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On the Constraints Formulation in the

Nonsmooth Generalized-α Method

Olivier Brüls, Vincent Acary, and Alberto Cardona

Abstract The simulation of flexible multibody systems with unilateral contact

conditions and impacts requires advanced numerical methods. The nonsmooth

generalized-α method was developed in order to combine an accurate and second-

order time discretization of the smoother part of the dynamics and a consistent

but first-order time discretization of the impulsive contributions. Compared to the

Moreau-Jean scheme, this approach improves the quality of the numerical solution

especially for the representation of the vibrating response of flexible bodies. It en-

tirely relies on the formal definition of a so-called smooth motion that captures a

non-impulsive part of the total nonsmooth motion. This definition may account for

some contributions of the bilateral constraints and/or of the active unilateral con-

straints at velocity or at acceleration level. This chapter shows that the formulation

of the constraints strongly influences the numerical stability and the computational

cost of the method. A strategy to enforce the bilateral and unilateral constraints si-

multaneously at position, velocity and acceleration levels is also established with

a careful formulation of the activation criteria based on augmented Lagrange mul-

tipliers. In the special case of smooth systems, a comparison is made with more

standard solvers for differential-algebraic equations. The properties of this method

are demonstrated using illustrative numerical examples of smooth and nonsmooth

mechanical systems.
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1 Introduction

This chapter addresses the numerical simulation of mechanical systems composed

of rigid and flexible bodies interconnected by kinematic joints and subject to fric-

tionless contact conditions. These models are intended to the analysis of the dy-

namic interactions between motion, impacts and vibrations in various industrial ap-

plications such as in automotive, wind turbines, and robotic systems. The kinematic

joints impose restrictions on the relative motions of the bodies and are modelled as

bilateral constraints whereas the non-penetration conditions at the contact points are

modelled as unilateral constraints. These unilateral constraints may cause impact

phenomena so that the dynamic response becomes nonsmooth involving velocity

jumps and impulsive reaction forces.

In many practical situations, the nonsmooth behaviours are nevertheless local-

ized in space and/or in time. After spatial and time discretization, this implies that

velocity jumps and impulsive forces are only observed for a limited number of co-

ordinates and/or during a limited number of time steps. Even though the correct

description of these velocity jumps and impulsive forces are of the utmost impor-

tance for the global consistency of the simulation, the quality of the results within

the smooth parts of the motion is also essential.

The most popular time-stepping methods for nonsmooth systems, such as the

Moreau-Jean scheme [25, 27] or the Schatzman-Paoli scheme [29, 30], are robust

with respect to the treatment of nonsmooth phenomena but they lead to rather poor

first-order approximations of the smooth parts of the motion and to high levels of

numerical dissipation, which is particularly penalizing for the accurate representa-

tion of vibration phenomena in flexible systems. Also, the constraints are imposed

at velocity level so that a constraint drift generally appears at position level. Al-

ternatively, event-driven techniques, which adapt their time steps to the impact in-

stants, can be used in combination with a higher order scheme during the free flight

phases [20]. However, their performance decreases if the frequency of impacts in-

creases and they cannot be used if accumulation phenomena, involving an infinite

series of impact in a finite time interval, are present. A more detailed description of

numerical methods for the simulation of nonsmooth systems can be found in [2].

These observations motivated the recent developments of more sophisticated

time-stepping algorithms for nonsmooth systems which involve improved approx-

imations of the smoother parts of the motion [12, 14, 34, 35, 37]. Several au-

thors [1, 12, 36] also investigated the development of algorithms which simultane-

ously enforce the bilateral and unilateral constraints at velocity and position levels,

so that any drift-off phenomenon is avoided. In this chapter, we revisit the nons-

mooth generalized-α method introduced in [12, 14]. It relies on a splitting of the

motion into smooth (non-impulsive) and nonsmooth (impulsive) contributions. The

smooth contributions are integrated using the second-order generalized-α method

whereas the nonsmooth contributions are integrated using a first-order backward

Euler scheme. This method leads to qualitatively better solutions than the Moreau-

Jean method, both for rigid and flexible systems.
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If the splitting of the dynamics into smooth and nonsmooth contributions leads to

algorithms with improved performance, some freedom remains in the precise def-

inition of the smooth motion especially regarding the contributions of the bilateral

and unilateral constraints. This question has a significant influence on the numeri-

cal stability of the solution in the presence of impacts and velocity jumps. In [14],

the smooth motion was defined as an unconstrained motion whereas the bilateral

constraints at velocity level were imposed in [12]. Here, we propose a definition of

the smooth motion which involves the bilateral constraints and the active unilateral

constraints at acceleration level.

After a description of the equations of motion in Sect. 2 and of the nonsmooth

generalized-α method in Sect. 3, the special case of a smooth mechanical system

without impact is addressed in Sect. 4 and a comparison with more standard solvers

for differential-algebraic equations (DAEs) which are commonly used for the anal-

ysis of smooth multibody systems is performed. We show that the proposed algo-

rithm can be interpreted as an index-1 formulation which simultaneously enforces

the constraints at position, velocity and acceleration levels. In Sect. 5, the behaviour

of the algorithm in the smooth case is studied based on the numerical example of a

pendulum modelled as a DAE. In this example, a post-impact numerical solution is

also reproduced by considering disturbed initial conditions at the acceleration level.

This analysis reveals the high robustness and stability of the proposed algorithm.

Three examples of nonsmooth dynamic systems are studied in Sect. 6: a bouncing

rigid pendulum, a bouncing flexible pendulum and the horizontal impact of an elas-

tic bar. These examples intend to reveal the good properties of the algorithm for sys-

tems with bilateral constraints, impacts, accumulation phenomena, flexible bodies,

finite contact duration, dynamic activation and deactivation of unilateral constraints.

Also, it is shown that the numerical damping of the generalized-α is no more neces-

sary for the stabilization of the constraints but is only useful for the stabilization of

the spurious high frequency modes resulting from the finite element discretization

of flexible bodies. The conclusions of the study are finally summarized in Sect. 7.

2 Nonsmooth dynamics

2.1 Mechanical systems with unilateral constraints

Let us consider a mechanical system with bilateral and unilateral constraints. For

example, the bilateral constraints may represent the restrictions imposed by a kine-

matic joint which connects two bodies of the system, whereas a unilateral constraint

may represent a non-penetration condition when two bodies are in contact. In a first

step, we assume that no impact occurs in the system but that detachment phenomena

may occur during the motion. The equations of motion are then expressed as
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q̇ = v (1a)

M(q) v̇−gT
q (q)λλλ = f(q,v, t) (1b)

gU (q) = 0 (1c)

0 ≤ gU (q) ⊥ λλλU ≥ 0 (1d)

where t is the time; q is the vector of coordinates, e.g., the nodal coordinates

of a finite element mesh; v is the vector of velocities; M(q) is the mass matrix,

f(q,v, t) = fext(t)− fdamp(q,v)− fint(q) collects the external, damping and internal

forces; g is the combined set of bilateral and unilateral constraints; gq(q) is the ma-

trix of constraint gradients; λλλ is the vector of Lagrange multipliers which represents

the unilateral and bilateral reaction forces; U is the set of indices of the unilat-

eral constraints; U is its complementarity set, i.e., the set of bilateral constraints;

T = U ∪U is the total set of constraints, and we have

g =

[
gU

gU

]
, λλλ =

[
λλλU

λλλU

]
(2)

Equation (1d) takes the form of a complementarity condition. For one contact

j ∈ U , the function g j(q) represents the signed gap distance which can be obtained

from the contact kinematics. The contact condition imposes g j(q)λ j = 0 with both

g j(q) and λ j being non-negative, i.e., we do not authorize penetration and the reac-

tion force can only be compressive.

The equations of motion (1) can be solved by time integration from given initial

conditions q(0) = q0 and v(0) = v0 in order to obtain the trajectory q(t), v(t) and

the Lagrange multipliers λλλ (t) on a given time interval [0,T ]. Though, the equations

of motion also hide a purely algebraic relationship between q(t), v(t) and λλλ (t).
Indeed, at a given time t, the constraint reaction forces λλλ (t) can be evaluated as an

algebraic function of the current position q(t) and velocity v(t). As described below,

the expression of this function is obtained by constraint differentiation.

If the bilateral constraints are satisfied at position level, then their first and second

time-derivatives also vanish leading to the expression of the bilateral constraints at

velocity level
dg(q(t))

dt
= gU

q (q)v = 0 (3)

and at acceleration level

d2g(q(t))

dt2
= gU

q (q) v̇+hU (q,v) = 0 (4)

where h(q,v) is a quadratic operator with respect to its second argument. This op-

erator is defined as

h(q,v) =
∂ s(q,v)

∂q
v (5)

with s(q,v) = gq(q)v.
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The unilateral constraint j ∈ U is active at position level at time ti if g j(ti) = 0.

As λ j ≥ 0, this constraint is such that λ j(ti)− r g j(ti) ≥ 0 where r > 0 is a strictly

positive yet arbitrary real number. The variable λ j(t)− r g j(t) is an augmented La-

grange multiplier as encountered in augmented Lagrangian formulations [3, 31, 32].

