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Abstract
This article is devoted to the construction of a new class of semi-Lagrangian (SL) schemes
with implicit-explicit (IMEX) Runge-Kutta (RK) time stepping for PDEs involving multiple
space-time scales. The semi-Lagrangian (SL) approach fully couples the space and time
discretization, thus making the use of RK strategies particularly difficult to be combined
with. First, a simple scalar advection-diffusion equation is considered as a prototype PDE
for the development of a high order formulation of the semi-Lagrangian IMEX algorithms.
The advection part of the PDE is discretized explicitly at the aid of a SL technique, while an
implicit discretization is employed for the diffusion terms. In this way, an unconditionally
stable numerical scheme is obtained, that does not suffer any CFL-type stability restriction
on the maximum admissible time step. Second, the SL-IMEX approach is extended to deal
with hyperbolic systems with multiple scales, including balance laws, that involve shock
waves and other discontinuities. A conservative scheme is then crucial to properly capture
the wave propagation speed and thus to locate the discontinuity and the plateau exhibited
by the solution. A novel SL technique is proposed, which is based on the integration of
the governing equations over the space-time control volume which arises from the motion
of each grid point. High order of accuracy is ensured by the usage of IMEX RK schemes
combined with a Cauchy–Kowalevskaya procedure that provides a predictor solution within
each space-time element. The one-dimensional shallow water equations (SWE) are chosen
to validate the new conservative SL-IMEX schemes, where convection and pressure fluxes
are treated explicitly and implicitly, respectively. The asymptotic-preserving (AP) property
of the novel schemes is also studied considering a relaxation PDE system for the SWE. A
large suite of convergence studies for both the non-conservative and the conservative version
of the novel class of methods demonstrates that the formal order of accuracy is achieved and
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numerical evidences about the conservation property are shown. The AP property for the
corresponding relaxation system is also investigated.

Keywords Semi-Lagrangian schemes · IMEX methods · Hyperbolic PDEs · High order
methods · Conservative schemes · Asymptotic-preserving methods

Mathematics Subject Classification 65 · 68

1 Introduction

Dynamic processes in continuum physics are modeled using time-dependent partial differ-
ential equations (PDE), which are based on the conservation of some physical quantities,
such as mass, momentum and energy. The governing equations may involve different phys-
ical processes, like advection, diffusion, pressure gradients and drag forces among many
others. The time scale associated to each process is not the same, for instance diffusion pro-
cesses are defined at a much smaller time scale than advection phenomena, or pressure waves
travel much faster than material interfaces or contact discontinuities. Specifically, numerical
schemes that are able to handle multiple time scales simultaneously are extremely important
for real world applications, as well as algorithms which are numerically stable for a wide
range of admissible time steps while advancing the solution in time.

These observations led to the idea of splitting the processes on fast and slow time scales
and treating them with different numerical techniques. The main strategy consists in treating
implicitly only one part of the system to be solvedwhile keeping the remaining explicit [5, 25,
27, 69], hence allowing space and time discretizations to be designed, in which the implicit
part of the system is relatively easy to be inverted, typically avoiding nonlinear systems, while
keeping robustness and shock-capturing properties in the explicit part. The most popular
approach is based on implicit-explicit (IMEX) methods [1, 13, 51] that have proven to be
very successful in designing asymptotic-preserving (AP) schemes capable to deal with stiff
source terms. Such IMEX schemes typically may achieve high order of accuracy under a time
step stability constraint independent of the values of the fast scale. Alternatively, other semi-
implicit methods have been proposed [9, 19, 20, 36, 52] where a linearly implicit scheme
is derived for the stiff terms in the governing equations, thus avoiding any need of iterative
solvers. Let us mention that, semi-implicit hybrid finite volume/finite element schemes have
been recently proposed in [3, 14], while semi-implicit methods coupled with discontinuous
Galerkin (DG) space discretizations on unstructured staggered meshes have been forwarded
for compressible flows [66], on dynamic adaptive meshes [30] and for axially symmetric
flows [35]. In most of the aforementioned works, the convective terms of the governing
equations are discretized explicitly, because they typically involve a nonlinearity which is
difficult to be implicitly solved, requiring the usage of computationally time consuming and
numerically less stable nonlinear solvers for the resulting system that need to be inverted.
Explicit upwind finite difference and Godunov-type finite volume methods are very popular
[32, 38, 47, 48], although these schemes are restricted to a Courant-Friedrichs-Lewy (CFL)
stability condition based on the maximum eigenvalues of the Jacobian matrix associated
to the hyperbolic system. Another option is given by the so-called semi-Lagrangian (SL)
methods, which have recently achieved visibility due to their excellent resolution and stability
properties. In the SL framework, the advection term is written in a Lagrangian formulation,
which is then discretized accordingly. In particular, semi-Lagrangian schemes require the
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integration of the material trajectories backward in time to find the foot of the characteristic,
where the numerical solution is interpolated. These methods have been originally developed
for numerical weather prediction [71, 72]. Nowadays, they can be found in environmental
engineering applications, such as free surface flows in rivers and oceans [11, 24, 74] as
well as in plasma physics [23] and kinetic equations [18, 22, 58], in applications to image
processing [17] or for solving the Hamilton-Jacobi equations [16]. The semi-Lagrangian
approach is the only explicit method for the discretization of convective terms that allows
for large time steps without imposing a CFL-type stability condition, therefore it constitutes
a very interesting alternative to standard explicit upwind solvers. However, the extension of
SL methods to deal with shock waves that occur in hyperbolic PDE is not trivial because
conservation must be strictly ensured. Conservative semi-Lagrangian methods are described
for instance in [34, 37]. In [55] a conservative WENO finite difference scheme with SL
treatment of advection is proposed for incompressible flows, while recently in [75] a novel
approach for the development of conservative semi-Lagrangian schemes has been introduced,
which is based on the backward integration of the scalar advection equation onto a space-
time control volume defined for each grid point. Let us also recall that implicit-explicit SL
discretizations have been considered in [2] for convection dominated problems, and in [15]
Runge-Kutta exponential integrators have been coupled with SL discretizations for nonlinear
Vlasov equations.

State-of-the-art semi-Lagrangian methods are mostly used in non-conservative form, for
instance in the discretization of the advection contribution for incompressible flows. On the
other hand, when kinetic equations with linear transport are considered, the use of con-
servative SL schemes is adopted, where the characteristics are straight lines and therefore
can be easily followed for designing high order methods. If IMEX discretizations based on
Runge-Kutta time integrators are used, semi-Lagrangian schemes exhibit an intrinsic diffi-
culty which arises from the fact that space and time cannot be decoupled, since SL methods
directly solve the Lagrangian form of advection and, as such, no purely spatial advection
fluxes can be retrieved as in standard RK time stepping techniques. This makes the appli-
cation of semi-Lagrangian schemes to RK integrators not very common in the literature.
A recent attempt for the development of conservative SL methods for hyperbolic PDE has
been forwarded in [75], which is restricted to the case of the scalar nonlinear advection
PDE. In [60, 61] the equations for incompressible fluids are written in flux conservative
form and the divergence operator is discretized directly along the Lagrangian trajectories
of the spatial coordinates, thus ensuring conservation. Another option to guarantee con-
servation is given by the backward transport of the entire control volume with subsequent
integration of the advected quantity as proposed in [41, 43]. A conservative first order finite
volume method based on a semi-Lagrangian discretization of the advection terms has been
introduced in [40], where no diffusion is taken into account. An analysis of the accuracy
and stability of Godunov-type solvers with arbitrary large time steps has been discussed in
[46] for general scalar conservation laws. In [56] a class of advection schemes based on a
combination of advective-form and conservative-form is devised, in order to avoid errors
induced by operator-splitting techniques. Among existing semi-Lagrangian algorithms, we
also mention the class of flux-based methods of characteristics [31] which combine the con-
servation property exhibited by finite volume discretizations with large time steps achieved
by a semi-Lagrangian treatment of advection. High order Discontinuous Galerkin schemes
with conservative semi-Lagrangian methods have been used in [57, 70] and applied to the
scalar advection equation in multiple space dimensions. Regarding the shallowwater system,
in [44, 49] semi-implicit second order conservative semi-Lagrangian methods are designed.
Most of the aforementioned works are dealing with meteorological flows, thus solving the
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incompressible Navier-Stokes equations. All of them can guarantee mass conservation but
none of them is able to achieve time accuracy of order greater than two.

In this work we aim at constructing a new class of methods that deal with both semi-
Lagrangian schemes for advection and IMEX-RK time stepping at the same time. In the
first part of the paper, we derive two different algorithms for the non-conservative case and
we demonstrate the accuracy and the robustness of the proposed approach by considering
the scalar advection-diffusion equation as a prototype, where advection and diffusion are
treated explicitly and implicitly, respectively. The second part of the article is devoted to the
design of a conservative semi-Lagrangian IMEX scheme for hyperbolic systems of balance
laws, namely the one-dimensional shallow water equations (SWE). The 1D SWE represent
a simple, but not trivial, prototype example of a hyperbolic system, since they involve both
advection and pressure contributions that are suitable for an IMEX schemewith SL treatment
of the convective terms. Indeed, a fast scale related to the pressure terms and a slow scale
associated with convection coexist. Furthermore, shock waves are part of the eigenstructure
of the system, thus requiring a conservative method to properly capture the wave speed and
eventually its location. The novel class of methods is addressed with SL-IMEX schemes and
is shown to achieve up to third order of accuracy in space and time, while ensuring fully
conservation of the state variables. Finally, an asymptotic-preserving SL-IMEX scheme is
developed by considering a relaxation system for the SWE, and numerical evidences are
proposed.

The outline of this article is as follows. In Sect. 2 we present the scalar advection-diffusion
equation, while Sect. 2.1 revisits the classical IMEX schemes with Eulerian discretization of
the advection terms. Two different non-conservative versions of the novel SL-IMEX algo-
rithms are derived in Sect. 2.2 and numerical results for this class of methods are shown in
Sect. 3. The second part of the article starts with the introduction of the shallow water model
in Sect. 5, which is followed by a detailed description of the new conservative SL-IMEX
schemes. Next, in Sect. 6, the schemes are extended to deal with the presence of source terms
and their AP properties are analyzed. The novel algorithms are validated through a suite of
numerical tests that is then proposed in Sect. 7. Finally, conclusions and outlook to future
work are given in Sect. 8.

2 Semi-Lagrangian IMEX Schemes for Advection–Diffusion Equations

Let us consider the one-dimensional advection-diffusion equation of a scalar quantity q =
q(x, t) over a given velocity field u(x, t) with a constant diffusion coefficient α ∈ R+:

∂q

∂t
+ ∂uq

∂x
= α

∂2q

∂x2
, (1)

where t ∈ R+
0 is the time and x ∈ R represents the spatial coordinate. In the semi-Lagrangian

framework, the advection term in (1) can be reformulated using the Lagrangian derivative,
thus yielding

dq

dt
= α

∂2q

∂x2
. (2)

The solution of both (1) and (2) propagates along characteristics, that are defined by the
trajectory equation

dx

dt
= u(x, t). (3)
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In the above equation (2), the classical semi-Lagrangian technique is used, with the diffusion
terms treated in Eulerian form. The inclusion of the diffusion terms in the semi-Lagrangian
approach can be found in [6, 7]. Despite its simplicity, the governing PDE (1) represents a
suitable prototype for deriving semi-Lagrangian methods with IMEX time stepping because:
i) it contains an advection term which can be discretized at the aid of a semi-Lagrangian
scheme; ii) it involves a diffusion contribution that might be conveniently solved implicitly
in order to relax the severe stability condition on the time step imposed by parabolic terms.
Therefore, the new class of semi-Lagrangian IMEX schemes, denoted as SL-IMEX, will be
firstly constructed by studying the advection-diffusion equation (1), or equivalently (2).

