied to β = 1−t
t χ1, we know this implies

Kχ1,t is proper, for any 0 < t ≤ t0. If (4.16) were true, then Kχ2,t is proper for
any 0 < t ≤ t0. Using Theorem 4.1 again, we know (2.9) with χ = χ2 is solvable
for any t ∈ [0, t0]. This means t0 ∈ S2.

If t0 ∈ S1 and t0 = 1, then it means K-energy is bounded from below, hence
Kχ2,t will be proper for 0 ≤ t < 1 ([36, Proposition 21]). Then Theorem 4.1 implies
(2.9) will be solvable for χ = χ2 and any 0 ≤ t < 1. While for t = 1, the solvability
follows from the assumption that t0 = 1, since equation (2.9) for t = 1 does not
involve χ1 or χ2. Therefore 1 ∈ S2.

Now we turn to the proof of (4.16), which is an elementary calculation (c.f. [69]).
Since χ1 and χ2 are in the same Kähler class, we can write

χ1 − χ2 =
√
−1∂∂̄ν, for some smooth function ν.

From (2.4), we can compute for ϕ ∈ H0:

Jχ1
(ϕ)− Jχ2

(ϕ) =
1

n!

n−1∑
p=0

∫
M

(−ϕ)
√
−1∂∂̄ν ∧ ωn−p−1

0 ∧ ωp
ϕ

=
1

n!

n−1∑
p=0

∫
M

−ν
√
−1∂∂̄ϕ ∧ ωn−p−1

0 ∧ ωp
ϕ

=
−1

n!

∫
M

νωn
ϕ +

∫
M

1

n!
νωn

0 .

(4.17)
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From this it is clear that

(4.18) |Jχ1
(ϕ)− Jχ2

(ϕ)| ≤ cn sup
M

|ν|.

On the other hand,

(4.19) |Kχ1,t0(ϕ)−Kχ2,t0(ϕ)| ≤ (1− t0)|Jχ1
(ϕ)− Jχ2

(ϕ)| ≤ cn sup
M

|ν|.

From this (4.16) immediately follows. �

4.2. General case when Aut0(M,J) 
= 0. In this subsection, we will denote
Aut0(M,J) by G for convenience. Define

H0 = {ϕ ∈ C∞(M) : ωϕ := ω0 +
√
−1∂∂̄ϕ ≥ 0, I(ϕ) = 0}.

Here the functional I is defined as

I(ϕ) =
1

(n+ 1)!

∫
M

ϕ

n∑
k=0

ωk
0 ∧ ωn−k

ϕ .

The set H0 can be identified as the set of Kähler metrics cohomologous to ω0. We
also know that for any ϕ ∈ H0, any σ ∈ G, one has that σ∗ωϕ is still in the Kähler
class [ω0]. Hence there exists a unique element ψ ∈ H0, such that σ∗ωϕ = ωψ. We
will write in short as σ.ϕ = ψ. It is clear that this defines an action of G on H0.

Let d1 be the L1 geodesic distance defined in Section 2.2. Now we try to explain
how to extend the notion of properness to the general case. For any given metric
ω0, we may consider its G orbit

Oω0
= {ϕ ∈ H | σ∗ω0 = ωϕ, for some σ ∈ G}.

Note that if ω0 is a cscK metric, then it is symmetric with respect to a maximal
compact subgroup [12, 13]. Moreover, one can check directly that Oω0

⊂ H is a
totally geodesic submanifold (c.f. Proposition 2.1 in [30]). Therefore, it is natural
to define a notion of distance to this submanifold Oω0

from any Kähler potential ϕ
by

dp(ϕ,Oω0
) = infψ∈Oω0

dp(ϕ, ψ)
= infσ∈G,ωψ=σ∗ω0

dp(ϕ, ψ)
= infσ∈G,ωψ=σ∗ωϕ

dp(0, ψ).

More importantly, this infimum can be realized (c.f. Proposition 6.8 and Theorem
7.1 in [40]), i.e., there exists a σ0 ∈ G such that

dp(ωϕ, σ
∗
0ω0) = dp(ϕ,Oω0

).

It means that this distance is positive unless ϕ lies in this orbit. Motivated by this
observation, we extend the properness definition to the general case, following [40].
First, as in [40], one can define

(4.20) d1,G(ϕ, ψ) = inf
σ1,σ2∈G

d1(σ1.ϕ, σ2.ψ), for any ϕ, ψ ∈ H0.

The group G acts on H0 by isometry, in the sense that

d1(σ.ϕ, σ.ψ) = d1(ϕ, ψ), for any σ ∈ G, any ϕ, ψ ∈ H0.

As a result of this, we see that

(4.21) d1,G(ϕ, ψ) = inf
σ∈G

d1(ϕ, σ.ψ) = inf
σ∈G

d1(σ.ϕ, ψ).
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Also it is immediate to check that d1,G satisfies triangle inequality: for any ϕi ∈ H0,
i = 1, 2, 3, we have

(4.22) d1,G(ϕ1, ϕ3) ≤ d1,G(ϕ1, ϕ2) + d1,G(ϕ2, ϕ3).

The cscK metrics in the class [ω0] are critical points of the K-energy, which is
implicitly defined by

(4.23)
dK(ϕ)

dt
=

∫
M

∂ϕ

∂t
(R−Rϕ)

ωn
ϕ

n!
.

In the above, R is the average scalar curvature, Rϕ is the scalar curvature of the
metric ωϕ. The K-energy has the following explicit formula:

(4.24) K(ϕ) =

∫
M

log

(
ωn
ϕ

ωn
0

)
ωn
ϕ

n!
+ J−Ric(ϕ),

where for any (1, 1) form χ, we define Jχ as

Jχ(ϕ) =

∫ 1

0

∫
M

ϕ

(
χ ∧

ωn−1
λϕ

(n− 1)!
− χ

ωn
λϕ

n!

)
dλ

=
1

n!

∫
M

ϕ
n−1∑
k=0

χ ∧ ωk
0 ∧ ωn−1−k

ϕ − 1

(n+ 1)!

∫
M

χϕ
n∑

k=0

ωk
0 ∧ ωn−k

ϕ .

(4.25)

(4.26)
dJχ(ϕ)

dt
=

∫
M

∂ϕ

∂t
(trϕχ− χ)

ωn
ϕ

n!
.

The readers may look up Section 2 for more details. First we make precise the notion
of properness of K-energy with respect to d1,G, in a similar vein as properness with
respect to d1 introduced in the second paper. The following definition of properness
modulo G is due to Zhou-Zhu [77, Definition 0.1].

Definition 4.8. We say K-energy is proper with respect to d1,G, if

(1) for any sequence {ϕi} ⊂ H0, d1,G(0, ϕi) → ∞ implies K(ϕi) → +∞.
(2) K-energy is bounded from below on H.

Remark 4.9. The first point in the above definition can be replaced with: for any
sequence {ϕi} ⊂ H0, infσ∈G J(σ.ϕi) → ∞ implies K(ϕi) → +∞, where J(ϕ) =∫
M

ϕ(ωn
0 −ωn

ϕ). This follows from the fact that 1
C infσ∈G J(σ.ϕi)−C ≤ d1,G(0, ϕ) ≤

C infσ∈G J(σ.ϕi) + C, for some C > 0 and any ϕ ∈ H0, which can be found in
[40, Lemma 5.11].

In this section, we will prove the following result:

Theorem 4.3. Suppose that K-energy functional is proper with respect to d1,G as
defined in (4.8), then the class [ω0] admits a cscK metric.

Remark 4.10. The converse direction has been established by [7] and [40].

As a preliminary step, we observe that the assumption K-energy being bounded
from below implies it is invariant under the action of G.

Lemma 4.11. Suppose that the K-energy is bounded from below, then the K-energy
is invariant under the action of G, i.e. K(σ.ϕ) = K(ϕ) for any ϕ ∈ H and σ ∈ G.
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Proof. We will prove this by showing the Calabi-Futaki invariant vanishes. Let
σ ∈ G, then there exists a holomorphic vector field X which generates a one-
parameter path {σ(t)}t∈R, with σ(0) = id and σ(1) = σ.

From the definition of K-energy and Calabi-Futaki invariant, we know that

d

dt

(
K(σ(t)∗ωϕ)

)
= Re

(
F(X, [ω0])

)
= a.

Here a is a constant depending only on the holomorphic vector field X and coho-
mology class of [ω0]. Since K-energy is bounded from below on the holomorphic
line {σ(t)∗ωϕ}t∈R, we must have a = 0. This implies that K(σ.ϕ) = K(ϕ). �

Theorem 4.3 will be proved by solving the following path of continuity:

(4.27) t(Rϕ −R) = (1− t)(trϕω0 − n), t ∈ [0, 1].

Let ϕ solves (4.27), then we call ωϕ to be twisted cscK metric. For t > 0, equation
(4.27) can be equivalently put as:

det(gij̄ + ϕij̄) = eF det gij̄ ,(4.28)

ΔϕF = −
(
R− 1− t

t
n
)
+ trϕ

(
Ric(ω0)−

1− t

t
ω0

)
.(4.29)

One important fact about this continuity path is that the set of solvable t is open,
more precisely,

Lemma 4.12 ([21, 56, 76]). Suppose for some 0 ≤ t0 < 1, (4.27) has a solution
ϕ ∈ C4,α(M) with t = t0, then for some δ > 0, (4.27) has a solution in C4,α(M)
for any t ∈ (t0 − δ, t0 + δ) ∩ [0, 1].

Remark 4.13. One can see by bootstrap that the solution ϕ of (4.27) (or equivalently
of (4.28), (4.29) for t > 0) is smooth if we know it’s in C4,α.

Another important fact about twisted path is that solutions to (4.27) are mini-
mizers of the twisted K-energy, defined as

(4.30) Kω0,t = tK + (1− t)Jω0
= t

∫
M

log

(
ωn
ϕ

ωn
0

)
ωn
ϕ

n!
+ J−tRic+(1−t)ω0

, t ∈ [0, 1].

First we observe that if the K-energy satisfies the assumptions of Definition 4.8,
the twisted path (4.27) is solvable for any 0 ≤ t < 1. Indeed, we have

Lemma 4.14. Suppose the K-energy is bounded from below, then (4.27) is solvable
for 0 ≤ t < 1.

Proof. In view of Theorem 4.1, we just need to verify for 0 < t0 < 1, Kω0,t0 is
proper with respect to d1. More specifically, since we know K-energy is bounded
from below, we just need to observe Jω0

is proper with respect to d1.
To see that Jω0

is proper, this follows from Proposition 22 in [36], which says
that for some δ > 0 and some C > 0, one has

Jω0
(ϕ) ≥ δJ(ϕ)− C, for any ϕ ∈ H0.

Here J is Aubin’s J-functional, defined as

J(ϕ) =

∫
M

ϕ(ωn
0 − ωn

ϕ).

It is elementary to show that J(ϕ) ≥ 1
C′ d1(0, ϕ)− C ′ for ϕ ∈ H0 (c.f. [40, Propo-

sition 5.5]). Hence we see that Jω0
is proper with respect to d1. �
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Hence to get existence of cscK, the only remaining issue is to understand what
happens as t → 1. We will handle this difficulty now. Throughout the rest of this
section, we assume the K-energy is proper with respect to d1,G, in the sense defined
by Definition 4.8.

Let ti < 1, and ti monotonically increase to 1. Denote ϕ̃i ∈ H0 to be solutions
to (4.27) with t = ti. They exist due to Lemma 4.14. First we show that for the
sequence ϕ̃i, the K-energy is uniformly bounded from above.

Lemma 4.15. Let ϕ̃i be as in previous paragraph, then we have

(4.31) Kω0,ti(ϕ̃i) = inf
H

Kω0,ti(ϕ) → inf
H

K(ϕ), as ti → 1.

Also

(4.32) K(ϕ̃i) → inf
H

K(ϕ), as ti → 1.

Proof. That Kω0,ti(ϕ̃i) = infH Kω0,ti(ϕ) follows from the convexity of the twisted
K-energy and has been proved in Corollary 4.5. By the second part of Definition
4.8, we know that infH K(ϕ) > −∞. On the other hand, let ϕε ∈ H be such that
K(ϕε) ≤ infH K(ϕ) + ε, and we know that

(4.33) lim sup
i→∞

Kω0,ti(ϕ̃i) ≤ lim sup
i→∞

Kω0,ti(ϕ
ε) = K(ϕε) ≤ inf

H
K(ϕ) + ε.

On the other hand, we also know that

(4.34) Kω0,ti(ϕ̃i) = tiK(ϕ̃i) + (1− ti)Jω0
(ϕ̃i) ≥ ti infH

K(ϕ) + (1− ti)Jω0
(0).

In the last inequality above, we used the fact that 0 is the solution to trϕω0 = n,
therefore a minimizer of Jω0

. Hence we have

(4.35) lim inf
ti→1

Kχ,ti(ϕ̃i) ≥ inf
H

K(ϕ).

From (4.33) and (4.35), (4.31) follows. To see (4.32), we observe for ti sufficiently
close to 1, we have

inf
H

K(ϕ) + ε ≥ tiK(ϕ̃i) + (1− ti)Jω0
(ϕ̃i) ≥ tiK(ϕ̃i) + (1− ti)Jω0

(0).

The first inequality follows from (4.31). Hence we have

(4.36) lim sup
ti→1

K(ϕ̃i) ≤ lim
ti→1

( 1
ti
(inf
H

K(ϕ) + ε)− 1− ti
ti

Jω0
(0)

)
≤ inf

H
K(ϕ) + ε.

From this (4.32) follows. �

As an immediate consequence of Lemma 4.15 and the properness assumption of
K-energy, we deduce

Corollary 4.16. Let ϕ̃i be as in previous lemma, we have

sup
i

d1,G(0, ϕ̃i) < ∞.

Proposition 4.17 is the key technical result from which Theorem 4.3 immediately
follows.

Proposition 4.17. Consider the continuity path (4.27). Suppose for some se-
quence ti ↗ 1, there exists a solution ϕ̃i to (4.27) with t = ti with ϕ̃i ∈ H0

and supi d1,G(0, ϕ̃i) < ∞. Let ϕi ∈ H0 be in the same G-orbit as ϕ̃i such that
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supi d1(0, ϕi) < ∞. Suppose also that K-energy is G-invariant, then {ϕi}i con-
tains a subsequence which converges in C1,α (for any 0 < α < 1) to a smooth cscK
potential.

Let σi ∈ G be such that

(4.37) sup
i

d1(0, σi.ϕ̃i) < ∞.

The existence of such a sequence σi follows from Corollary 4.16. Denote ϕi = σi.ϕ̃i.
Next we briefly explain how to obtain above proposition.

First we write down the equation satisfied by the sequence ϕi, and they turn
out to satisfy an equation in the form studied in Section 2, as shown by Lemma
4.19. Moreover, the integrability exponent p0 improves to infinity as ti approaches
1. Hence the estimates in Section 2 allow us to get uniform bounds of ϕi in W 2,p

for any p < ∞. Hence we can use compactness to take limit and we show the limit
solves a weak form of cscK equation, as shown in Proposition 4.23. Finally one
argues that this weak solution of cscK equation is actually smooth.

As a preliminary step, we show the sequence {ϕi} has uniformly bounded en-
tropy.

Lemma 4.18. Denote ϕi = σi.ϕ̃i, then we have

sup
i

∫
M

log

(
ωn
ϕi

ωn
0

)
ωn
ϕi

< ∞.

Proof. First due to the G-invariance of K-energy observed in Lemma 4.11, we have

(4.38) sup
i

K(ϕi) = sup
i

K(ϕ̃i) < ∞.

On the other hand, we know from Lemma 4.4 that

(4.39) sup
i

|J−Ric(ϕi)| ≤ sup
i

Cn|Ric|ω0
d1(0, ϕi) < ∞.

From (4.38), (4.39), and recall the formula for K-energy in (4.24), the desired
conclusion follows. �

Next we derive the equation satisfied by the sequence ϕi. We have the following
result:

Lemma 4.19. Let θi be such that σ∗
i ω0 = ωθi , with supM θi = 0. Then ϕi satisfies

the following equations:

det(gαβ̄ + (ϕi)αβ̄) = eFi det gαβ̄ ,(4.40)

Δϕi
Fi = −

(
R− 1− ti

ti
n
)
+ trϕi

(
Ric(ω0)−

1− ti
ti

ωθi

)
.(4.41)

Proof. Define eF̃i =
ωn

ϕ̃i

ωn
0
. We have the following calculations:

(4.42) σ∗
i (ω

n
ϕ̃i
) = (σ∗

i ωϕ̃i
)n = ωn

ϕi
.

On the other hand,

(4.43) σ∗
i (e

F̃iωn
0 ) = eF̃i◦σi(σ∗

i ω0)
n.