The set of active unilateral constraints at position level is thus defined as

UA(t) = { j ∈ U : λ j(t)− r g j(q(t))≥ 0} (6)

In order to avoid penetration right after ti, any constraint j in UA(ti) needs to be

increasing so the gap velocity ġ j = g
j
q(q(ti))v(ti) can only be non-negative. Hence,

the unilateral constraint is transferred at velocity level as [33]

0 ≤ g
j
q(q(t))v(t)⊥ λ j ≥ 0, ∀ j ∈ UA(t) (7)

The unilateral constraint j ∈ U is active at velocity level at time ti if g j(q(ti)) = 0

and g
j
q(q(ti))v(ti) = 0. As λ j ≥ 0, this constraint satisfies λ j(ti)−r g

j
q(q(ti))v(ti)≥

0 for r > 0. The set of active unilateral constraints at velocity level is thus defined

as

UB(t) = { j ∈ UA(t) : λ j(t)− r g
j
q(q(t))v(t)≥ 0} (8)

In order to avoid penetration right after ti, the gap acceleration g̈ j = g
j
q(q(ti)) v̇(ti)+

h j(q(ti),v(ti)) needs to be non-negative for any constraint j ∈UB(ti). The unilateral

constraint is thus further transferred at acceleration level as [33]

0 ≤ g
j
q(q(t)) v̇(t)+h j(q(t),v(t))⊥ λ j(t)≥ 0, ∀ j ∈ UB(t) (9)

The unilateral constraint j ∈U is active at acceleration level at time ti if g j(q(ti)) =

0, g
j
q(q(ti))v(ti) = 0 and g

j
q(q(ti)) v̇(ti) + h j(q(ti),v(ti)) = 0. Following a similar

argument as above, the set of active unilateral constraints at acceleration level is

thus defined as

UC(t) = { j ∈ UB(t) : λ j(t)− r (g j
q(q(t)) v̇(t)+h j(q(t),v(t)))≥ 0} (10)

For convenience, we also introduce the active sets A (t) =U ∪UA(t), B(t) =U ∪
UB(t), C (t) =U ∪UC(t) and the inactive sets A (t) =T \A (t), B(t) =T \B(t)
and C (t) = T \C (t).

Using these definitions of the active sets A , B and C , which implicitly depend

on q, v, v̇ and λλλ , the equations of motion can be represented in three equivalent

ways as

• the formulation with the constraints at position level:

q̇ = v (11a)

M(q) v̇−gT
q (q)λλλ = f(q,v, t) (11b)

gA (q) = 0 (11c)

λλλA = 0 (11d)
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• the formulation with the constraints at velocity level:

q̇ = v (12a)

M(q) v̇−gT
q (q)λλλ = f(q,v, t) (12b)

gB
q (q)v = 0 (12c)

λλλB = 0 (12d)

• the formulation with the constraints at acceleration level:

q̇ = v (13a)

M(q) v̇−gT
q (q)λλλ = f(q,v, t) (13b)

gC
q (q) v̇+hC (q,v) = 0 (13c)

λλλC = 0 (13d)

The expression of the Lagrange multipliers can now be obtained from the for-

mulation with the constraints at acceleration level. Indeed, if the mass matrix is

nonsingular, the acceleration can be evaluated from Eq. (13b) as

v̇ = M−1(q)(f(q,v, t)+gT
q (q)λλλ ) (14)

so that Eqs. (13c) and (13d) give the equation for the Lagrange multipliers as

gC
q (q)M−1(q)(f(q,v, t)+gT

q (q)λλλ )+hC (q,v) = 0 (15a)

λλλC = 0 (15b)

If the position q(t) and velocity v(t) are known at a given time t and if all constraints

in C are independent, the Lagrange multipliers λλλ (t) can be evaluated by solving

this linear set of algebraic equations. Actually, this problem includes a linear com-

plementarity condition as the active set C implicitly depends on the unknown value

of λλλ (t).
This constraint differentiation process revealed the existence of hidden bilateral

and unilateral constraints at position, velocity and acceleration levels, which are

satisfied by the exact solution. Clearly, the initial conditions q0 and v0 should be

consistent with the constraints at position and velocity levels. In the context of DAE

(i.e., systems without unilateral constraint), these hidden constraints are at the core

of so-called index reduction methods which have been proposed to improve the

numerical stability of time integration schemes [4]. In the context of unilaterally

constrained systems, these hidden constraints can also be exploited to formulate

efficient numerical algorithms as will be discussed later.
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2.2 Mechanical systems with impacts

2.2.1 Equations of motion

Now, the formulation is extended to deal with impact phenomena which means that

impulsive reaction forces and jumps in the velocity field may arise, though the po-

sition field remains continuous in time. Assuming that the velocity is a function of

bounded variation, the right and left limits are introduced

q̇+(t) = lim
τ→t,τ>t

q̇(τ) (16)

q̇−(t) = lim
τ→t,τ<t

q̇(τ) (17)

v+(t) = lim
τ→t,τ>t

v(τ) (18)

v−(t) = lim
τ→t,τ<t

v(τ) (19)

For the sake of notation simplicity, the convention v(t) = v+(t) and q̇(t) = q̇+(t)
shall be used in the remaining part of this chapter.

When an impact occurs, the velocity is discontinuous and the acceleration is not

well-defined in the usual sense. This motivates the representation of the dynamics

in terms of the measure associated with the velocity dv [26]. This measure satisfies

the property

v(t2)−v(t1) =
∫

(t1,t2]
dv (20)

and, if the singular continuous part of the measure is neglected, it admits the decom-

position

dv = v̇dt +∑
i

(v(ti)−v−(ti))δti (21)

where dt is the standard Lebesgue measure, the summation is performed over all

impacts and δti is the Dirac delta supported at ti. Similarly, a measure di is introduced

to represent the reaction forces with possible impulsive contributions. This measure

is such that the integral

ΛΛΛ ∗(t1; t2) =
∫

(t1,t2]
di (22)

represents the total impulse of the reaction forces over the time interval (t1, t2] and

it admits the decomposition

di = λλλ dt +∑
i

pi δti (23)

where λλλ is the vector of nonimpulsive Lagrange multipliers associated with the

Lebesgue measurable constraint forces and pi is the impulse producing the jump at

the instant ti.

Then, the equations of motion can be expressed in the following form
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q̇ = v (24a)

M(q)dv−gT
q (q)di = f(q,v, t)dt (24b)

gU (q) = 0 (24c)

0 ≤ gU (q(t)) ⊥ diU ≥ 0 (24d)

2.2.2 Impact equation

For almost every time t, when there is no impact, the equations of motion given in

Eq. (11) with the definition of the active unilateral constraint UA in Eq. (6) are still

valid. At each impact time ti, Eq. (24d) leads to

0 ≤ gU (q(ti))⊥ pU
i ≥ 0 (25)

so that the definition of the set of active unilateral constraints UA at the impact time

ti is adapted as

UA(ti) = { j ∈ U : p
j
i − rp g j(q(ti))≥ 0} (26)

with the strictly positive scalar number rp > 0. The equations of motion at the impact

time become

M(q(ti))(v(ti)−v−(ti))−gT
q (q(ti))pi = 0 (27a)

gA (q(ti)) = 0 (27b)

pA
i = 0 (27c)

An impact law is then needed to specify the post-impact velocity. The Newton

impact law defines the normal velocity jump in case of an impact for the constraint

j ∈ UA(ti) as

g
j
q(q(ti))v(ti) =−e j g

j
q(q(ti))v−(ti) (28)

where e j ∈ [0,1] is the coefficient of restitution. The present formalism is developed

for the analysis of contact conditions between rigid or flexible bodies. For rigid

bodies, the coefficient of restitution defines the amount of energy dissipated during

an impact. For flexible bodies, the physical meaning of a coefficient of restitution

is not clear. The spatial discretization of a flexible body using the finite element

method leads to a finite dimensional system with finite masses. An impact law with

a coefficient of restitution is thus needed to describe contact conditions. In practice,

for flexible bodies, a value e j = 0 may be used so that the condition g
j
q v(ti) =

0 is imposed when the constraint is active. Based on this impact law, the contact

condition at the impact time is expressed at velocity level as

0 ≤ gUA
q (q(ti))v(ti)+EUA gUA

q (q(ti))v−(ti)⊥ p
UA
i ≥ 0 (29)

where EU is a diagonal matrix formed with the coefficients of restitutions of all

contact points. At the impact time ti, the set of active unilateral constraints at velocity
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level UB is adapted as

UB(ti) =
{

j ∈ UA(ti) : p
j
i − rp (g

j
q(q(ti))v(ti)+ e j g

j
q(q(ti))v−(ti))≥ 0

}
(30)

The equation to evaluate the velocity jump and the impact at time ti is obtained as

M(q(ti))(v(ti)−v−(ti))−gT
q (q(ti))pi = 0 (31a)

gB
q (q(ti))v(ti)+EB gB

q (q(ti))v−(ti) = 0 (31b)

pB
i = 0 (31c)

Equation (31b) accounts for the bilateral and active unilateral constraints. The size

of the matrix of restitution coefficients E is thus adapted to include the bilateral

constraints with artificial restitution coefficients fixed to zero.

2.2.3 Active set formulations

The definitions of UA in Eqs. (6) and (26) can be merged in a single definition valid

for every time as

UA = { j ∈ U : di j −g j(q)dρ ≥ 0} (32)

where dρ > 0 is a measure defined from the strictly positive and constant scalar

numbers r and rp as

dρ = r dt + rp ∑
i

δti (33)

Then, the combination of Eq. (11) and Eq. (27) leads to a formulation in terms of

measures

q̇ = v (34a)

M(q(t))dv−gT
q (q)di = f(q,v, t)dt (34b)

gA (q(t)) = 0 (34c)

diA = 0 (34d)

which is valid for every time and in which the constraints are expressed at position

level. Notice that Eq. (34) should be combined with the impact law to obtain a

complete set of equations.

