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I. Intr'oduction 

Tile Voronoi diagram of a set of s it cs in the plane partitions t he plan" inl.o regions, caller! 

Voronoi regions , one to a s ite . The Voronoi region of a s ite s is the ~ c t of poi:1t s in the p);UH: 

ror which s is the closest site among all the sitcs. 

Tile Voro lloi diagram has many applications in diverse fields , cf. LC"cn / Shari, [LS861 " r 

Aurenhammer [A88bl for a list of applications and a history of Vomlloi d iagrams . OiffeTi"lli. 

typt'S of diagrams result from considering different notions of dis t?nce, e.g ., Eucl idea n or ("" 

norm or convex dista.nce functions, and different sorts of siteR , e.g., poin ts, line segments, Or 

(irdes ; cf. also section IV. For many types of diagrams efficient construction algorithms II ;\\'c 

been found; these are either ba.cd on the divide'and-conqlJer technique due to Sha mos/ Ho('y 

ISH!, the sweepline technique due to Fortune 1F871 or geometric tr a nsforms due to Brown 

Ilir l and Edeisbrunner/SeideI IESI· 

II unif,'ing approach to Voronoi diagrams was recently proposed b) 1, lein il\lSSal. lie does 

nol. lise the concept of distance as the basic notion but rather the concept of bi secting curves, 

i.e., Ill' ;\&;umes for each pair {p,q} of sites the existence of a bisecting curve J(p ,q) which 

di-. i<1es the plane into a p-rcgion and a q-region. The inter<e<:tion of a.1I p-regions for different 

q's i, then the Voronoi. region of site p. He also postulates that Voronoi'l cgio ns are s impl y· 

w nnectcc.l and partition the plane. He shows that abstract Vorolloi d iagritms ha\'e already 

lIIany of the properties of concret., Voronoi diagrams , cf. section II. He al so shows that the 

<I iv id ~ and·conquer technique can be used to construct abstract diagrams efficiently. \-l ore 

I,, ~ " ' i se ly, if the basic geometric operat ions on bisecting curVt'S take time 0 (1 ) a nd if a.ny se t 

S of siLes can be split in t ime 0(15 1) into about equal s izec.l subsets L a nd R such that. t.he 

bi. cc l.or between Land II (= the common boundary of regions in L wit h regions in Il) is 

acyc lic then the Voronoi diagrams of Land R can be merged in ti,"r. O(;S I) and h"nce th e 

d iil.~fi"n of n sites can be const ructed in time O{n log n). Klei n 's resu lt subsumes many of 

the previous results and goes far beyond them. There are , howcv<:r, si tu at.ions, e.g., c:i rd e 

sites under E:uclidean distance , where it is not known how to det ermine Land R in the 

divide· aml.conquer algorithm s llch that t hei r bisector is acyc lic: cf. Shar ir '51. 

'1'1", IHl rpose of this paper is ( <> show that there is an O(n log ,, ) ran ciomi"cd algorithm for 

constructing (a subset of KIc 'in 's ) abstract Voronoi diagrams even with<)u t '.he acycl icity 

"s:;umption. The subset is defined by Ihe following two general position assum ptions: We 00 

not allow bisecting curves to touch but require that all intersections are c:ossings and t hat 

no f01lr bisecting curves go through a common point . 

Til" algorithm is given in sect.i on 111 an d applications can be found in sec :;on [V. [n ma n)' 

concrete s ituations, e .g,. point sites with Euclidean distance fun ction, our algorithm is ju, l 

anoth", O(n log n) algorithm, a lbeit simpler. There are however at Icas t two cases where we 

achicve O(nlogn) for the first time: For disjoint convex sites the bes l determi ni, tic algorithm 

r"tls in l ime 0(11(101: nl') ILS861 and for line segments under tho Haussdorlf metric , i.e ., a 

p():nl, % and a line :5cgmcnt ~ - ~ ~ I $ l ha.ve distance Tll U X (I ;r. - -s l l. !x - oS :! I). an O(nlo~ n ) 

" Igo ri! hm was only known in the spec ia l case of so-ca lled a .disjoint segments IA8Shj. We 

also want to stress that the new algorithm is uniform in the ,eli se that on ly a small number 

of primitives, c f. sect ion II , are problem specific. 