So

(4.44)
ωn
ϕi

(σ∗
i ω0)n

= eF̃i◦σi .
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Hence if we define Fi to be eFi =
ωn

ϕi

ωn
0
, so as to make sure (4.40) always holds, we

have

(4.45) Fi = F̃i ◦ σi + log

(
(σ∗

i ω0)
n

ωn
0

)
.

To see (4.41), we go back to (4.29), and note that (4.29) is equivalent to:

(4.46)
√
−1∂∂̄F̃i∧

ωn−1
ϕ̃i

(n− 1)!
= −

(
R−1− ti

ti
n
)ωn

ϕ̃i

n!
+

(
Ric(ω0)−

1− ti
ti

ω0

)
∧

ωn−1
ϕ̃i

(n− 1)!
.

Pulling back using σi, we obtain

√
−1∂∂̄(F̃i ◦ σi) ∧

ωn−1
ϕi

(n− 1)!
= −

(
R − 1− ti

ti
n
)ωn

ϕi

n!

+
(
Ric(σ∗

i ω0)−
1− ti
ti

σ∗
i ω0

)
∧

ωn−1
ϕi

(n− 1)!
.

(4.47)

Using (4.45) and recall that

√
−1∂∂̄ log

(
(σ∗

i ω0)
n

ωn
0

)
= Ric(ω0)−Ric(σ∗

i ω0),

we conclude

(√
−1∂∂̄Fi +Ric(σ∗

i ω0)− Ric(ω0)
)
∧

ωn−1
ϕi

(n− 1)!
= −

(
R− 1− ti

ti
n
)ωn

ϕi

n!

+
(
Ric(σ∗

i ω0)−
1− ti
ti

σ∗
i ω0

)
∧

ωn−1
ϕi

(n− 1)!
.

(4.48)

This is equivalent to (4.41). �
Next we would like to use the result obtained in the last section to study the

regularity of ϕi. Denote Ri = R − 1−ti
ti

n, βi = 1−ti
ti

ωθi , (β0)i = 1−ti
ti

ω0, and

fi =
1−ti
ti

θi. Then we have βi ≥ 0, and βi = (β0)i +
√
−1∂∂̄fi. Here we prove a

property about the fi which will be crucial for our proof.

Lemma 4.20. There exists a constant C26, which depends only on the background
metric ω0, such that for any p > 1, there exists εp > 0, depending only on p and
the background metric ω0, such that for any ti ∈ (1− εp, 1), one has e−fi ∈ Lp(ωn

0 )
with ||e−fi ||Lp(ωn

0 ) ≤ C26.

Proof. Since we know that ωθi = ω0 +
√
−1∂∂̄θi ≥ 0, with supM θi = 0, hence by a

result of Tian (c.f. [70, Proposition 2.1]), we know that there exists α > 0, C25.5 >
0, depending only on the background metric ω0, such that for any u ∈ C2(M),
ω0 +

√
−1∂∂̄u ≥ 0, one has

∫
M

e−α(u−supM u)dvolg ≤ C25.5.

Given p > 1, suppose ti is sufficiently close to 1 such that p 1−ti
ti

< α, then we
have

∫
M

e−pfidvolg =

∫
M

e
−p

1−ti
ti

θidvolg ≤
( ∫

M

e−αθidvolg
)p 1−ti

αti vol(M)
1− p(1−ti)

αti

≤ C
p

1−ti
αti

25.5 vol(M)
1− p(1−ti)

αti ≤ max
(
C25.5, vol(M)

)
:= C26. �

(4.49)

As an application of the estimate in Theorem 3.3, we conclude the following
uniform estimate for the sequence ϕi.
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Proposition 4.21. For any p > 1, there exists a constant C27, and ε′p > 0, such
that for any ti ∈ (1− ε′p, 1),

||Fi + fi||W 1,2p ≤ C27, ||n+Δϕi||Lp(ωn
0 ) ≤ C27.

In the above, ε′p depends only on p and background metric ω0, and C27 depends on

p, background metric ω0 and the uniform entropy bound supi
∫
M

log
(ωn

ϕi

ωn
0

)
ωn
ϕi
.

Proof. We may assume that ε′p is chosen so small such that for any ti ∈ (1− ε′p, 1),

e−fi ∈ Lq for some q ≥ κn. Such smallness depends only on n and the α-invariant
of the background metric. The result then follows from Lemma 4.20 and Theorem
3.3. �

With this preparation, we can pass to the limit. Hence we may take a subse-
quence of ϕi (without relabeled), and a function ϕ∗ ∈ W 2,p for any p < ∞, and
another function F∗ ∈ W 1,p for any p < ∞, such that

ϕi→ϕ∗ in C1,α for any 0<α<1 and
√
−1∂∂̄ϕi→

√
−1∂∂̄ϕ∗ weakly in Lp.

(4.50)

Fi + fi→F∗ in Cα for any 0<α<1 and ∇(Fi + fi)→∇F∗ weakly in Lp.(4.51)

As a result of (4.50), we have

(4.52) ωk
ϕi

→ ωk
ϕ∗ , weakly in Lp for any 1 ≤ k ≤ n and p < ∞.

Here we provide an argument(more or less standard) for this weak convergence.

Lemma 4.22. Suppose the convergence in (4.50) holds. Then for any p < ∞ and
any 1 ≤ k ≤ n,

ωk
ϕi

→ ωk
ϕ∗ weakly in Lp.

Proof. We need to show that, for any ζ, a smooth (n−k, n−k) form, the following
convergence holds:

(4.53)

∫
M

ωk
ϕi

∧ ζ →
∫
M

ωk
ϕ∗ ∧ ζ, as i → ∞.

Since ωk
ϕi

is uniformly bounded in Lp for any p < ∞, (4.53) will imply the same
convergence holds for any ζ ∈ Lq with q > 1. Now we prove (4.53) by induction in
k.

First observe that when k = 1, (4.53) follows from the weak convergence of√
−1∂∂̄ϕi.
Now assume (4.53) holds for k = l − 1, we need to show (4.53) holds for k = l.

Indeed, let ζ be a smooth (n− l, n− l) form, we have∫
M

ωl
ϕi

∧ ζ =

∫
M

ωl−1
ϕi

∧ ω0 ∧ ζ +

∫
M

ωl−1
ϕi

∧
√
−1∂∂̄ϕi ∧ ζ

=

∫
M

ωl−1
ϕi

∧ ω0 ∧ ζ −
∫
M

ωl−1
ϕi

∧ dcϕi ∧ dζ.

(4.54)

Here dc =
√
−1
2 (∂ − ∂̄). From the induction hypothesis, we know that

(4.55)

∫
M

ωl−1
ϕi

∧ ω0 ∧ ζ →
∫
M

ωl−1
ϕ∗ ∧ ω0 ∧ ζ, as i → ∞.
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On the other hand, we know from (4.50) that dcϕi → dcϕ∗ uniformly, hence dcϕi∧
dζ → dcϕ∗ ∧ dζ strongly in Lq for any q > 1. This combined with the weak
convergence of ωl−1

ϕi
is sufficient to imply

(4.56)

∫
M

ωl−1
ϕi

∧ dcϕi ∧ dζ →
∫
M

ωl−1
ϕ∗ ∧ dcϕ∗ ∧ dζ, as i → ∞.

Combining (4.54), (4.55) and (4.56), we conclude as i → ∞,

(4.57)

∫
M

ωl
ϕi

∧ ζ →
∫
M

ωl−1
ϕ∗ ∧ ω0 ∧ ζ −

∫
M

ωl−1
ϕ∗ ∧ dcϕ∗ ∧ dζ =

∫
M

ωl
ϕ∗ ∧ ζ.

This proves (4.53) for k = l and finishes the induction. �

It is crucial matter to identify the limit. Actually we will show the solution ϕ∗
is a weak solution to cscK in the following sense:

Proposition 4.23. Let ϕ∗, F∗ be the limit obtained in (4.50), (4.51). Then ϕ∗ is
a weak solution to cscK in the following sense:

(1) ωn
ϕ∗ = eF∗ωn

0 ,
(2) For any η ∈ C∞(M), we have

(4.58) −
∫
M

dcF∗ ∧ dη ∧
ωn−1
ϕ∗

(n− 1)!
=

∫
M

−ηR
ωn
ϕ∗

n!
+ ηRic ∧

ωn−1
ϕ∗

(n− 1)!
.

In the above, dc =
√
−1
2 (∂ − ∂̄).

Before we prove this proposition, we need Lemma 4.24, which shows fi → 0 in
L1. This is needed to justify (1) in the above proposition.

Lemma 4.24. Recall θi is defined as σ∗
i ω0 = ωθi with supM θi = 0. fi =

1−ti
ti

θi.
Then we have

e−fi → 1 in Lp(ωn
0 ) as ti → 1 for any p < ∞.

Proof. First we know from (4.31) that there exists εi → 0, such that

inf
H

K(ϕ) + εi ≥ Kω0,ti(ϕ̃i) = tiK(ϕ̃i) + (1− ti)Jω0
(ϕ̃i)

≥ ti infH
K(ϕ) + (1− ti)δd1(0, ϕ̃i)− (1− ti)C.

(4.59)

This implies (1 − ti)d1(0, ϕ̃i) → 0 as ti → 1. On the other hand, denote θ̃i =

θi − I(θi)
vol(M) , then we have θ̃i ∈ H0 and σi.0 = θ̃i. Also we know that G acts on H0

by isometry, hence

(4.60) d1(0, θ̃i)− d1(0, ϕi) ≤ d1(θ̃i, ϕi) = d1(σi.0, σi.ϕ̃i) = d1(0, ϕ̃i).

Since supi d1(0, ϕi) < ∞, we know (1 − ti)d1(0, θ̃i) → 0. Therefore from [38,
Theorem 5.5], we see that as ti → 1,

(1− ti)

∫
M

|θ̃i|ωn
0 ≤ (1− ti)d1(0, θ̃i) → 0.

Now we claim that

(4.61) I(θi)(1− ti) → 0, as ti → 1.

If we have shown this claim, then we will have
∫
M

|fi|ωn
0 → 0. Hence at least up

to a subsequence, we would have fi → 0 pointwise outside a measure zero set.
This would imply e−pfi → 1 outside a measure zero set. On the other hand, by
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taking p′ > p, we know supi
∫
M

e−p′fiωn
0 < ∞, we can then conclude {e−pfi}i≥1 is

equi-integrable. Then we can conclude e−pfi → 1 in L1 using standard results in
measure theory.

Hence it only remains to show the claim (4.61). Since we know that supM θi = 0,
we know that

0 ≤
∫
M

(−θi)ω
n
0 ≤ C28, C28 depends only on background metric ω0.

On the other hand,

I(θi) +

∫
M

(−θi)
ωn
0

n!
=

1

(n+ 1)!

∫
M

θi

n∑
k=0

(
ωk
0 ∧ ωn−k

θi
− ωn

0

)

=
1

(n+ 1)!

∫
M

θi
√
−1∂∂̄θi ∧

n−1∑
k=0

(n− k)ωk
θi ∧ ωn−k−1

0

≥ − n

(n+ 1)!

∫
M

√
−1∂θi ∧ ∂̄θi ∧

n−1∑
k=0

ωk
0 ∧ ωn−1−k

θi

= − n

(n+ 1)!

∫
M

θ̃i(ω
n
0 − ωn

θ̃i
) ≥ −Cd1(0, θ̃i).

(4.62)

Hence we have

0 ≥ I(θi) ≥ −C ′(1 + d1(0, θ̃i)).

From here the claim (4.61) immediately follows. �

Now we are ready to show Proposition 4.23. We will obtain this as the result of
the previous lemma

Proof of Proposition 4.23. First we show the equation (1) holds. First for each fixed
i, we have ωn

ϕi
= eFiωn

0 . (4.52) shows ω
n
ϕi

→ ωn
ϕ∗ weakly in Lp for any p < ∞. For

the convergence of the right hand side, we can write eFi = eFi+fi · e−fi . According
to (4.51), we see that Fi+fi is uniformly bounded, and converges to F∗ strongly in
Lp for p < ∞. This implies eFi+fi → eF∗ in Lp for any finite p. On the other hand,
we have just shown in Lemma 4.24 that e−fi → 1 in Lp for any p < ∞. From here
we can conclude eFi → eF∗ in Lp for p < ∞. Hence the equation (1) of Proposition
follows.

To see the second equation, first we see from (4.41) that

Δϕi
(Fi + fi) = −

(
R − 1− ti

ti
n
)
+ trϕi

(
Ric− 1− ti

ti
ω0

)
.

This implies for η ∈ C∞(M), one has∫
M

(Fi + fi)d
cdη ∧

ωn−1
ϕi

(n− 1)!

=

∫
M

−η
(
R− 1− ti

ti
n
)ωn

ϕi

n!
+ η

(
Ric− 1− ti

ti
ω0

)
∧

ωn−1
ϕi

(n− 1)!
.

(4.63)

We wish to pass to limit in (4.63) as ti → 1. First because of (4.52), we can easily
conclude:

(4.64) R.H.S. of (4.63) →
∫
M

η

(
−R

ωn
ϕ∗

n!
+Ric ∧

ωn−1
ϕ∗

(n− 1)!

)
.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



978 XIUXIONG CHEN AND JINGRUI CHENG

For the left hand side, since Fi + fi → F∗ strongly in Lp, ωn−1
ϕi

→ ωn−1
ϕ∗ weakly in

Lp for any p < ∞, we can conclude∫
M

(Fi + fi)d
cdη ∧

ωn−1
ϕi

(n− 1)!
→

∫
M

F∗d
cdη ∧

ωn−1
ϕ∗

(n− 1)!
.

Since F∗ ∈ W 1,p, we have
(4.65)

−
∫
M

dcF∗∧dη∧
ωn−1
ϕ∗

(n− 1)!
=

∫
M

F∗d
cdη∧

ωn−1
ϕ∗

(n− 1)!
=

∫
M

η

(
−R

ωn
ϕ∗

n!
+Ric∧

ωn−1
ϕ∗

(n− 1)!

)
.

�

Next we argue that ωϕ∗ is quasi-isometric to ω0.

Lemma 4.25. There exists a constant C29, such that 1
C29

ω0 ≤ ωϕ∗ ≤ C29ω0.

Proof. We know that F∗ ∈ W 1,p for any p < ∞, hence we may take Gk ∈ C∞(M),
uniformly bounded, and Gk → F∗ in W 1,p. Let ψk be the solution to ωn

ψk
= eGkωn

0

with supM ψk = 0. The result of [28, Theorem 1.1], shows that for any p < ∞, one
has

sup
k

||ψk||W 3,p < ∞.

Hence up to a subsequence, we can assume that for some ψ∗ ∈ W 3,p for any finite
p, ψk → ψ∗ in W 2,p for any finite p. Therefore ωn

ψ∗
= eF∗ωn

0 . Because of uniqueness

result of Monge-Ampère equations (c.f. [9, Theorem 1.1]), we can conclude ϕ∗ and
ψ∗ differ by a constant, hence ωϕ∗ = ωψ∗ ≤ C29ω0. That ωϕ∗ = ωψ∗ ≥ 1

C29
ω0

follows from F∗ is bounded from below. �

As a result of this, we now show that ϕ∗ is actually a smooth cscK.

Corollary 4.26. ϕ∗ is a smooth solution to cscK.

Proof. We know from the proof of Lemma 4.25 that ϕ∗ ∈ W 3,p for any p < ∞,
hence we know that ωϕ∗ ∈ Cα for any 0 < α < 1. From (4.58) and Schauder
estimate, we conclude F∗ ∈ C2,α for any 0 < α < 1. Then the higher regularity
follows from bootstrap. �

5. Regularity of weak minimizers of K-energy

Our main goal in this section is to show the minimizers of K-energy over E1 are
always smooth. The main ingredients are the continuity path as well as a priori
estimates obtained in Section 3. The strategy of the proof is somewhat different
from the usual variational problem. Indeed, the usual strategy for variational prob-
lem will be first to take some smooth variation of the minimizer, and derive an
Euler-Lagrange equation for the minimizer (in weak form). Then one works with
the Euler-Lagrange equation to obtain regularity (or partial regularity).

However, the same strategy runs into difficulty here. Indeed, an Euler-Lagrange
equation for minimizer is not a priori available, since an arbitrary smooth variation
of ϕ∗ does not necessarily preserve the condition that ωϕ ≥ 0.