Similarly, the definitions of UB in Eq. (8) and (30) can be merged in a single

definition for every time as

UB =
{

j ∈ UA : di j − (g j
q(q)v+ e j g

j
q(q)v−)dρ ≥ 0

}
(35)

Then, the formulation of the equations of motion in terms of measures is obtained

from Eqs. (12) and (31) as
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q̇ = v (36a)

M(q(t))dv−gT
q (q)di = f(q,v, t)dt (36b)

gB
q (q)v+EB gB

q (q)v− = 0 (36c)

diB = 0 (36d)

which is valid for every time and in which the constraints are expressed at velocity

level.

As in the Moreau-Jean method, the formulation in Eq. (36) embeds the impact

law in the expression of the constraints at velocity level. However, the activation

criterion defined by Eqs. (32) and (35) involves the augmented Lagrange multipliers

di j − g j dρ and thereby differs from the activation strategy initially proposed by

Moreau which only involves the gap distance g j. In our notations, the set of active

unilateral constraints in the original Moreau-Jean method would be defined as

U
Moreau

A (t) = { j ∈ U : g j(q(t))≤ 0} (37)

After time discretization, the set U Moreau
A at time step tn+1 is evaluated based on

a prediction of the displacement q∗(tn+1) whose definition affects the numerical

solution. In practice, it turns out that, in the Moreau-Jean method, q∗(tn+1) cannot be

merely chosen as the actual displacement q(tn+1). In contrast, we will show that the

proposed activation criterion based on augmented Lagrange multipliers according

to Eqs. (6) and (26) leads to a simpler and more implicit discrete activation strategy.

Equation (36) can be discretized in time using the Moreau-Jean θ -method [25,

27]. This method is known for its robustness and its ability to deal consistently

with unilateral constraints and impacts in mechanical systems. However, as the con-

straints are only imposed at velocity level, the numerical integration error will in-

duce a drift of the constraints at position level which will accumulate as time goes

by. Also, for standard applications, the numerical parameter θ is selected in the in-

terval (1/2,1]. This implies that the equations of motion are integrated with only

first-order accuracy and that the overall solution is affected by a rather large level of

numerical dissipation.

For nonsmooth systems, it is not possible to formulate the equations of motion in

terms of measures with the constraints at acceleration level because the acceleration

variable is only defined for almost every time but not at the impact instants.

3 Nonsmooth generalized-α method

3.1 Splitting method

Following [12, 14], the motion is splitted at one time step into a smooth trajectory

with continuous positions and velocities and nonsmooth contributions representing

impulsive forces, velocity jumps and position corrections. The smooth trajectory is
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constructed by integration of an acceleration variable ˙̃v that shall be defined below.

The advantage of this approach comes from the possibility to use a second-order

scheme to integrate ˙̃v instead of a first-order θ -method.

Let us introduce the set of constraints S (t) that shall be included in the definition

of the smooth motion. It can be selected in several different manners which shall be

studied later in Section 3.2. At a given time t and for given values of q(t) and v(t),

the smooth acceleration ˙̃v(t) and the smooth Lagrange multiplier λ̃λλ (t) are defined

as the solution of the well-posed algebraic system

M(q) ˙̃v−gT
q (q) λ̃λλ = f(q,v, t) (38a)

gS
q (q) ˙̃v+hS (q,v) = 0 (38b)

λ̃λλ
S

= 0 (38c)

An important point is that the resulting acceleration ˙̃v(t) is defined for every time,

including the impact instants. The values of ˙̃v and λ̃λλ at time t only depend on the

values of q, v and S at time t. In general, S (t) implicitly depends on ˙̃v(t) and λ̃λλ (t).
As q(t) is a continuous function and v(t) is a function of bounded variations, the

acceleration ˙̃v(t) and the multiplier λ̃λλ (t) are also functions of bounded variations

and, by construction, they are free from any impulsive contribution. Also, we use

the conventions ˙̃v(t) = ˙̃v+(t) and λ̃λλ (t) = λ̃λλ
+
(t). Notice that a discontinuity of ˙̃v(t)

can be either caused by a jump in the velocity v(t) or by a constraint activation or

deactivation in the set S (t). The velocity field ṽ(t) and the position field q̃(t) of the

smooth trajectory, which are obtained by time integration of ˙̃v(t) over the time step,

are continuous functions of time.

The nonsmooth contributions to the total motion are then represented by the dif-

ferential measure dw, which is defined such that

dv = ˙̃vdt +dw (39)

We obtain using Eqs . (36b), (38a) and (39)

M(q)dw−gT
q (q)(di− λ̃λλ dt) = 0 (40)

We insist on the fact that the smooth trajectory is a mere artificial construction which

is only intended to the formulation of an appropriate time integration procedure.

The physical response is represented by the total motion q(t) and v(t) and the total

impulse di.

The formulation of the constraints at acceleration level in Eq. (38b) departs from

the definition of the smooth motion based on the velocity constraints that was pro-

posed in [12] but leads to several advantages that will be investigated throughout

the paper. Firstly, it is not necessary to evaluate explicitly the smooth trajectory

at position or velocity levels, which simplifies the initialization of these variables.

Secondly, the sensitivity of this formulation to disturbances induced by the coupling

with nonsmooth phenomena, such as velocity jumps or constraint activation and de-
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activation, is reduced. Thirdly, this formulation can tolerate the dynamic activation

and deactivation of unilateral constraints in the set S (t).
In summary, the dynamics is now represented by the following set of equations

q̇ = v (41a)

dv = ˙̃vdt +dw (41b)

M(q) ˙̃v−gT
q (q) λ̃λλ = f(q,v, t) (41c)

gS
q (q) ˙̃v+hS (q,v) = 0 (41d)

λ̃λλ
S

= 0 (41e)

M(q)dw−gT
q (q)(di− λ̃λλ dt) = 0 (41f)

gB
q (q)v+EB gB

q (q−)v− = 0 (41g)

diB = 0 (41h)

3.2 Activation strategy for the constraints on the smooth motion

This section addresses the possible contribution λ̃λλ of the constraint reaction forces

in the definition of the smooth motion. The choice to include such contributions

or not bears some arbitrariness. Indeed, the value of λ̃λλ has no physical meaning,

only the total impulse represented by di can receive a physical interpretation. Even

though some contributions of the reaction forces are disregarded in the definition of

λ̃λλ , they will be consistently incorporated in the the total impulse di which satisfies

the discrete complementarity condition.

However, it is appealing to define the smooth motion so that it evolves as close as

possible to the physical motion for at least two reasons. Firstly, the smooth motion

is integrated using a higher-order scheme, so we can expect a higher accuracy if the

smooth motion is closer to the total (physical) one. Secondly, when the nonsmooth

corrections are reduced, the convergence of the iterative procedure at each time step,

which is at the core of the implicit integration procedure, is accelerated.

In the proposed method, the acceleration ˙̃v and the multipliers λ̃λλ are well-defined

at any time (though they can be discontinuous) by Eq. (38) so that, by construction,

no impulsive term can appear. This observation remains valid when some constraints

on the smooth motion are activated and deactivated. This means that we are rela-

tively free to dynamically activate and deactivate some unilateral constraints in S

as we feel appropriate without inducing inconsistent impulsive excitations on the

smooth motion.

Three different activation strategies for the smooth constraints are now consid-

ered.

• Strategy 1: S = /0, i.e., no bilateral constraint and no unilateral constraint is

taken into account, as proposed in [14]. This means that the smooth motion is

considered as a constraint-free motion.
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• Strategy 2: S = U , i.e., only the bilateral constraints are taken into account

but all unilateral constraints are excluded, as proposed in [12]. This means that

the smooth motion satisfies the bilateral constraints but does not account for the

contact forces.

• Strategy 3: S = U ∪ ŨC, with ŨC the time-dependent set of active unilateral

constraints at acceleration level defined according to

ŨC = { j ∈ UB : λ j − r (g j
q(q) ˙̃v+h j(q,v))≥ 0} (42)

This strategy is a new approach considered in this chapter. Notice that the def-

inition of ŨC relies on the acceleration ˙̃v which is well-posed for every time

(including the impact times) and thus slightly differs from the definition of UC

which is not defined at the impact time. With this strategy, for almost every time

(when there is no impact), Eqs. (13) and (38) are strictly equivalent so that ˙̃v = v̇

and λ̃λλ = λλλ . This means that, for almost every time, ˙̃v and λ̃λλ represent the standard

accelerations and reaction forces but that they exclude impulsive contributions at

the impact instants.

Compared to strategy 1, we clearly expect that strategy 2 brings the smooth mo-

tion closer to the physical motion as it satisfies the bilateral constraints. For this

reason, strategy 2 should be preferred to strategy 1.

When all active unilateral constraints remain closed, the physical motion be-

comes smooth and satisfies the active constraints at acceleration level. In this case,

for the exact solution, the smooth motion defined in strategy 3 is equal to the to-

tal motion, i.e., ˙̃v = v̇ and λ̃λλ = λλλ . This means that the total motion is integrated

with second-order accuracy. In the numerical scheme, numerical errors may lead

to small differences between the smooth motion and the total motion but we ex-

pect that these differences are much smaller compared to the position corrections

and velocity jumps in strategy 2. Compared to strategy 2, strategy 3 should thus be

preferred when the constraints remain closed.