Our ;d .:ori lhm is base.! On C larkson and Shor's ran domized incrementa l cons t ruc tion tcch

n i ~IH ' ICSI. T he idea is to consl ruct the ah ... lract Voronoi diagram of f\ set. .c,' of site!=; inc rcm cil ' 

(;.I ly ny ",Id ing site aiter s ite in random orde r. When R <;; 5 is lh,' r.u r",n : 'e: of ,i tes, th e 
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Voronoi diagram VIR) and a conflict graph G(R) i. maintained. The conflict graph contains 

dll pairs {e,t}, where e is an edge of VIR) and t E S - R i. a site still to be consider<:d, 

such that addition of site t causes the edge e to be removed (either completely or partially) 

from the diagram. In order to make Clarkson and Shor's method applicable one has to show 

that for a site ~ E S - R the diagram V(Ru Is}) and the conflict graph G(R u (s}) can ho 

con.l-rucled from VIR) and G(ll) in time 

o( L deaC(R)(e)) 

«,'}EC(R) 

where degC(R)(e) is the degree of e in G(R) and the summation is o. er all cages e of V(/I) 

which conflict with the new site •. This is the content of Theorem 1 of section III . If the 

IMthod is applicable the expected running time is 

O(n + mIn) + n· L m(T) / T') 

1 <f:.r'f:.n/l 

",here m(T) is the expected number of edges in VIR) . For abstract diagram,; mIT) :s; 3T alld 

hence the algorithm runs in t ime O(n log n). 

Throughout we use the (ollowing notation: 

'For a subset X S;; 1It2 the closure, boundary and interior of X are denoted by cI X, bd X and 

in! X respectively. 

II. Abstract Voronoi Diagrams 

l.et '1 " IN. and for each pair of integers p,q such that I :: p f- q ..; n leI D(p,q) be either 

ompty or an open unbounded s ubset ofIR2 and let J(p,q) be the boundary of D(p,q). We 

postulate: 

I) J(p,q) ~ .I(q,p) and for each p, q such that p f- q the regions D(p,q) , J (p,q) and D(q , p) 

f .. rlll a partition of 1R2 into three disjoint sets . 

l) If 0 f D(p, q) f-1R2 then .I(p, q) is homeomorphic to the open inlerval (0, I). 

w" "d ll J(p, q) the bise<ting curve for sites p and q. The abstract Voronoi diagram i. now 

d.lined a,; follows: 

Definition (R. Klein [KISSa]): 

ii) Let S = {I, ... ,n - I} and 

Il(p ,q):= { ~1=::l u J(p,q) 

VR(p,S):= n R(p, q) 

. es 
1#-r 

if p < q 

if p > q 

VIS) : ~ U bd VRC"S) 
pES 
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VR(p. S) is called the Voronoi region of p w.r.t. Sand VIS) is callcd the Voronoi diagram 

of .'i. 

b) We postulate that the Voronoi regions and the bisect.ing cur Y~ sat.isfy the following two 

conditions: 

I) Any two bisecting cur\"(<s have only a finite number of points in common. Any poin !. in 

common to two bisecting curves is a proper crossing bet ... ""n the two curves. d. Figure I . 

2) For any non-empty subset S' of S 

A) if VR(p.S') is non-empty then VR(p.S') is path-connected and has non-empty 

interior for each p ES'. 

Il) JR2 = UpES' VR(p. S') (disjoint) 0 

Remark 1: Klein's definition is actually more liberal . He allows that bisecting curves may 

touch a.nd only requires that their intersection consists of finitely many connected components. 