2.1 IMEX Schemes with Eulerian Advection

ThegoverningPDE (1) undergoes an implicit-explicit timediscretization,where the nonlinear
convective contribution is taken explicitly while the diffusion terms are considered implicitly.
Therefore, a first order in time semi-discrete scheme writes

qn+1 − qn

Δt
+ ∂(uq)n

∂x
= α

∂2qn+1

∂x2
, (4)

with the time step defined as Δt = tn+1 − tn . Let H(qE (t), qI (t)) denote a spatial approxi-
mation of the explicit advection term with qE (t) and of the implicit diffusion term with qI (t)
, that is

H(qE (t), qI (t)) = −∂(uEqE )

∂x
+ α

∂2qI
∂x2

. (5)

Although the time discretization (4) could have been written in a more canonical partitioned
form as

H = HE (qE (t)) + HI (qI (t)),

we prefer to write the PDE under the form of an autonomous system following [8]. This
easily allows for a more general framework, where nonlinearities in the implicit part of the
PDE can be properly treated, contrarily to the partitioned form [33]. Furthermore, the scope
of the advection–diffusion equation (1) is only to furnish an example of application for the
development of the SL-IMEX schemes discussed in this work, which in principle might be
extended to other physical models. Notice that any Eulerian discretization of the advection
term based on flux form fits the formalism (5). The definition (5) allows the semi-discrete
form (4) to be written as

dqE (t)

dt
= H(qE (t), qI (t)),

dqI (t)

dt
= H(qE (t), qI (t)).

(6)

In the above formulation (6), the number of unknowns has been formally doubled, which is
not the case if the PDE is written in partitioned form. However, for a specific choice of time
discretizations and for autonomous systems this duplication is indeed only apparent [8], thus
yielding

dq(t)

dt
= H(qE (t), qI (t)). (7)

The above formulation (7) can be readily applied to the framework of classical IMEX
Runge-Kutta (IMEX-RK) schemes [8, 51]. These multi-step methods are based on s stages
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and they are typically described in terms of the double Butcher tableau:

c̃ Ã

b̃�
c A

b� , (8)

with the matrices ( Ã, A) ∈ Rs×s and the vectors (c̃, c, b̃, b) ∈ Rs . The tilde symbol refers to
the explicit scheme and matrix Ã = (ãi j ) is a lower triangular matrix with zero elements on
the diagonal, while A = (ai j ) is a triangular matrix which accounts for the implicit scheme,
thus having non-zero elements on the diagonal. From now on we adopt IMEX-RK schemes
with b = b̃ and the Butcher tableau of the schemes used in this work are reported in Appendix
A. A general IMEX-RK scheme aims at computing the numerical solution at the next time
step qn+1 starting from qn , and it can be compactly written as follows:

– Stage values for i = 1 . . . s

q(i)
E = qn + Δt

i−1∑

j=1

ãi, j H(q( j)
E , q( j)

I ), (9a)

q(i)∗ = qn + Δt
i−1∑

j=1

ai, j H(q( j)
E , q( j)

I ), (9b)

q(i)
I = q(i)∗ + Δt ai,i H(q(i)

E , q(i)
I ). (9c)

The solution of (9c) involves an implicit evaluation which corresponds to the backward
Euler scheme (4).

– Update of the numerical solution in terms of the spatial fluxes evaluated at the previous
stages

qn+1 = qn + Δt
s∑

i=1

biH(q(i)
E , q(i)

I ), (10)

where we recall that b = b̃, see Appendix A.

The above approach is then complemented with a suitable space discretization which can
be designed independently of the time discretization by adopting, for example, a hybrid finite
volume/finite difference scheme for the discretization of the spatial flux H. Specifically, a
finite volume scheme designed for the hyperbolic advection part can be combined with a
centered finite-difference scheme for the diffusion terms (see for example [1, 10, 13]).

2.2 IMEX Schemes with Semi-Lagrangian Advection

Let us now consider a semi-Lagrangian discretization of the advection term in the governing
PDE (1), thus the aim is to solve the transport part of the equation by following the char-
acteristics which move with velocity u(x, t) according to (3). A semi-Lagrangian method is
based on two main steps:

1. backward integration of the Lagrangian trajectories, which is nothing but the integration
of the ODE (3), in order to find the foot of the characteristic located at x L ;

2. reconstruction, or interpolation, of the transported quantity q at the point x L , that in
principle never lies on a known grid point.
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Then, neglecting the diffusion part, a direct discretization of the Lagrangian form of the PDE
(2) simply yields

qn+1 = qL , (11)

with qL := q(x L) being the solution interpolated at the foot of the characteristic x L . The
semi-Lagrangian method (11) is the only explicit discretization that is not constrained by
a CFL-type stability condition, hence allowing for more stability and accuracy compared
to classical Eulerian methods. The main problem when the semi-Lagrangian approach is
considered in combination with an IMEX time discretization is that the solution along the
characteristics directly solves the contribution of the Lagrangian derivative dq

dt , instead of

handling
(

∂q
∂t + ∂uq

∂x

)
separately. As a consequence, it is not possible to split the spatial

discretization from the temporal one as required in the IMEX formalism, hence implying
that the PDE can no longer be cast into form (7).

In order to derive a consistent semi-Lagrangian IMEX scheme, labeled with SL-IMEX,
we proceed in three steps. First, a pure advection problem is considered. Second, a pure
diffusion problem is analyzed. Third, we introduce advection and diffusion simultaneously
to solve the governing PDE (1).

2.2.1 Advection Dominated SL Explicit RK Schemes

For an advection dominated problem, the diffusive terms are neglected (α = 0), so that
there is no need of computing any implicit contribution in (9c). Let us define a general
semi-Lagrangian operator L such that

qL(x) = q(x L , t) = L(q(x, t),Δt L , u(x, t)), (12)

which solves the trajectory Eq. (3) with the velocity field u(x, t) over a time interval of
Δt L = ωΔt with ω ∈ R. The result of (12) is the interpolated quantity qL(x) at the foot
of the characteristic x L = x − u(x, t)Δt L , which is exactly what is required by the semi-
Lagrangian scheme (11). The order of accuracy of the Lagrangian operator depends on both
the accuracy of the ODE solver for (3) and the reconstruction operator, thus the simple
definition x L = x − u(x, t)Δt L is only first order accurate.

Equation (12) suggests to evolve the coordinates x instead of q itself, meaning that the
trajectory ODE (3) is the equation to be solved with the RK discretization and not the
Lagrangian PDE (2). This is equivalent to consider an augmented PDE system for q =
(q, x)�, with the fluxes H = (0,HL)� = (0,−u(x, t))�:

⎧
⎪⎨

⎪⎩

dq

dt
= 0,

dx

dt
= HL , HL = −u(x, t).

(13)

First, the trajectory equation in (13) must be solved using the explicit Butcher tableau in (8),
that is

x (i)
E = xnE + Δt

i−1∑

j=1

ãi, jHL
j , i = 1 . . . s, (14)

where xnE is initialized by x , i.e. xnE = x , and the Lagrangian fluxesHL
j are simply evaluated

at each stage i as
HL

i = −u(x (i)
E , t). (15)
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Fig. 1 Example of piecewise trajectory solved with SA-SSP(3,3,2) given by (114)

An example of the trajectory drawn by a grid point for the second order three-step Runge
Kutta scheme (114) is shown in Fig. 1. The foot of the characteristic is located at x L , which
corresponds to the solution of (3). According to (10), this is given by

x L = xnE + Δt
s∑

i=1

biHL
i . (16)

Finally, the solution at the next time level tn+1 for the transported quantity, i.e. qL , is com-
puted by the reconstruction, or interpolation, of the numerical solution at the foot of the
characteristic x L , thus leading to

qn+1(x) = R
(
q

(
x L , tn

))
, (17)

where R(·) is a suitable reconstruction operator.
The order of convergence of the scheme directly comes from the order of the Runge-Kutta

method given by the explicit tableau in (8), which is used to solve the trajectory ODE. Then,
the interpolation step (17) must also be of the same order of accuracy of the RK scheme
in order to provide a consistent semi-Lagrangian discretization of the advection dominated
PDE.

The semi-Lagrangian operator (12) is then a compact definition which embeds all the Eqs.
(14)–(17), that are nothing but the method corresponding to point 1 and 2 described at the
beginning of Section 2.2.

2.2.2 Diffusion Dominated Implicit RK Schemes

For diffusion dominated problems the SL discretization does not play any role, thus the
scheme must be equivalent to the implicit Runge-Kutta method with H = (0,HI ) for q =
(q, x): ⎧

⎪⎪⎨

⎪⎪⎩

dq

dt
= HI , HI = α

∂2q

∂x2
,

dx

dt
= 0.

(18)

The implicit fluxes are taken into account by the term HI and the solution is computed as
follows:
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– Stage values for i = 1 . . . s

q(i)∗ = qn + Δt
i−1∑

j=1

ai, j HI
j , (19a)

q(i)
I = q(i)∗ + Δt ai,i HI

i where HI
i = α

∂2q(i)
I

∂x2
. (19b)

– Update of the solution according to (10) as

qn+1 = qn + Δt
s∑

i=1

biHI
i . (20)

Notice that the determination of the stage value in (19b) implies the solution of an implicit
system. The order of convergence is guaranteed in this case by the implicit part of the IMEX
Runge-Kutta scheme (8), and no difference with classical IMEX schemes with Eulerian
advection arises. For the space discretization we can use, for example, a fourth order central
finite difference scheme:

∂2q

∂x2
= −qi+2 + 16qi+1 − 30qi + 16qi−1 − qi−2

12Δx2
+ O(Δx4), (21)

with i and Δx being the cell index and the mesh spacing, respectively.

2.2.3 Advection–Diffusion SL-IMEX Schemes

From the observations illustrated so far, we have seen that, for advection dominated problems,
high order of accuracy in time can be achieved by solving the Lagrangian trajectory ODE (3)
and then by evaluating the solution at the foot of the characteristic relying on a high order
spatial reconstruction operator (17). On the other hand, diffusion dominated problems allow
classical IMEX discretizations (9a)–(10) to be directly adopted, since a complete splitting
between time and space fluxes takes place. In the sequel we will illustrate three different
approaches combining the advective SL solver with the finite difference discretization.

Algorithm 0. To couple advection and diffusion schemes, one is now tempted by i) first
moving the solution qn along the Lagrangian trajectories to obtain qE , ii) and then solving
the implicit Eq. (9c) for the diffusion terms to evaluate qI . The algorithm in this case would
work as follows:

– Stage values for i = 1 . . . s

x (i)
E = xnE + Δt

i−1∑

j=1

ãi, jHL
j (22a)

q( j+1)
E = L

(
q( j)
E , ãi, jΔt,HL

j

)
+ Δt ãi, jHI

j j = 1 . . . i − 1 (22b)

q( j+1)∗ = L
(
q( j)∗ , ai, jΔt,HL

j

)
+ Δt ai, jHI

j j = 1 . . . i − 1 (22c)

with the initialization q(1)
E = qn and q(1)∗ = qn . The computation of the explicit

Lagrangian flux for the trajectory Eq. (3) is given by

HL
i = −u(x (i)

E ). (23)
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The evaluation of the implicit flux HI
i for the diffusion terms requires knowledge of the

state q(i)
I that is obtained by solving the following equation

q(i)
I − ai,iΔt α

∂2q(i)
I

∂x2
= L

(
q(i)∗ , ai,iΔt,HL

i

)
, (24)

which leads to the definition of the implicit fluxes

HI
i = α

∂2q(i)
I

∂x2
. (25)

– Update of the solution qn+1 at the next time level using (10).

Unfortunately this algorithm achieves only first order of accuracy in time, even if high order
IMEX schemes are adopted. Indeed, Algorithm 0 is equivalent to a first order splitting, where
the governing PDE is split into explicit and implicit part: first, the explicit advection term is
solved using (12), then the implicit part is computed employing (19)–(20), and eventually
the solution is obtained by summing both contributions. We emphasize that by using higher
order splitting approaches the order of accuracy can be increased (see [63] for example).
A second order semi-implicit discretization has been proposed in [54], while a two-level
advection scheme has been designed in [62]. However, in the sequel, we will not explore
these directions further even though, as we will see, Algorithm 2 has similar advantages to a
splitting approach and it can easily achieve high order of accuracy.

Algorithm 1. In order to show the idea which yields the construction of high order SL-IMEX
schemes, let us consider the simplest combination of advection and diffusion by taking a
constant velocity field u = const as well as a non zero diffusion coefficient α > 0. Let then
the initial condition be a step function

q(x, 0) =
{
qL x < 0
qR x ≥ 0

. (26)

The exact solution of (1) with initial condition (26) reads

q(x, t) = 1

2
(qL + qR) + 1

2
erf

(
1

2

x − ut√
αt

)
(qR − qL). (27)

Looking at Eq. (24), it is evident that the semi-Lagrangian contribution moves the solution
according to the Lagrangian fluxHL that is derived from (22a) and (23), thus the convective
terms are solved at the aid of the explicit Butcher tableau in (8). On the other hand, the implicit
flux is defined according to (25) which follows from the solution of (24), that implies the use
of the implicit RK scheme in (8). Therefore, the implicit and explicit contributions in (24) are
not compatible, meaning that the Lagrangian part is moving while the implicit flux is defined
at the wrong time location within the time stepΔt . For the simple problem given by (1)–(26),
this corresponds advecting the solution up to a certain time fractional step of the explicit RK
stage, and then applying the diffusion operator at a different time fractional step given by
the implicit RK stage. In classical Eulerian IMEX schemes, the fluxes H are completely
independent from time, thus they can be easily used to solve the convective contribution at
any desired time fractional step, hence allowing for a perfect compatibility in the solution of
the implicit step (9c). Contrarily, semi-Lagrangian schemes implies a full coupling of space
and time discretization because they directly solve the Lagrangian Eq. (7).