To get around this difficulty, we will still use the continuity path and our argu-
ment is partly inspired from [7]. The difference here is that the properness theorem
(Theorem 4.1) plays a central role. Here we sketch the argument. Take ϕj to be
smooth approximations of ϕ∗ (in the space E1), and we solve continuity path from
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ϕj . That K-energy is bounded from below ensures the continuity path is solvable
for t < 1. We will show the existence of a minimizer ensures that for each fixed
j, L1 geodesic distance remains bounded as t → 1. Hence we can take limit as
t → 1 and obtain a cscK potential uj . Besides, such a sequence of uj will also
be uniformly bounded under L1 geodesic distance, which follows from the uniform
boundedness of ϕj under L1 geodesic distance. Our a priori estimates allow us to
take smooth limit of uj and conclude that uj → ψ smoothly and ψ is a smooth
cscK potential. The proof is then finished once we can show ψ and ϕ∗ only differ
by an additive constant.

First we show that the existence of minimizers implies existence of smooth cscK
metric.

Lemma 5.1. Suppose that for some ϕ∗ ∈ E1, we have K(ϕ∗) = infϕ∈E1 K(ϕ), then
there exists a smooth cscK in the class [ω0].

Proof. We consider the continuity path (2.9) with χ = ω0. By assumption, K-
energy over E1 is bounded from below. Therefore the twisted K-energy Kω0,t,
defined by (2.8) is proper for any 0 ≤ t < 1. Hence we may invoke Theorem 4.1
with β = 1−t

t ω0 to conclude that there exists a solution to (2.9) for any 0 < t < 1.
The only remaining issue is to see what happens in (2.9) as t → 1.

Choose ti < 1 and ti → 1, and let ϕ̃i be solutions to (2.9) with t = ti, normalized
up to an additive constant so that I(ϕ̃i) = 0. Corollary 4.5 implies that ϕ̃i is the
minimizer to Kω0,ti . Therefore we have
(5.1)
tiK(ϕ∗) + (1− ti)Jω0

(ϕ̃i) ≤ tiK(ϕ̃i) + (1− ti)Jω0
(ϕ̃i) ≤ tiK(ϕ∗) + (1− ti)Jω0

(ϕ∗).

Hence (5.1) implies that
Jω0

(ϕ̃i) ≤ Jω0
(ϕ∗).

On the other hand, we know Jω0
is proper, in the sense that Jω0

(ϕ) ≥ δd1(0, ϕ)−C,
for ϕ ∈ H0 (c.f. [36, Proposition 22]). This implies that

sup
i

d1(0, ϕ̃i) ≤
1

δ

(
C + Jω0

(ϕ∗)
)
< ∞.

Now from Lemma 4.6 we conclude that (2.9) can be solved up to t = 1, and we
obtain the existence of a cscK potential. �

The main result of [7] showed the following weak-strong uniqueness property: as
long as a smooth cscK exists in the Kähler class [ω0], all the minimizers of K-energy
over E1 are smooth cscK. Therefore, we can already conclude the following result:

Theorem 5.1. Let ϕ∗ ∈ E1 be such that K(ϕ∗) = infE1 K(ϕ). Then ϕ∗ is smooth,
and ωϕ∗ is a cscK metric.

Next we will prove a more general version of Theorem 5.1. More precisely, we
will prove:

Theorem 5.2. Let χ ≥ 0 be a closed smooth (1, 1) form. Define Kχ(ϕ) =
K(ϕ)+Jχ(ϕ), where Jχ(ϕ) is defined by (2.4). Let ϕ∗ ∈ E1 be such that Kχ(ϕ∗) =
infE1 Kχ(ϕ). Then ϕ∗ is smooth and solves the equation Rϕ −R = trϕχ− χ.

Note that one can run the same argument as in Lemma 5.1 to show once there
exists a minimizer to Kχ, there exists a smooth solution to

(5.2) Rϕ −R = trϕχ− χ.
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However, it is not clear to us whether the argument in [7] can be adapted to this case
to show a weak-strong uniqueness result. Namely if there exists a smooth solution
to Rϕ−R = trϕχ−χ, can one conclude all minimizers ofKχ are smooth? Therefore,
in the following, we will use a direct argument. This argument is motivated from
[7], but now is more straightforward because of the use of properness theorem.

Let ϕ∗ be a minimizer of Kχ. Then by [8, Lemma 1.3], we may take a sequence
of ϕj ∈ H, such that d1(ϕj , ϕ∗) → 0, and Kχ(ϕj) → Kχ(ϕ∗). Indeed, that lemma
asserts the convergence of the entropy part, but the J−Ric and Jχ are continuous
under d1 convergence, by [8, Proposition 4.4].

Since there exists a minimizer to Kχ, the functional Kχ is bounded from below.
On the other hand, for each fixed j, by [36, Proposition 22], we know that Jωϕj

is

proper. Therefore, for 0 ≤ t < 1, the twisted Kχ-energy Kχ,ωϕj
,t := tKχ + (1 −

t)Jωϕj
is proper. Hence we may invoke Theorem 4.1 to conclude there exists a

smooth solution to the equation

(5.3) t(Rϕ −R) = (1− t)(trϕωϕj
− n) + t(trϕχ− χ), for any 0 ≤ t < 1.

Denote the solution to be ϕt
j , normalized up to an additive constant so that ϕt

j ∈ H0,

namely I(ϕt
j) = 0.

Since χ ≥ 0 and closed, we know that Jχ is convex along C1,1 geodesic (though
not necessarily strictly convex). Hence the functional Kχ is convex along C1,1

geodesic. This again implies the convexity of tKχ+(1− t)Jωϕj
along C1,1 geodesic.

In particular, ϕt
j is a global minimizer of tKχ + (1− t)Jωϕj

by Corollary 4.5.

Hence we know that
(5.4)
tKχ(ϕ

t
j)+(1−t)Jωϕj

(ϕj) ≤ tKχ(ϕ
t
j)+(1−t)Jωϕj

(ϕt
j) ≤ tKχ(ϕj)+(1−t)Jωϕj

(ϕj).

The first inequality above uses that ϕj minimizes Jωϕj
. Hence

(5.5) sup
0<t<1, j

Kχ(ϕ
t
j) ≤ sup

j
Kχ(ϕj).

Next we will show that the family of solution ϕt
j are uniformly bounded in d1. First

we have
(5.6)
tKχ(ϕ

t
j)+(1−t)Jωϕj

(ϕt
j) ≤ tKχ(ϕ∗)+(1−t)Jωϕj

(ϕ∗) ≤ tKχ(ϕ
t
j)+(1−t)Jωϕj

(ϕ∗).

The first inequality follows from that ϕt
j minimizes tKχ+(1−t)Jωϕj

and the second

inequality follows since ϕ∗ minimizes Kχ. Therefore,

(5.7) Jωϕj
(ϕj) ≤ Jωϕj

(ϕt
j) ≤ Jωϕj

(ϕ∗).

The first inequality follows from that ϕj is a minimizer of Jωϕj
. The second in-

equality follows from (5.6). As a first observation, we have

Lemma 5.2. As j → ∞,

Jωϕj
(ϕ∗)− Jωϕj

(ϕj) → 0.
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Proof. We can compute

Jωϕj
(ϕ∗)− Jωϕj

(ϕj) =

∫ 1

0

d

dλ

(
Jωϕj

(λϕ∗ + (1− λ)ϕj)
)
dλ

=

∫ 1

0

dλ

∫
M

(ϕ∗ − ϕj)
ωn−1
λϕ∗+(1−λ)ϕj

∧ ωϕj
− ωn

λϕ∗+(1−λ)ϕj

(n− 1)!

=

∫ 1

0

dλ

∫
M

λ(ϕ∗ − ϕj) ∧
√
−1∂∂̄(ϕj − ϕ∗) ∧

ωn−1
λϕ∗+(1−λ)ϕj

(n− 1)!

=

∫ 1

0

dλ

∫
M

λ
√
−1∂(ϕ∗ − ϕj) ∧ ∂̄(ϕ∗ − ϕj) ∧

(λωϕ∗ + (1− λ)ωϕj
)n−1

(n− 1)!
.

(5.8)

Define

I(ϕj ,ϕ∗) =

∫
M

√
−1∂(ϕj − ϕ∗) ∧ ∂̄(ϕj − ϕ∗) ∧

n−1∑
k=0

ωk
ϕj

∧ ωn−1−k
ϕ∗

=

∫
M

(ϕj − ϕ∗)(ω
n
ϕ∗ − ωn

ϕj
).

(5.9)

Since we know d1(ϕj , ϕ∗) ≥ 1
C

∫
M

|ϕj − ϕ∗|(ωn
ϕj

+ ωn
ϕ∗) for some dimensional con-

stant C, by [38, Theorem 5.5], we have I(ϕj , ϕ∗) ≤ Cd1(ϕj , ϕ∗) → 0. On the other
hand, we have Jωϕj

(ϕ∗) − Jωϕj
(ϕj) ≤ C ′I(ϕj , ϕ∗) from (5.8) and (5.9). Hence

Jωϕj
(ϕ∗)− Jωϕj

(ϕj) ≤ C ′Cd1(ϕj , ϕ∗) → 0. �

Corollary 5.3. Let I(ϕj , ϕ
t
j) be defined similar to (5.9), then we have

sup0<t<1 I(ϕj , ϕ
t
j) → 0 as j → ∞.

Proof. From previous lemma and (5.7), we know that as j → ∞,

sup
0<t<1

Jωϕj
(ϕt

j)− Jωϕj
(ϕj) ≤ Jωϕj

(ϕ∗)− Jωϕj
(ϕj) → 0.

On the other hand, we know from (5.8), (5.9) with ϕ∗ replaced by ϕt
j , the following

estimate holds:

1

Cn
(Jωϕj

(ϕt
j)− Jωϕj

(ϕj)) ≤ I(ϕt
j , ϕj) ≤ Cn(Jωϕj

(ϕt
j)− Jωϕj

(ϕj)).

�

Next we would like to show the d1 distance of ϕt
j remains uniformly bounded.

For this we will need the following key lemma:

Lemma 5.4 ([6, Theorem 1.8 and Lemma 1.9]). There exists a dimensional con-
stant Cn, such that for any u, v, w ∈ E1, we have

I(u,w) ≤ Cn(I(u, v) + I(v, w)).

Besides, we have∫
M

√
−1∂(u−w)∧∂̄(u−w)∧ωn−1

v ≤ CnI(u,w)
1

2n−1
(
I(u, v)1−

1

2n−1 +I(w, v)1−
1

2n−1
)
.

As an immediate consequence of this lemma and Corollary 5.3, we see that:

Corollary 5.5. sup0<t<1 I(ϕ
t
j , ϕ∗) → 0 as j → ∞.
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Proof. Indeed,

I(ϕt
j , ϕ∗) ≤ Cn(I(ϕ

t
j, ϕj) + I(ϕj , ϕ∗)) ≤ Cn

(
I(ϕt

j , ϕj) + Cd1(ϕj , ϕ∗)
)
.

In the second inequality above, we again used Theorem 5.5 of [38]. �

Using Lemma 5.4, we can show the following:

Lemma 5.6. There exists a constant C, depending only on supj d1(0, ϕj), n, such
that

sup
j,0<t<1

d1(0, ϕ
t
j) ≤ C.

Proof. Denote dc =
√
−1
2 (∂ − ∂̄), and let ε > 0, we may calculate

Jω0
(ϕt

j)− Jωϕj
(ϕt

j)

=

∫ 1

0

d

dλ

(
Jω0

(λϕt
j)− Jωϕj

(λϕt
j)

)
dλ

=

∫ 1

0

∫
M

ϕt
j

(ω0 ∧ ωn−1
λϕt

j

(n− 1)!
−

ωϕj
∧ ωn−1

λϕt
j

(n− 1)!

)
dλ =

∫ 1

0

∫
M

dcϕt
j ∧ dϕj ∧

ωn−1
λϕt

j

(n− 1)!
dλ

≤ ε

∫ 1

0

∫
M

dcϕt
j ∧ dϕt

j ∧
ωn−1
λϕt

j

(n− 1)!
dλ+

1

ε

∫ 1

0

∫
M

dcϕj ∧ dϕj ∧
ωn−1
λϕt

j

(n− 1)!
dλ

≤ εCn

∫
M

dcϕt
j ∧ dϕt

j ∧
n−1∑
k=0

ωk
0 ∧ ωn−1−k

ϕt
j

+
Cn

ε

∫
M

dcϕj ∧ dϕj ∧
ωn−1

1
2ϕ

t
j

(n− 1)!

≤ εC̃nd1(0, ϕ
t
j) +

C̃n

ε
I(ϕj , 0)

1

2n−1

(
I(0,

1

2
ϕt
j)

1− 1

2n−1 + I(ϕj ,
1

2
ϕt
j)

1− 1

2n−1

)

≤ εC̃nd1(0, ϕ
t
j) +

C̃n

ε
I(0, ϕj)

1

2n−1

(
I(0,

1

2
ϕt
j)

1− 1

2n−1

+DnI(0, ϕj)
1− 1

2n−1 +DnI(0,
1

2
ϕt
j)

1− 1

2n−1

)

≤ εC̃nd1(0, ϕ
t
j) + εI(0,

1

2
ϕt
j) + ε−2n+1

(
C̃n(1 +Dn)

)2n−1

I(0, ϕj).

(5.10)

In the first line above, we used that Jω0
(0) = Jωϕj

(0) = 0, which follows from (2.4).

We used the second inequality of Lemma 5.4 in the passage from the 5th line to 6th
line, and the first inequality in the passage from 6th line to 7th line. In the passage
from 7th line to the last line, we used Young’s inequality. Next observe that

I(0,
1

2
ϕt
j) =

∫
M

√
−1∂

(1
2
ϕt
j

)
∧ ∂̄

(1
2
ϕt
j

)
∧

n−1∑
k=0

ωk
1
2ϕ

t
j
∧ ωn−1−k

0

=

∫
M

√
−1∂

(1
2
ϕt
j

)
∧ ∂̄

(1
2
ϕt
j

)
∧

n−1∑
k=0

1

2k
(ω0 + ωϕt

j
)k ∧ ωn−1−k

0

≤ Cn

∫
M

√
−1∂ϕt

j ∧ ∂̄ϕt
j ∧

n−1∑
k=0

ωk
0 ∧ ωn−1−k

ϕt
j

= Cn

∫
M

ϕt
j(ω

n
0 − ωn

ϕt
j
)

≤ C̃nd1(0, ϕ
t
j).

(5.11)
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Hence we obtain

Jω0
(ϕt

j) ≤ Jωϕj
(ϕt

j) + εC̃nd1(0, ϕ
t
j) + 2ε−2n+1

(
C̃n(1 +Dn)

)2n−1

I(0, ϕj).(5.12)

On the other hand, since we know Jω0
is proper in the following sense:

Jω0
(ϕ) ≥ δd1(0, ϕ)− C, ϕ ∈ H0.

Choose ε small enough so that

2εC̃n ≤ δ

2
.

Hence we obtain from (5.12) that

(5.13) d1(0, ϕ
t
j) ≤

2

δ

(
Jωϕj

(ϕt
j) + ε−2n+1

(
C̃n(1 +Dn)

)2n−1

I(0, ϕj) + C
)
.

Since we know that I(0, ϕj) ≤ Cd1(0, ϕj), and d1(0, ϕj) is uniformly bounded, it
only remains to find an upper bound for Jωϕj

(ϕt
j). In order to bound Jωϕj

(ϕt
j)

from above, we just need to find an upper bound for Jωϕj
(ϕ∗) thanks to (5.7). For

this we can write:

Jωϕj
(ϕ∗) =

∫ 1

0

dλ

∫
M

ϕ∗

(
ωn−1
λϕ∗

∧ ωϕj

(n− 1)!
−

ωn
λϕ∗

(n− 1)!

)

≤
∫ 1

0

dλ

∫
M

ϕ∗
√
−1∂∂̄(ϕj − λϕ∗) ∧

ωn−1
λϕ∗

(n− 1)!

=

∫ 1

0

dλ

∫
M

λdcϕ∗ ∧ dϕ∗ ∧
ωn−1
λϕ∗

(n− 1)!
−

∫ 1

0

dλ

∫
M

dcϕ∗ ∧ dϕj ∧
ωn−1
λϕ∗

(n− 1)!
.

(5.14)

In the above, dc =
√
−1
2 (∂ − ∂̄), hence dcd =

√
−1∂∂̄. For the first term above, it

can be bounded in the following way:
(5.15)∫ 1

0

dλ

∫
M

λdcϕ∗∧dϕ∗∧
ωn−1
λϕ∗

(n− 1)!
≤

∫
M

dcϕ∗∧dϕ∗∧
n−1∑
k=0

ωk
0 ∧ωn−1−k

ϕ∗ ≤ Cd1(0, ϕ∗).

For the second term on the right hand side of (5.14),

−
∫ 1

0

dλ

∫
M

dcϕ∗ ∧ dϕj ∧
ωn−1
λϕ∗

(n− 1)!
≤ 1

2

∫ 1

0

dλ

∫
M

dcϕ∗ ∧ dϕ∗ ∧
ωn−1
λϕ∗

(n− 1)!