In 2A) he postulates that each VR(p. S') is non-empty. The weaker assumption made here 

.Ioes not harm his theory. 0 

Figure 1. A crossing and touching point 

I·'nc\ 1 (R. Klein [KlSSc]): 

a) Voronoi regions are simply ~ onnected . 

b) Th ~ following holds for each point v '" VIS): There are arbitrarily sma.Il ncighborhoous 

U of v that have the following properties. Let VR(PI.S), VR(P2.S), .. . • VR(pt,S) be the 

S('<!UCJ1CC of Voronoi regions traversed on a counterclockwise march around the boundary of 

U and let 1, . /2, .. . ,h denote the corresponding intervals of au, where I j = (w"Wj+ ,) C;; 

\' /l(PJ ' S) for I :'> j :'> k (indices must be read mod k) . The interva.ls mily be open, half

open or closed. W. have Wi t- wi+1 for 1 $ j $ k. The common boundary of VR(Pi- l • S) 

anu VR(pj.S) defines a curvI! ,egment /Ji <;; J(Pi-I.Pj) conne<:ting v and Wj. VIS) (l U 

is the union of the curve segments fJ, together wi,h the point v. Each Pj is cont.ained in 

the Voronoi region of min{p, _J, pj} . The open "piece of pic" bordered by OJ,(3j+1 and I, 

belongs to VR(Pi.S) , The point v belongs to the region of min {Ph ... • po}. Finally, Pi i Pj 

for i # j. 0 

For the sequel. it is helpful to restrict attention to the "finite part" of V (5). Let r be a simple 

c:lO<!cd curve such that all interse<:tions between bisect ing curves lie in th e inner domain of r. 
We add a site 00 to S, define J(P.co) = J(oo.p) = r for all p, 1 ::; p < n, and D (.,." p) to bl! 

the lIu ter domain of r for each P. I S P < n. 
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Fact 2 (R. Klein [KI8Se)): 

The boundary of each non·empty Voronoi region is a simple closed curve. Moreover, the 

closure of each non-empty Voranoi region VR(p, S), p i 00, is homeomorphic to a closed 

disc . A Voronoi diagram can be represented as a planar graph in a natural way. The 

"crticcs of the graph are the points of VIS) which belong to the boundary of three or more 

VOfOlloi regiollll and the edges of the graph corrc:spond to the maximal connected Sllh,r.\s 

of V (S) belonging to the boundary of exactly two Voronoi regions. The faces of the graph 

correspond to the non-emply Voronoi regions. We u ... V(S) to also denote this graph. For 

the algorithmic treatment of Voronoi diagrams we also need to make a. feasibility assumption 

about the bisecting curves. 

Dolinition (R. Klein): 

The following operations 011 bisecting curves are assumed to take time 0(1) . 

1) Given J(p,q) and a point II, determine if II E D(p,q) holds. 

2) Given a point II in common to three bisecting curves, determine the clockwise order of 

the curves around \I. 

3) Given points \I E J(p, q) and w E J(p, r) and orientations of these curves, determine the 

first point of J(p,r) l(w,ool crossed by J(p,qll(.,ool. 

4) Given J(p,q) with an orientation, and points v,w,x on J(p,q) , determine if II comes 

before w on J(p, q)I(',(OOI. 0 

~ · or simplicity we also make the following general position assumption. 

General Pnsition Assumption: No four bisecting curves have a point ill common. 0 

The general po.ition assumption and Fact 1 imply that each vert.ex of the Voronoi diagram 

has degree three. It lie. at the intersection of three bisecting curves as shown in Figure 2. 

p q 

\ 

\ / 

, ~ 

P / 
II -r 

r q 

F'igure 2, The bisecting curves J(p ,q),J(p,r),J(r,q) intersec t at II. The domains 

D(p, q) and D(q, p) are indicated by the letters p and q on the two sides of the bisect

ing curve J(p, q). The parts of the bisecting curves which define region boundaries 

are shown solid. 