In order to overcome this problemwe underline two aspects. First, if u = 0 the Lagrangian
contribution does nothing and the flux HI is automatically correct since it is given by the
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solution of the pure diffusion equationwith the implicit RK scheme (8). Second, if the solution
is transported with u �= 0 and we assume a Lagrangian reference system which moves with
the characteristic Eq. (3), then the problem becomes again a diffusion dominated one and
we reduce to the previous case. In other words, if we apply a change of coordinates from x
to x ′ such as x ′ = x − ut , then we do not see the Lagrangian contribution. Thus, the idea is
to move also the spatial flux HI using the Lagrangian trajectories, so that it can be shifted
with a time fractional step ω at the same time level of the advection contribution in the RK
stages and vice-versa. The way the fluxes are moved has to be consistent with the change of
coordinate system and the algorithm reads as follows:

– Stage values for i = 1 . . . s

ω =
j∑

r=1

a j,r −
j−1∑

r=1

ai,r j = 1 . . . i − 1 (28a)

q̃ = L
(
q( j)∗ , ωΔt,−u(x, t)

)
+ Δt ai, jHI

j j = 1 . . . i − 1 (28b)

q( j+1)∗ = L (
q̃, (ai, j − ω)Δt,−u(x, t)

)
j = 1 . . . i − 1 (28c)

with the initialization q(1)∗ = qn . The implicit flux HI
j is defined at the time fractional

stepω given by (28a). Thus, the solution is firstly advected at the time level of the implicit
flux, which can then be added to obtain the intermediate state q̃ with (28b). Finally, the
state q( j+1)∗ can be easily obtained by shifting the entire solution, which now accounts
for both advection and diffusion at the same compatible time level, to the time level of
the current RK stage, i.e. ai, j , see (28c).
The computation of the implicit flux HI

i for the diffusion terms at the time level ai,i
implies solving

q(i)
I − ai,iΔt α

∂2q(i)
I

∂x2
= L

(
q(i)∗ , ai,iΔt,−u(x, t)

)
, (29)

and then using q(i)
I to obtain HI

i from (25).
– The update of the solution qn+1 at the next time level makes use of the coefficients bi for

i = 1 . . . s, therefore the entire solution must be shifted again to the correct time location
in order to sum both explicit and implicit contributions at the same time level. Therefore,
for i = 1 . . . s with q(1)∗ = qn it holds

ω =
i∑

r=1

ai,r −
i−1∑

r=1

br (30a)

q̃ = L
(
q(i)∗ , ωΔt,−u(x, t)

)
+ Δt bi HI

i (30b)

q(i+1)∗ = L (q̃, (bi − ω)Δt,−u(x, t)) (30c)

and the final solution is given by qn+1 = qs+1∗ .

Algorithm 1 is based on the idea of going backward and forward with the entire solution
q in order to properly add the implicit contributions at compatible time levels within the
Runge-Kutta framework. To guarantee that the formal order of convergence is achieved, this
approach requires the crucial property of the closure of the trajectories:

q = L(L(q, ωΔt, u),−ωΔt, u). (31)

123



97 Page 12 of 46 Journal of Scientific Computing (2022) 90 :97

Fig. 2 Illustration of the SL-IMEX scheme (114) for Algorithm 1. Blue lines represent the transport of the
solution, i.e. the semi-Lagrangian scheme for the advection terms, while red lines are used for the transport
of the coupled solution with fluxes (color figure online)

The above equation implies that the same solution is recovered at the same spatial point after
one back and forth round has been done, for a time interval ωΔt over a velocity field u(x, t).
This property is strictly exhibited only if the characteristic Eq. (3) is solved exactly, thus
providing an analytical expression for the trajectory. Apart from very simple velocity fields,
obtaining an exact solution is practically not possiblewhendealingwith nonlinear phenomena
that typically occur in real world applications. Therefore, condition (31) must be satisfied at
the discrete level up to the order of accuracy of the method, so that the solution of (3) does
not affect the convergence of the overall IMEX scheme. This is why all semi-Lagrangian
operators L present in Algorithm 1 make use of the explicit RK scheme in (8) to solve the
characteristic equation according to (14)–(17). In this way, the numerical solution q(x, t)
can be shifted back and forth without spoiling the accuracy of the method, as experimentally
proven by the convergence studies reported in Section 3. A graphical sketch of Algorithm 1
is depicted in Fig. 2 for the SL-IMEX scheme (114).

Algorithm 2. To improve the efficiency of Algorithm 1, we propose to directly shift the
implicit fluxes to the final time level, where the new solution qn+1 is assembled by means of
the intermediate contributions at the RK stages. The main advantage is that Algorithm 2 does
not require a local high order solution of the trajectory Eq. (3), which is instead mandatory
in Algorithm 1. Algorithm 2 works as follows:

– Stage values for i = 1 . . . s

x ( j+1)
E = x ( j)

E + ãi, j Δt HL
j j = 1 . . . i − 1 (32a)

x ( j+1)∗ = x ( j)∗ + ai, j Δt HL
j j = 1 . . . i − 1 (32b)

ω =
j∑

r=1

a j,r −
i−1∑

r=1

ai,r j = 1 . . . i − 1 (32c)
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H̃I
j = L

(
HI

j ,−ωΔt,HL
j

)
j = 1 . . . i − 1 (32d)

with the initialization x (1)
E = x (1)∗ = x . The quantities H̃I

j denote the transported
implicit fluxes at each time fractional step ω given by (32c), while the Lagrangian flux
HL

i is updated with (15) using x (i)
E coming from (32a). The intermediate state q(i)∗ is then

computed as

q(i)∗ = R
(
qn

(
x (i)∗

))
+ Δt

i−1∑

j=1

ai, j H̃I
j , (33)

where we recall that R represents a suitable high order spatial reconstruction operator.
As for Algorithm 1, the implicit contribution HI

i is obtained from (25) where q(i)
I is the

solution of the implicit equation

q(i)
I − ai,i Δt α

∂2q(i)
I

∂x2
= L

(
q(i)∗ , ai,iΔt,HL

i

)
, (34)

in which the semi-Lagrangian operator L makes use of a fast first order solver for the
trajectory equation, i.e. the foot of the characteristic results to be x L = x − ai,iΔt HL

i .
– The final solution is updated by adopting the same strategy, hence shifting the implicit

fluxes to the time fractional steps given by the coefficients bi in (8). For the stages
i = 1 . . . s one computes

x (i+1)
E = x (i)

E + bi Δt HL
i (35a)

ω =
i∑

r=1

ai,r −
s∑

r=1

br (35b)

H̃I
i = L

(
HI

i ,−ωΔt,HL
i

)
(35c)

then the solution at the next time level is obtained by combining the semi-Lagrangian
scheme for the advection part and the shifted implicit flux contributions, thus

qn+1 = R
(
qn

(
x (s+1)
E

))
+ Δt

s∑

j=1

b j H̃I
j . (36)

Figure 3 shows a schematic of Algorithm 2 for the second order SL-IMEX scheme (114).
One advantage, is that this version of the SL-IMEX scheme can be easily embedded in

an already existing semi-Lagrangian code for the explicit part. Indeed, Algorithm 2 only
requires the transport of the implicit fluxes according to (32d), which have then to be added
to the explicit convection contribution in (33).

3 Numerical Results for the Advection–Diffusion Equation

In the following, the new semi-Lagrangian IMEX methods (SL-IMEX) are applied to a set
of test cases for the advection–diffusion Eq. (1). All simulations are run with both Algorithm
1 and Algorithm 2 using as a reconstruction operator R a simple cubic spline interpolation,
which guarantees fourth order of accuracy in space. We study the numerical convergence in
time by firstly considering the transport and the diffusion part of the equation separately, then
by proposing a non-trivial solution of the PDE that involves advection as well as diffusive
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Fig. 3 Illustration of the SL-IMEX scheme (114) for Algorithm 2. Blue lines represent the transport of the
solution, i.e. the semi-Lagrangian scheme for the advection terms. Green lines refer to the transport of the
implicit flux only. Red lines are used for the transport of the coupled solution with fluxes (color figure online)

Fig. 4 Third order numerical results obtained using the SL-IMEX scheme with Algorithm 2 for the test cases
involving the advection–diffusion equation: advection–diffusion equation with linear transport at t = 0.3
(left), advection equation with space-dependent transport at t = 9 (middle) and advection–diffusion equation
with space-dependent transport at t = 0.1 (right)

terms simultaneously. Specifically, Test 1 is concerned with the solution of (1) with linear
transport, thus the advective velocity is maintained constant in space and time. Test 2 deals
with only the transport part of the PDE with an advection speed that is space dependent,
neglecting the diffusive contribution. Finally, the convective terms as well as the diffusion
part of the equation are solved in Test 3 for which an analytical solution is derived. Figure 4
depicts the numerical solution obtained with a third order SL-IMEX scheme for all the three
test problems, and a comparison against the reference solution is shown at the final time of
each simulation.

The computational domain is defined by Ω ∈ [xL ; xR] and is discretized with a total
number of cells Nx = 1000. In thisway, the numerical error related to the spatial discretization
is ensured to be smaller than the time error, which is needed in order to properly study the
convergence of the IMEX time stepping. In a similar way, Nt will be used to denote the
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number of time steps so that Δt = (t f − t0)/Nt . The spatial discretization is of fourth order
with a finite difference scheme for the implicit part and a cubic spline reconstruction for the
convective terms, while the time accuracy can achieve up to third order. Therefore, for all
test cases, we always guarantee the inequality (Δx)4 < (Δt)3 to be satisfied and we report
both the mesh spacing and the time step used for each simulation. The stability of an explicit
scheme for the numerical solution of (1) can be studied relying on a Von Neumann analysis,
which shows that the time step Δt must be chosen respecting the CFL condition for the
advection part (Δth), and the parabolic restriction for the diffusion part (Δt p), thus yielding

Δt = min(Δth,Δt p) with
Δth

Δx
max |u| ≤ CFL,

Δt p

Δx2
α ≤ κ, (37)

with CFL ≤ 1 and κ ≤ 1/2. On the contrary, the novel semi-Lagrangian IMEX methods
are free from both stability conditions (37), and in all the test cases illustrated hereafter we
choose the time step as Δt = Δt p with κ = 400. Because the parabolic stability condition
is typically much more severe than the hyperbolic counterpart, the novel class of SL-IMEX
schemes can solve the advection–diffusion equation with a time step that is about 800 times
bigger than the time step corresponding to a fully explicit scheme like the well-known finite
difference FTCS (Forward in Time Centered in Space) method.

3.1 Test 1: Advection–Diffusion Equation with Linear Transport

The semi-Lagrangian discretization of the advection terms implies the coupling between
time and space discretization, thus the standard IMEX schemes can not be directly applied.
More precisely, the semi-Lagrangian version of IMEX schemes needs to properly transport
the implicit fluxes according to the velocity field in order to be compatible with the Runge-
Kutta stages of the IMEX scheme in time. To check this consistency we perform a simple
but not trivial test concerning advection and diffusion. We first set a constant velocity field
u(x, t) = 0.1 and α = 10−3 on the computational domainΩ ∈ [−2; 2]. The initial condition
is prescribed as a step function centered in x0 = −0.25, so that the exact solution is given
by the analytical solution of the stationary heat equation which is furthermore transported at
a constant advection speed. This explicitly writes

q(x, t) = 1

2
− 1

2
erf

(
x − x0 − ut√

4αt

)
. (38)

In order to avoid oscillations due to the discontinuity at t = 0, the initial condition is taken
at time t0, namely

q(x, 0) = 1

2
− 1

2
erf

(
x − x0 − ut√
4α(t + t0)

)
, (39)

with t0 = 10−2. SL-IMEX schemes with different accuracy in time are used to compute the
solution at the final time t f = 0.3 with both Algorithm 1 and Algorithm 2. Table 1 reports the
L2 error norms and the convergence studies for p = [0, 1, 2], demonstrating that the formal
order accuracy is achieved by the novel SL-IMEX methods.