+
1

2

∫ 1

0

dλ

∫
M

dcϕj ∧ dϕj ∧
ωn−1
λϕ∗

(n− 1)!
.

(5.16)
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The first term above can be estimated in the same way as in (5.15). For the second
term above, we have∫ 1

0

dλ

∫
M

√
−1∂ϕj ∧ ∂̄ϕj ∧

ωn−1
λϕ∗

(n− 1)!

≤ Cn

∫
M

√
−1∂ϕj ∧ ∂̄ϕj ∧

ωn−1
1
2ϕ∗

(n− 1)!

≤ CnI(0, ϕj)
1

2n−1

(
I(0,

1

2
ϕ∗)

1− 1

2n−1 + I(ϕj ,
1

2
ϕ∗)

1− 1

2n−1

)

≤ CnI(0, ϕj)
1

2n−1

(
I(0,

1

2
ϕ∗)

1− 1

2n−1 +DnI(0, ϕj)
1− 1

2n−1

+DnI(0,
1

2
ϕ∗)

1− 1

2n−1

)
.

(5.17)

By [38, Theorem 5.5], I(0, ϕj) is controlled by d1(0, ϕj) and the calculation in (5.11)
shows that I(0, 1

2ϕ∗) can be controlled in terms of d1(0, ϕ∗) respectively. �

Next we are ready to pass to limit. From sup0<t<1 d1(0, ϕ
t
j) < ∞, we may

conclude that supj, 0<t<1 |J−Ric(ϕ
t
j)| < ∞ and supj,0<t<1 |Jχ(ϕt

j)| < ∞ by Lemma

4.4. By (5.5) and our definition of Kχ, we know that supj,t
∫
M

log
(ωn

ϕt
j

ωn
0

)
ωn
ϕt

j
< ∞.

Hence we may use Lemma 4.3 (the same argument works for Kχ) to conclude that
up to a subsequence of t, ϕt

j → uj as t → 1 and uj solves (5.2) for each j with
I(uj) = 0. This convergence is smooth convergence due to our previous estimates.
Again due to the last lemma, we have supj d1(0, uj) ≤ supj,t d1(0, ϕ

t
j) ≤ C for

some fixed constant C depending only on n and supj d1(0, ϕj). Hence we may
again assume that up to a subsequence of j, uj → ψ smoothly as j → ∞ and ψ
is a smooth solution to (5.3). To finish the proof that ϕ∗ is smooth, we just need
Lemma 5.7:

Lemma 5.7. ϕ∗ and ψ differ by an additive constant.

Proof. By taking limit as t → 1, we can conclude from Corollary 5.5 that I(uj , ϕ∗)
→ 0 as j → ∞. On the other hand, since uj → ψ smoothly, we have I(uj , ψ) → 0
as j → ∞. Hence

I(ϕ∗, ψ) ≤ Cn(I(uj , ϕ∗) + I(uj , ψ)) → 0, as j → ∞.

That is, I(ϕ∗, ψ) = 0. On the other hand, from Lemma 5.8, we know ϕ∗ ∈ H1(M)
and

I(ϕ∗, ψ) ≥
∫
M

|∇ψ(ϕ∗ − ψ)|2ψωn
ψ.

Therefore ψ and ϕ∗ differ only up to a constant. �

In the above lemma, we used the following fact.

Lemma 5.8. Let ϕ ∈ E1, then ϕ ∈ H1(M,ωn
0 ). Moreover, for any ψ ∈ H, we have

(5.18) I(ϕ, ψ) ≥
∫
M

|∇ψ(ϕ− ψ)|2ψωn
ψ.

In the above, |∇ψ(ϕ− ψ)|2ψ = gij̄ψ (ϕ− ψ)i(ϕ− ψ)j̄.
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Proof. First we assume that both ϕ, ψ ∈ H. Then we know that

I(ϕ, ψ) =

∫
M

(ϕ− ψ)(ωn
ψ − ωn

ϕ)

=

∫
M

dc(ϕ− ψ) ∧ d(ϕ− ψ) ∧
n−1∑
k=0

ωk
ϕ ∧ ωn−1−k

ψ

≥
∫
M

dc(ϕ− ψ) ∧ d(ϕ− ψ) ∧ ωn−1
ψ =

∫
M

|∇ψ(ϕ− ψ)|2ψωn
ψ.

So (5.18) holds as long as ϕ ∈ H. If ϕ ∈ E1, then we can find a sequence φj ∈ H,
such that φj decreases pointwisely to ϕ. Such approximation is possible due to the
main result of [10]. Also due to Lemma 4.3 of [38], we know that d1(φj , ϕ) → 0.
This implies that I(φj , ψ) → I(φ, ψ).

Since (5.18) holds with ϕ replaced by ϕj , we see that

(5.19)

∫
M

|∇ψ(φj − ψ)|2ψωn
ψ ≤ I(φj , ψ) → I(ϕ, ψ).

From supj d1(0, φj) < ∞, we know that supj
∫
M

|φj |dvolg < ∞. Now (5.19) shows

φj is uniformly bounded in H1(M,ωn
ψ). Hence we can find a subsequence of φj

which converges weakly in H1(M,ωn
ψ), strongly in L2(M,ωn

ψ). Clearly this limit

must be ϕ. This shows ϕ ∈ H1(M,ωn
ψ), hence also in H1(M,ωn

0 ). Also we can

conclude from (5.19) that∫
M

|∇ψ(ϕ− ψ)|2ψωn
ψ ≤ lim inf

j→∞

∫
M

|∇ψ(φj − ψ)|2ωn
ψ ≤ lim inf

j
I(φj , ψ) = I(ϕ, ψ).

�

6. Geodesic stability and existence of cscK (Aut0(M,J) = 0)

In this section, we prove Theorem 1.2. Similar to the definition of H0, we define

E1
0 = E1 ∩ {u : I(u) = 0}.

Here I(u) for u ∈ E1 is understood as the continuous extension of the functional
I from H to E1. This is possible because of Proposition 4.1 in [8]. Also we notice
that for any u0, u1 ∈ E1

0 , the finite energy geodesic segment (defined by Theorem
2.2) [0, 1] � t → E1 will actually lie in E1

0 . This follows from the fact that the I
functional is affine on C1,1 geodesics and I can be continuously extended to the
space E1. As before, β ≥ 0 is a smooth closed (1, 1) form.

First we note that when Aut0(M,J) = 0 the notion of geodesic stability given
by Definition 1.5 simplifies to (since the second alternative in Definition 1.5 does
not happen when Aut0(M,J) = 0):

Definition 6.1. Let φ0 ∈ E1
0 be such that K(φ0) < ∞. We say (M, [ω0]) is geodesic

stable at φ0 if for any locally finite energy geodesic ray ρ : [0,∞) → E1
0 with unit

speed, one has �(ρ) > 0.

We will first prove the following result in this section, which covers Theorem 1.2
when Aut0(M,J) = 0.

Theorem 6.1. Suppose that either

(1) β > 0 everywhere; or
(2) β = 0 everywhere and Aut0(M,J) = 0.
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Then the following statements are equivalent:

(1) There exists no twisted cscK metric with respect to β in H0.
(2) There is an infinite geodesic ray ρt with locally finite energy with K(ρ(0)) <

∞, t ∈ [0,∞) in E1
0 , such that the functional Kβ is non-increasing along

the ray.
(3) For any φ ∈ E1

0 with K(φ) < ∞, there is a locally finite energy geodesic ray
starting at φ, such that the functional Kβ is non-increasing along the ray.

In the case β > 0, then from (1) one can additionally conclude Kβ is strictly
decreasing in (2) and (3) above.

Definition 6.2. Let [0,∞) � t → ut ∈ E1 be a continuous curve. Then we say ut

is an infinite geodesic ray with locally finite energy, if the following hold:

(1) d1(ut, us) = c|t− s| for some constant c > 0 and any s, t ∈ [0,∞).
(2) For any K > 0, [0,K] � t → ut is a finite energy geodesic segment in the

sense defined by Theorem 2.2.

Remark 6.3. Observe that the implication (3) ⇒ (2) is trivial. (2) ⇒ (1) follows
from Theorem 4.2, which is already proved in [7, 8]. We will use our a priori
estimates and the continuity path (2.9) to resolve the implication (1) ⇒ (3). We
are partly motivated from arguments in the proof of Theorem 6.5 of [8].

Next we observe Lemma 6.4:

Lemma 6.4. Consider the continuity path (2.12). Suppose there is no twisted cscK
metric with respect to β in Kähler class [ω0]. Denote t∗ = supS, where the set S is
defined in (4.1). Let S � ti ↗ t∗. Denote ϕi to be the solution to (2.9) with t = ti,
normalized so that I(ϕi) = 0. Then we have supi d1(0, ϕi) = ∞.

Proof. Suppose otherwise, then supi d1(0, ϕi) < ∞. We can apply Lemma 4.6 to
conclude t∗ ∈ S. If t∗ < 1, then we conclude from Lemma 2.1 that t∗ + δ′ ∈ S for
some δ′ > 0 sufficiently small. This contradicts t∗ = supS. If t∗ = 1, then 1 ∈ S.
But this will contradict our assumption that there is no cscK metric in [ω0]. In
either case, the contradiction shows one cannot have supi d1(0, ϕi) < ∞. �

With the help of above lemma, we are ready to prove (1) ⇒ (3) in Theorem 6.1.

Lemma 6.5. In Theorem 6.1, item (1) implies item (3).

Proof. Let ϕi be as in Lemma 6.4, we know that supi d1(0, ϕi) = ∞. Hence we may
take a subsequence ϕij , such that d1(0, ϕij ) ↗ ∞. We will construct a geodesic ray
as described in Theorem 6.1, point (2) out of this subsequence ϕij . For simplicity,
we will still denote this subsequence by ϕi.

By Theorem 2.2, there exists a unit speed finite energy d1-geodesic segment
connecting φ and ϕi, such that the functional I is affine on the segment. Indeed,
one can check I is affine on C1,1 geodesic and the extension to d1-geodesic follows
from continuity of the functional I (c.f. [8, Proposition 4.1]).

Denote this geodesic by ci : [0, d1(φ, ϕi)] → E1. Since I(φ) = I(ϕi) = 0, we know
I = 0 on ci. In other words, ci : [0, d1(φ, ϕi)] → E1

0 . As noted in (4.12), we have

sup
i

(
tiKβ + (1− ti)Jω0

)
(ϕi) ≤ max(Kβ(0), Jω0

(0)).
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On the other hand, since the functional Jω0
is convex along C1,1 geodesic, and we

know 0 is a critical point of Jω0
, we see that

(6.1) Jω0
(ϕi) ≥ Jω0

(0).

Therefore

(6.2) Kβ(ϕi) ≤
max(Kβ(0), Jω0

(0))− (1− ti)Jω0
(0)

ti
≤ C.

Hence from the convexity of Kβ-energy as remarked before, we obtain for any
l ∈ [0, d1(φ, ϕi)],

(6.3) Kβ(c
i(l)) ≤ (1− l

d1(φ, ϕi)
)Kβ(φ) +

l

d1(φ, ϕi)
Kβ(ϕi) ≤ max(Kβ(φ), C).

Therefore, for each fixed l, if we consider the sequence {ci(l)}d1(φ,ϕi)≥l ⊂ E1, it

satisfies the assumption in Lemma 2.5. Indeed, d1(φ, c
i(l)) = l, ∀i, which implies

supi |Jβ(ci(l))| uniformly bounded for fixed l (by Lemma 4.4). Therefore, we have
K-energy is uniformly bounded and we may apply Lemma 2.5.

Hence we may take a subsequence cij (l), such that cij (l) → c∞(l) for some
element c∞(l) ∈ E1 as j → ∞. Since the functional I is continuous under d1 con-
vergence, we obtain c∞(l) ∈ E1

0 as well. Clearly we may apply this argument to each
l ∈ Q, then by Cantor’s diagonal sequence argument, we can take a subsequence of
ϕi, denoted by ϕij , such that

(6.4) cij (l) → c∞(l) in d1, as j → ∞, for any l ∈ Q.

Since cij are unit speed geodesic segment, we see that for any r, s ∈ Q, with
0 ≤ r, s ≤ d1(φ, ϕij ), we have d1(c

ij (r), cij (s)) = |r − s|. Sending j → ∞ gives

(6.5) d1(c
∞(r), c∞(s)) = |r − s|, for any 0 ≤ r, s ∈ Q.

We can then define c∞(r) for all r ∈ R by requiring c∞(r) = d1 −
limrk∈Q,rk→r c

∞(rk). From property (6.5) it is easy to see this is well defined,
i.e., the said limit exists and does not depend on our choice of sequence rk. Hence
[0,∞) � r → c∞(r) is a unit speed geodesic ray in E1

0 . Besides, if we apply
Proposition 2.4 to [0, rk] for any rk > 0, rk ∈ Q, we know cij (r) → uk(r) for any
r ∈ [0, rk]. Here [0, rk] � r → uk(r) is the finite energy geodesic segment connect-
ing φ and c∞(rk). Hence we know c∞(r) = uk(r) for any r ∈ [0, rk] ∩Q, by (6.4).
Therefore c∞(r) = uk(r) for any r ∈ [0, rk] by density. Therefore, we have shown
c∞|[0,d1(φ,c∞(r))] is the finite energy geodesic segment connecting φ and c∞(r) for
r ∈ Q. It is easy to extend this to all r ∈ R+ by rescaling in time and apply
Proposition 2.4 again.

We can now invoke Theorem 4.7, Proposition 4.5 of [8] to conclude r �−→
K(c∞(r)), r �−→ Jβ(c

∞(r)) is convex. Hence r �−→ Kβ(c
∞(r)) is convex as well.

Now from the lower semi-continuity of Kβ-energy under d1-convergence, we ob-
tain from (6.3) that

(6.6) Kβ(c
∞(r)) ≤ lim inf

j→∞
Kβ(c

ij (r)) ≤ max(Kβ(φ), C), for all r ∈ Q.

Using the lower semi-continuity again, we deduce

(6.7) Kβ(c
∞(r)) ≤ lim inf

k→∞
Kβ(c

∞(rk)) ≤ max(Kβ(φ), C).

Therefore, (0,∞) � r �−→ Kβ(c
∞(r)) is both convex and bounded, this forces

Kβ-energy must be decreasing along c∞.
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To see the “in addition” part, if Kβ is not strictly decreasing, then from the
convexity of r �−→ Kβ(c

∞(r)), we can conclude that for some r0 > 0, Kβ(c
∞(r))

remains a constant for r ≥ r0. Since bothK and Jβ are convex, we know Jβ remains
linear for r ≥ r0. Now [8, Theorem 4.12], shows c∞(r1) = c∞(rr) + const for any
r1, r2 ≥ r0. Because of the normalization I(c∞(r)) = 0, we know c∞(r1) = c∞(r2)
for any r1, r2 ≥ r0. But this contradicts d1(c

∞(r1), c
∞(r2)) = |r1 − r2| for any

r1, r2 ≥ 0. �
Finally, the implication (2) ⇒ (1) follows immediately from Theorem 4.2.

Proof. Suppose otherwise, namely there exists a twisted cscK metric with respect
to β in H0, denoted by ϕβ. Then we can conclude from Theorem 4.2 that the
twisted K-energy Kβ is proper. In particular, Kβ → +∞ along any locally finite
energy geodesic ray. This contradicts the assumption in (2). �

We can deduce the following immediate consequence of Theorem 6.1.

Corollary 6.6. Let 0 < t0 < 1, and let χ be a Kähler form. Then the following
statements are equivalent:

(1) There is no twisted cscK metric with t = t0 in H0 (i.e. solves (2.9) with
t = t0).

(2) There is an infinite geodesic ray ρt of locally finite energy, t ∈ [0,∞) in E1
0 ,

such that the twisted K-energy Kχ,t0 (defined by (2.8)) is strictly decreasing
along the ray.

(3) For any φ ∈ E1
0 with K(φ) < ∞, there is a locally finite energy geodesic

ray starting at φ, such that the twisted K-energy Kχ,t0 (defined by (2.8))
is strictly decreasing along the ray.

Also we can show Theorem 1.2 as a consequence (in the special case ofAut0(M,J)
= 0, so that geodesic stability reduces to Definition 6.1).

Proof of Theorem 1.2 when Aut0(M,J) = 0. First we prove the necessary part.
Assume (M, [ω0]) admits a cscK metric. Let ϕ0 be the corresponding cscK po-
tential. Recall we have shown in the proof of Theorem 4.2 (the direction ex-
istence implies properness) that for all ψ ∈ E1

0 , with d1(ψ, ϕ0) ≥ 1, one has
K(ψ) ≥ εd1(ψ, ϕ0) + K(ϕ0). Let φ ∈ E1

0 and ρ : [0,∞) � t �→ E1
0 be a locally

finite energy geodesic ray initiating from φ. We can assume ρ(t) has unit speed.
Then as long as d1(ρ(t), ϕ0) ≥ 1, one has

K(ρ(t))−K(φ)

t
≥ εd1(ρ(t), ϕ0) +K(ϕ0)−K(φ)

t

≥ εd1(ρ(t), φ)− εd1(φ, ϕ0) +K(ϕ0)−K(φ)

t

= ε− εd1(φ, ϕ0)−K(ϕ0) +K(φ)

t
.