When some unilateral constraints are active but some impulsive phenomena are

present in the system, the acceleration is not well-defined and the physical interpre-

tation of the constraint at acceleration level becomes irrelevant. In this case, it is

not clear whether strategy 2 or strategy 3 should be preferred. This question will be

investigated through numerical tests in Section 6.

3.3 Gear-Gupta-Leimkuhler formulation

In Eq. (41g), the constraints on the total (physical) motion are imposed at velocity

level. Due to numerical integration errors, a drift of the constraints is expected at

position level. In order to remedy this situation, an adaptation of the Gear-Gupta-

Leimkuhler formulation [18] to nonsmooth systems was considered by several au-

thors [1, 12, 36]. The algorithm discussed here is built upon the formulation pro-

posed in [12]. An additional Lagrange multiplier µµµ is thus introduced in Eq. (41a)
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leading to

dv = ˙̃vdt +dw (43a)

M(q) ˙̃v−gT
q (q) λ̃λλ = f(q,v, t) (43b)

gS
q (q) ˙̃v+hS (q,v) = 0 (43c)

λ̃λλ
S

= 0 (43d)

M(q)(q̇−v)−gT
q (q)µµµ = 0 (43e)

gA (q) = 0 (43f)

µµµA = 0 (43g)

M(q)dw−gT
q (q)(di− λ̃λλ dt) = 0 (43h)

gB
q (q)v+EB gB

q (q−)v− = 0 (43i)

diB = 0 (43j)

One can easily check that the solution of Eq. (41) also satisfies Eq. (43) with µµµ = 0.

So the introduction of the new Lagrange multiplier preserves the original solution

of the problem.

3.4 Discrete smooth and nonsmooth variables

In order to prepare the time discretization procedure, several global variables which

represent the total jumps and total impulses over the time step (tn, tn+1] are intro-

duced. Over the current time step, the smooth motion is first constructed by integra-

tion of the smooth acceleration ˙̃v(t) from the physical initial conditions q(tn) and

v(tn) to the end of the time step

ṽ(t) = v(tn)+
∫ t

tn

˙̃v(τ)dτ (44)

q̃(tn+1) = q(tn)+hv(tn)+
∫ tn+1

tn

∫ t

tn

˙̃v(τ)dτ dt (45)

where h= tn+1−tn is the the time-step size. Even if the total velocity v(t) undergoes

a discontinuity, ṽ(t) is by construction a continuous function of time in (tn, tn+1].
The velocity jump is defined as

W(tn; tn+1) =
∫

(tn,tn+1]
dw (46)

Using Eqs. (39) and (44), we get

W(tn; tn+1) = v(tn+1)− ṽ(tn+1) (47)



On the Constraints Formulation in the Nonsmooth Generalized-α Method 15

Similarly, the position correction is defined as

U(tn; tn+1) =
∫ tn+1

tn

(q̇(t)− ṽ(t)) dt (48)

so that using Eqs. (39), (44) and (45)

U(tn; tn+1) = q(tn+1)− q̃(tn+1) (49)

Then, the relative impulse variable

ΛΛΛ(tn; tn+1) =
∫

(tn,tn+1]
(di− λ̃λλ (t)dt) (50)

and the relative double integral variable

ννν(tn; tn+1) =
∫ tn+1

tn

(
µµµ(t)+

∫

(tn,t]
(di− λ̃λλ (t)dτ)

)
dt (51)

are introduced so that, according to Theorem 1 in [12],

M(q(tn+1)) W(tn; tn+1)−gT
q (q(tn+1)) ΛΛΛ(tn; tn+1) = O(h) (52a)

M(q(tn+1)) U(tn; tn+1)−gT
q (q(tn+1)) ννν(tn; tn+1) = O(h2) (52b)

It is important to observe that ΛΛΛ(tn; tn+1) does not represent the total impulse

of the reaction forces but only a part of it as the contribution of the non-impulsive

reaction forces λ̃λλ is excluded in the definition (50). The total (physical) impulse, de-

noted as ΛΛΛ ∗(tn; tn+1), is evaluated by time integration of the measure of the reaction

forces di

ΛΛΛ ∗(tn; tn+1) =
∫

(tn,tn+1]
di = ΛΛΛ(tn+1)+

∫ tn+1

tn

λ̃λλ (t)dt (53)

Similarly, the total double integral ννν∗(tn; tn+1) is defined as

ννν∗(tn; tn+1) =
∫ tn+1

tn

(
µµµ(t)+

∫

(tn,t]
di

)
dt = ννν(tn+1)+

∫ tn+1

tn

∫ t

tn

λ̃λλ (t)dτ dt (54)

The contribution of µµµ is introduced in Eq. (54) so that ννν∗(tn; tn+1) is conveniently

expressed in terms of the variables ννν(tn; tn+1) and λ̃λλ .

3.5 Active sets in the discrete time system

Following a similar argumentation as developed in [12], the set of active unilateral

constraints at position level over the time step (tn, tn+1] is defined as

UA(tn; tn+1) =
{

j ∈ U : ν∗ j(tn; tn+1)− r g j(q(tn+1))≥ 0
}

(55)
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This activation rule based on the augmented Lagrange multiplier fixes the problem

of the spurious oscillations reported in [1] in a simple way.

The active unilateral constraints at velocity level over the time step (tn, tn+1] are

defined as

UB(tn; tn+1) =
{

j ∈ UA(tn; tn+1) : Λ ∗ j(tn; tn+1)− r(g j
qv(tn+1)+ e j g

j
qv(tn))≥ 0

}

(56)

Finally, if the third strategy is used for the activation of the constraints on the

smooth motion (see Sect. 3.2), the active unilateral constraints at acceleration level

over the time step (tn, tn+1] are defined as

UC(tn; tn+1) ={ j ∈ UB(tn; tn+1) :

λ̃ j(tn+1)− r(g j
q

˙̃v(tn+1)+h j(q(tn+1),v(tn+1)))≥ 0
} (57)

In [12], the unilateral constraints were never activated in the smooth equation so

that λ̃λλ
U

= 0, ννν∗U = νννU and ΛΛΛ ∗U = ΛΛΛU . But if λ̃λλ
U

differs from 0, it contributes

directly to the physical contact forces. This is the reason why the activation criteria

in Eqs. (55) and (56) need to be established based on the total impulse and total

double integral represented by ννν∗ and ΛΛΛ ∗ (and not ννν and ΛΛΛ ).

The definition of UB also differs from [12] in the following way. Here, the defi-

nition of UB involves the augmented Lagrange multipliers at position level (as it is a

subset of UA) and a criterion on the augmented Lagrange multiplier at velocity level.

In [12], the criterion on the augmented Lagrange multiplier at position level is re-

placed by a criterion on the penetration of the smooth motion g j(q̃(tn+1))≤ 0. This

modification allows us to completely eliminate the variable q̃ from the algorithm

and to simplify the formulation.

As discussed in [12], in this scheme, the variables ννν and ννν∗ do not have a clear

physical meaning but are only useful for the exact enforcement of all active con-

straints at position level at the end of the time step. So the physical contact impulse

is solely represented by the variable ΛΛΛ ∗.

3.6 Generalized-α time integration

The integrals in Eqs. (44) and (45) can be approximated according to the generalized-

α method as
∫

(tn,tn+1]

˙̃vdt = h(1− γ)an +hγan+1 (58)

∫ tn+1

tn

∫ t

tn

˙̃v(τ)dτ dt = h2(1−β )an +h2βan+1 (59)

(1−αm)an+1 +αman = (1−α f ) ˙̃vn+1 +α f
˙̃vn (60)
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where an+1 can be interpreted as a shifted approximation of the acceleration at time

tn+1 +(αm −α f )h. In the initialization procedure, the value of a0 at time t = 0 can

be approximated (i) by a0 = v̇((αm −α f )h) by solving Eq. (38) at t = (αm −α f )h
or (ii) by the order h approximation a0 = v̇(0). This second and simpler option

is retained in this work. The numerical parameters β , γ , αm, α f can be selected

according to the methods of Newmark [28], Hilber-Hughes-Taylor [21] or Chung

and Hulbert [15]. This last option is considered here. The Chung-Hulbert method is

a second-order scheme with an adjustable level of numerical dissipation in the high-

frequency range. More precisely, based on the user-prescribed value of the spectral

radius at infinite frequencies ρ∞ ∈ [0,1], which is an image of the level of numerical

dissipation in the high-frequency range (ρ∞ = 1 means no dissipation, ρ∞ = 0 means

maximal dissipation such that any high-frequency disturbance is eliminated in one

time step), the coefficients of the Chung-Hulbert method are determined as

αm =
2ρ∞ −1

ρ∞ +1
, α f =

ρ∞

ρ∞ +1
, γ = 0.5+α f −αm, β = 0.25(γ +0.5)2 (61)

Finally, the integrals of the multipliers λ̃λλ (t) that appear in the definition of the

active sets A and B are evaluated using a similar strategy as

∫ tn+1

tn

λ̃λλ (t)dt = h(1− γ)ηηηn +hγηηηn+1 (62)

∫ tn+1

tn

∫ t

tn

λ̃λλ (τ)dτ dt = h2(1−β )ηηηn +h2βηηηn+1 (63)

(1−αm)ηηηn+1 +αmηηηn = (1−α f )λ̃λλ n+1 +α f λ̃λλ n (64)

where ηηηn+1 is a shifted approximation of the multiplier λ̃λλ at time tn+1+(α f −αm)h,

which is initialized as ηηη0 = λ̃λλ 0.