In order to highlight the importance of the time consistency between explicit and implicit
contributions, the same test is run with Algorithm 0 that does not operate any transport of the
fluxes. The resulting errors and convergence rates are reported in Table 2 where it is clear that
only first order is achieved.Notice that since the velocity is constant, theLagrangian trajectory
ODE (3) is solved exactly and the pure diffusion term is of fourth order in space. Therefore the
error shown in Table 2 is essentially due to the wrong coupling of the transported advection
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Table 1 Convergence study for Test 1 involving the advection–diffusion equation with linear transport

Nt p = 0 p = 1 p = 2

L2 O(q) L2 O(q) L2 O(q)

Algorithm 1

1 1.7026E-00 – 1.0879E-00 – 6.3812E-01 –

2 9.4437E-01 0.85 1.4706E-01 2.89 5.7912E-02 3.46

4 4.9826E-01 0.92 2.2369E-02 2.71 6.5048E-03 3.15

8 2.5592E-01 0.96 5.4022E-03 2.04 9.4678E-04 2.78

16 1.2967E-01 0.98 1.3312E-03 2.02 1.2953E-04 2.87

Algorithm 2

1 1.7026E-00 – 1.0879E-00 – 6.3812E-01 –

2 9.4438E-01 0.85 1.4706E-01 2.89 5.7912E-02 3.46

4 4.9826E-01 0.92 2.2369E-02 2.71 6.5048E-03 3.15

8 2.5592E-01 0.96 5.4022E-03 2.04 9.4666E-04 2.78

16 1.2967E-01 0.98 1.3312E-03 2.02 1.2943E-04 2.87

Table 2 Convergence study for Test 1 involving the advection–diffusion equation with linear transport and
Algorithm 0

Algorithm 0

Nt p = 0 p = 1 p = 2

L2 O(q) L2 O(q) L2 O(q)

1 1.7026E-00 – 2.2826e+00 – 2.1469e+00 –

2 9.4437E-01 0.85 3.9545e-01 2.53 3.4371e-01 2.64

4 4.9826E-01 0.92 1.0053e-01 1.98 9.4635e-02 1.86

8 2.5592E-01 0.96 4.4798e-02 1.17 4.3513e-02 1.12

16 1.2967E-01 0.98 2.1298e-02 1.07 2.1001e-02 1.05

term and the diffusion contribution, which is extremely important in the construction of high
order SL-IMEX schemes.

3.2 Test 2: Advection Equation with Space-Dependent Transport

The aim of this test is to verify the high order time accuracy by solving only the advection part
of the PDE, while neglecting the diffusion terms. A non-constant velocity field is considered,
so that the high order numerical solution of the ODE for the flow trajectories plays a crucial
role for obtaining the formal order of accuracy. The computational domain is defined by
Ω = [−3; 3] and we set u(x, t) = u(x, 0) = k0x with k0 = 0.2. The initial condition for
the scalar quantity q reads

q(x, 0) = e−50 x2 , (40)

and the simulation is run until the final time t f = 9. For this test an exact solution can be
found by following the characteristic equation, see [64]:
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Table 3 Convergence study for Test 2 involving the advection equation with space-dependent transport

Nt p = 0 p = 1 p = 2

L2 O(q) L2 O(q) L2 O(q)

Algorithm 1

1 1.6597E-00 – 7.2176E-02 – 2.9958E-01 –

2 8.2470E-01 0.47 1.5950E-02 2.18 2.1377E-02 3.81

4 5.9345E-01 1.48 3.6948E-03 2.11 1.8254E-03 3.54

8 2.2644E-01 1.39 8.8701E-04 2.06 1.9175E-04 3.25

16 1.0085E-01 1.17 2.1698E-04 2.03 2.4340E-05 2.97

Algorithm 2

1 1.6597E-00 – 5.0765E-01 – 6.4530E-01 –

2 8.2470E-01 0.47 1.5163E-01 1.74 6.1088E-02 3.40

4 5.9345E-01 1.48 3.3432E-02 2.18 4.3401E-03 3.82

8 2.2644E-01 1.39 7.5901E-03 2.13 3.9663E-04 3.45

16 1.0085E-01 1.17 1.7993E-03 2.07 4.3374E-05 3.19

q(x, t) = e−50 (x e−k0 t )2 . (41)

The resulting convergence rates are reported in Table 3 for both versions of the SL-IMEX
algorithms, showing that the order of accuracy is correctly reproduced by all schemes with
p = [0, 1, 2].

3.3 Test 3: Advection–Diffusion Equation with Space-Dependent Transport

Since the transport of the velocity field and the fluxes is an important ingredient in order to
achieve the formal order of convergence in time, we propose here a test involving advection
and diffusion for a non-constant velocity field. Let u(x, t) = u(x, 0) = −x andα > 0.We are
looking for an exact solution of the advection–diffusion Eq. (1) written in non-conservative
form:

∂q

∂t
− x

∂q

∂x
= α

∂2q

∂x2
. (42)

Let us assume that the solution can be expressed as the product of two independent functions,
namely q(x, t) = G(x) · H(t), where G = G(x) and H = H(t) are functions of the space
and time only, respectively. Then, q is a solution of (1) if it holds

∂H

∂t
G − xH

∂G

∂x
= Hα

∂2G

∂x2
. (43)

This requires to find H and G so that
⎧
⎪⎪⎨

⎪⎪⎩

dH(t)

dt
= H(t) c1

α
d2G(x)

dx2
= G(x) c1 − x

dG(x)

dx

, (44)

for a generic constant c1. By setting c1 = 1, a general solution of the previous system writes

H(t) = c0e
t ,
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Table 4 Convergence study for Test 3 involving the advection–diffusion equation with space-dependent trans-
port

Nt p = 0 p = 1 p = 2

L2 O(q) L2 O(q) L2 O(q)

Algorithm 1

1 1.0275E-01 – 2.2454E-04 – 6.6623E-05 –

2 5.3078E-02 0.95 5.6660E-05 1.99 8.4538E-06 2.99

4 2.6987E-02 0.98 1.4231E-05 1.99 1.0654E-08 2.99

8 1.3609E-02 0.99 3.5660E-06 2.00 1.3573E-07 2.97

16 6.8338E-03 0.99 8.9253E-07 2.00 2.2647E-08 2.59

Algorithm 2

1 1.0276E-01 – 1.7405E-03 – 8.5036E-05 –

2 5.3078E-02 0.95 4.4623E-04 1.96 1.1189E-05 2.93

4 2.6987E-02 0.98 1.1297E-04 1.98 1.4854E-06 2.91

8 1.3609E-02 0.99 2.8419E-05 1.99 2.1375E-07 2.80

16 6.8338E-03 0.99 7.1270E-06 1.99 3.7252E-08 2.53

G(x) = c2x + c3

(√
2πα erf

(
1√
2x

)
x − e− x2

2α α

)
, (45)

from which we extract a particular solution by setting c0 = 1, c2 = −1, c3 = −1/2, hence
obtaining

qex (x, t) = et ·
(

−x − 1

2

√
2πα erf

(
1√
2x

)
x − e− x2

2α α

)
. (46)

We perform the test by setting the initial condition as q(x, 0) = qex (x, 0) on a domain
Ω = [−10; 10]. The diffusion coefficient is α = 0.1 and the final time is set to t f = 0.1.
Convergence studies are analyzed and shown in Table 4, which confirm the correct behavior
of both Algorithm 1 and 2 up to third order in time.

4 Extension toMultiple Space Dimensions

In multiple space dimensions, the advection–diffusion equation of a scalar quantity q =
q(x, y, z) reads

∂q

∂t
+ ∂uq

∂x
+ ∂vq

∂ y
+ ∂wq

∂z
= α

(
∂2q

∂x2
+ ∂2q

∂ y2
+ ∂2q

∂z2

)
, (47)

and it involves the three-dimensional velocity vector u = (u, v, w) in the computational
domain Ω defined by the position vector x = (x, y, z). The characteristic mesh spacings
are Δx,Δy,Δz and the domain is discretized with a total number of cubic cells NE =
Nx × Ny × Nz . The Algorithm 2 is extended to Cartesian meshes in 3D, therefore the semi-
Lagrangian operator L will involve a multidimensional velocity field, namely u(x, t), and
the trajectory ODE becomes

dx
dt

= u(x, t), x(t = 0) = x0. (48)
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The 3D version of the algorithm makes use of three main building blocks which we briefly
recall hereafter.

1. The backward integration of the Lagrangian trajectories needed in (32a)–(32b) is carried
out in the reference spacewith coordinates ξ = (ξ, η, ζ )with (ξ, η, ζ ) ∈ [0; 1]3 following
the strategy presented in [64]. This approach easily allows the element which contains the
foot of the characteristic to be tracked.

2. The reconstruction operatorR given by (17) is computed relying on a CWENO procedure
developed in a dimension-by-dimension manner as proposed in [13].

3. The implicit linear system (34) involving an elliptic equation for the unknown q(i)
I is

modified to deal with 3D grids simply by using the central finite difference operator (21)
along each spatial direction, hence loosing the structure of a tridiagonal linear system, but
still retrieving a diagonally dominant system. The same mathematical problem has been
solved in the context of compressible flows in [12] for a scalar unknown given by the fluid
pressure.

4.1 Test 4: Pure Advection and Pure Diffusion Equation in 3D

To numerically study the convergence of the discretization related to the 3D trajectory
equation, let us consider the test case proposed in [64], in which the diffusion terms
are neglected, hence setting α = 0 in (47). The computational domain is the cube
Ω = [−0.5; 0.5] × [−0.5; 0.5] × [−0.1; 0.1] which is discretized by a sequence of suc-
cessively refined meshes in the x − y plane, while a constant number of Nz = 4 elements is
maintained in the z−direction. Dirichlet boundary conditions are imposed on the x− y plane,
while a periodic domain is considered along the vertical coordinate. The space-dependent
velocity field is given by u = (x2, y2, 0) and the exact solution of the characteristic equation
(48) is

x = x0
t x0 + 1

, y = y0
t y0 + 1

, z = z0, (49)

and allows the analytical solution for the quantity q to be computed as q(t, x0) = q(0, x(t)).
The initial distribution for q is given by

q(0, x) = 1 + e− r21
δ2 + e− r22

δ2 , (50)

with δ = 0.05, r21 = (x + 0.2)2 + (y + 0.2)2 and r22 = (x − 0.2)2 + (y − 0.2)2. The final
time of the simulation is t f = 0.1 and the second and third order version of the SL-IMEX
scheme are used in both space and time to assess the convergence rate. Table 5 reports the
errors in L∞ norm and the associated order of accuracy, that is in accordance with the theory.
The CFL number is set to CFL = 8 and CFL = 12 for second and third order simulations,
respectively, hence the time step has been computed with (37).

Next, a diffusion dominated behavior is considered, namely the heat conduction test. The
computational domain is given by Ω = [0; 1]3 and is discretized with a total number of
cells NE = 32 × 32 × 4. Dirichlet boundaries are imposed in x−direction, while periodic
boundaries are prescribed elsewhere. The velocity field is set to zero, and the quantity q(x, 0)
is initially assigned a discontinuous distribution according to (26) with the discontinuity
located at x = 0.5. The third order version of the SL-IMEX scheme is used to run the
simulation up to the final time t f = 1 with CFL=40. The exact solution is then given by
(27), where we set α = 10−2 and u = v = w = 0. A three-dimensional view of the diffused
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Table 5 Numerical convergence results for the three-dimensional advection equation using the second and
third order version of the SL-IMEX scheme with CFL = 8 and CFL = 12, respectively. The errors are
measured in L∞ norm for the transported quantity q at time t f = 0.1

Algorithm 2 (3D)
√

Δx + Δy p = 1 p = 2

L∞ O(q) L∞ O(q)

4.3089E-02 2.5034E-01 – 2.1908E-02 –

2.7144E-02 1.2622E-01 1.48 5.7937E-03 2.88

1.7100E-02 5.8976E-02 1.65 1.3430E-03 3.16

1.0772E-02 2.4954E-02 1.86 3.6526E-04 2.82

x
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Fig. 5 Third order numerical results obtained using the SL-IMEX scheme with Algorithm 2 for the heat
conduction test with α = 10−2 at time t f = 1. Three-dimensional view of the quantity q (left) and comparison
against the reference solution at time t = 0.5 (middle) and t = 1 (right). We show a one-dimensional cut
through the numerical solution with 200 equidistant points along the line y = z = 0.5

quantity q on the x − y plane is depicted in Fig. 5, while a comparison against the reference
solution is shown at output times t = 5 and t = 10, exhibiting an excellent matching despite
the rather coarse mesh and time step.