(6.8)

This implies

lim
t→∞

inf
K(ρ(t))−K(φ)

t
≥ ε.

In particular this means �([ρ]) ≥ ε. Thus, (M, [ω0]) is geodesic stable.
Now we want to show the converse. We assume (M, [ω0]) is geodesic stable and

we want to prove that there is a cscK metric in the Kähler class. Suppose otherwise,
then according to Theorem 6.1 with β = 0, point (3), we know that there exists
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a locally finite energy geodesic ray ρ : [0,∞) � t �→ E1
0 , initiating from φ ∈ E1

0

with K(φ) < ∞, such that the K-energy is non-increasing. It is clear that for
this geodesic ray, one has �([ρ]) ≤ 0. This contradicts the assumption of geodesic
stability at ϕ. This finishes the proof. �

7. Geodesic stability and existence of cscK (general case)

In this section, we show that geodesic stability in the sense of Definition 1.5 is
equivalent to the existence of cscK, when Aut0(M,J) 
= 0. As before, we denote
G = Aut0(M,J). The main result we will prove in this section is:

Theorem 7.1. The following statements are equivalent:

(1) The Kähler class [ω0] admits a cscK metric.
(2) There exists φ0 ∈ E1

0 with K(φ0) < ∞, such that (M, [ω0]) is geodesic stable
at φ0.

(3) (M, [ω0]) is geodesic stable.

Here geodesic stability is defined as in Definition 1.5. Observe that the impli-
cation (3) ⇒ (2) is trivial. Therefore we will focus on the implications (2) ⇒ (1)
and (1) ⇒ (3). First we show the implication (2) ⇒ (1). As a preliminary step, we
observe that (2) implies that K-energy is invariant under G.

Lemma 7.1. If (M, [ω0]) is geodesic semistable at φ0, in particular, if (2) of
Theorem 7.1 holds, then the K-energy is invariant under G.

Proof. Let σ ∈ G, and let ϕ ∈ H0, we need to check K(ϕ) = K(σ.ϕ). Here σ.ϕ
is defined as in the beginning of Section 3. We will prove the desired result by
showing that the Calabi-Futaki invariant must vanish. To see why this implies our
result, let X be a holomorphic vector field and {σ(t)}t∈R be the one-parameter
family of holomorphic transformation generated by Re(X), such that σ lies inside
the one-parameter subgroup {σ(t)}t∈R. Define ϕt := σ(t).ϕ ∈ H0. Then for any
t ∈ R we have
(7.1)

dK(ϕt)

dt
=

∫
M

∂tϕ(R−Rϕ)dvolϕ = −
∫
M

Re(X)(ξ)dvolϕ = −Re
(
F(X, [ω0])

)
.

In the above, ξ is a function chosen so that Δϕξ = Rϕ − R. F(X, [ω0]) is the
Calabi-Futaki invariant which depends only on X and Kähler class [ω0]. So the
right hand side of (7.1) is a constant. Our result immediately follows as long as we
can show Claim 7.2:

Claim 7.2.
d

dt
(K(ϕt)) = 0.

To see the claim, we can assume that d
dt (K(ϕt)) := a < 0, and consider the holo-

morphic ray {ϕt}t∈[0,∞). If instead we have a > 0, we can consider the holomorphic
ray {ϕt}t∈(−∞,0], and the same argument below applies.

First we show that d1(ϕ, ϕt) → ∞ as t → ∞. Indeed, we know that K(ϕt) =
K(ϕ)+at ≤ K(ϕ). If there exists a sequence of tk → ∞, such that supk d1(ϕ, ϕtk) <
∞, then we may apply [6, Theorem 2.17], or [8, Corollary 4.8], to conclude that there
exists a subsequence tkl

, and ϕ0 ∈ E1, such that d1(ϕtkl
, ϕ0) → 0. But then from

the lower semicontinuity of K-energy, we know that K(ϕ0) ≤ lim inf l→∞ K(ϕtkl
) =

−∞. This is a contradiction.
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Besides, we also have d1(ϕ, ϕt) ≤ Ct for some C > 0. Indeed, if denote θ =
∂tϕ|t=0, then ∂tϕ(t) = θ(σ(t)). To see this, fix t0 > 0, we can compute

d

dt

(
σ(t)∗ωϕ

)
|t=t0 =

√
−1∂∂̄

(
∂tϕ|t=t0

)
=

d

dt
σ(t0)

∗(σ(t)∗ωϕ

)
|t=0 = σ(t0)

∗(
√
−1∂∂̄θ)

=
√
−1∂∂̄

(
θ ◦ σ(t0)

)
.

Hence ∂tϕ|t=t0 = θ ◦ σ(t0) + h(t0), for some function h, with h(0) = 0. Then from
the normalization I(ϕt) = 0, we get

0=
d

dt
I(ϕt)=

∫
M

∂tϕ
ωn
ϕt

n!
=

∫
M

(
θ ◦ σ(t) + h(t)

)
σ(t)∗

(
ωn
ϕ

n!

)
=

∫
M

θ
ωn
ϕ

n!
+ h(t)vol(M).

Since h(0) = 0, we have
∫
M

θ
ωn

ϕ

n! = 0, which implies h(t) = 0 for all t. But then

d1(ϕ, ϕτ ) ≤
∫ τ

0

∫
M

|∂tϕ(t)|
ωn
ϕt

n!
dt = τ

∫
M

|θ|
ωn
ϕ

n!
.

Let tk ↗ ∞ and let ρk(s) : [0, d1(φ0, ϕtk)] → E1
0 be the unit speed finite energy

geodesic connecting φ0 and ϕtk . Using the convexity of K-energy along ρk (c.f.
[4]), we know that for any s ∈ [0, d1(φ0, ϕtk)],

K(ρk(s)) ≤
(
1− s

d1(φ0, ϕtk)

)
K(φ0) +

s

d1(φ0, ϕtk)
K(ϕtk)

=
(
1− s

d1(φ0, ϕtk)

)
K(φ0) +

s(K(ϕ) + atk)

d1(φ0, ϕtk)

≤ max(K(φ0),K(ϕ)) +
satk

d1(φ0, ϕtk)

≤ max(K(φ0),K(ϕ)) +
satk

d1(ϕ, ϕtk) + d1(φ0, ϕ)

≤ max(K(φ0),K(ϕ)) +
satk

Ctk + d1(φ0, ϕ)
.

(7.2)

In the first line of (7.2), we used the convexity of K-energy along ρk. From the
first to the second line, we used that K(ϕtk) = K(ϕ) + tka. From the third to the
fourth line, we used triangle inequality for d1 and also a < 0. From the fourth line
to the last line, we used d1(ϕ, ϕtk) ≤ Ctk.

In particular, for each fixed s, the K-energy is bounded from above, uniform in
k. Hence we can use the compactness result [8, Corollary 4.8], to conclude there
exists a subsequence ρkl

(s) which converges under d1 distance. Then we may apply
the same argument as in the proof of (1) ⇒ (3) in Theorem 6.1 to conclude there
exists a subsequence kl, such that for all s ≥ 0, ρkl

(s) converges under d1 distance.
And the limit, denoted as ρ∞(s), is a unit speed locally finite energy geodesic ray
initiating from φ0. Using the lower semicontinuity of K-energy, we obtain from
(7.2):

K(ρ∞(s)) ≤ lim inf
l
K(ρkl

(s)) ≤ max(K(ϕ),K(φ0)) +
sa

C
.

Hence we get

�[ρ∞] = lim
s→∞

K(ρ(s))

s
≤ a

C
< 0.

This contradicts the geodesic semi-stability. �

As a preliminary step, we show that (2) implies K-energy is bounded from below.
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Proposition 7.3. Under the assumption of point (2) of Theorem 7.1, we have that
K-energy is bounded from below.

Proof. Suppose otherwise, then there exists a sequence of potentials ϕ̃i ∈ E1
0 , such

that K(ϕ̃i) → −∞. We can choose σi ∈ G, such that for ϕi := σi.ϕ̃i ∈ E1
0 , we have

d1,G(φ0, ϕ̃i) ≤ d1(φ0, ϕi) ≤ d1,G(φ0, ϕ̃i) + 1. Because we have shown K-energy is
invariant under G, we know K(ϕi) → −∞ as well. Next we distinguish two cases
and we show there is contradiction in both cases.

(1) supi d1(φ0, ϕi) < ∞. We can invoke [6, Theorem 2.17], or [8, Corollary 4.8], to

conclude that there exists a subsequence ϕik
d1→ ψ ∈ E1. Because of lower semicon-

tinuity of K-energy (c.f. [8, Theorem 4.7]), we see that K(ψ) ≤ lim infik K(ϕik) =
−∞. This is not possible.

(2) supi d1(φ0, ϕi) = ∞. Without loss of generality, we can assume d1(φ0, ϕi) →
∞. Let ρi : [0, d1(φ0, ϕi)] → E1

0 be unit speed geodesic segment connecting φ0 with
ϕi. Since K-energy is convex along ρi (c.f. [8, Theorem 4.7]), we conclude that for
any t ∈ [0, d1(φ0, ϕi)],

(7.3) K(ρi(t)) ≤ (1− t

d1(φ0, ϕi)
)K(φ0)+

t

d1(φ0, ϕi)
K(ϕi) ≤ max(K(φ0),K(ϕi)).

Hence for each fixed t > 0, we may apply [8, Corollary 4.8] to conclude there
exists a subsequence, denoted as ik, such that ρik(t) converges under d1. Repeating
the argument of Lemma 6.5, one can actually conclude it is possible to take a
subsequence ik, such that ρik(t) converges for all t ∈ R, and the limit ρ∞(t) is
a unit speed locally finite energy geodesic ray (first use Cantor’s process to get a
subsequence which converges for all t ∈ Q, then use geodesic property to extend
to t ∈ R). Also because of lower semicontinuity of K-energy and (7.3), we actually
have K-energy is uniformly bounded from above on ρ∞. Due to convexity, the
alternative (1) in Definition 1.5 cannot hold for ρ∞. Hence ρ∞ must be in the second
alternative, which means ρ∞ is parallel to a geodesic ray ρ′, which is generated from
a holomorphic vector field. This implies ρ∞ is d1,G bounded. Indeed, for any t > 0,

d1,G(ρ∞(0), ρ∞(t)) ≤ d1,G(ρ∞(0), ρ′(0)) + d1,G(ρ
′(0), ρ′(t)) + d1,G(ρ

′(t), ρ∞(t))

≤ d1(ρ∞(0), ρ′(0)) + sup
t>0

d1(ρ
′(t), ρ∞(t)).

In the above, note that d1,G(ρ
′(0), ρ′(t)) = 0 since ρ′ is generated from a one-

parameter family of holomorphic automorphism. Also we have supt>0 d1(ρ
′(t),

ρ∞(t)) < ∞ since ρ′ and ρ∞ are parallel.
On the other hand, due to Lemma 7.4, we know that d1,G(ρi(t), φ0) ≥ t− 1, for

any t ∈ [1, d1(φ0, ϕi)]. Therefore,

d1,G(ρ∞(t), φ0) ≥ d1,G(ρi(t), φ0)− d1,G(ρi(t), ρ∞(t)) ≥ t− 1− d1(ρi(t), ρ∞(t))

→ t− 1, as i → ∞.

This contradicts that ρ∞ is d1,G bounded. �

Above proof involves the use of Lemma 7.4:

Lemma 7.4. Let ϕ, ψ ∈ E1
0 . Suppose that for some ε > 0, we have d1(ϕ, ψ) ≤

d1,G(ϕ, ψ) + ε. Let ρ : [0,K] → E1
0 be a finite energy geodesic connecting ϕ and ψ,

then we have d1,G(ϕ, ρ(t)) ≥ d1(ϕ, ρ(t))− ε.
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Proof. Let σ ∈ G be arbitrary, we need to show

(7.4) d1(ϕ, σ.ρ(t)) ≥ d1(ϕ, ρ(t))− ε.

Indeed,

d1,G(ϕ, ψ) ≤ d1(ϕ, σ.ψ) ≤ d1(ϕ, σ.ρ(t)) + d1(σ.ρ(t), σ.ψ)

= d1(ϕ, σ.ρ(t)) + d1(ρ(t), ψ) = d1(ϕ, σ.ρ(t)) + d1(ϕ, ψ)− d1(ϕ, ρ(t))

≤ d1(ϕ, σ.ρ(t)) + d1,G(ϕ, ψ) + ε− d1(ϕ, ρ(t)).

In the first equality of the second line, we use that G is d1-isometry. In the second
equality, we use that ρ(t) is a geodesic. In the last inequality, we use our assumption.
(7.4) immediately follows from this calculation. �

With this preparation, we are ready to prove (2) ⇒ (1).

Proof. Consider the continuity path (4.27). Since we have shown K-energy is
bounded from below, we know from Lemma 4.14 to conclude that (4.27) can
be solved for any t < 1 (This follows from the properness of twisted K-energy
tK + (1− t)Jω0

.)
Let ti ↗ 1, and let ϕ̃i be solution to (4.27). We distinguish two cases:
(1) supi d1,G(φ0, ϕ̃i) < ∞. Since we have shown K-energy is invariant under the

action of G in Lemma 7.1, Proposition 4.17 applies and we are done.
(2) supi d1,G(φ0, ϕ̃i) = ∞. We will show contradiction occurs in this case. With-

out loss of generality, we may assume d1,G(φ0, ϕ̃i) → ∞. We may find σi ∈ G, such
that for ϕi = σi.ϕ̃i, we have d1,G(φ0, ϕ̃i) ≤ d1(φ0, ϕi) ≤ d1,G(φ0, ϕ̃i) + 1. From
Lemma 4.15, we know that in particular supi K(ϕ̃i) < ∞. From G-invariance of K-
energy, we know that supi K(ϕi) < ∞. From now on, the argument is very similar
to Proposition 7.3. Indeed, let ρi be the unit speed finite energy geodesic connect-
ing φ0, ϕi. From the convexity of K-energy, we see that K-energy is uniformly
bounded from above on ρi(independent of i). Hence we may take limit and get a
geodesic ray ρ∞ initiating from φ0, on which the K-energy is decreasing. Hence
the first alternative in Definition 1.5 fails for ρ∞. On the other hand, the argument
of Proposition 7.3 shows that ρ∞ is d1,G unbounded. Hence the second alternative
in Definition 1.5 fails as well. Therefore ρ∞ violates geodesic stability at φ0. �

Remark 7.5. In the proof for existence, we observe that one can weaken the second
alternative in Definition 1.5 to only assume this geodesic ray is d1,G bounded.

Next we will move on to show the implication (1) ⇒ (3).

Proof of (1) ⇒ (3). Without loss of generality, we may assume ω0 itself is cscK. By
the main result of [7] and [40], the existence of cscK metric implies that K-energy
is G-invariant and K(ϕ) ≥ Cd1,G(0, ϕ)−D, for some constant C > 0, D > 0.

Let φ ∈ E1
0 be such that K(φ) < ∞ and let ρ : [0,∞) → E1

0 be a geodesic
ray initiating from φ. There is no loss of generality to assume it is of unit speed.
Namely d1(ρ(s), ρ(t)) = |s− t|, for any s, t ≥ 0. Again we distinguish two cases:

(1) K-energy is unbounded from above on ρ. Since K-energy is convex on ρ, we
see that we are in the first alternative of Definition 1.5.

(2) K-energy is bounded from above on ρ. We need to argue that we are in the
second alternative of Definition 1.5. Actually we will show that ρ is parallel to a
geodesic ray which initiates from 0 and consists of minimizers of K-energy. From
the main result of Section 5, we know the ray consists of cscK potentials. Then the
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uniqueness result of [4, Theorem 1.3] applies and shows they differ from each other
by a holomorphic transformation.