6 

Remark 2: The requirement that the Voronoi regions partition the plane is a severe re

striction On the family of bisecting curves. Consider a crossing of J(r, p) and J(r, q) as in 

figure 3. Then J(p, q) must also pass through v with D(q, p) on its right. 

p q 

Figure 3. 

p 

We close this section with a simple but important property of Voronoi edges: 

Lemma 1: Let R \; Sand t E S - R. Let. be an edge of VIR) which separates the regions 

VR(p, R) and VR(q , R) of the two sites p,q E R. Then . n VR(I, Ru {t}) = . n VR(t, {p,q, t}). 

Proof: ~ : This follows immediately from VR(I, Ru {ttl ~ VR(I, {p,q, I}) . 

2: Let % E e n VR(I,{p,q,t}). From:t E. we conclude:z: E VR(p,R) U VR(q,R) and 

hence:z: V. VR(r,R) 2 VR(r,Il U {I}) for any r E R - {p,q} . From:t E VR(t,{p,q,t}) 

weconcludex{/. VR(p,{p,q,t})u VR(q,{p,q,I});2 VR(p,Ru{t}) u VR(q,Ru{t}). Thus 

:t rL VR(r, Ru {ttl for any r Eiland hence x E VR(I , R u {I}). 0 

In fo rmally, Lemma 1 states that the inHuence of " site on a given edge depends only on the 

sites defining this particular edge. 

III. Incremental Construction of Abstract Voronoi Diagrams 

In t his section ..... e describe the incremental construction algorithm. We start with three sites 

'lO, p, q where p and q are chosen at random and then add the remaining sites in random 

order. At the general step we have to consider a set R ~ S of sites with 00 E Rand IRI ::: 3. 

We ro"intain the following data structures. 

I) The Voronoi diagram VIR): It is sto red as a planar graph as described in the previous 

section. 

~) The conllict graph G(R): The vertices of the conllict graph G(R) are the edges of VIR) 

and the sites in S - R. There is an edge (read: conHiet) between the edge. of V(R) and 

the site 3 E S - Riff. n VR(s , R u {s}) oF 6. 
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Relllark: Recall that an edge of a Voronoi diagram is an open sct and that a Voronoi region 

flLay conlain part of its boundary. For the definition of conflict graph it is however immaterial 

whether we intersect open sets or their cI""ures. 

T.cmma 2: cI e n d VR(s,R u {~}) f- 0 implies e n VR(s, R lJ Is}) f- " 

Proof: Let :z: E cI t n cI VR(s, R u (s}). Assume first that x is an "ndp,,;nt of e. Then 

:z: lie:; at the intersection of three bisecting curVes of sites in R. Hence no bisecting curve 

J( s, r), r E R, can go through :z: and therefore an entire neighborhood of :z: must belong to 

VR{s,R u (s}). Thus en VR(s,R u (.}) '" 0. 
Assume next that x E t n bd VR(s,R u {.}). Then:z: E J(p,q} " )(s,r) for some si tes 

p,q,r E R. The bisecting curves J(p,q) and J(s,r) cross at point :z: and hence there is a 

point y E t in the neighborhood of:z: such that y E VR(s , R u {s}}. 0 

w~ next discuss how to update the data structures after the addition of a site. E S - R to 

R. We first concentrate on the construction of the Voronoi diagram VIR U (s}) from VIR) 

and G(R) . 

Let S = VR{s, Ru (s}). We proceed in several steps. Lemma 3 deals with the case S = O. 

The case S '" 0 is dealt with in Lemmas 4 and 5. We show that the intersection of the current 

diagram VIR) with the region S is a connected set (Lemma 4) and that the intersection en S 

for an edge t of VIR) consists of at most two components (l.emma 5). From Lemmas 4 and 

; we derive the update algorithm. 

Lemma 3: S = 0 iff de90(R)(S) = O. 