4.2 Test 5: Advection–Diffusion Equation in 3D

As a last test for the 3D advection–diffusion equation, we solve the transport of a tracer in
a 3D domain, slightly modifying the setup given in [64] by including also diffusion effects.
The domain is Ω = [−0.5; 0.5]3 with periodic boundaries in z−direction and Dirichlet
boundary conditions elsewhere. A total number of cubic cells NE = 323 is used to build the
computational grid. The transport velocity is given by u = (−y, x,−0.1), while the quantity
q is initially distributed as a Gaussian bubble centered in xc = (x, y, z) = (0, 0.2, 0.3), that
is

q(0, x) = 1 + e
(y−xc)2+(y−yc)2+(z−zc)2

0.12 . (51)

As a result of the velocity field, the bubble moves following a circular pattern in the x − y
plane and linearly with respect to the bottom along the vertical direction. Furthermore, a
diffusive process is taken into account by setting α = 10−4 in the governing Eq. (47).
The final time is t f = 2π and the simulation is carried out with CFL = 10 using both
first and third order accurate SL-IMEX schemes in time, while keeping fixed at third order
the spatial accuracy. Figure 7 shows the time evolution of the quantity q with the three-
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dimensional streamlines associated to the velocity field. The high order time discretization
clearly reduces the numerical dissipation of the semi-Lagrangian scheme, thus allowing to
maintain the initial shape of the bubble, apart from the physical viscosity effects. On the
other hand, the first order in time scheme introduces larger errors in the discretization of the
Lagrangian trajectories, hence obtaining a distorted shape of the Gaussian bubble which is
particularly evident at the final time of the simulation.

Finally, the diffusion process is analyzed in Fig. 7which plots the shape of the bubble at the
final time of the simulation along the plane y = 0.2. The first order time discretization yields
a non-symmetric shape which is unphysical and which is mostly due to numerical viscosity,
while the third order results are able to maintain the symmetry of the solution. Furthermore,
almost no quantity q is diffused below the plane z = −0.5, which is not the case for the first
order results, where one can notice that the diffusion process has gone beyond the bottom of
the domain and it has entered from above because of the periodic boundaries.

5 Conservative Semi-Lagrangian IMEX Schemes for the ShallowWater
System

Semi-Lagrangianmethods are typically designed for solving the non-conservative formof the
advection equation, thus they cannot be directly applied to the solution of hyperbolic systems
of conservation laws involving shock waves. In order to extend the SL-IMEX schemes to
such systems, with the aim to properly treat the different space-time scales, we propose in the
sequel a conservative formulation of the methods. As a prototype problem we will consider
the one-dimensional shallow water equations (SWE):

∂h

∂t
+ ∂V

∂x
= 0, (52)

∂V

∂t
+ ∂uV

∂x
+ g

2

∂h2

∂x
= 0, (53)

where u(x, t) is the fluid velocity and V (x, t) = hu denotes the momentum. Let h(x, t) =
b(x) + η(x, t) be the total water depth that is computed as the sum of the prescribed bottom
topography b(x) and the location of the free surface η(x, t). For the sake of simplicity, a
constant flat bottom is assumed, thus b(x) = 0 and therefore h(x, t) = η(x, t). Finally,
g = 9.81 m/s2 is the constant gravity acceleration and the eigenvalues of system (52)–(53)
are λ1,2 = u±√

gh. The term containing the gradient of the hydraulic head, i.e. g/2 ∂xh2,
might be responsible for a stiffness in the governing equations, especially when the flow
velocity is rather low, thus approaching the low Froude regime. This makes the adoption
of an implicit-explicit discretization particularly interesting, in order to separate the slow
advection scale from the fast scale related to the pressure.

5.1 Time Discretization

A clever discretization based on the IMEX strategywould consider the pressure terms implic-
itly, which are responsible of the celerity

√
gh in the eigenvalues, while keeping an explicit

scheme for the solution of the nonlinear convective contribution, which is related to the
quantity u in the eigenvalues. This choice would improve the efficiency of the scheme in
low Froude number flows, since a milder time step condition based only on the fluid velocity
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Fig. 6 Transport and diffusion of a quantity q in a three-dimensional domain at output times t = 2/5π (top),
t = 7/5π (middle) and t = 2π (bottom). The results are obtained with first order (left column) and third order
(right column) time discretization, while keeping fixed the accuracy in space at third order. The iso-surface
q = 1.25 is shown and the colors refer to the z−coordinate
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Fig. 7 Advection–diffusion of a quantity q in a three-dimensional domain with coefficient α = 10−4 at the
final time t = 2π along the plane y = 0.2. The results are obtained with first order (left column) and third
order (right column) time discretization, while keeping fixed the accuracy in space at third order

would be enough to ensure numerical stability. In the following we propose two different
semi-discrete schemes, which will be referred to as SL-IMEX-H and SL-IMEX.

SL-IMEX-H method. The semi-discrete SL-IMEX-H scheme for the one-dimensional SWE
writes

hn+1 = hn − Δt
∂V n+1

∂x
, (54)

V n+1 = V n − ∂

∂x

⎛

⎜⎝
tn+1∫

tn

uV dt

⎞

⎟⎠ − Δt
g

2

∂hnhn+1

∂x
, (55)

where the convective terms retain the time integral notationwhichwill be useful in the sequel.
The advection contribution in (55) is discretized with an explicit conservative SL method,
while the flux term in the continuity Eq. (54) is approximated by means of an implicit finite
difference scheme, thus we address this method as SL-IMEX-Hybrid scheme. The pressure
gradient is discretized relying on a semi-implicit approach, hence obtaining ∂x (hnhn+1),
from which a linear system on the total water depth naturally arises. This strategy has been
recently pursued in [13] for the compressible Navier-Stokes equations and makes use of the
autonomous form (5) for the application of IMEX RK schemes. Along the lines of [55, 59],
a conservative scheme can then be derived by introducing the following definitions:

H(x) :=
tn+1∫

tn

uV dt, (56)

F(x) := V n − ∂H(x)

∂x
, (57)

where H(x) is the time integral of the momentum flux and F is an operator that contains the
discretization of the explicit convective terms. Formal substitution of the momentum V n+1

given by (55) into the continuity Eq. (54) leads to

hn+1 − Δt2
g

2

∂2hnhn+1

∂x2
= hn−Δt

∂F

∂x
, (58)
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where the definition (57) has been used and the only unknown is the total water depth at the
new time level, i.e. hn+1. Equation (58) represents a linear system for the unknown hn+1

that can be solved using an efficient matrix-free implementation of the conjugate gradient
method. Once the solution is obtained, the momentum can readily be updated according to
(55).

Remark on shock discontinuities.For further stabilization at strong shockwaves, an additional
numerical flux should be embedded into the continuity Eq. (54) in order to introduce some
numerical diffusion [65]. Specifically, the semi-discrete continuity equation takes the form

hn+1 = hn − Δt

[
∂V n+1

∂x
− λmax(x)

2

∂δn+1

∂x

]
, δn+1 = hn+1,+ − hn+1,−, (59)

with λmax(x) being the maximum eigenvalue of the shallow water system and δn+1 repre-
senting ameasure of the jump of the solution across cell interfaces in the spatial discretization
between right and left state, i.e. hn+1,+ and hn+1,−, respectively. This corresponds to the use
of a local Lax-Friedrichs flux in the mass conservation equation. Moreover, the introduction
of implicit numerical viscosity in the form (59) does not affect neither the stability of the
scheme nor the symmetry of the linear system (58).

SL-IMEX method. Alternatively, the shallow water system can be discretized in time as

hn+1 = G(x), G(x) := hn − ∂

∂x

tn+1∫

tn

V dt, (60)

V n+1 = F(x) − Δt
g

2

∂hnhn+1

∂x
, (61)

where the convective term G(x) in the continuity Eq. (60) is approximated relying on a SL
scheme, following the approachwhichwill be discussed for F(x)hereafter.As a consequence,
hn+1 is explicitly solvable, thus it is directly substituted into the momentum Eq. (61) for
yielding V n+1. The SL algorithm is used twice, namely for the term G(x) and for F(x),
hence obtaining a formally semi-implicit method that does not require the solution of an
implicit system, differently from the SL-IMEX-H method.

5.2 Space Discretization

As done for the advection–diffusion equation, let Ω be the computational domain defined
in the interval [xL ; xR] and let Nx represent the total number of cells used to discretize
Ω . Each cell has a constant spacing of Δx = (xR − xL)/Nx and a cell-centered space
discretization is adopted, thus both conserved quantities are defined at the cell barycenter xi ,
namely hi := h(xi ) and (hu)i := h(xi )u(xi ).

The discrete version of the differential operators ∂x and ∂2
x2

for a generic quantity q(x) is
based on a fourth order finite difference approximation, hence yielding

∂q

∂x

∣∣∣∣
x=xi

= 1

12Δx
(−qi+2 + 8qi+1 − 8qi−1 + qi−2) , (62)

∂2q

∂x2

∣∣∣∣
x=xi

= 1

12Δx2
(−qi+2 + 16qi+1 + 30qi + 16qi−1 − qi−2) . (63)
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In order to obtain a high order representation of the numerical solutionwithin each compu-
tational cell, a CWENO reconstruction operatorR is adopted (see [39]). This allows smooth
as well as discontinuous solutions to be properly treated ensuring non-oscillatory properties.
Remark on the well-balanced property. A numerical scheme is said to be well-balanced if
it is proven to guarantee steady state solutions of the governing PDE without introducing
numerical errors that eventually do not preserve an equilibrium state of the system. For the
shallow water system, this property is often called the C-property, which will be analyzed for
both the SL-IMEX-H and the SL-IMEX algorithm. Without loss of generality, let us assume
a one-dimensional computational domain with periodic boundaries and let us consider a
constant initial state given by

h(x, t = 0) = h0, u(x, t = 0) = u0, V (x, t = 0) = u0h0 := V0, (64)

which is an equilibrium solution of the SWE (52)–(53).
For the SL-IMEX-H scheme (54)–(55), the semi-Lagrangian operator F(x) in (57) results

to be

F(x) = V0 − ∂

∂x

⎛

⎜⎝u0V0

tn+1∫

tn

dt

⎞

⎟⎠ = V0, (65)

since central (symmetric) finite difference operators are used for the spatial discretization of
the gradient operator according to (62). This also holds true for second derivative operators
like (63) applied to any constant state. Therefore ∂F/∂x = 0 and the continuity equation
(58) is given by

hn+1 − h0Δt2
g

2

∂2hn+1

∂x2
= h0, (66)

which admits solution hn+1 = h0. The momentum is then updated according to (55), hence

V n+1 = V0 − ∂F

∂x
− Δt

g

2

∂h20
∂x

= V0, (67)

therefore one obtains hn+1 = h0 and V n+1 = V0, which is a well-balanced solution.
For the SL-IMEX Algorithm (60)–(61), the evaluation of the operator G(x) leads to

G(x) = h0 − ∂

∂x
V0

tn+1∫

tn

dt = h0, (68)

thus hn+1 = h0 according to (60). Similarly, the momentum equation yields

V n+1 = F(x) − Δt
g

2

∂h20
∂x

= V0. (69)

The proposed SL-IMEX-H and SL-IMEX schemes are thereforewell-balanced discretiza-
tions of the shallow water system.

5.3 Conservative Semi-Lagrangian IMEX Schemes

We present a conservative formulation of the SL method by considering only the advection
term F(x), given by (57), in the momentum Eq. (55) for the SL-IMEX-H scheme. The term
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Fig. 8 Space-time domain Ωt,x used to develop the conservative SL-IMEX schemes

G(x) in the continuity Eq. (60) for the SL-IMEX algorithm can then be computed following
the same approach outlined for F(x).

For the discretization of the convective contribution F(x) in the momentum Eq. (55), the
semi-Lagrangian schemes discussed in Sect. 2.2 can be used with no modifications. This
would lead to a non-conservative transport of the momentum, which in principle does not
represent a problem if incompressible flows are considered [75] or parabolic PDE are likely
to be solved. However, if shock waves are part of the eigenstructure of the governing system,
as usually occur for hyperbolic PDE like the SWE, then the design of conservative methods
is mandatory in order to capture the correct wave speeds and location of the discontinuities
and the plateau exhibited by the solution.