3.7 Summary of the time stepping scheme

Based on the definitions and results presented in the previous sections, the discrete

system of equations is finally obtained as
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M(qn+1) ˙̃vn+1 −gT
q (qn+1) λ̃λλ n+1 = f(qn+1,vn+1, tn+1) (65a)

gS
q (qn+1) ˙̃vn+1 +hS (qn+1,vn+1) = 0 (65b)

λ̃λλ
S

n+1 = 0 (65c)

M(qn+1)Un+1 −gT
q (qn+1)νννn+1 = 0 (65d)

gA (qn+1) = 0 (65e)

νννA
n+1 = 0 (65f)

M(qn+1)Wn+1 −gT
q (qn+1)ΛΛΛ n+1 = 0 (65g)

gB
q (qn+1)vn+1 +EB gB

q (qn)vn = 0 (65h)

ΛΛΛB
n+1 = 0 (65i)

combined with the time integration formulae

qn+1 −qn = hvn +h2(1−β )an +h2βan+1 +Un+1 (65j)

vn+1 −vn = h(1− γ)an +hγan+1 +Wn+1 (65k)

(1−αm)an+1 +αman = (1−α f ) ˙̃vn+1 +α f
˙̃vn (65l)

The active sets A , B and S are evaluated as described in Sect. 3.5 based on the

discrete variables at time step n+1, in particular, based on the variables ΛΛΛ ∗
n+1 and

ννν∗
n+1 defined as

ΛΛΛ ∗
n+1 = ΛΛΛ(tn+1)+h(1− γ)ηηηn +hγηηηn+1 (65m)

ννν∗
n+1 = ννν(tn+1)+h2(1−β )ηηηn +h2βηηηn+1 (65n)

(1−αm)ηηηn+1 +αmηηηn = (1−α f )λ̃λλ n+1 +α f λ̃λλ n (65o)

The sets A , B and S thus implicitly depend on the solution at step tn+1. Let us

remark that the variables ΛΛΛ ∗
n+1 and ννν∗

n+1 do not explicitly appear in the equations

of motion but are necessary for the definition of the active sets A and B.

Initial conditions should be specified for the variables q0, v0, which should be

compatible with the constraints at position and velocity levels. Based on these initial

conditions, the initial values of ˙̃v0 and λ̃λλ 0 are obtained by solving the algebraic

system (65a,65b,65c). Finally, one can initialize a0 = ˙̃v0 and ηηη0 = λ̃λλ 0.

One also observes that the smooth positions q̃n+1 and velocities ṽn+1 do not

appear in this scheme, which is a difference compared to the algorithm presented

in [12].

3.8 Solution of the discretized problem

At each time step, the system of nonlinear equations represented by Eq. (65) should

be solved for the different variables at time tn+1. As the activation status of the con-
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straints depends on the unknowns of the problem, the problem implicitly includes

complementarity conditions.

For the sake of numerical efficiency, Eq. (65) can be condensed by elimination of

the linear equations which represent the time integration formulae (65j-65o). This

elimination relies on a distinction between the independent variables selected as
˙̃vn+1, λ̃λλ n+1, Un+1, νννn+1, Wn+1, ΛΛΛ n+1, and the remaining dependent variables qn+1,

vn+1, an+1, ηηηn+1, ννν∗
n+1 and ΛΛΛ ∗

n+1. For a system with nq coordinates in q and ng

constraints in g, the problem is represented by a system of 3(nq + ng) nonlinear

equations with complementarity conditions for the 3(nq+ng) independent variables.

Algorithm 1 Nonsmooth generalized-α time integration scheme

Inputs: initial values q0 and v0

Compute the consistent value of ˙̃v0 and λ̃λλ 0 and initialize a0 := ˙̃v0 and ηηη0 = λ̃λλ 0

for n = 0 to nfinal −1 do

Predict the variables qn+1, vn+1, ˙̃vn+1, νννn+1, ΛΛΛ n+1, λ̃λλ n+1, an+1,ννν∗
n+1, ηηηn+1 ΛΛΛ ∗

n+1

for i = 1 to imax do

Evaluate the sets A , B and S at time tn+1

Evaluate the residuals of the equations of motion given by Eqs. (65a-65i)

if all residuals are below the tolerance then

break

end if

Evaluate the iteration matrix of Eqs. (65a,65b,65c) with respect to ˙̃vn+1 and λ̃λλ n+1

Solve the resulting linearized problem and evaluate the corrections of ˙̃vn+1 and λ̃λλ n+1

Update the dependent variables qn+1, vn+1, an+1, ηηηn+1, ννν∗
n+1 and ΛΛΛ ∗

n+1

Evaluate the residuals of Eqs. (65d,65e,65f)

Evaluate the iteration matrix of Eqs. (65d,65e,65f) with respect to Un+1 and νννn+1

Solve the resulting linearized problem and evaluate the corrections of Un+1 and νννn+1

Update the dependent variables qn+1 and ννν∗
n+1

Evaluate the residuals of Eqs. (65g,65h,65i)

Evaluate the iteration matrix of Eqs. (65g,65h,65i) with respect to Wn+1 and ΛΛΛ n+1

Solve the resulting linearized problem and evaluate the corrections of Wn+1 and ΛΛΛ n+1

Update the dependent variables vn+1 and ΛΛΛ ∗
n+1

end for

end for

This nonlinear system can be solved using a semi-smooth Newton process, which

can also be interpreted as an active set method [10, 22, 23, 24]. This method relies

on iterations based on the linearized system with an update of the activation status

at each iteration.

A simplification of the linearized system can be obtained if some coupling terms

between equations are neglected in the iteration matrix that appears in the linearized

problem. In this case, the solution of the full linearized problem within each iter-

ation can be approximated by a sequence of three subproblems of size nq + ng as

described in Algorithm 1. A similar procedure was used in [12] and more imple-

mentation details can be found in that paper. In many practical cases, it turns out

that this approximation of the iteration matrix does not significantly penalize the

convergence of the process but significantly reduces the computational cost.
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During the inner semismooth Newton iterations, the activation criteria are evalu-

ated in non-converged states for which the equilibrium is not reached. The definition

of these criteria based on the augmented Lagrange multipliers form is essential to

ensure the robustness of the activation strategy and the convergence of the iterations

towards the equilibrium state. Another important detail is that, even though the de-

pendent variables are updated between the treatments of the different subsytems,

the sets A , B and S are evaluated only once at the begining of the global Newton

iteration but are not updated between the treatments of the different subsystems.

4 Special case: smooth motion

The above algorithm is general and can deal with rigid and flexible multibody sys-

tems with bilateral constraints, unilateral contact conditions and impacts, involving

velocity jumps and impulsive reaction forces. As a special case, it is also applica-

ble to systems without unilateral constraints or with strictly closed unilateral con-

straints. In this case, no impact occurs and the dynamics evolves smoothly without

velocity jumps or impulsive phenomena.

Even though we are interested in nonsmooth systems, the numerical perfor-

mances of the method should also be investigated in the smooth phases of motion

between impact phenomena. In this section, the equations of motion and the time

integration algorithm are first particularized to smooth systems. Then, more usual

DAE solvers for smooth systems will be reviewed and compared to the proposed

algorithm.

If no impulsive contribution is present in Eqs. (21) and (23), we can write

dv = v̇dt (66)

di = λλλ dt (67)

and, if all active constraints remain closed, the dynamics can be represented by

q̇ = v (68a)

M(q) v̇−gT
q (q)λλλ = f(q,v, t) (68b)

g(q) = 0 (68c)

4.1 Special form of the proposed algorithm

For a smooth dynamic system without impact, Eq. (43) becomes
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M(q) ˙̃v−gT
q (q) λ̃λλ = f(q,v, t) (69a)

gq(q) ˙̃v+h(q,v) = 0 (69b)

M(q)(q̇−v)−gT
q (q)µµµ = 0 (69c)

g(q) = 0 (69d)

M(q)(v̇− ˙̃v)−gT
q (q)ξξξ = 0 (69e)

gq(q)v = 0 (69f)

with ξξξ = λλλ − λ̃λλ . This equation has the structure of a stabilized index-1 DAE which

combines the constraints at position, velocity and acceleration levels. One can check

that any solution of Eq. (68) satisfies this formulation with µµµ = 0, ξξξ = 0, λλλ = λ̃λλ
and v̇ = ˙̃v. To the best of our knowledge, this form is not known in the multibody

dynamics community. Nevertheless, it can be used in combination with various time

integration schemes as index-1 DAEs are known to be less numerically sensitive

than higher index systems.

The discrete form of Eq. (69) becomes

M(qn+1) ˙̃vn+1 −g,Tq (qn+1) λ̃λλ n+1 = f(qn+1,vn+1, tn+1) (70a)

gq(qn+1) ˙̃vn+1 +h(qn+1,vn+1) = 0 (70b)

M(qn+1)Un+1 −gT
q (qn+1)νννn+1 = 0 (70c)

g(qn+1) = 0 (70d)

M(qn+1)Wn+1 −gT
q (qn+1)ΛΛΛ n+1 = 0 (70e)

gq(qn+1)vn+1 = 0 (70f)

that needs to be combined with the time integration formulae in Eq. (65j,65k,65l). In

this case, the position correction Un+1 and the velocity jump Wn+1 are only needed

to compensate for the drift of the constraints at position and velocity levels that

results from the time integration of the acceleration constraint at every time step.