Proof: If S = 0 then clearly d<90(R)(S) = O. So let us assume S i 0. If d<gO(R)(') = 0 

then cl S ~ int VR{r,R} for some r E R. Next observe that VR(r,R u {s}) = VR(r, R) - S . 

Aiso r l' 00 since VR(oo, P) is the outer domain of the closed curve r for all P, 00 E P <; S. 

Thus VR(r, R U {s}) is boundc<i hut not simply connected. This contradicts Fact la. 0 

If S = 0 Ihen V(R U {s}) = V(/l). So let \IS assume 5 i- 0 and hence dtgo(n)(s) '" O. Let 

r = VIR) ncl S . 

Lemma 4: r is a connected sd which intersects bd S in at least two points . 

Proof: The boundary bd S is a simple closed curve which does not go through any ver~x of 

V (R). This follows (rom Fact 2 and the general position assumption. Also I i (\ by l.emma 2. 

Let I" 12 , • •• ,h be the connected components of I. 

Cia im: Each Ij , 1 ~ j :<::: k, contains two points of bd S . 

Proof: Assume first that I j contains no points of bd S, Le., I) <;; in! S . Then there is a 

simple c1o .. ct wrve C <;; in! S such that I j is contained in the inner domain of C and C 

docs not intersect V(Il). Thus C ,; int I' R(r, R) for some r E R. Since Voronoi regions arc 

simply connected, C and its int.erior must belons to I'R(r, Ii) and hence C cannot contain a 

component IJ in its interior . 

A,sume next that I j inters«!s bd S ill exactly one point , say x . Then there is a simple closed 

curVe C containing I j in its inner domain such that x E C, C - {x} <;; intS and C - {x} 

d",,,,, no! intersect VIR). Thus C - {x} <; VR(r, R) for some r E R and hence:z: is a point on 

"" ~<IRe of V(R) such that both sides of the edge bdong to the same Voronoi region . This 
<, ,,,, t radicts Fact 1. ::J 
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Assumc now that k ~ 2. Then there is a palh J' C;; cI S - (II U . . . U It) connecting two 

point.. on the boundary bd S such that one component of S - P conlains " and the other 

component contains 11 , LeI % and y be the endpoints of P and let r E R be such that 

l' C;; VR(r,R). Since %,y ¢ VIR) we conclude that VR(T,Ru (s}) = VR(r,R) - S # 0. 

Thus %,y E cI VR(T, R u (s}) and hence there is a simple path Q C;; d VR(r, R U {s}) with 

<:"dpoints % and y. The cycle J> 0 Q i. thr.n contained in cI VR(T, R) and contains either I , 

or 11 in it.. interior. Thus VR(T, R) is not simply connected, a contradiction to Fact 2. 0 

Lemma 5: Let e be an edge of VIR). If e n S i' 0 then either e n S = VIR) n Sand e n S 

is a single component or e - S is a single componentj cr. Figure 4. 

Proof: Assume first that enS = VIR) n S. Since VIR) n S is connected by Lemma 4 we 

conclude that enS is conne<ted . Assume next that e n s i' VIR) n S. Thcll with every point 

% E e n S one of the .uhpalh. of. connecting'" 10 an endpoint of e must bc contained in S . 

Hence e - S is a single component. 0 

• 
e 

bdS bd S 

Figure 4. Two <:a.<p_, of Lemma 5 

Let L = {e edge of VIR); {.,s} E G(R)} . For. E L leI e' = enS. Note that e' = 

< n VR(s. {p, q. ~}) by Lemma 1 where e separates the regions of sites p and q; hence e' can be 

computed from e in time 0(1). We have shown above that the set U.e L cI e' = VIR) n cl S 

is connected. Let B = {x; % is an endpoint of e' which is not an endpoint of • for some 

• E L} = VIR) n bd S. Since bd S is a simple closed curve by Fact 2, bd S induces a 

cyclic ordering on the points in 8 . Since VIR) n d S i. connected this cyclic ordering can 

he detcrmined by a traversal of the planar graph VIR) n cI S. It is no ..... easy to update the 

Voronoi diagram as follows: 

Step 1: Compute .' for each. E L. Remove c' from VIR) for each e E L. 