Therefore we aim at constructing a conservative version of the semi-Lagrangian IMEX
schemes previously introduced.Wepropose to use here a newphilosophy in order to discretize
F(x), which has been very recently introduced in [75] for scalar PDE. The idea is the
following: given a starting point xi , the Lagrangian trajectory of this point would travel
through the flow lines according to (3) up to the point x Li at time tn . Looking at Fig. 8, let
now Ωt,x be the space-time domain that is the region bounded by the segments [x Li ; xi ] and
[tn; tn+1], which lies below the trajectory.

For the sake of simplicity, let us consider only the advection part of the PDE (1), that is
nothing but the simple advection equation

∂q

∂t
+ ∂uq

∂x
= 0. (70)

By defining the space-time divergence operator as ∇t,x = (∂t , ∂x ), the integration of the
advection Eq. (70) over Ωt,x and the use of the divergence theorem in the fully space-time
framework leads to

∫

Ωt,x

∂t q + ∂x (uq) dxdt =
∫

Ωt,x

∇t,x · (q, uq) dxdt

= −
∫

Γ L
(q, uq) · n ds −

∫ xi

x Li

q dx +
∫ tn+1

tn
uq dt, (71)

with Γ L denoting the boundary defined by the Lagrangian trajectory of the particle traveling
from xi to x Li (highlighted in red in Fig. 8). By construction, since the tangent vector to Γ L

is given by the velocity of the trajectory, the normal vector results to be n = β(1,−1/u)

with β = |u|/√(u2 + 1) and therefore the integral along Γ L in (71) vanishes, i.e.
∫

Γ L
(q, uq) · nds =

∫

Γ L
β

(
q − 1

u
uq

)
ds = 0. (72)
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As a consequence, from (71) it follows a simple way to compute Hi := H(xi ) for the
advection Eq. (70) that only needs spatial information:

Hi :=
∫ tn+1

tn
uq dt =

∫ xi

x Li

q dx . (73)

Once Hi is computed for each computational cell, a CWENO reconstruction operatorR can
be applied in order to obtain a piecewise high order polynomial representation of Hi . At this
point, a classical conservative scheme is used to compute Fi := F(xi ), i.e.

Fi = qni − 1

Δx
(Ĥi+1/2 − Ĥi−1/2), (74)

where Ĥi±1/2 are numerical fluxes given by a local Lax-Friedrichs scheme.
The boundary extrapolated values of H(x) at the interfaces in (74) are provided by the

CWENO reconstruction operator. Notice that in the conservative scheme (74) the time step
Δt is missing because it is already incorporated in the space-time integral (73), thus it is
contained in the integral over the interval x = [x Li ; xi ]. Furthermore, this approach allows to
reconstruct a purely spatial flux from the semi-Lagrangian discretization that is not possible
in a classical formulation of the SL method due to the space-time nature of the Lagrangian
trajectories. Therefore, in the construction of a conservative SL-IMEXscheme, for the explicit
convective contribution we can use (74) to identify a flux as needed in the Eulerian IMEX
scheme (9a)–(10), even though a semi-Lagrangian approach is adopted. The purely spatial
part of the flux simply writes Ĥi±1/2/Δt because the time step is taken into account by the
integral (73).

Remark on the computation of the foot of the trajectory.The conservativeSL-IMEX-Hscheme
can easily be cast into the Eulerian advection form presented in Sect. 2.1. However, the
velocity field has in any case to be advected according to the previously described Algorithm
1 in Sect. 2.2. Since the trajectory equation associated to the evaluation of H(x) in (56) might
involve a nonlinear transport, the coordinates x Li , needed for obtaining Hi in (73), have to
be computed relying on a nonlinear ODE solver for the trajectory equation (3), such as the
class of Runge-Kutta Exponential Integrators [15, 21, 75], or a predictor-corrector strategy
[73], or even a Taylor method [45, 64] which we rely on in this work.

Unfortunately it is easy to show that the conservative semi-Lagrangian approximation
(73)–(74), if applied to the shallow water equations, would lead to a first order (in time)
discretization even for constant solutions. Indeed, let u(x) and h(x) be a steady solution
of (52)–(53), which might be non-constant in space. Then, the space-time integral (71) is
not valid anymore since we also need to introduce the pressure fluxes that are part of the
governing PDE system. Therefore, instead of (71), integration of the momentum equation
over the same space-time control volume Ωt,x would lead to

∫

Ωt,x

∂t hu + ∂x (hu
2) dxdt =

∫

Ωt,x

∇t,x · (hu, hu2) dxdt

= −
∫ xi

x Li

(hu)n dx +
∫ tn+1

tn
hu2 dt + g

2

∫

Ωt,x

∂xh
2 dxdt .

(75)

Compared to (71), the last term on the right hand side of (75) arises because of the pressure
contribution in themomentumEq. (53).Now, this additionalmultidimensional integral,which
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will be addressed with P , may be split using the property of normal domains as follows

P := g

2

∫

Ωt,x

∂xh
2 dxdt = g

2

∫ tn+1

tn

∫ xi

x L (t)
∂xh

2 dxdt = g

2

∫ tn+1

tn
h2(xi ) − h2(x L(t)) dt,

(76)
where x L(t) is the foot of the characteristic located at time t , so that x L(tn+1) = xi and
x L(tn) = x Li = L(xi ,Δt, u). Integration of (76) can be done numerically with a quadrature
rule of suitable order of accuracy, see Fig. 8 where the simple midpoint rule is illustrated.

Cauchy–Kovalevskaya procedure. For achieving an order of accuracy greater than one, the
quadrature nodes for the evaluation of the additional time integral P in (76) require the
knowledge of h inside the space-time domain. First, we observe that the only available high
order information comes from the CWENO reconstruction polynomials defined at time tn .
Second, although a time reconstruction would provide the values of h at quadrature nodes,
it would demand the knowledge of the solution at N points backward in time, thus needing
a sort of initialization which prevents the algorithm to start from time t0 (see for instance the
class of BDF or Adams-Moulton schemes for ODE). Therefore, we propose to use a different
strategy, that is based on the approximation of h(t) by means of a Taylor series:

h(t) = h(tn) + (t − tn)
∂h

∂t
+ (t − tn)2

2

∂2h

∂t2
+ O(Δt3), (77)

which holds true for all cell values located at xi with i = 1 . . . Nx . To compute high order
time derivatives we rely on the Cauchy-Kovalevskaya procedure which uses repeatedly the
governing PDE to convert time partial derivatives into spatial partial derivatives. For the SWE
(52)–(53), the terms ∂t h and ∂2

t2
h in (77) are evaluated as follows:

∂h

∂t
= −∂V

∂x
(78a)

∂2h

∂t2
= ∂

∂t

(
−∂V

∂x

)

= ∂

∂x

(
−∂V

∂t

)

= ∂2

∂x2

(
uV + g

2
h2

)
. (78b)

The computation of (78a) is readily available from the CWENO reconstruction operator
applied to the conserved quantity V , i.e. R(V (xi , tn)). The evaluation of the term (78b)
requires two steps: i) first, the cell value of the flux term must be defined, that is

G(xi ) := ui Vi + g

2
h2i i = 1 . . . Nx , (79)

ii) then, theCWENO reconstruction is used to obtain a high order approximation ofG(xi ), i.e.
R(G(xi )), so that the second derivatives can be easily extracted and the term (78b) explicitly
computed. Once the Taylor series (77) is completely determined, the value of h2 needed in
(76) can be obtained at any time level within the interval [tn; tn+1]. The integral P in (76)
is numerically computed using quadrature rules of suitable accuracy, that are listed hereafter
up to fourth order accurate schemes.

– Midpoint rule for second order of accuracy:

P = g

2
Δt

[
h2(xi , t

n+1/2) − h2(x L(tn+1/2))
]

+ O(Δt2). (80)
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– Kepler rule for up to fourth order of accuracy:

P = g

2
Δt

1

6

[
h2(xi , t

n) − h2(x L(tn))
]

+g

2
Δt

2

3

[
h2(xi , t

n+1/2) − h2(x L(tn+1/2))
]

+g

2
Δt

1

6

[
h2(xi , t

n+1) − h2(x L(tn+1))
]

+ O(Δt4), (81)

where the solutions h2(xi , tn+1/2) and h2(xi , tn+1) are readily computed with the Taylor
expansion (77).

We recall here that higher order time stepping can be achieved by applying the implicit-
explicit discretization presented above to the class of high order IMEX schemes given by
(9)–(10) with the tableaux reported in Appendix A.

Remark. The additional term P in (76) can be written, using the mean value theorem, as

g

2

∫ tn+1

tn
h2(xi ) − h2(x L(t))dt = g

2

[
h2(xi , tc) − h2(x L(tc))

]
Δt ≈ g

2
δ(tc)Δt, (82)

where tc ∈ [tn; tn+1] and δ(tc) is themean value of the integrand function. For a non-constant
solution h = h(x, t), or even in the case of steady non-constant solutions like h = h(x),
neglecting this contribution as done in (71) would introduce a first order local truncation
error.

6 Asymptotic-Preserving Semi-Lagrangian IMEX Schemes

In order to extend the previous scheme (54)-(55)with the novel conservative semi-Lagrangian
IMEX methods to the case of hyperbolic balance laws, let us consider the shallow water
equations with a relaxation term [51], that is given by

∂h

∂t
+ ∂V

∂x
= 0, (83)

∂V

∂t
+ ∂uV

∂x
+ g

2

∂h2

∂x
= h

ε

(
h

2
− u

)
, (84)

with ε being a relaxation parameter. In the stiff limit, i.e. when ε → 0, system (83)–(84)
reduces to the inviscid Burgers equation

∂h

∂t
+ ∂

∂x

(
h2

2

)
= 0. (85)

On the other hand, if ε → ∞ the shallow water PDE system (54)–(55) is consistently
retrieved because the source term simply vanishes.

Let us now propose two different semi-discrete AP schemes for the relaxation system
(83)–(84), which arise from the SL-IMEX-H and SL-IMEX methods illustrated in Sect. 5.3.

SL-IMEX-H AP method. The first method directly follows from (54)–(55) and yields

hn+1 = hn − Δt
∂V n+1

∂x
, (86)
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V n+1 = F(x) − Δt
g

2

∂hnhn+1

∂x
+ Δt

(
hnhn+1

2ε
− V n+1

ε

)
, (87)

where the relaxation source is discretized implicitly, so that the second term is linear with
respect to V n+1 and can be readily inverted. Notice that the conservative semi-Lagrangian
scheme is already embedded in the definition of the term F(x) according to (57). From (87),
by solving for V n+1, we obtain

V n+1γ = F(x) − Δt
g

2

∂hnhn+1

∂x
+ Δt

hnhn+1

2ε
, γ = ε + Δt

ε
, (88)

that can be substituted into the continuity equation (86), hence yielding

hn+1 = hn − Δt
∂

∂x

(
F(x)

γ

)
+ Δt2

γ

g

2

∂

∂x

(
∂hnhn+1

∂x

)
− Δt2

γ ε

∂

∂x

(
hnhn+1

2

)
. (89)

Now, the limit of the relaxation system (54)–(55) can be analyzed starting from the semi-
discrete form (89), which represents the novel conservative SL scheme introduced in this
work. In the limit for ε → 0 it holds

lim
ε→0

1

γ
= 0, lim

ε→0

1

γ ε
= 1

Δt
, (90)

therefore the scheme given by (89) simplifies to

hn+1 = hn − Δt
∂

∂x

(
hnhn+1

2

)
, (91)

which is a consistent discretization of the limitmodel (85). The proposedSL-IMEX-Hmethod
is asymptotic preserving (AP). Furthermore, the semi-Lagrangian discretization does not
affect the AP property, which is ensured by the IMEX time stepping.