These corrections are thus expected to be small.

4.2 Other formulations for smooth systems with constraints at a

single level

In multibody dynamics, one generally combines the kinematic equation and the

dynamic equilibrium

q̇ = v (71a)

M(q) v̇−gT
q λλλ = f(q,v, t) (71b)

with the constraints either expressed at position level (index-3 formulation), velocity

level (index-2 formulation) or acceleration level (index-1 formulation), or based on

a linear combination according to the index-1 Baumgarte stabilization method as
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follows




g(q) = 0 if position constraint

gq(q)v = 0 if velocity constraint

gq(q) v̇+h(q,v) = 0 if acceleration constraint

gq(q) v̇+h(q,v)+2α gq(q)v+β 2 g(q) = 0 if Baumgarte form

(71c)

These equations can be solved for given initial conditions q(0) = q0 and v(0) = v0.

For the sake of consistency, these initial conditions need to verify the constraints at

position and velocity levels.

The index-3 formulation is widely used for the simulation of multibody sys-

tems [8, 19]. Numerous theoretical results are available for implicit time integration

schemes based on this formulation. For example, using the generalized-α time in-

tegration scheme, all solution components (position, velocities, accelerations and

Lagrange multipliers) converge to the exact solution with second-order accuracy on

finite time intervals. This result was first obtained for mechanical systems modelled

as DAEs on a vector space [5] and later extended to systems with finite rotations

variables and modelled as DAEs on a Lie group [7, 13]. In order to reduce the influ-

ence of numerical disturbances, a careful scaling strategy is recommended for the

different equations and variables of the discrete system [11]. The hidden constraints

at velocity and acceleration levels are not exactly satisfied but the constraint viola-

tion error stays in certain limits and decreases with the time step as fast as O(h2) on

finite time intervals. However, order reduction phenomena were pointed out in [7],

which may affect the initial phase of a simulation by spurious transient numerical os-

cillations in the accelerations and Lagrange multipliers with O(h) amplitude. Also,

the index-3 formulation cannot be directly extended to build time-stepping schemes

for systems with unilateral constraints as it does not lend itself to the incorporation

of the impact law.

The index-2 formulation based on the expression of the constraint at velocity

level is equivalent to Eq. (36) in the special case of a smooth system without impact.

It is thus particularly relevant for nonsmooth systems, as the impact law may be

incorporated in the velocity constraint according to Moreau’s sweeping process. In

nonsmooth dynamics, the problem is usually integrated in time using a θ -method [2,

25, 27]. In this approach, the numerical solution is not forced to satisfy the constraint

at position level so that drift-off phenomena can occur as a result of the accumulation

of numerical integration errors.

The index-1 formulation based on the constraint at acceleration level is even less

sensitive from a numerical point of view and can be solved using non-stiff time inte-

gration methods. However, it suffers from important drift-off phenomena at velocity

and position levels [4]. These drift-off phenomena can be eliminated by the imple-

mentation of projection methods which bring the numerical solution back to the

constraint manifold. The Baumgarte stabilization also enforces a single constraint

but is formed as a weighted linear combination of the constraints at position, veloc-

ity and acceleration levels [9, 17]. In a strict sense, the resulting numerical solution

does not satisfy any of these constraints individually. To the best of our knowl-
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edge, these index-1 formulations have not been used in time-stepping schemes for

unilaterally constrained systems with impacts and velocity jumps because the ac-

celeration variable is not properly defined at the impact time. One of the original

contribution of this chapter is to exploit the acceleration variable that results from

the splitting procedure and is well-defined at any time for the formulation of the

active constraints at acceleration level for nonsmooth mechanical systems.

4.3 Gear-Gupta-Leimkuhler formulation

The Gear-Gupta-Leimkuhler (GGL) formulation is another index reduction method

that was initially developed for smooth DAEs and that simultaneously enforces the

constraints at position and velocity levels [18]. It is based on the reformulation of

the initial set of equations in index-2 form as

q̇−gT
q µµµ = v (72a)

M(q) v̇−gT
q λλλ = f(q,v, t) (72b)

g(q) = 0 (72c)

gq(q)v = 0 (72d)

One can check that any exact solution of the initial DAE (68) is also a solution of

this set of equations with µµµ = 0.

As shown in [6, 7], this index-2 problem can be solved using the generalized-α
method. In this chapter, the notations from these references are slightly adapted to

match our previous developments. At time step n+1, the unknown variables qn+1,

vn+1, v̇n+1, λλλ n+1, Un = h(q̇n −vn) and νννn = hµµµn should thus satisfy

Un −gT
q (qn)νννn = 0 (73a)

M(qn+1) v̇n+1 −gT
q (qn+1)λλλ n+1 = f(qn+1,vn+1, tn+1) (73b)

g(qn+1) = 0 (73c)

gq(qn+1)vn+1 = 0 (73d)

together with the integration formula

qn+1 = qn +hvn +h2(0.5−β )an +h2βan+1 +Un (73e)

vn+1 = vn +h(1− γ)an +hγan+1 (73f)

(1−αm)an+1 +αman = (1−α f )v̇n+1 +α f v̇n (73g)

This method leads to a numerical solution which simultaneously satisfies the con-

straints at position and velocity levels. Unlike in the analytical solution, the mul-

tiplier νννn of the numerical solution is not exactly 0, with the consequence that

Un 6= vn. Compared to the index-3 formulation, this method is less numerically sen-
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sitive and is not prone to the order reduction phenomenon mentioned in the previous

section [7].

In order to highlight the connection with the nonsmooth algorithm discussed in

this chapter and in [12], the method can be slightly adapted as

M(qn+1)Un+1 −gT
q (qn+1)νννn+1 = 0 (74a)

M(qn+1) v̇n+1 −gT
q (qn+1)λλλ n+1 = f(qn+1,vn+1, tn+1) (74b)

g(qn+1) = 0 (74c)

gq(qn+1)vn+1 = 0 (74d)

with the time integration formulae

qn+1 = qn +hvn +h2(0.5−β )an +h2βan+1 +Un+1 (74e)

vn+1 = vn +h(1− γ)an +hγan+1 (74f)

(1−αm)an+1 +αman = (1−α f )v̇n+1 +α f v̇n (74g)

Two changes can be observed between Eq. (73) and Eq. (74). Firstly, the mass matrix

M now appears in Eq. (74a). Secondly, the position correction Un+1 that appears in

the position update Eq. (74e) is evaluated at time step n+1 (and not at time step n

as in Eq. (73e)).

Various investigations addressed the extension of the GGL formulation for non-

smooth systems [1, 12, 36]. Also, the formulation presented in Section 4.1 can be

interpreted as a recursive application of the GGL method so that the constraints at

acceleration level are also incorporated.

4.4 Emulation of post-impact conditions

If an impact is followed by a free-flight phase on a finite time interval, the post-

impact numerical solution will be affected by disturbances which will propagate dy-

namically in the free-flight phase. An important question is thus to characterize the

behaviour of the algorithm for smooth mechanical systems with a particular focus

on the sensitivity to disturbances induced by impulsive phenomena and constraint

activations. This section shows that the behaviour of the nonsmooth generalized-α
method in the post-impact phase can be investigated based on the underlying smooth

system with disturbed initial conditions.

Let us consider a nonsmooth system and imagine that an isolated impact occurs

in the time interval [tn−1, tn) but that no other nonsmooth phenomenon arises for

t > tn. Over the time interval [tn−1, tn), the velocity is discontinuous but the dis-

placement remains continuous in time. If the system is simulated either using the

method described in [12] or the method proposed in this paper, the numerical so-

lution at tn+1 only depends on qn, vn, ˙̃vn and an (we do not need to evaluate ηηηn+1,

ΛΛΛ ∗
n+1 and ννν∗

n+1 as the constraint status is assumed to be known for t > tn). Let us
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analyze the consistency of these variables (qn, vn, ˙̃vn, an) with respect to the bilateral

constraints in the post-impact phase.

The positions qn and velocities vn are, by construction, consistent with the bilat-

eral constraints at position and velocity levels. Therefore, at position and velocity

levels, the discontinuity leads to new and consistent initial conditions and erases the

pre-impact time history.

As the velocity is discontinuous, the acceleration ˙̃v defined according to our split-

ting method also undergoes an O(1) discontinuity over the time interval [tn−1, tn).
At tn, consistent values of the acceleration ˙̃vn and of the shifted value an could be

computed from Eq. (38) based on the value of qn and vn, using a similar technique

as for the definition of the initial conditions. The results would thus be consistent

and completely independent of the values of the pre-impact solution. This strategy

would be interpreted as a reinitialization of the time integration procedure after the

impact.

However, the method described in [12] and the method proposed here do not rely

on a reinitialization procedure, as we do not want to perform specific treatments

every time an impact occurs. Instead, the smooth acceleration is integrated over the

impact according to the generalized-α method as if no discontinuity were present.

Therefore, the pre-impact acceleration history influences the post-impact numerical

solution as follows.

• In the method described in [12], for given values of qn and vn, the values of ˙̃vn

and an still depend on the pre-impact values ˙̃vn−1, an−1 and vn−1.