Let tk > 0 be such that tk → ∞. Let rk : [0, d1(0, ρ(tk))] → E1
0 be the unit

speed finite energy geodesic segment connecting 0 and ρ(tk). Due to the convexity
of K-energy along rk and cscK being minimizers of K-energy, we know for t ∈
[0, d1(0, ρ(tk))],

K(rk(t)) ≤ (1− t

d1(0, ρ(tk))
)K(0) +

t

d1(0, ρ(tk))
K(ρ(tk))

≤ (1− t

d1(0, ρ(tk))
) inf

E1
K +

t

d1(0, ρ(tk))
sup
t≥0

K(ρ(t)).
(7.5)

In particular, this shows that K-energy is uniformly bounded from above, indepen-
dent of k and t. Hence we may repeat the argument of Lemma 6.5 (in particular
we use the compactness result [8, Corollary 4.8]), to conclude that one may take a
subsequence, denoted as kl, such that rkl

(t) → r∞(t) for any t ≥ 0, and r∞(t) is a
locally finite energy geodesic ray with unit speed. Now one can replace k by kl in
(7.5) and take the limit kl → ∞, we see that

(7.6) K(r∞(t)) ≤ lim inf
kl

K(rkl
(t)) ≤ inf

E1
K, for any t ≥ 0.

This again uses lower semicontinuity of K-energy with respect to d1-convergence
(c.f. [8, Theorem 4.7]). So we get r∞ is a unit speed geodesic ray consisting of
minimizers of K-energy. The only matter left is to show r∞ and ρ are parallel. We
prove this in Lemma 7.6. �

Lemma 7.6. Let ρ : [0,∞) → E1
0 be a locally finite energy geodesic ray with unit

speed. Let tk ↗ ∞, φ ∈ E1
0 , and rk : [0, d1(φ, ρ(tk))] → E1

0 be the finite energy
geodesic connecting φ and ρ(tk) with unit speed. Suppose rk(t) → r∞(t) as k → ∞
in d1, for any t ≥ 0. Then r∞ is a locally finite energy geodesic with unit speed
parallel to ρ.

Proof. That r∞ is a unit speed locally finite energy geodesic follows the same ar-
gument in the proof of (1) ⇒ (3) in Theorem 6.1. It only remains to show that r∞
and ρ are parallel.

Fix t > 0, we may take tk sufficiently large so that tk ≥ t+ d1(φ, ρ(0)). Define s
so as to satisfy

t

tk
=

s

d1(φ, ρ(tk))
.

Observe that

(7.7) d1(ρ(t), rk(t)) ≤ d1(ρ(t), rk(s)) + d1(rk(s), rk(t)) = d1(ρ(t), rk(s)) + |s− t|.

Now

|s− t| = t
|tk − d1(φ, ρ(tk))|

tk
= t

|d1(ρ(0), ρ(tk))− d1(φ, ρ(tk))|
tk

≤ t
d1(ρ(0), φ)

tk
≤ d1(ρ(0), φ).

(7.8)

Hence it only remains to bound d1(ρ(t), rk(s)). For this we consider the repara-
metrization: for τ ∈ [0, 1], define ρ̃(τ ) = ρ

(
(1−τ )tk

)
, r̃k(τ ) = rk

(
(1−τ )d1(φ, ρ(tk))

)
.
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First we consider the case where one has φ, ρ(0) ∈ E2. The main result of [14]
and also the extension in [37] shows that (E2, d2) is non-positively curved. Hence

d1(ρ̃(τ ), r̃k(τ ))≤d2(ρ̃(τ ), r̃k(τ ))≤τd2(ρ̃(1), r̃k(1))=τd2(ρ(0), φ), for any τ ∈ [0, 1].

Now we take τ = 1− t
tk

to conclude

(7.9)

d1
(
ρ(t), rk

(
tt−1

k d1(φ, ρ(tk))
)
= d1(ρ(t), rk(s)) ≤

(
1− t

tk

)
d2(ρ(0), φ) ≤ d2(ρ(0), φ).

Combining (7.7), (7.8), (7.9), we conclude that d1(ρ(t), rk(t)) ≤ 2d2(φ, ρ(0)) for all
tk sufficiently large. We can send k → ∞ and use that rk(t) → r∞(t) in d1 to
conclude that

d1(ρ(t), r∞(t)) ≤ 2d2(φ, ρ(0)).

In the general case where we don’t assume that ρ(0) or φ ∈ E2, we need to use
Theorem A.1 to conclude

(7.10) d1(ρ̃(τ ), r̃k(τ )) ≤ τd1(ρ̃(1), r̃k(1)) = τd1(ρ(0), φ).

Then the rest of the above argument goes through but we no longer need to use d2
distance. �

Next we will prove Theorem 1.1, as an application of equivalence between ge-
odesic stability and existence of cscK metric. Again observe that the implication
(3) ⇒ (2) is trivial. It only remains to show the implications (2) ⇒ (1) and
(1) ⇒ (3).

Proof of Theorem 1.1. First we show (2) ⇒ (1). If Calabi-Futaki invariant is
nonzero, then we know cscK metric cannot exist.

In the other case, let ρ : [0,∞) → E1
0 be such a geodesic ray as described in (2),

initiating from ϕ. We show that this geodesic ray violates the geodesic stability at
ϕ. Indeed, since K-energy is non-increasing on ρ, we have �[ρ] ≤ 0.

If �[ρ] < 0, then it violates both alternatives in Definition 1.5.
If �[ρ] = 0, then Definition 1.5 requires ρ to be parallel to a geodesic ray gener-

ated from a holomorphic vector field, but we assumed this is not the case.
Next we show (1) ⇒ (3). If Calabi-Futaki invariant is nonzero, then (3) already

holds. Now suppose this invariant is zero and there exists ϕ ∈ E1
0 , such that all

geodesic rays either have K-energy unbounded from above or parallel to a holo-
morphic ray. Observe that Calabi-Futaki invariant being zero means K-energy is
G-invariant. Also for all geodesic rays ρ initiating from ϕ, either �[ρ] > 0 (when
K-energy is unbounded) or ρ is bounded under d1,G, when ρ is parallel to a holo-
morphic ray, following the argument of Proposition 7.3. As observed in Remark
7.5, this is sufficient to imply cscK metric exists. �

Finally we prove Theorem 1.3.

Proof of Theorem 1.3. First we assume that (M, [ω0]) is geodesic semistable. Fix
0 < t0 < 1, if there is no solution to the twisted equation t0(Rϕ − R) = (1 −
t0)(trϕω0 − n), then we can apply Corollary 6.6 to conclude there exists a locally
finite energy geodesic ray with unit speed ρ(s) : [0,∞) → E1

0 , such that Kω0,t0 =
t0K+(1−t0)Jω0

is non-increasing along ρ. On the other hand, from [36, Proposition
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21], we know that Jω0
(ϕ) ≥ Cd1(0, ϕ) − D, for some constant C, D > 0 and any

ϕ ∈ H1
0. This implies

Kω0,t0(ρ(0)) ≥ Kω0,t0(ρ(s)) ≥ t0K(ρ(s)) + (1− t0)Cs− (1− t0)D.

This means �[ρ] ≤ −C(1−t0)
t0

< 0, contradicting the geodesic semi-stability.
Then we assume that the twisted equation can be solved for any 0 < t < 1. Since

we know the solutions are minimizers of the twisted K-energy from Corollary 4.5,
we see that Kω0,t0 are bounded from below. From this we can conclude that for
any locally finite energy geodesic ray,

−Ct0 ≤ t0K(ρ(s)) + (1− t0)Jω0
(ρ(s)) ≤ t0K(ρ(s)) + (1− t0)C

′d1(0, ρ(s))

≤ t0K(ρ(s)) + (1− t0)C
′(d1(0, ρ(0)) + s).

In the second inequality above, we used Lemma 4.4. Here C ′ depends only on the
background metric ω0. In the last inequality, we use that ρ(s) is of unit speed.

Hence

�[ρ] = lim
s→∞

K(ρ(s))

s
≥ − (1− t0)C

′

t0
.

Since t0 < 1 is arbitrary, we actually have �[ρ] ≥ 0. �

7.1. Toric Kähler manifolds. Now we turn our attention to the special case of
toric Kähler manifolds in this subsection and present the proof of one version of
Yau-Tian-Donaldson conjecture in this setting. There is a general set up of differ-
ential geometric framework on toric differential manifolds (c.f. Guillemin [55]). For
any polarized toric Kähler manifold (M, [ω0], L), there is a corresponding Delzant
polytope P ⊂ Rn representing it; and any toric invariant Kähler potential in [ω0]
can be represented by a symplectic potential in P̄ . The equation for constant
scalar curvature metrics becomes a real fourth order equation in terms of the sym-
plectic potential, i.e., Abreu’s equation; see Abreu [1]. Working within a general
differential-geometric framework developed by Guillemin [55], Abreu [1], Donaldson
proved Yau-Tian-Donaldson’s conjecture for two dimensional toric Kähler manifolds
in [48]. In this subsection, we extend Donaldson’s theorem to all dimensional toric
Kähler manifolds and prove an analogous theorem that the existence of constant
scalar curvature metric is equivalent to the uniform stability of the polarization.
Our proof is inspired by ideas in Section 5 of Donaldson [48].

In the following, dσ denotes the standard surface measure on the boundary and
dμ is the n-dimensional Lebesgue measure on the polytope. Following [48], we
denote u0 to be the following smooth convex function in P

(7.11) u0(x) =
1

2

∑
k

δk(x) log δk(x).

Here δk(x) is the linear distance to the kth boundary face. Here u0 corresponds to
the smooth toric invariant background Kähler metric ω0. Now we denote S to be
the set of continuous convex functions u (we will call them “symplectic potentials”
below) on P̄ such that:

• u− u0 is smooth on P̄ ,
• The restriction of u on the lower dimensional polytopes on ∂P is smooth
and strictly convex.
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Due to the work of Abreu [1], Guillemin [55] and Proposition 3.1.7 of Donaldson
[48], we now know that the functions in S have one-to-one correspondence with toric
invariant Kähler potentials in [ω0] under appropriate normalization of the Kähler
potentials and symplectic potentials respectively. We refer the readers to Abreu
[1], Guillemin [55] and [48] for more details about this correspondence.

It is important to remark that the geodesic equation in the space of Kähler
potentials H = {ϕ : ω0 +

√
−1∂∂̄ϕ > 0} takes a simple and elegant form in the

toric invariant setting: for any two symplectic potentials u1, u2 ∈ S, the geodesic
segment connecting u1 and u2 is the linear interpolation (c.f. D. Guan [51]):

(1− s)u1 + su2, s ∈ [0, 1],

which holds for any Lp Finsler norm with p ≥ 1. Thus, for any p ≥ 1, the Lp

distance dp(u1, u2) takes a simple formula

dp(u1, u2) =

(∫
P

|u1 − u2|pdμ
) 1

p

.

We can define a linear functional on S:

LP (f) =

∫
∂P

f d σ −A

∫
P

f d μ, where A =

∫
∂P

d σ∫
P

dμ
.

Since our purpose is to study the existence of cscK metrics, we may assume that
the Futaki invariant is zero, which is a necessary condition for the existence of
cscK metrics. Under toric setting, it means that this functional LP vanishes for all
affine-linear functions on P. (In Remark 7.11 we will observe that the vanishing
of the Futaki invariant will be entailed by each Definition from 0.1 to 0.4 below.)
Therefore, it is natural to normalize an element f ∈ S in the following way: Pick
a point p ∈ P , we say a function f ∈ S is normalized if f ≥ 0 in P and f(p) = 0.
Without loss of generality and for later convenience, we may choose the point p
so that u0 (given by (7.11)) achieves minimum at p. Note that u0 must achieve
minimum in the interior of P , since one has ∂νu0(x0) = −∞, for any vector ν
pointing inward of P , at any point x0 ∈ ∂P . So that u0 + c0 is normalized, for
some constant c0 ∈ R.

The K-energy on the symplectic side now takes the following simple form:

(7.12) FA(u) = −
∫
P

log det(uij)dμ+ LP (u), ∀ u ∈ S.

For the convenience of readers, we list various notions of stability as follows.
Note that in the following, we do not require the functions f to be in S.

Definition 7.7. L1 stability: For all convex functions f defined on P ∗ (the union
of P and its codimension 1 faces) whose boundary values lie in L1(∂P, d σ), we
have LP (f) ≥ 0. The equality holds only if f is affine.

Definition 7.8. Uniform stability: LP (f) ≥ 0 for all piecewise linear convex
functions. Moreover, there is an ε > 0 such that for all piecewise linear convex
functions f on P which are normalized, we have

(7.13) LP (f) ≥ ε

∫
∂P

fd σ.
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Definition 7.9. Filtrated stable (in the sense of G. Székelyhidi [68]): For all
convex, continuous functions f on P̄ , we have LP (f) ≥ 0. The equality holds only
if f is affine.

Definition 7.10. K-stable: For all piecewise linear convex functions f on P , we
have LP (f) ≥ 0. The equality holds only if f is affine.

Remark 7.11.

(1) The definitions above imply that LP (f) = 0 if f is affine. Indeed, since
both f and −f are convex, one has LP (f) ≥ 0 and LP (−f) ≥ 0.

(2) Under uniform stability assumption as Definition 7.8, one can conclude that
(7.13) holds for all normalized convex continuous function f on P̄ which
is smooth on P . This immediately follows from the fact that any such f
can be approximated uniformly on P̄ by a sequence of normalized piecewise
linear functions fi.

Indeed, for each integer i ≥ 1, one can find a finite subset Ei ⊂ P such
that p ∈ Ei, Ei ⊂ Ei+1 and ∪i≥1Ei is dense on P . Then one may define
fi(x) = maxq∈Ei

Lq(x), where Lq(x) = f(q) + (∇f(q), x − q) is the linear
approximation of f at q.

From these definitions, one can easily see the following:

Uniform Stability =⇒ Filtrated Stability =⇒ L1 stability =⇒ K-stability.

In fact, for the converse direction, the following is true:

Proposition 7.12. If P is L1 stable, then it is both uniform stable and filtrated
stable.

Proof. It follows directly from Proposition 5.2.2 in Donaldson [48] that L1 stable
implies uniform stable, then it is clear that it is also filtrated stable. �

Proposition 7.13. If P is L1 stable, then the K-energy is proper in the sense
of L1 distance among all toric invariant potentials which correspond to normalized
symplectic potentials in S.

Proof. First from Proposition 7.12, we may assume that P is uniform stable. In
other words, there is a positive constant ε > 0 such that for all piecewise linear
convex functions f on P which are normalized, we have

(7.14) LP (f) ≥ ε

∫
∂P

fd σ.

Following Remark 7.11, we know that (7.14) holds for all normalized convex func-
tions which are continuous on P̄ and smooth on P . Now we can appeal to Lemma
2.3 in [77] (which is first proved in [48]) that the following holds:

FA(u) ≥ δ

∫
P

udμ− C, ∀u ∈ S, u is normalized

for some positive constants δ, C which depend only on the constant ε in (7.14) (or
alternatively, Definition 7.8), the function u0 and the polytope P .

On the other hand, we note that d1(u, u0 + c0) =
∫
P
|u− u0 − c0|dμ ≤

∫
P
udμ+∫

P
(u0 + c0)dμ. The last inequality is due to the fact that both u and u0 + c0

are nonnegative since they are normalized. Hence we can conclude that FA(u) ≥
δd1(u, u0 + c0)− C for all u ∈ S. �
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Now we can use the properness theorem to deduce the existence of cscK metrics.
Indeed, if one assumes the L1 stability, then the above proposition shows that
the K-energy is proper in terms of the L1-distance, when restricted to the set of
Kähler potentials which are normalized in the sense above. However, our previous
properness theorem requires that ϕ ∈ H0. This is a different normalization than
mentioned above on the symplectic side. Recall that

H0 = {ϕ : ω0+
√
−1∂∂̄ϕ > 0}

⋂
{ϕ : I(ϕ) = 0}, where I(ϕ) =

∫
M

ϕ
n∑

i=0

ωn−i
0 ∧ωn

ϕ,

which is an affine function along any geodesic segment in H. Now we explain in
detail how we switch to Kähler side. We denote H0,T to be the toric invariant
elements in H0, then the following holds:

Lemma 7.14. There exists δ > 0, C > 0, such that for any ϕ ∈ H0,T , one has

K(ϕ) ≥ −C + δ inf
σ∈(C∗)n

J(σ.ϕ).

Here J(ϕ) =
∫
M

ϕ(ωn
0 − ωn

ϕ).

Proof. The constants δ and C appearing below may change from line to line.
Let v be the symplectic potential in S corresponding to ϕ. Let u be the normal-

ized convex function from v (namely u− v is an affine function).
Let ϕ̃ be the Kähler potential corresponding to u via the Legendre transform.

Following a normalization argument in the proof of Proposition 2.4 [77], one can
find σ0 ∈ (C∗)n, such that ϕ̃ = σ0.ϕ+ c, for some c ∈ R.

From Proposition 7.13, there are two constants δ, C such that FA(u) ≥ −C +
δd1(u0 + c0, u) for any u ∈ S and normalized, where c0 is chosen so that u0 + c0 is
normalized. This is possible since the point p is chosen to be the minimum point
of u0. Switching to Kähler side, we have K(ϕ̃) ≥ −C + δd1(0, ϕ̃).