SL-IMEX AP method. The second discretization is based on the scheme (60)–(61), thus the
relaxation system (83)–(84) can be discretized in time as

hn+1 = G(x), G(x) := hn − ∂

∂x

tn+1∫

tn

V dt, (92)

V n+1 = F(x)

γ
− Δt

γ

g

2

∂hnhn+1

∂x
+ Δt

γ ε

hnhn+1

2ε
, γ = ε + Δt

ε
, (93)

Similarly to what discussed above, we can characterize the limit of (92)-(93) for ε → 0.
According to (90), from the momentum Eq. (93) one has V n+1 → (hn+1)2/2. Therefore,
u = (V /h) → hn+1/2 and the continuity equation becomes

hn+1 = hn − Δt
∂V n+1

∂x
= hn − Δt

∂

∂x

(
(hn+1)2

2

)
, (94)

which is a semi-Lagrangian discretization of the inviscid Burgers Eq. (85) at first order in
time. To construct higher order time discretizations, the semi-Lagrangian operatorG(x)must
be projected in the stiff limit to each intermediate stage of a Runge-Kutta method, as studied
in Sect. 2.2. Notice that the advection speed in (94) is consistently retrieved, hence leading
to an AP method.

The SL-IMEX scheme (92)–(93) is formally unconditionally stable and completely
explicit from the computational viewpoint. Nevertheless, in case of shocks or strong dis-
continuity exhibited by the solution, it is necessary to supplement the continuity Eq. (92)
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with additional numerical viscosity according to (59). As already done, we adopt an implicit
treatment of the numerical dissipation, that leads to the solution of a linear system for the
unknown hn+1. This algorithm makes use of the conservative SL method for the advection
of both mass and momentum, thus it is simply denoted with SL-IMEX.

Higher order SL-IMEXAPmethods can be derived by adopting the same implicit-explicit
partitioning here described in the high order IMEX setting (9)–(10). We omit the details for
brevity.

Remark on the low Froude number limit. The approach here designed permits to capture
also diffusive behaviors of the shallow water system with relaxation terms. Specifically, the
stiffness related to the pressure gradient in the SWE can be highlighted by introducing a
scaling based on the Froude number Fr = |u|/√gh and assuming dimensionless variables.
Following [42], the shallow water system supplemented with the relaxation source term
introduced in (83)–(84), can be rewritten in the following form

∂h

∂t
+ ∂V

∂x
= 0, (95)

∂V

∂t
+ ∂uV

∂x
+ 1

2Fr2
∂h2

∂x
= h

ε

(
h

2
− u

)
, (96)

with eigenvalues λ1,2 = u (1±1/Fr). The derivation of the asymptotic limit of the shallow
water equations in the low Froude regime has been studied for instance in [4, 29] and ref-
erences therein. Here, we limit us to provide the asymptotic limit of (95)–(96). Assuming
ε = O(Fr2), in the limit ε → 0 system (95)–(96) reduces to the viscous Burgers equation

∂h

∂t
+ ∂

∂x

(
h2

2

)
= 1

2

∂2h2

∂x2
. (97)

Toobtain a numerical schemewhich is in principle unconditionally stable, despite the physical
scale of the problem under consideration, one might discretize the advection flux term with
the novel SL algorithm proposed in this work, while the diffusive terms relying on an implicit
finite difference scheme, thus ensuring stability regardless the chosen time step. Under the
assumption ε = O(Fr2), the semi-discrete scheme reads then as follows:

hn+1 = G(x), G(x) := hn −
tn+1∫

tn

∂V

∂x
dt, (98)

V n+1 = F(x)

γ
− Δt

2γ ε

∂hnhn+1

∂x
+ Δt

γ ε

hnhn+1

2
, γ = ε + Δt

ε
. (99)

In the limit ε → 0, the momentum Eq. (99) becomes

V n+1 = −1

2

∂hnhn+1

∂x
+ hnhn+1

2
, (100)

which, after substitution into the continuity Eq. (98), yields the discrete version of the limit
Eq. (97):

hn+1 − Ĝ(x) = Δt

2

∂2hnhn+1

∂x2
, Ĝ(x) := hn + ∂

∂x

tn+1∫

tn

h2

2
dt . (101)

We underline that the advection flux Ĝ(x) can be computed using the conservative SL
schemes, while implicit finite differences might be employed for the diffusive terms.
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7 Numerical Results for the ShallowWater System

In this section,weperformsomenumerical test caseswhich aimat demonstrating the accuracy
and the robustness of the conservative version of the SL-IMEX schemes. First, numerical
convergence studies are presented to show that the formal order of accuracy is achieved.
Second, a smooth solution involving a pressure wave propagation is used to highlight the
benefits of the high order method in terms of energy dissipation. The total energy E is
computed as the sum of kinetic K and potential U energy contribution, which are given by

E = K +U , K =
∫

Ω

hu2

2
dx, U =

∫

Ω

gh2

2
dx . (102)

Third, two Riemann problems are solved which deal with shock waves, where a conserva-
tive scheme is crucial for obtaining the correct propagation speed. Fourth, the asymptotic
preserving property of the SL-IMEX schemes is verified by solving a set of smooth and
discontinuous test cases for the relaxation system of the SWE in the stiff limit.

The CFL stability condition for an explicit solver of the SWE (52)–(53) is given by

CFL = Δt max
(|u| + √

gh
)

Δx
, (103)

which leads to the conditionCFL < 1.Because of both the semi-Lagrangian discretizations of
the convection terms (SL-IMEX and SL-IMEX-H) and the implicit treatment of the pressure
flux in (55) and (61), the proposed method is unconditionally stable for any time step Δt . As
a consequence, the time step can be defined only by the physical time scale of the problem
under consideration and not by numerical restrictions. For each test case shown in the sequel,
we explicitly report the resulting CFL number, according to the definition (103).

7.1 Numerical Convergence Studies

Here, a smooth steady state problem is considered to measure the order of accuracy of
the SL-IMEX-H schemes. Notice that the semi-Lagrangian approach directly solves the
Lagrangian form of the advection term (2) and, as such, even a steady solution is not trivial to
be maintained since the algorithm formally transports backward and forward the numerical
solution. On the other hand, we propose a steady state solution of the SWE (52)–(53) because
it easily allows an analytical solution to be derived, so that convergence studies can be carried
out.

We consider a computational domain Ω = [−10; 10] and we prescribe the following
initial condition for the fluid velocity at t = 0:

u(x) = 1 + a cos

(
2π

10
x

)
, a ∈ R. (104)

To obtain a steady solution for the momentum, the advection contribution must be exactly
balanced by the pressure fluxes, which means solving the following ODE:

dhu2

dx
= −gh

dh

x
, (105)
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Fig. 9 Numerical convergence test with third order SL-IMEX-H scheme at time t = 0.2 with Nx = 400.
Comparison against the reference solution for water height (left) and velocity (middle), and time evolution of
potential, kinetic and total energy (right)

that yields the sought water depth

h(x) =−8 cos(αx) − cos(αx)2 − 16

16 g

+ 1

16 g

√
96 cos(αx)2 + 16 cos(αx)3 + 256 cos(αx) + cos(αx)4 + 256 − 512gc,

α = π

5
.

(106)

We set a = 5 in (104) and c = −1 in (106), then the continuity Eq. (52)must be supplemented
with a source term S(h, V ) that maintains constant over time the water depth given by (106),
thus we solve

hn+1 = hn − Δt
∂V n+1

∂x
+ Δt S(h, V )n+1, S(h, V )n+1 = ∂V n+1

∂x
, (107)

where the source term is discretized implicitly so that we ensure a perfectly compatible
discretization that keeps a constant water depth up to machine precision.

The simulation is run until the final time t f = 0.2 with CFL=2 on a sequence of five
successively refined meshes obtained by a refinement factor of 2 applied to the number of
cells, i.e. Nx = {50, 100, 200, 400, 800}. Figure 9 shows a comparison between a third order
numerical solution with Nx = 400 and the analytical solution, as well as the time evolution
of the energy which is perfectly preserved constant over time.

Table 6 reports the convergence studies for second and third order SL-IMEX-H schemes,
where errors are measured in L∞ norm for the momentum V , that is

L∞ = max
i

∣∣Vi − V ex
i

∣∣ , i = 1 . . . Nx , (108)

with the exact momentum V ex
i = h(xi )u(xi ) computed from the analytical solution (104)–

(106). The formal order of accuracy is achieved by the proposed numerical method, which is
possible if the additional integralP in (76) is properly considered.Neglecting the contribution
of P would inevitably yield only first order accurate results, despite the high order CWENO
reconstruction in space and the high order IMEX scheme in time, as demonstrated by the
numerical experiments reported in Table 6.

LowFroudeConvergenceWeaimat studying the convergenceof theSL-IMEX-Hschemealso
considering different stiffness regimes, namely letting the Froude number Fr = |u|/√gh
ranging from unity to very small values. The convergence test case illustrated in Sect. 7.1
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Table 6 Numerical convergence
results for the one-dimensional
shallow water equations with
CFL=2 using second and third
order SL-IMEX-H schemes with
and without the time integral
term P in the semi-Lagrangian
scheme given by (76). The errors
are measured in L∞ norm and
refer to the momentum V at time
t f = 0.2

Δx with P without P
L∞ O(V ) L∞ O(V )

SL-IMEX-HO2

0.4 1.3032E-04 – 3.5714E-04 –

0.2 2.9772E-05 2.13 1.9069E-04 0.91

0.1 7.0589E-06 2.08 1.0655E-04 0.84

0.05 1.7404E-06 2.02 5.4242E-05 0.97

0.025 4.4074E-07 1.98 2.8017E-05 0.95

SL-IMEX-HO3

0.4 1.2011E-04 – 5.6089E-04 –

0.2 1.5396E-05 2.96 3.0007E-04 0.91

0.1 1.9865E-06 2.95 1.6725E-04 0.84

0.05 2.7466E-07 2.85 8.5115E-05 0.97

0.025 4.8296E-08 2.51 4.3960E-05 0.95

Table 7 Numerical convergence results for the one-dimensional shallow water equations with CFL=2 using
third order SL-IMEX-H schemes with different values of the Froude number. The errors are measured in L∞
norm and refer to the momentum V at time t f = 0.2

SL-IMEX-H O3

Δx Fr2 = 100 Fr2 = 10−2 Fr2 = 10−4 Fr2 = 10−6

L∞ O(V ) L∞ O(V ) L∞ O(V ) L∞ O(V )

0.4 2.4827E-04 – 7.1718E-04 – 7.7403E-04 – 7.7488E-04 –

0.2 3.4371E-05 2.85 1.0344E-04 2.79 1.1321E-04 2.77 1.1331E-04 2.77

0.1 4.9891E-06 2.78 1.6183E-05 2.68 1.7443E-05 2.70 1.7456E-05 2.70

0.05 8.9835E-07 2.47 2.8177E-06 2.52 3.0186E-06 2.53 3.0208E-06 2.53

can be used again by simply modifying the meaning of the constant g in the governing
PDE. More precisely, looking at the rescaled SWE (95)–(96) and neglecting the source
terms, we can recognize the similar mathematical meaning to both g and Fr2, and the
manufactured equilibrium solution (106)–(104) holds true for any arbitrary value of g, which
in the rescaled system corresponds to Fr2. The third order version of the SL-IMEX-H scheme
is analyzed and the convergence rates are reported in Table 7 for four different stiffness
regimes, confirming that the formal order of accuracy is correctly captured by our numerical
scheme. The same spatial and temporal discretizations of the previous convergence test are
adopted even in this case and the simulation stops at time t f = 0.2.

7.2 PressureWave Propagation

We consider an initially smooth solution that involves the propagation of a pressure wave
over the computational domain Ω = [−10; 10] which is discretized with a total number of
cells Nx = 400. The water is initially at rest and the water depth is assigned a Gaussian
profile

h(x, 0) = 1 + e−x2 . (109)

123



Journal of Scientific Computing (2022) 90 :97 Page 35 of 46 97

x

h

-10 -5 0 5 10
0.9

1

1.1

1.2

1.3

1.4

1.5

SL-IMEX-H (O3)
SL-IMEX-H (O2)
Reference solution

x

u

-10 -5 0 5 10
-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

SL-IMEX-H (O3)
SL-IMEX-H (O2)
Reference solution

time

P
o

te
n

ti
al

 e
n

er
g

y 
[J

]

0 0.2 0.4 0.6 0.8 1 1.2
117.5

118.0

118.5

119.0

119.5

120.0

120.5

121.0

121.5

122.0

SL-IMEX-H (O3)
SL-IMEX-H (O2)

time

m
 [

K
g

]

0 0.2 0.4 0.6 0.8 1 1.2
21.772

21.7723

21.7725

21.7728

21.773

SL-IMEX-H (O3)
SL-IMEX-H (O2)

Fig. 10 Pressure wave propagation at time t = 1.2 with CFL=2. Top: comparison of second and third order
numerical results against the reference solution for water height (left) and velocity (right). Bottom: time
evolution of the potential energy (left) and total mass (right) for both second and third order SL-IMEX-H
schemes

The setup of the test is symmetric, thus twowaves are departing from the center of the domain
at x = 0 and traveling towards the boundaries. The initial profile of the water front is smooth,
but a shock wave arises after t ≈ 0.9. The reference solution is obtained with a MUSCL-
TVD scheme on a very fine mesh composed of 20000 cells, which is used to compare the
numerical solution of the SL-IMEX-H methods in Figure 10. The second order scheme is
more dissipative compared to the third order version, that is highlighted in the dissipation of
the potential energy U according to (102). Finally, we also monitor the conservation of the
total mass given by

m =
∫

Ω

h dx, (110)

which is satisfied up to machine precision thanks to the conservative version of the SL
schemes.