• In the algorithm proposed here the value of ˙̃vn is defined as an algebraic function

of qn and vn and is thus independent of the pre-impact solution, but the value of

an still depends on the pre-impact values ˙̃vn−1 and an−1 (see Eq. (65l)).

Compared to a correct reinitialization of the acceleration variables solely based on

the post-impact state, the pre-impact solution influences the values an and possibly
˙̃vn in both algorithms, leading to O(1) disturbances. As a consequence, an and pos-

sibly ˙̃vn may violate the constraint at acceleration level with O(1) errors. Thus, the

post-impact numerical solution can be emulated by a simulation of the underlying

smooth system for t > tn if the initial accelerations ˙̃vn and an are modified with O(1)
disturbances.

This situation is also representative of the transition of a unilateral constraint

from an open to a closed status in S over the time interval [tn−1, tn). Indeed, in

this case, the position qn and velocity vn satisfy the new constraint at position and

velocity levels, but the acceleration ˙̃vn and the shifted variable an do not necessarily

satisfy the new constraint at acceleration level.

5 Application to a smooth system

The properties of the proposed method are first investigated in the context of the nu-

merical solution of smooth DAEs. The classical example of a pendulum modelled
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as a constrained mechanical system serves for the comparison. Numerical meth-

ods derived from the generalized-α method using four different formulations of the

equations of motion are compared:

• the index-3 formulation with the constraints at position level only, referred as the

“P-constrained” method;

• the index-2 formulation with the constraints at velocity level only, referred as the

“V-constrained” method;

• the index-2 Gear-Gupta-Leimkuhler formulation with the constraints at position

and velocity levels, referred as the “PV-constrained” method;

• the proposed index-1 formulation with the constraints imposed simultaneously

at position, velocity and acceleration levels, referred as the “PVA-constrained”

method.

5.1 Problem description

Fig. 1 Pendulum.

Let us analyse the transient response of the pendulum depicted in Fig. 1. In or-

der to study the behaviour of the algorithm in the presence of constraints, a set of 3

absolute but redundant coordinates is chosen q= [x y θ ]T where x and y are the coor-

dinates of the center of mass and θ is the angle of the pendulum. These coordinates

have to satisfy 2 bilateral constraints

g1(q) ≡ x−Lcosθ = 0 (75)

g2(q) ≡ y−Lsinθ = 0 (76)

The physical parameters of the system are selected as: length of the pendulum

L = 1 m, mass m = 1 kg, moment of inertia J = 0.1 kg m2, and gravity accelera-

tion along the y-axis ag = 10 rad/s2. The initial conditions at position and velocity

levels are defined as θ0 = π/6 rad and θ̇0 = 10 rad/s. The numerical parameters of

the numerical solvers are selected as h = 2.10−3 s, ρ∞ = 0.9.
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Fig. 2 Position (top), velocity (middle) and acceleration (bottom) constraints in the pendulum

example - left: full time interval, right: zoom on the initial phase. In the bottom-right plot, the

solution of the index-3 problem with the position constraint is not represented for the sake of

readibility.
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5.2 Results based on consistent initial conditions

Consistent initial positions q and velocities v are established from the initial value

θ0 and θ̇0. The initial acceleration v̇ is obtained by solving Eq. (38) at time t0 and

the shifted acceleration is initialized as a0 = v̇0. The results are presented in Fig. 2.

On certain graphs, high numerical oscillations are observed at the frequency of the

step size, which means that the variable under study jumps between a low to a high

value at each step. For the sake of readability, when zooming on these phenom-

ena, only the values at the successive time steps are represented by markers but the

interpolating line between the time steps is not necessarily displayed.

In the index-3 solution based on the sole position constraint, spurious high fre-

quency oscillations of the constraint at velocity and acceleration levels are observed

in the initial phase. After a transient phase, these high-frequency oscillations are

damped out and the hidden constraints do not converge to zero but evolve in a con-

tinuous manner. The amplitude of the transient high-frequency oscillations of the

acceleration constraint is particularly large and it can be shown that it decreases

only as O(h) when the time step is decreased, which reflects the presence of an

order reduction phenomenon, as discussed in Sect. 4.2.

In the index-2 solution based on the sole velocity constraint, a constraint drift is

observed at position level which increases as time goes by. Spurious high-frequency

oscillations are observed at acceleration level, but it can be shown that their ampli-

tude is quite limited and decreases as fast as O(h2) when the time step decreases,

i.e., there is no order reduction phenomenon in this case. After a transient phase, the

spurious oscillations disappear and the acceleration constraint evolves in a continu-

ous manner.

In the index-2 GGL solution, which enforces the constraints at position and ve-

locity levels, the constraints are indeed satisfied up to machine precision at position

and velocity levels. At acceleration level, the behaviour is similar as for the other

index-2 solution discussed in the previous paragraph.

In the proposed index-1 solution, the results confirm that the constraints are satis-

fied up to machine precision at the three levels (position, velocity and acceleration).

5.3 Results based on post-impact initial conditions

In order to emulate the disturbances induced by an impact on the post-impact nu-

merical solution, the simulation of the rigid pendulum is run using disturbed initial

accelerations such that the constraint is not satisfied at acceleration level.

Figure 3 presents the simulation results for the pendulum when the acceleration

and shifted acceleration are initialized as v̇0 = a0 = 0. Large spurious oscillations of

the acceleration constraint and Lagrange multiplier are observed for all algorithms

excepted for the proposed method which enforces the constraints at position, veloc-

ity and acceleration levels. Thus, the proposed method appears much less sensitive

to the disturbances induced by impact phenomena.
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Fig. 3 Acceleration constraint (top) and Lagrange multiplier (bottom) in the pendulum example

with post-impact initial conditions (left: full time interval, right: zoom on the initial phase).

6 Application to nonsmooth systems

In this section, three numerical examples are used to compare two algorithms for

nonsmooth dynamic systems

• The algorithm described in [12] in which the constraint on the smooth motion

only includes the bilateral constraints which are imposed at velocity level;

• The algorithm proposed here in which the constraint on the smooth motion in-

cludes the bilateral constraints as well as the active unilateral constraints both

imposed at acceleration level.

These two algorithms will be respectively called the “PVV-constrained” method

and the “PVA-constrained” method in the following. In both algorithms, the smooth

motion is integrated using the generalized-α time integration formula.

The first example is a bouncing rigid pendulum, the second example is a bounc-

ing elastic pendulum modelled as a geometrically exact beam and the last example

is the horizontal impact of an elastic bar. These three examples served also as a

support for the analysis of several algorithms for nonsmooth systems in [12, 14].
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Here, these examples are exploited to explore the properties the PVA-constrained

algorithm which is a novel contribution of this chapter.

6.1 Bouncing rigid pendulum

Fig. 4 Bouncing pendulum.

We consider the same pendulum as described in Sect. 5.1 but, as shown in Fig. 4,

a unilateral constraint restricts the motion of its center of mass as

g3(q)≡ x− xmin ≥ 0 (77)

with xmin =
√

2/2 m. The initial conditions are θ0 = π/12 rad and θ̇0 = 0 rad/s.

Consistent initial conditions are then defined for q, v, ˙̃v and a. The time step and the

spectral radius are selected as h = 1.10−3 s and ρ∞ = 0.9.
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Fig. 5 Unilateral constraint in the bouncing rigid pendulum example (left: position level, right:

velocity level).

The evolution of the gap distance g3(q) during the motion is shown in Figure 5.

The pendulum bounces several time against the hurdle and, at the end of the trajec-
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Fig. 6 Bouncing rigid pendulum: bilateral constraint at acceleration level (top) and Lagrange mul-

tipliers λ̃λλ (bottom) - left: full time interval, right: zoom on the first impact.

tory, the system gets stabilized in the closed contact configuration after an accumu-

lation phenomenon.

The evolution of the bilateral constraint at acceleration level (Fig. 6) reveals sig-

nificant numerical oscillations after each impact in the PVV-constrained algorithm.

In contrast, the solution obtained using the PVA-constrained method exactly satis-

fies the acceleration constraints without any such oscillations. In the same figure,

similar oscillations are observed in the smooth bilateral multiplier λ̃ 1 evaluated us-

ing the PVV-constrained method. In the PVA-constrained method, a discontinuity

occurs at each impact but no oscillation is visible.

At the end of the trajectory, the nonsmooth phenomena disappear and the total

horizontal reaction force in the rigid body becomes constant and can simply be

estimated as λ̃ 1 +Λ 1/h. Considering Figs. 6 (bottom-left) and 7 (right), the same

total reaction force is obtained in the two methods at the end of the trajectory but the

value of the relative impulse Λ 1 is equal to zero in the proposed algorithm. Indeed,

in this smooth part of the trajectory, the smooth equation captures the total motion

and, in this case, the corrections at position and velocity levels W and U tend to zero

for the PVA-constrained algorithm.
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Fig. 7 Lagrange multiplier Λ̃ΛΛ of the bilateral constraint in the bouncing pendulum example (left:

full time interval, right: zoom on the end phase).
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Fig. 8 No numerical damping - Lagrange multiplier λ̃λλ of the bilateral constraint in the bouncing

pendulum example (left: full time interval, right: zoom on the first impact).

In the transient phase before the unilateral constraint gets closed, the relative

impulse Λ 1 can take negative values in the PVA-constrained method as the comple-

mentarity condition is not applied to Λ 1 but to Λ ∗1.