Stcp 2: Compute B and the cyclic ordering on 8 induced by bd S. 

Step 3: Let %1, "" "" be the sct 8 in its cyclic orde~ing and 

let r; E R be such that {%;,%. + 1} C;; bd VR(T; . R). 

(1) for i from 1 to k 

(2) do add the part of J(T" s) with endpoints "'. and %.+, to th., Voronoi diagram 

(3) od 

For t he time bound we only have to observe that steps 1 and 2 taxe time O(i/,Jj and th'l 

' tep :l lakes time O(k) = O{I L !). Th is prove. the following 
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I,elllllla 6: Let 8 E S - R. Then VIR u is}) can be constructed from VIR) and G(R) in 

time O(d(9c(R)(S) + 1). 

We now turn to the update of the conflict graph. 

Lemma T: Let 8 E S - R. Then G(R U {s}) can be constructed from VIR) and G(R) in 

time 

o( L de9c( R)(e)) . 

(.,.jeG(R) 

Proof: In this proof we distinguish three cases: edges of V(R n is}) which already were 

edges of V (R), edges which art! part of edges of V (R), and edges which are completely new. 

The only difficult case is the third one; it is dealt with in Lemma 8. 

As above let L = {e; e is an edge of VIR) and enS #0} where S = VR(s,R u is}). For 

< ¢ L the conflict inrormation does not change. This follows from en VR(t,R u {8,/}) = 
<n (VR(t,RU{t})- VR(s, R u {s,t})) and (en VR(t,R U {t})) - (e n VR(s,R u {&,t})) = 

< n VI/(I, Ru it}). 

I.et us next consider an edge e E L. If < ~ S then e has to be deleted from the contlict 

graph. This certainly takes lime O(de9G(R)«))' If, Sf S then. - S consists of at most 

two subsegments by Lemma 5. Let e' be one of those subsegments aJld let I E S - R - {s} . 

Thcn('n VR(/,R u { .• } U {t}) = ('nnrERR(t,r)nR(t,s) =e'n VR(/,R u {:}) n R(t,s) ~ 

<, VR(/, R u it}) and hence any site t in contlict with e' must be in cOllflict with (. 

II remains to consider those eriges of V(Ru is}) which are not fragments of edges of V(R). 

Let <Il be one of those edges. The endpoints %\ and "': of '12 lie in the interior of edges (\ 

and (l on bd VR(p, R) for some pER. Also e\2 is part of the bisecting curve J(p,s). Note 

that p i= ex> since J(ex>,s) . ~ r <:; ViR). Let P be that part of bd VR(p, R) which connects 

XI and "'l and is contained in :> in all sufficiently small neighborhoods of x, and Xl· 

Claim: P \; S. 

Proof: bd VR(p, R) is <\Simple closed curve and in: VR(p, R) is the bounded domain defined 

by this curvt! . Assume now that P crosse,; hd S. Then VR(p, Ru { .• }) = VR(p, R) - S is not 

connected, a contradiction . 0 

L ... mma 8 : Let: E S - R - {,; }, and let I conAict with <11 in V(R u {.5}). Then t conflict.:. 

ill V(Il) with eith.,r '\ or e·, or one of the edges of P. 

Proof: Consider VR(p, R) . 
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VR(p, R) 

bd S 

Figure 5. 

lIy the delini tion of conflict a point x E til exists such that x E VR(t, Ru {s , !}) S;; VR(t,JW 

{I}). Since we claim a contracl iction we assume that I is not in conflict with P, CJ or t2 in 

V (II) . Thus, V R(I, R U {s,l}) n U(xd S;; VR(I, R U {I}) n U(x,) = 0 for any sufficient ly small 

neighborhood U(xd of x,. Now consider in any such neighborhood of XI the wedge spanned 

by til and the part of t, outside S. The points in thili wedge all belong to \' R(p, R u {$,I}) . 