According to Darvas [38, Theorem 3], we know that

1

C1

∫
M

|ϕ̃|(ωn
0 + ωn

ϕ̃) ≤ d1(0, ϕ̃) ≤ C1

∫
M

|ϕ̃|(ωn
0 + ωn

ϕ̃),

for some uniform constant C1 > 0. Hence we see that

K(ϕ̃) ≥ −C + δJ(ϕ̃),

where J(ϕ̃) =
∫
M

ϕ̃(ωn
0 − ωn

ϕ̃).
On the other hand, since the Futaki invariant is zero, we know that K-energy is

invariant under the action of σ ∈ (C∗)n, hence:

K(ϕ̃) = K(σ0.ϕ) = K(ϕ)

and

J(ϕ̃) = J(σ0.ϕ) ≥ inf
σ∈(C∗)n

J(σ.ϕ).

So that we finally get the desired properness of K-energy on H0,T :

K(ϕ) ≥ −C + δ inf
σ∈(C∗)n

J(σ.ϕ), ϕ ∈ H0,T .

�
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Note that our continuity path (1 − t)trωϕ
ω0 = t(Rϕ − R), t ∈ [0, 1] is invariant

under the torus action, and (C∗)n acts on H0,T , hence our proof for the Theorem
4.3 carries over (see also Remark 4.9). Thus we can conclude the existence of a
cscK potential in H0,T .

For the converse, Theorem 4.6 of Chen-Li-Sheng [16] shows that the existence
of cscK metric will imply the uniform stability as defined above. Hence we may
conclude

Theorem 7.2. On toric Kähler manifolds, the existence of a toric invariant cscK
metric in the class [ω0] is equivalent to the L1 stability.

With Theorem 7.2 in mind, one wonders if we can replace the L1 stability con-
dition by some algebraic conditions which can be checked relatively easily.

Appendix A

Our goal in this section is to prove the following result, which is used in the
proof of Theorem 7.1.

Theorem A.1. Let 1 ≤ p < ∞. Let φ0, φ
′
0, φ1, φ

′
1 ∈ Ep. Denote {φ0,t}t∈[0,1],

{φ1,t}t∈[0,1] be two finite energy geodesics, such that φ0,t connects φ0 and φ′
0, φ1,t

connects φ1 and φ′
1. Then we have

dp(φ0,t, φ1,t) ≤ (1− t)dp(φ0, φ1) + tdp(φ
′
0, φ

′
1).

When p = 2, this result follows from that (E2, d2) is NPC, proved in [37] (see
also [14]). For general p, we were not able to prove (Ep, dp) is NPC in the sense of
Alexandrov. Nevertheless, above weaker result still holds.

In the following argument, we will mostly follow the notation in [14]. Let
ϕ(x, s, t) ∈ C∞(M × [0, 1] × [0, 1]) be such that ϕ(·, s, t) ∈ H. Denote X = ∂tϕ,
Y = ∂sϕ. Given U ∈ C∞(M×[0, 1]×[0, 1]), consider the connection first introduced
by Mabuchi:

(A.1) ∇XU = ∂tU −∇ϕ∂tϕ ·ϕ ∇ϕU, ∇Y U = ∂sU −∇ϕ∂sϕ ·ϕ ∇ϕU.

The dot product in the above equation has the following expression in local coor-
dinates:

∇ϕu ·ϕ ∇ϕv =
1

2
gij̄ϕ

(
uivj̄ + viuj̄

)
.

Given ψ1, ψ2 ∈ C∞(M), we denote

(ψ1, ψ2) =

∫
M

ψ1ψ2dvolϕ.

This is the so-called Mabuchi’s metric on H.
Given ϕ0, ϕ1 ∈ H, and ε > 0, one can consider the so-called ε-geodesic, intro-

duced in [18]:(
∂2
t ϕ− |∇ϕ∂tϕ|2ϕ

)
det gϕ = εdet g0 for (x, t) ∈ M × [0, 1]

ϕ|t=0 = ϕ0, ϕ|t=1 = ϕ1.
(A.2)

It is shown in [18] that (A.2) can be written as a complex Monge-Ampère equation
on M × [0, 1] with non-degenerate and smooth right hand side, hence is smooth.

The key to prove Theorem A.1 is the following estimate:
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Proposition A.1. Let ϕi : s ∈ [0, 1] → H, i = 0, 1 be two smooth curves in
H. Let χ : R → R+ be smooth and convex. Suppose that for each s ∈ [0, 1],
[0, 1] � t �→ ϕε(s, t) is the ε-geodesic connecting ϕ0(s) and ϕ1(s). Denote X = ∂tϕ,
Y = ∂sϕ, then we have

∂2
t

∫
M

χ(∂sϕ)dvolϕ ≥
∫
M

χ′′(∂sϕ)(∇XY )2dvolϕ.

We will postpone the proof of this proposition later, and we will show next how
to use this proposition to deduce Theorem A.1.

First we apply Proposition A.1 to obtain

Lemma A.2. Let φ0, φ
′
0, φ1, φ

′
1 ∈ H. Let c1(s) : [0, 1] → H be a smooth curve

connecting φ0 and φ1, c2(s) : [0, 1] → H be a smooth curve connecting φ′
0 and

φ′
1. Let {ϕε(s, t)}(s,t)∈[0,1]2 be such that for each fixed s, [0, 1] � t �→ ϕε(s, t) is

the ε-geodesic connecting c1(s) with c2(s). Denote Lε
p(t) be the length of the curve

[0, 1] � s �→ ϕε(s, t) ∈ H under the distance dp, then t �→ Lε
p(t) is convex.

Proof. In the following, we will write Lε
p(t) simply as Lp(t). By definition, we have

(A.3) Lp(t) =

∫ 1

0

( ∫
M

|∂sϕ|pdvolϕ
) 1

p

ds.

Denote χδ(x) = (x2 + δ2)
p
2 and put Lp,δ(t) =

∫ 1

0

( ∫
M

χδ(∂sϕ)dvolϕ
) 1

p ds =∫ 1

0
|Y |

1
p
χδds. Here for simplicity, we use the notation: |Y |χδ

=
∫
M

χδ(∂sϕ)dvolϕ.
Then we have

d2

dt2
Lp,δ(t) =

∫ 1

0

∂2
t (|Y |

1
p
χδ )ds.

We claim that ∂2
t (|Y |

1
p
χδ ) ≥ 0. If this were true, then we know t �→ Lp,δ(t) is convex.

Also we know that Lp,δ(t) → Lp(t) for each t ∈ [0, 1] as δ → 0. This will imply the
desired result. Hence it only remains to verify the claim. We can compute

∂2
t

(
|Y |

1
p
χδ

)
= ∂t

(1
p
|Y |

1
p−1
χδ ∂t(|Y |χδ

)
)

=
1

p
|Y |

1
p−1
χδ ∂2

t (|Y |χδ
)− 1

p

(
1− 1

p

)
|Y |

1
p−2
χδ |∂t(|Y |χδ

)|2

≥ 1

p
|Y |

1
p−1
χδ

( ∫
M

χ′′
δ (∂sϕ)(∇XY )2dvolϕ −

(
1− 1

p

)
|Y |−1

χδ
|∂t(|Y |χδ

)|2
)
.

(A.4)

In the last inequality, we used Proposition A.1.
On the other hand

∂t(|Y |χδ
) =

∫
M

(
χ′
δ(∂sϕ)∂stϕ+ χδ(∂sϕ)Δϕ(∂tϕ)

)
dvolϕ

=

∫
M

χ′
δ(∂sϕ)

(
∂stϕ−∇ϕ∂sϕ ·ϕ ∇ϕ∂tϕ

)
dvolϕ =

∫
M

χ′
δ(∂sϕ)∇XY dvolϕ.

(A.5)

Hence we may apply Cauchy-Schwarz inequality to get

(A.6) |∂t(|Y |χδ
)|2 ≤

∫
M

(χ′
δ(∂sϕ))

2

χ′′
δ (∂sϕ)

dvolϕ ×
∫
M

χ′′
δ (∂sϕ)(∇XY )2dvolϕ.
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It is straightforward to calculate

χ′
δ(x) = p(x2 + δ2)

p
2−1x.

χ′′
δ (x) = p(p− 2)(x2 + δ2)

p
2−2x2 + p(x2 + δ2)

p
2−1.

Therefore

χ′′
δχδ = p(p− 2)(x2 + δ2)p−2x2 + p(x2 + δ2)p−1

≥ p(p− 1)(x2 + δ2)p−2x2 =
p− 1

p
(χ′

δ)
2.

Hence we obtain from (A.6) that

(
1− 1

p

)
|∂t(|Y |χδ

)|2 ≤
∫
M

p− 1

p

(χ′
δ(∂sϕ))

2

χ′′
δ (∂sϕ)

dvolϕ ×
∫
M

χ′′
δ (∂sϕ)(∇XY )2dvolϕ

≤
∫
M

χδ(∂sϕ)dvolϕ ×
∫
M

χ′′
δ (∂sϕ)(∇XY )2dvolϕ.

(A.7)

Combining (A.4) and (A.7), the result follows. �
As a consequence, we have

Corollary A.3. Let φ0, φ′
0, φ1, φ′

1 ∈ H. Let {ρ0(t)}t∈[0,1] be the C1,1 geodesic

connecting φ0 and φ′
0, and {ρ1(t)}t∈[0,1] be the C1,1 geodesic connecting φ1 and φ′

1.
Then we have

dp(ρ0(t), ρ1(t)) ≤ (1− t)dp(φ0, φ1) + tdp(φ
′
0, φ

′
1), for any t ∈ [0, 1].

Proof. Let ε > 0. Let cε1(s) : [0, 1] → H be the ε-geodesic connecting φ0 and
φ1, cε2(s) : [0, 1] → H be the ε-geodesic connecting φ′

0 and φ′
1. Then define

{ϕε(s, t)}(s,t)∈[0,1]2 such that for each fixed s, t �→ ϕε(s, t) is the ε-geodesic con-
necting cε1(s), c

ε
2(s).

We can apply the previous lemma to conclude that

(A.8) dp(ϕ
ε(0, t), ϕε(1, t)) ≤ Lε

p(t) ≤ (1− t)Lε
p(0) + tLε

p(1).

Then we let ε → 0. Since t �→ ϕε(0, t) is the ε-geodesic connecting φ0, φ
′
0, we have

ϕε(0, t) → ρ0(t) uniformly (c.f. [18, Lemma 7, point 3]), hence in dp distance, for
each fixed t, as ε → 0. Similarly, ϕε(1, t) → ρ1(t) in dp. Therefore,

dp(ϕ
ε(0, t), ϕε(1, t)) → dp(ρ0(t), ρ1(t)), as ε → 0.

While Lε
p(0) is the length of cε1, hence Lε

p(0) → dp(φ0, φ1) as ε → 0. Similarly
Lε
p(1) → dp(φ

′
0, φ

′
1). �

Now we are ready to prove Theorem A.1, via an approximating argument.

Proof of Theorem A.1. We choose smooth approximations of φ0, φ
′
0, φ1, φ

′
1. Namely

we choose φ0,k → φ0, φ
′
0,k → φ′

0, φ1,k → φ1, φ
′
1,k → φ′

1 as k → ∞ under distance
dp. Then from previous corollary, we know

(A.9) dp(φ0,k(t), φ1,k(t)) ≤ (1− t)dp(φ0,k, φ1,k)+ tdp(φ
′
0,k, φ

′
1,k), for any t ∈ [0, 1].

In the above, {φ0,k(t)}t∈[0,1] is the C1,1 geodesic connecting φ0,k, φ′
0,k and

{φ1,k(t)}t∈[0,1] is the C1,1 geodesic connecting φ1,k, φ
′
1,k.

From the end point stability of finite energy geodesic segment (c.f. [8, Proposition
4.3]), we know that φ0,k(t) → φ0,t in dp as k → ∞, and φ1,k(t) → φ1,t as k → ∞.
Taking limit as k → ∞ in (A.9), the result follows. �
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It only remains to show Proposition A.1.

Proof. For simplicity, we denote |Y |χ =
∫
M

χ(∂sϕ)dvolϕ. Then we may calculate:

∂t(|Y |χ) =
∫
M

(
χ′(∂sϕ)∂stϕ+ χ(∂sϕ)Δϕ(∂tϕ)

)
dvolϕ

=

∫
M

χ′(∂sϕ)
(
∂stϕ−∇ϕ∂sϕ ·ϕ ∇ϕ∂tϕ

)
dvolϕ = (χ′(∂sϕ),∇Y X).

(A.10)

Differentiate in t once more, we have

∂2
t (|Y |χ) =

∫
M

χ′′(∂sϕ)∂stϕ∇Y Xdvolϕ +

∫
M

χ′(∂sϕ)∂t(∇Y X)dvolϕ

+

∫
M

χ′(∂sϕ)∇Y XΔϕ(∂tϕ)dvolϕ

=

∫
M

χ′′(∂sϕ)(∇Y X)2dvolϕ + (χ′(∂sϕ),∇X∇Y X)

=

∫
M

χ′′(∂sϕ)(∇Y X)2dvolϕ + (χ′(∂sϕ),∇Y ∇XX)

+ (χ′(∂sϕ),∇X∇Y X −∇Y ∇XX).

(A.11)

Since t �→ ϕε(s, t) is an ε-geodesic, we have ∇XX = εH, where H = det g0
det gϕ

. Hence

(χ′(∂sϕ),∇Y ∇XX) =

∫
M

χ′(∂sϕ)ε∇Y Hdvolϕ

=

∫
M

εχ′(∂sϕ)(∂sH −∇ϕ∂sϕ ·ϕ ∇ϕH)dvolϕ

=

∫
M

εχ′(∂sϕ)(−HΔϕ(∂sϕ)−∇ϕ∂sϕ ·ϕ ∇ϕH)dvolϕ

=

∫
M

εχ′′(∂sϕ)H|∇ϕ∂sϕ|2ϕdvolϕ ≥ 0.

(A.12)

From third line to the last line above, we integrated by parts. Hence it only remains
to handle the term (χ′(∂sϕ),∇X∇Y X −∇Y ∇XX). Lemma A.13 shows this term
is ≥ 0, so we are done. �

Lemma A.4.

(χ′(∂sϕ),∇Y ∇XX −∇X∇Y X) =

∫
M

1

4
χ′′(∂sϕ)g

ij̄
ϕ

(
(∂tϕ)i(∂sϕ)j̄ − (∂sϕ)i(∂tϕ)j̄

)

× gpq̄ϕ

(
(∂tϕ)p(∂sϕ)q̄ − (∂tϕ)q̄(∂sϕ)p

)
dvolϕ = −

∫
M

χ′′(∂sϕ)
(
{∂tϕ, ∂sϕ}

)2
dvolϕ.

(A.13)

In the above, {·, ·} is the Poisson product, defined as

{f, g}ϕ := Im
(
gij̄ϕ figj̄

)
, f, g ∈ C∞(M), ϕ ∈ H.

In particular, if χ′′ ≥ 0, the expression in (A.13) ≤ 0.

When χ(x) = 1
2x

2, this lemma just expresses the well-known fact that H has
nonpositive sectional curvature under Mabuchi metric.
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Proof. We know that the curvature operator can be represented in terms of Poisson
product:

Rϕ(X,Y )Z := ∇X∇Y Z −∇Y ∇XZ = {{X,Y }, Z}, X, Y, Z ∈ C∞(M), ϕ ∈ H.

Therefore,

(
χ′(∂sϕ),∇Y ∇XX −∇X∇Y X

)
= −

∫
M

χ′(∂sϕ)Rϕ(∂tϕ, ∂sϕ)∂tϕdvolϕ

= −
∫
M

χ′(∂sϕ){{∂tϕ, ∂sϕ}, ∂tϕ}dvolϕ

= −
∫
M

Im

(
χ′(∂sϕ)g

ij̄
ϕ {∂tϕ, ∂sϕ}i(∂tϕ)j̄

)
dvolϕ

=

∫
M

Im

(
χ′(∂sϕ)g

ij̄
ϕ {∂tϕ, ∂sϕ}(∂tϕ)ij̄

)
dvolϕ

+

∫
M

Im

(
χ′′(∂sϕ)g

ij̄
ϕ (∂sϕ)i{∂tϕ, ∂sϕ}(∂tϕ)j̄

)
dvolϕ

= −
∫
M

χ′′(∂sϕ)

(
{∂tϕ, ∂sϕ}

)2

dvolϕ.

(A.14)

From the third line to fourth line above, we integrated by parts. Also we noticed
that gij̄ϕ (∂tϕ)ij̄ = Δϕ(∂tϕ) is real. �

As an immediate consequence of Theorem A.1, we have

Corollary A.5. Let ρi : [0,∞) → Ep
0 , i = 1, 2 be two locally finite energy geodesic

rays, then the function t �→ dp(ρ1(t), ρ2(t)) is convex on [0,∞).