The PVA-constrained method generally brings less numerical dissipation since

the reaction forces are better integrated. This is in agreement with the observation

of a later stabilization of the system in the closed contact state in Fig. 7.

Finally, the results in Fig. 8 were obtained using a spectral radius ρ∞ = 1, i.e.,

without any numerical dissipation. The PVA-constrained method still gives the ex-

pected results without any spurious numerical oscillation, whereas the Lagrange

multiplier obtained from the PVV-constrained method undergoes strong oscillations

after the first impact which never disappear from the solution.

In summary, this example has shown that both algorithms give a satisfactory nu-

merical solutions which exactly satisfies the bilateral and unilateral constraints at

position and velocity levels. Their comparison reveals (i) that imposing the con-
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straints at acceleration level improves the handling of the bilateral constraints after

the impact phenomena and alleviates the need to introduce numerical dissipation in

the time integration scheme in this example, (ii) that the unilateral constraint can be

activated at acceleration level in the smooth motion. During the free flight mode or

the closed constraint mode, the smooth motion then captures the full motion which

is thus integrated with second-order accuracy without any spurious oscillations.

6.2 Bouncing flexible pendulum

Fig. 9 Bouncing elastic pendulum.

In this example shown in Fig. 9, a flexible pendulum modelled as an elastic beam

hits an obstacle. The beam is modelled according to the geometrically exact beam

theory and discretized into nonlinear finite elements [19]. Thus, this example high-

lights nonlinear interactions between the beam and the non-penetration constraint at

the contact point.

The contact condition is modelled as a unilateral constraint applied at the tip node

of the beam mesh

g1(q)≡ xtip − xmin ≥ 0 (78)

There is no bilateral constraint in this example. The properties of the beam are:

undeformed length L= 1 m, cross section area A= 10−4 m2, cross section inertia I =
8.3310−10 m4, shear section area As = (5/6)A, Young modulus E = 2.11011 N/m2,

density ρ = 7800 kg/m3, Poisson coefficient ν = 0.3. At the initial time, the beam is

horizontal with zero velocity. The unilateral constraint is defined as xmin = L
√

2/2.

The beam is modelled using four finite elements. The time step is h = 5.10−6 s

and the spectral radius is ρ∞ = 0.8. A restitution coefficient is included in the for-

mulation of the impact law and its value is defined as e = 0.

In the PVV-constrained method, the unilateral constraint is never activated at

acceleration level in the definition of the smooth motion. As there is no bilateral

constraint in this case, the smooth motion is thus fully unconstrained. In the PVA-

constrained method, the unilateral constraint at acceleration level gets activated and

deactivated in a dynamic manner, so that the constraint reaction force brings some

stronger disturbances on the smooth motion.
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Fig. 10 Bouncing flexible pendulum: unilateral constraint at position (top), velocity (middle) and

acceleration levels (bottom) - left: full time interval, right: zoom on the first contact phase (the

zoom interval is different for the position constraint).
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As the step-size h is quite small, the mean number of Newton iterations at each

time step is very close to one for both algorithms.

The constraints at position, velocity and acceleration levels are depicted in

Fig. 10. The numerical response is characterized by rather complex dynamic phe-

nomena. The first contact phase is characterized by a finite duration on the interval

[0.327,0.348] s. However, the contact at position, velocity and acceleration levels do

not stay permanently activated over this time interval but enter and leave the system

in an intermittent manner. The zooms on the initial contact phase indicate a good

agreement between the two algorithms at position, velocity and acceleration level.

The solutions tend to diverge later on as the problem is particularly sensitive. One

also observes the activation of the constraint at acceleration level for some time in-

tervals in the PVA-constrained method, whereas this constraint is never activated in

the PVV-constrained method.
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Fig. 11 Reaction force in the bouncing pendulum example (left: full time interval, right: zoom on

the first contact phase).

The reaction forces at the contact point are represented in Fig. 11. During the

first contact phase, one observes a collection of rather close impulses.

In Fig. 12, the energy decays monotonously during the motion. During the first

contact phase, the energy decays progressively according to a kind of staircase func-

tion. One also observe the faster energy decay of the PVV-constrained method which

can be attributed to the higher level of numerical dissipation in this scheme.

In summary, the bouncing elastic pendulum example shows the ability of both

algorithms to study the dynamics a geometrically nonlinear beam with a unilateral

constraint. Both methods show similar numerical performances in this case which

involves high frequency activation and deactivation phenomena during the contact

phases.
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Fig. 12 Constraint at velocity level and energy in the bouncing pendulum example (left: full time

interval, right: zoom on the first contact phase).

6.3 Horizontal impact of an elastic bar

Fig. 13 Horizontal impact of an elastic bar.

The horizontal impact of an elastic bar as shown in Fig. 13 is now considered.

The problem was described in [16] and has an analytical solution. According to this

analytical solution, the contact stays closed for a period of ∆ t = 2L
√

ρ/E and the

energy is conserved. The contact force remains finite so there is no impact even if

the velocity undergoes a discontinuity at the contact point when the contact closes.

In our finite element model, a restitution coefficient e is needed at the level of

the impact law. This coefficient has no physical meaning and simply represents the

energy dissipation in the last element of the mesh. In order to be able to represent

the instantaneous closing of the unilateral constraint, we propose to choose e = 0.

The physical parameters are defined as in [16]: Young modulus E = 900 N/m2,

density ρ = 1 kg/m3, undeformed length L = 10 m, initial distance from the obstacle

d0 = 5 m, initial velocity v0 = 10 m/s. With these data, the closed contact period is

∆ t = 2/3 s. The bar is discretized using 200 finite elements, the time step is taken as

h = 2.10−3 s, and the spectral radius of the generalized-α time integrator is chosen

as ρ∞ = 0.8.

The results are presented in Figs 14, 15 and 16. The two algorithms give very

close results. The main difference is found in the mean number of Newton itera-
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Fig. 14 Unilateral constraint in the bar impact example (left: position level, right: velocity level).
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Fig. 15 Reaction force Λ ∗/h in the bar impact example (left: full time interval, right: zoom on the

post-impact phase).
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Fig. 16 Energy in the bar impact example.
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tions at each time step. In the PVV-constrained method, we have 2.94 iterations

per time step (about 10 iterations per step during the contact phase) whereas in

the PVA-constrained method only 0.80 iterations are needed in average. The ex-

planation is that the PVV-constrained method completely disregards the unilateral

constraint when evaluating the smooth motion. Therefore, the physical solution is

rather far from the smooth solution, the position and velocity corrections U and W

are quite significant and more iterations are needed to solve the coupled problem.

This example shows that the two methods provide relevant numerical solutions of

unilaterally constrained structure with closed contacts. Once again, the constraints

at position and velocity levels are exactly satisfied by the numerical solution. This

study also reveals the superiority of the PVA-constrained algorithm for flexible sys-

tems when some unilateral constraints stay closed during rather long time intervals.

7 Conclusion

The nonsmooth generalized-α method was developed for the analysis of flexible

multibody systems with contact conditions and impact phenomena. It relies on a

splitting of the total motion into smooth (non-impulsive) and nonsmooth (impul-

sive) contributions. A second-order time integration scheme is then used for the

smooth contributions whereas a first-order scheme is used for the consistent inte-

gration of impulsive contributions. Compared to the classical Moreau-Jean method,

this method leads to qualitatively better numerical solutions with less numerical

dissipation.

This chapter addresses the formulation of the constraints that appear in the def-

inition of the smooth motion and which can have a deep impact on the numerical

properties of the scheme. We propose to impose all active constraints at accelera-

tion levels on the smooth part of the motion, while the total motion satisfies simul-

taneously the constraints at position and velocity levels. Some advantages of this

formulation are the elimination of spurious numerical oscillations of the constraints

that generally occur after an impact and the possibility to account for the contribu-

tions of the unilateral constraints to the smooth motion. When the contact remains

closed, the integration of the contact forces is performed with a higher accuracy,

which comes with a reduced level of numerical dissipation and the convergence of

the approximated Newton iterations is accelerated as the amplitudes of the nons-

mooth corrections are reduced. These properties were demonstrated in several nu-

merical examples of smooth and nonsmooth mechanical systems. It is remarkable

that, in rigid-body examples, the constraints and the overall numerical solution are

inherently stabilized (in the sense that no spurious numerical oscillation is observed)

even if no numerical dissipation is introduced at the level of the generalized-α time

integrator.

Some key elements of the method can also be summarized. Firstly, the proposed

splitting strategy leads to a definition of the acceleration variable ˙̃v as an algebraic

function of the physical position and velocity at the current time, which permits
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the dynamic activation and deactivation of unilateral constraints in a very simple

manner. The acceleration ˙̃v represents the standard acceleration for almost every

time but it excludes impulsive contributions at the impact instants. Even though

this acceleration is discontinuous, the position and velocity of the smooth trajectory

are continuous even in the presence of impacts. The definition of the activation

criteria for the unilateral constraints at position, velocity and acceleration levels

is particularly critical for the robustness of the algorithm. The proposed criteria

rely on the definition of augmented Lagrange multipliers at position, velocity and

acceleration levels and can thus be used in a reliable way within the Newton semi-

smooth iterations even if the solution is not yet converged.

As a perspective, the present algorithm could be tested for more complex ex-

amples with a larger number of bodies and contact conditions. The extension to

frictional contact conditions could also be investigated.
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