The .arne is true for any sufficiently small neighborhood of X2 with <2 instead of 01. Since 

VH(p,RU {s,I}) is connected, there is .. path Q from x, to X2 running completely inside 

VR(p,R u {s,l}) ~ VR(p, R u {I}) except at the endpoints . 

x 

S 

Figure 6. 

Q 

By Jefinition of P and Q the Voronoi region VR(I , R u {I}) cannot intersect these two path •. 

Moreover, x lies in the interior of the cycle %, 0 P o %20 Q; otherwise VR(p, R) would not 

b.! simply connected. From X " X 2 ¢ VR(I , R U {I}) and x E VR(I,R U {I}) we conclude 

that VR(t,Ru {I}) lies in the interior of the cycle. This ili a contradiction to the fact that 

V R(p, R u f I}) is simply connL-cled. CI 

I.emmas 8 and 1 together " lIow us to compute the conllict inform;>t ion for the new edges . 

I.et en <;; J(p,s) be any new edge. A site I in conflict with edge <' 2 must have conRicteti ill 

G(R) with either tJ, "2 or one of the edges on the path P by Lemma 8. Also for any such site 

t we can compute the conflict information tn n VR(I, R U {s, I}) in time 0(1) by Lemma 1. 

Thlls the set of neighbors of edge tn in G(R U { .. }) can be computed in time 

o ( 
CEP U {~t.C'l} 



II 

whC!rC! the sum is over all edge< in Pu {e .. e2}' Next observe that every edge e E V(R) with 

t n VR(&, R u {&}) # 0 call belong at most two times to a path P for some new edge by 

1.lanarily. Thus G(Ru{s}) can be obtained from G(R) in time 

Th is proves Lemma 7. 

o( L tU9C\R)(e)) . 

( ••• }EG\1ll 

o 

Th<!Orem 1: a) Let & E S - R. Then the data structures G(R u {&}) a~d V(Ru {s}) can be 

obtained from G(R) and V(R) in time 

o( L degC(R)(t)}. 

(c,. } EO(R) 

b) ~'or R ~ S , IRI = 3 and 00 t : R the data structures V(R) and G(R) can be set up in time 

O(n) where n = lSI. 

Proof: a) This point summari~e:s Lemma 6 and 1. 

b) The Vorolloi diagram V (R) for three sites 00, p and q has the structure shown in Figure 7 

alld can certainly be set up in lime 0(1). Also for each of the edges e of V(R) and each of 

the n - 3 sites in S - R onp ,an test en VR(t, Ru {t}) f 0 in 0(1) by Lemma 1. This proves 

~. 0 

p 

00 

q 

Figure 7. The Voronoi diagram for sites 00, p and q. 

Lemma 9: The number of edges of V(R) is at most 31RI. 

Proof: V(R) is a planar graph wilh at most IRI regions. Also, each vertex has degree three. 

The number of edges is therefore at most 31R1 by Euler's Formula. ::J 
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Theorem 2: The abstracL Voronoi diagram V (S) of n .ites can be constructed by a ran

domized algorithm in time O (n log n). 

Proof: In ICSJ, Clarkson ilnd Shor show that randomized incremental construction has 

c xp~ctcd running time 

O (m(n) + n · L m(r) ! r' + n) 
1$ "S n/ 2 

prm'ided that initialization takes time O(n) and addition of an object (here site) s to the set 

n lakes time proportional to 

L do9G(R)(O). 