As a consequence of this corollary and elementary properties of convex functions
on [0,∞), we can conclude

Corollary A.6. Let ρi : [0,∞) → Ep
0 , i = 1, 2 be two locally finite energy geodesic

rays. Then exactly one of the two alternative holds:

(1) The limit limt→∞
dp(ρ1(t),ρ2(t))

t exists and is positive (may be +∞);
(2) t �→ dp(ρ1(t), ρ2(t)) is decreasing. In particular, dp(ρ1(t), ρ2(t)) ≤ dp(ρ1(0),

ρ2(0)) for any t > 0.

The rest of this section is devoted to proving Theorem 1.4. First the uniqueness
of such a geodesic ray ρ2 parallel to ρ1 initiating from ϕ follows immediately from
Corollary A.6. The existence part is given by Lemma 7.6. Here we need the
assumption �[ρ1] < ∞ to show that for each fixed t, K(rk(t)) is uniformly bounded
from above when k is sufficiently large (by convexity of K-energy), and then we
can use the compactness result of [8, Corollary 4.8] to conclude the convergence of
{rk(t)}k up to a subsequence.

It only remains to check that � invariants are equal for two parallel locally finite
energy geodesic rays.

Proposition A.7. Suppose ρi : [0,∞) → Ep
0 , i = 1, 2 are two parallel geodesic rays

with unit speed, then we have �[ρ1] = �[ρ2].

Proof. It is clear that we just need to show �[ρ1] ≤ �[ρ2]. The reverse inequality
can be obtained by reversing the role of ρ1 and ρ2. Also we may assume that
�[ρ2] < ∞, otherwise there is nothing to prove.
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Choose tk ↗ ∞, and let rk : [0, d1(ρ1(0), ρ2(tk))] → E1
0 be the unit speed

geodesic segment connecting ρ1(0) and ρ2(tk) (with t = 0 corresponding to ρ1(0)).
Let t ∈ [0, d1(ρ1(0), ρ2(tk))], we know from the convexity of K-energy:

K(rk(t)) ≤
(
1− t

d1(ρ1(0), ρ2(tk))

)
K(ρ1(0)) +

t

d1(ρ1(0), ρ2(tk))
K(ρ2(tk))

≤
(
1− t

d1(ρ1(0), ρ2(tk))

)
K(ρ1(0)) +

t

tk − d1(ρ1(0), ρ2(0))
K(ρ2(tk)).

(A.15)

In the second inequality, we used

d1(ρ1(0), ρ2(tk)) ≥ d1(ρ2(0), ρ2(tk))− d1(ρ1(0), ρ2(0)) = tk − d1(ρ1(0), ρ2(0)).

Hence

(A.16)
K(rk(t))

t
≤

(
1

t
− 1

d1(ρ1(0), ρ2(tk))

)
K(ρ1(0)) +

tk
tk − d1(ρ1(0), ρ2(0))

a.

Next we make the following claim

Claim A.8. rk(t) → ρ1(t), for fixed t ≥ 0 in d1 distance as k → ∞.

Assuming this claim for the moment, we can fix t, and take limit in (A.16) as
k → ∞, and use lower semicontinuity of K-energy to get:

(A.17)
K(ρ1(t))

t
≤ lim inf

k

K(rk(t))

t
≤ K(ρ1(0))

t
+ a, for any t > 0.

Then we take limit as t → ∞, and conclude �[ρ1] ≤ a.
Now it only remains to show the claim. We define the reparametrization: for

τ ∈ [0, 1], r̃k(τ ) = rk
(
τd1(ρ1(0), ρ2(tk))

)
, ρ̃1(τ ) = ρ1

(
τd1(ρ1(0), ρ2(tk))

)
. Then we

may use Theorem A.1 to conclude (here sk = d1(ρ1(0), ρ2(tk)))

(A.18) d1(r̃k(τ ), ρ̃1(τ )) ≤ τd1(ρ2(tk), ρ1(sk)), for any τ ∈ [0, 1].

Then choose τ = t
sk
, we have

d1(rk(t), ρ1(t)) ≤
t

sk
d1(ρ2(tk), ρ1(sk))

≤ t

sk

(
d1(ρ2(tk), ρ1(tk)) + d1(ρ1(tk), ρ1(sk))

)

≤ t

sk

(
sup
t

d1(ρ2(t), ρ1(t)) + |tk − sk|
)

≤ t

sk

(
sup
t

d1(ρ2(t), ρ1(t)) + d1(ρ1(0), ρ2(0))
)
.

(A.19)

In the second inequality, we used triangle inequality.
In the third inequality, we used that ρ1 is a unit speed geodesic ray.
In the last inequality, we used triangle inequality again to conclude

|tk − sk| = |d1(ρ2(0), ρ2(tk))− d1(ρ1(0), ρ2(tk))| ≤ d1(ρ1(0), ρ2(0)).

Finally we let k → ∞ in (A.19) to see the claim. �

Next we observe that �-invariant has the following “lower semicontinuity” prop-
erty.
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Proposition A.9. Let ρk, ρ : [0,∞) → Ep
0 be locally finite energy geodesic rays

with unit speed. Define dk = limt→∞
dp(ρk(t),ρ(t))

t (This is well-defined according
to Corollary A.6). Suppose that dk → 0 and dp(ρk(0), ρ(0)) → 0 as k → ∞, then
�[ρ] ≤ lim infk→∞ �[ρk].

Proof. Observe that for any s > 0, we have dp(ρk(s), ρ(s)) → 0. Indeed, from the
convexity property of t �→ dp(ρk(t), ρ(t)) obtained in Corollary A.5, we know that
for any s′ > s > 0, and any k

dp(ρk(s), ρ(s))− dp(ρk(0), ρ(0))

s
≤ dp(ρk(s

′), ρ(s′))− dp(ρk(0), ρ(0))

s′
.

Let s′ → ∞, we know that

(A.20)
dp(ρk(s), ρ(s))

s
≤ dk +

dp(ρk(0), ρ(0))

s
→ 0, as k → ∞ by assumption.

Hence from the lower semicontinuity with respect to dp convergence, we can con-
clude that

(A.21)
K(ρ(s))

s
≤ lim inf

k→∞

K(ρk(s))

s
, for any s > 0.

On the other hand, from the convexity of K-energy along ρk, it follows that for any
s′′ > s > 0,

(A.22)
K(ρk(s))

s
≤ K(ρk(s

′′))

s′′
+

(
1

s
− 1

s′′

)
K(ρk(0)).

Let s′′ → ∞ in the above and use the definition of �-invariant, we conclude

(A.23)
K(ρk(s))

s
≤ �[ρk] +

K(ρk(0))

s
, for any s > 0.

Finally we let k → ∞ in (A.23) and combine (A.21), we see

(A.24)
K(ρ(s))

s
≤ lim inf

k

K(ρk(s))

s
≤ lim inf

k
�[ρk] +

K(ρ(0))

s
, for any s > 0.

Finally we let s → ∞ in (A.24) to conclude the proof. �

Acknowledgments

Both authors wish to thank Gao Chen for his meticulous reading of the earlier
drafts of this set of papers and numerous valuable comments, corrections. The
second named author wishes to thank his graduate advisor Mikhail Feldman for his
interest in this work and warm encouragement.

Both authors are also grateful to Sir Simon Donaldson, Weiyong He, Song Sun,
Chengjian Yao and Simone Calamai for their interest in this work and their insight-
ful comments and suggestions. Both authors would also like to thank Hongnian
Huang for help with toric varieties.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1006 XIUXIONG CHEN AND JINGRUI CHENG

References

[1] Miguel Abreu, Kähler geometry of toric varieties and extremal metrics, Internat. J. Math. 9
(1998), no. 6, 641–651, DOI 10.1142/S0129167X98000282. MR1644291

[2] Vestislav Apostolov, David M. J. Calderbank, Paul Gauduchon, and Christina W. Tønnesen-
Friedman, Hamiltonian 2-forms in Kähler geometry. III. Extremal metrics and stability,
Invent. Math. 173 (2008), no. 3, 547–601, DOI 10.1007/s00222-008-0126-x. MR2425136

[3] Richard H. Bamler and Qi S. Zhang, Heat kernel and curvature bounds in Ricci flows with
bounded scalar curvature, Adv. Math. 319 (2017), 396–450, DOI 10.1016/j.aim.2017.08.025.
MR3695879

[4] Robert J. Berman and Bo Berndtsson, Convexity of the K-energy on the space of Kähler
metrics and uniqueness of extremal metrics, J. Amer. Math. Soc. 30 (2017), no. 4, 1165–1196,
DOI 10.1090/jams/880. MR3671939

[5] R. J. Berman, S. Boucksom, and M. Jonsson, A variational approach to the Yau-Tian-
Donaldson conjecture, arXiv:1509.04561v2 (2018)

[6] Robert J. Berman, Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed

Zeriahi, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. Reine
Angew. Math. 751 (2019), 27–89, DOI 10.1515/crelle-2016-0033. MR3956691

[7] Robert J. Berman, Tamás Darvas, and Chinh H. Lu, Regularity of weak minimizers of the K-
energy and applications to properness and K-stability (English, with English and French sum-
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KÄHLER METRICS (II) 1007

[22] X.-X. Chen and J. Cheng, On the constant scalar curvature Kähler metrics (I): a priori
estimates, arXiv:1712.06697, 2017.

[23] Xiuxiong Chen, Tamás Darvas, and Weiyong He, Compactness of Kähler metrics with bounds
on Ricci curvature and I functional, Calc. Var. Partial Differential Equations 58 (2019), no. 4,
Paper No. 139, 9, DOI 10.1007/s00526-019-1572-6. MR3984099

[24] Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano mani-
folds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015),

no. 1, 183–197, DOI 10.1090/S0894-0347-2014-00799-2. MR3264766
[25] Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano mani-

folds. II: limits with cone angle less than 2π, J. Amer. Math. Soc. 28 (2015), no. 1, 199–234,
DOI 10.1090/S0894-0347-2014-00800-6. MR3264767

[26] Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano mani-
folds. III: limits as cone angle approaches 2π and completion of the main proof, J. Amer.
Math. Soc. 28 (2015), no. 1, 235–278, DOI 10.1090/S0894-0347-2014-00801-8. MR3264768

[27] X. X. Chen and W. Y. He, On the Calabi flow, Amer. J. Math. 130 (2008), no. 2, 539–570,
DOI 10.1353/ajm.2008.0018. MR2405167

[28] Xiuxiong Chen and Weiyong He, The complex Monge-Ampère equation on compact Kähler
manifolds, Math. Ann. 354 (2012), no. 4, 1583–1600, DOI 10.1007/s00208-012-0780-6.
MR2993005
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Vol. 2015/2016. Exposés 1104–1119. MR3666028
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[43] Ruadháı Dervan, Uniform stability of twisted constant scalar curvature Kähler metrics, Int.
Math. Res. Not. IMRN 15 (2016), 4728–4783, DOI 10.1093/imrn/rnv291. MR3564626

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://arxiv.org/abs/1712.06697
https://www.ams.org/mathscinet-getitem?mr=3984099
https://www.ams.org/mathscinet-getitem?mr=3264766
https://www.ams.org/mathscinet-getitem?mr=3264767
https://www.ams.org/mathscinet-getitem?mr=3264768
https://www.ams.org/mathscinet-getitem?mr=2405167
https://www.ams.org/mathscinet-getitem?mr=2993005
https://www.ams.org/mathscinet-getitem?mr=3582114
https://arxiv.org/abs/1506.01290
https://www.ams.org/mathscinet-getitem?mr=2434691
https://www.ams.org/mathscinet-getitem?mr=2428146
https://www.ams.org/mathscinet-getitem?mr=3061942
https://www.ams.org/mathscinet-getitem?mr=3464220
https://www.ams.org/mathscinet-getitem?mr=3220438
https://www.ams.org/mathscinet-getitem?mr=3698234
https://www.ams.org/mathscinet-getitem?mr=3702499
https://www.ams.org/mathscinet-getitem?mr=3406499
https://www.ams.org/mathscinet-getitem?mr=3632560
https://www.ams.org/mathscinet-getitem?mr=3600039
https://www.ams.org/mathscinet-getitem?mr=3666028
https://www.ams.org/mathscinet-getitem?mr=3564131
https://www.ams.org/mathscinet-getitem?mr=3564626


1008 XIUXIONG CHEN AND JINGRUI CHENG

[44] Ruadháı Dervan, Relative K-stability for Kähler manifolds, Math. Ann. 372 (2018), no. 3-4,
859–889, DOI 10.1007/s00208-017-1592-5. MR3880285

[45] R. Dervan and J. Ross, K-stability for Kähler manifolds, arXiv: 1602. 08983.
[46] S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern

California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer.
Math. Soc., Providence, RI, 1999, pp. 13–33, DOI 10.1090/trans2/196/02. MR1736211

[47] S. K. Donaldson, Moment maps and diffeomorphisms, Asian J. Math. 3 (1999), no. 1, 1–15,

DOI 10.4310/AJM.1999.v3.n1.a1. Sir Michael Atiyah: a great mathematician of the twentieth
century. MR1701920

[48] S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62
(2002), no. 2, 289–349. MR1988506

[49] S. K. Donaldson, Extremal metrics on toric surfaces: a continuity method, J. Differential
Geom. 79 (2008), no. 3, 389–432. MR2433928

[50] Simon K. Donaldson, Constant scalar curvature metrics on toric surfaces, Geom. Funct.
Anal. 19 (2009), no. 1, 83–136, DOI 10.1007/s00039-009-0714-y. MR2507220

[51] Daniel Guan, On modified Mabuchi functional and Mabuchi moduli space of Kähler
metrics on toric bundles, Math. Res. Lett. 6 (1999), no. 5-6, 547–555, DOI
10.4310/MRL.1999.v6.n5.a7. MR1739213

[52] Hao Fang, Mijia Lai, Jian Song, and Ben Weinkove, The J-flow on Kähler surfaces: a bound-
ary case, Anal. PDE 7 (2014), no. 1, 215–226, DOI 10.2140/apde.2014.7.215. MR3219504

[53] V. Guedj, The metric completion of the Riemannian space of Kähler metrics,
arXiv:1401.7857, 2014.

[54] Vincent Guedj and Ahmed Zeriahi, The weighted Monge-Ampère energy of quasiplurisubhar-
monic functions, J. Funct. Anal. 250 (2007), no. 2, 442–482, DOI 10.1016/j.jfa.2007.04.018.
MR2352488

[55] Victor Guillemin, Kaehler structures on toric varieties, J. Differential Geom. 40 (1994), no. 2,
285–309. MR1293656

[56] Yoshinori Hashimoto, Existence of twisted constant scalar curvature Kähler metrics with
a large twist, Math. Z. 292 (2019), no. 3-4, 791–803, DOI 10.1007/s00209-018-2133-y.
MR3980270

[57] Weiyong He and Yu Zeng, Constant scalar curvature equation and regularity of its weak
solution, Comm. Pure Appl. Math. 72 (2019), no. 2, 422–448, DOI 10.1002/cpa.21790.
MR3896025

[58] T. Hisamoto, Stability and coercivity for toric polarizations, arXiv:1610.07998v1, 2016.
[59] S�lawomir Ko�lodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), no. 1,

69–117, DOI 10.1007/BF02392879. MR1618325
[60] Marc Levine, A remark on extremal Kähler metrics, J. Differential Geom. 21 (1985), no. 1,

73–77. MR806703
[61] Haozhao Li, Yalong Shi, and Yi Yao, A criterion for the properness of the K-energy in a

general Kähler class, Math. Ann. 361 (2015), no. 1-2, 135–156, DOI 10.1007/s00208-014-
1073-z. MR3302615

[62] Toshiki Mabuchi, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math.
24 (1987), no. 2, 227–252. MR909015

[63] J. Ross, Unstable products of smooth curves, Invent. Math. 165 (2006), no. 1, 153–162, DOI
10.1007/s00222-005-0490-8. MR2221139

[64] Julius Ross and David Witt Nyström, Analytic test configurations and geodesic rays, J.
Symplectic Geom. 12 (2014), no. 1, 125–169, DOI 10.4310/JSG.2014.v12.n1.a5. MR3194078

[65] Stephen Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114
(1992), no. 3, 495–550, DOI 10.2307/2374768. MR1165352

[66] Jacopo Stoppa, K-stability of constant scalar curvature Kähler manifolds, Adv. Math. 221
(2009), no. 4, 1397–1408, DOI 10.1016/j.aim.2009.02.013. MR2518643

[67] Jacopo Stoppa, Twisted constant scalar curvature Kähler metrics and Kähler slope stability,

J. Differential Geom. 83 (2009), no. 3, 663–691. MR2581360
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