« " } EG(R) 

where the summation is over all regions (here edges) of the current structure (here Voronoi 

diagram \' (R)) which conHict with site $. Also m(r) is the expected size of the structure for 

:t rMdom .ubsct R C;; 5 of r .1.menLs. In our case .... ., have m(r) :s 3r by L~rnma 9. Finally. 

the ass umptions of Clarkson's Lheorem are satisfied by Theorem 1. The t ime bound follows. 

o 

R.emark: III our algorithm 00 0= R a lways . An in8pection of Clarkson's argument shows th at 

Ih is minor deviation from randomness does not change the time bound. 

I V. Applications 

Many previously considered LYI,es of Voronoi diagrams fall under the framework described 

above. 

1. Point Sites: In their pionee ring paper Shalllus / Hoey ISHI showed how to construct t.h e 

\foronni diagram for point sil('$ under the Euclidean metric in time O{nlogn). This was 

laLer extended to arbitrary {,.-metrics. 1 S p $ 00 , by Lee ILl. to the L,-mctric with addi t ive 

weiR"" hy Sharir 151 and ForLllne [F87J, to the so-called Moscow-metric by Klein [KI88bJ, 

to con"ex distance functions by Chew/ Drysdale [COl and Fortune [FS:> and to abstract 

Voronoi diagrams by Klein / Wood IKWJ and Klein IKI88aJ. The previous algorithms for 

abst racL diagrams had to as.ume, as they were based on the divide-and-conquer approach , 

that the set of sites S can be part itioned into about equal sized subsets L and R such that 

lhe biseclor between Land R is acyclic. This assumption is crucial for Ihe efficiency of the 

merging .wp. For all cas", menLioned our algorithm gives an alternative O(n log n) solution, 

albeit randomized , For ab.lracL diagrams ([KI8Sall we do not need Ihe acyclicity assumption , 

"ow ~ ver . and for the Lp-norm we may also add add itive weights. 

2. Deyolld Point S ites: 1'0i:11 and Iin ~ siles were considered by Kirkpatrick [KiJ and For

lune JF871, and disjoint con,'ex objects were considered by LC"en/ Shari r [LS861. In the lalter 

(asc, Ihe running time is O(n( logn)') since the Leven / Sharir algori thm uses divide-and

co nquer and the bisector betwc'Cll the subsets Land R of S mentioned above is not necessari ly 

"cycl ic . Our algorithm runs in time O(n log n) . Other applications arc the Voronoi diagrams 

r"r circles under the Laguerre dis tance (Imai/ lri / Murota [IfMI. Aur~nhanllner IA871, IA8Sail 

;IIId for disjoint convex poly go ns under a convex distance funct ion (Leven/ Sharir ILS871l . 
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Of COUr3e, there are also type. of Voronoi di,,«,iUIlS which do nol fall under the frame

work, e.g., the diagram for points sites under the Euclidean metric with mu ltiplicative 

weight (Aurenhammer/Eddsbrunner IAEIl , the diagram for points and circular arcs, and 

the diagram for points under metrics which arise from weighted partitions of the plane 

(Mitchell/Papadimitriou IMP J). In all three ca.ses the bisector J(p, q) of two sites may be 

a closed cun'e, cr. Figure 8. 

Figure 8. The bisector for a point and a circular arc. 

V, Conclusions and Open Problems 

We s howed that Clarkson and Shor's randomized incremental construction method works 

for (a subset of) Klein's abstract Voronoi diagrams. Many previously considered types of 

Voronoi diagrams can thus be handled by the same simple algorithm. In IKMMJ the results 

of this paper are extended in two ways. We show that the algorithm can be programmed on 

a schema level such that specific Voronoi diagram algorithms can be derived in a simple way; 

we also drop the general poo;ition assumption and the assumption that bisecting curves may 

not touch , Nevertheless, many open problems remain: 

1) Can the concept of abstract Voronoi diagram be generalized to higher dimension.s? 

2) What can be done in two di merulions without the assumption that bisectors are non

closed curves? 

3) Can the algorithm be mo<li fi ed in order to handle higher-order Voronoi diagrams? 
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