7.3 Riemann Problems

Here, we propose some computational results for two different Riemann problems. The Rie-
mann problem is a special initial value problem for system (52)–(53), where a discontinuity
separates two piecewise constant states that represent the initial data. Since these problems
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Table 8 Initialization of Riemann problems. Initial states left (L) and right (R) are reported as well as the final
time of the simulation t f , the computational domain [xL ; xR ] and the position of the initial discontinuity xd

Name t f xL xR xd hL uL hR uR

RP1 1.0 − 10.0 10.0 0.0 1.5 − 1.0 1.0 2.0

RP2 1.5 − 10.0 10.0 0.0 1.0 0.0 0.5 0.0

involve shock waves, they are traditionally solved by explicit conservative methods, while
here we make use of the novel class of implicit-explicit schemes with a conservative semi-
Lagrangian treatment of the advection terms. The initial condition is given in terms of the
state vector Q(x, 0) = (h(x, 0), V (x, 0)) assigned to the left L and the right R part of the
domain, that is

Q(x, 0) =
{
QL if x ≤ xd
QR if x > xd

, (111)

with xd denoting the location of the initial discontinuity. The initial condition for the two
Riemann problems is reported in Table 8 and the computational domain is discretized using
Nx = 400 control volumes. The exact solution can be computed relying on the Riemann
solver given in [67].

The first Riemann problem RP1 generates two non-symmetric rarefaction waves, hence
this solution is continuous, but with discontinuous derivatives. The results obtained with
the conservative SL-IMEX-H scheme run with CFL=3 are compared against the reference
solution in Fig. 11, where second and third order accurate methods are used. Both numerical
schemes generate profiles for the solution that are in excellent agreement with the exact
solution and the third order method is slightly less dissipative, which can be appreciated
looking at the heads and tails of the rarefaction waves.

The second Riemann problem RP2 is directly inspired from the well-known Sod shock
tube problem in gas dynamics [68] and consists in one rarefaction wave and one shock wave
traveling towards opposite directions. We use again both second and third order SL-IMEX-
H schemes, and the results depicted in Fig. 12 allows us to confirm that the conservative
schemes correctly capture the location of the discontinuities as well as the values along the
plateau exhibited by the exact solution.We underline that this is only possible if a conservative
discretization of themomentum equation is adopted. Finally, Fig. 13 shows the time evolution
of the total energy, namely potential and kinetic contributions, as well as the evolution of the
total mass computed with (110), that clearly remains constant for the entire simulation.

Finally, Fig. 14 depicts the spatial distribution of the Froude number at the final time of
the simulation for the pressure wave propagation test as well as for the Riemann problems
RP1-RP2.

7.4 Relaxation System of SWE: Stiff Limit Tests

This section is devoted to the validation of the novel SL-IMEX schemes applied to the
relaxation system of SWE given by (83)–(84). Three different test cases are presented in
the stiff limit of the model, thus setting ε = 10−14 as relaxation parameter, so that the
numerical results can be directly compared with the solution of the inviscid Burgers Eq. (85).
As discussed in Sect. 6, the new methods are Asymptotic Preserving, therefore the proposed
numerical schemes must retrieve a consistent discretization of the limit model, according to
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Fig. 11 Riemann problem RP1 at time t = 1 with CFL=3. Second (top row) and third (bottom row) order
numerical results compared against the reference solution for water height (left) and velocity (right)

Table 9 Numerical convergence results in time for the relaxation system of SWE with different CFL numbers
using second and third order SL-IMEX-H schemes. The errors are measured in L∞ norm and refer to the
water depth h at time t f = 0.05

CFL time steps Δt SL-IMEX-H O2 SL-IMEX-H O3

L∞ O(h) L∞ O(h)

8 11 4.5455E-03 9.7536E-05 – 2.6662E-05 –

7 13 3.8462E-03 7.2151E-05 1.80 1.7027E-05 2.68

6 15 3.3333E-03 5.3516E-05 2.09 1.0790E-05 3.19

5 18 2.7778E-03 3.8036E-05 1.87 6.3335E-06 2.92

4 22 2.2727E-03 2.4068E-05 2.28 3.1208E-06 3.53

3 30 1.6667E-03 1.3134E-05 1.95 1.1780E-06 3.14

(91) and (94), when the relaxation parameter tends to zero. For the sake of brevity, since
the SL method is applied to the advection part of the governing PDE, we want to verify that
the advection velocity of the limit system is correctly captured by the scheme, thus we only
consider the stiffness in the parameter ε for the relaxation system (83)–(84), neglecting the
stiffness related to the low Froude number. The SL-IMEX scheme (92)–(93) is also tested in
the limit ε → ∞ in order to demonstrate the capability of correctly capturing the behavior
of the original SWE system.
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Fig. 12 Riemann problem RP2 at time t = 1.5 with CFL=2. Second (top row) and third (bottom row) order
numerical results compared against the reference solution for water height (left) and velocity (right)
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(right) for the third order SL-IMEX-H scheme

First, the numerical convergence in time is studied. To this aim, let us consider a compu-
tational domain Ω = [0; 1] with periodic boundary conditions, which is discretized with a
total number of cells Nx = 400. The initial condition reads [51]:

h(x, 0) = 1 + 0.2 sin(8πx), u(x, 0) = h

2
, (112)
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the relaxation system of SWE with ε = 10−14. Comparison against the reference solution for water height
and velocity (left), and time evolution of total mass m and momentum p (right)

Table 10 Initialization of Riemann problems for the relaxation system of SWE. Initial states left (L) and right
(R) are reported as well as the final time of the simulation t f , the computational domain [xL ; xR ] and the
position of the initial discontinuity xd

Name t f xL xR xd hL uL hR uR

B1 0.3 − 1.0 1.0 0.0 1.0 0.0 2.0 0.0

B2 0.4 − 1.0 1.0 0.0 2.0 0.0 1.0 0.0

and the final time is set to t f = 0.05. Table 9 reports the convergence rates for six successively
refined values of the CFL number in (103), showing that the formal order of accuracy is
obtained for both second and third order SL-IMEX-H schemes. The same test is then run
using the SL-IMEX method until the final time t f = 0.2, so that no shocks are present in the
solution. Figure 15 plots the numerical solution at the final time for both the water depth and
the velocity, as well as the time evolution of the total mass and momentum which are fully
preserved by the novel conservative SL methods.

Second, two different Riemann problems are solved with the relaxation system of SWE.
The initial setting is given in Table 10 and the initial condition is assigned according to (111).

Riemann problem B1 involves a rarefaction wave, while the test case B2 is concerned
with a shock wave. Conservation in the numerical scheme is then crucial in order to correctly
capture the location of the discontinuities, thus both B1 and B2 represent a validation of both
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Fig. 16 Riemann problems with third order SL-IMEX scheme with Nx = 400 for the relaxation system of
SWE with ε = 10−14. Top: rarefaction solution (B1 test) at time t = 0.3. Bottom: shock solution (B2 test) at
time t = 0.04. Comparison against the reference solution for water height (left) and velocity (right)

SL-IMEX-H and SL-IMEX schemes in the stiff limit of the relaxation system (83)–(84).
The computational domain is defined as Ω = [−1; 1] and counts a total number of control
volumes Nx = 400. The CFL number is set to CFL = 4 and a comparison between the
third order numerical results and the exact solution is depicted in Fig. 16. Even in this case,
both SL-IMEX-H and SL-IMEX schemes are able to capture the correct wave speeds while
running the simulation with a time step which is four times larger than the one of an explicit
scheme. Furthermore, the results are proven to be consistent with the limit model, i.e. the
inviscid Burgers equation. Notice that also the velocity relaxes to the correct asymptotic limit,
that is u → h/2, for all the test cases shown in this section. The SL-IMEX scheme is clearly
less dissipative than the SL-IMEX-H version, which is visible from the resolution of the tail
and head of the rarefaction wave in test B1, as well as in the sharp resolution of the shock
front for problem B2.

Finally, the SL-IMEX scheme (92)–(93) is used to run the Riemann problems RP1 and
RP2 in the case ε → ∞. The initial condition is reported in Table 8 and the third order
results are depicted in Fig. 17, where an excellent agreement with the reference solution can
be appreciated. Moreover, mass is fully conserved and even for these test cases the SL-IMEX
schemes are less dissipative than the SL-IMEX-H methods, as shown in Fig. 18 with a zoom
on the tail and head of the rarefaction wave for RP1.
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Fig. 17 Riemann problems RP1 (top) and RP2 (bottom) with third order SL-IMEX scheme with Nx = 400
for the relaxation system of SWEwith ε = 10−14. Comparison against the reference solution for water height
(left) and velocity (right)
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profile across the tail and head of the left rarefaction wave (color figure online)

123



97 Page 42 of 46 Journal of Scientific Computing (2022) 90 :97

8 Conclusions

In thiswork a novel class of semi-Lagrangian schemeswith IMEXRunge-Kutta time stepping
has been derived and discussed. First, the method is presented for a simple advection–
diffusion equation, where the nonlinear convective terms have been discretized explicitly
using a high order semi-Lagrangian technique, while the diffusion part of the equation has
been treated implicitly. The resulting scheme is therefore unconditionally stable and a suite
of test cases has been shown to demonstrate the achievement of the formal order of accuracy.
Second, the SL-IMEXmethods have been extended to ensure conservation of the transported
quantities in the case of hyperbolic systems of conservation laws by means of a novel tech-
nique based on the integration of the governing PDE onto the space-time control volume
generated by the motion of the grid points along the characteristics. As a prototype model
the shallow water system has been used.

The space discretization relies on high order CWENO reconstruction operators, while a
Cauchy-Kovalevskaya procedure allows the semi-Lagrangian scheme to reach high order of
accuracy in time as well. The conservative version of the schemes has then be applied to test
problems involving shocks, rarefaction waves and contact discontinuities. The conservation
property exhibited by the schemes is crucial to correctly capture and locate shock waves and
plateau of the solution. The IMEX Runge-Kutta method is used for the time stepping, with
explicit convective contribution and implicit pressure terms, so that the CFL-type stability
condition can be completely relaxed. Finally, the asymptotic preserving (AP) property of
the schemes has been studied as well considering the shallow water systems with relaxation
terms, for which two different AP schemes are derived, both in terms of a semi-Lagrangian
IMEX discretization. Numerical experiments demonstrate that the novel SL-IMEX methods
provide a consistent discretization in the stiff regime of the limit model given by the inviscid
Burgers equation.

Future research will concern the extension of the novel class of SL-IMEX schemes to
multiple space dimensions, including the usage of unstructured meshes. Complex hyperbolic
PDE systems like themagnetohydrodynamics equations (MHD) or theGPRunifiedmodel for
continuummechanics [53] are also planned to be investigated. Finally, a space-time predictor
strategy along the line of [11, 28] might also be useful to overcome the Cauchy-Kovalevskaya
procedure, thus constituting another potential future topic of research.
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A Appendix: IMEX Schemes

The Butcher tableau (8) for the IMEX schemes used in this work are reported hereafter. They
have been derived in [50, 51] and each IMEX scheme is described with a triplet (s, s̃, p)
which characterizes the number s of stages of the implicit method, the number s̃ of stages
of the explicit method and the order p of the resulting scheme. The acronym SA stands for
Stiffly Accurate, which is a crucial feature in the stiff limit of the governing PDE in order
to be consistent with the limit model at the discrete level [9, 26]. Strong Stability Preserving
(SSP) methods are preferred when dealing with shock waves and other discontinuities.

– SP(1,1,1)
0 0
1

1 1
1

(113)

– SA SSP(3,3,2)
0 0 0 0
1/2 1/2 0 0
1 1/2 1/2 0

1/3 1/3 1/3

1/4 1/4 0 0
1/4 0 1/4 0
1 1/3 1/3 1/3

1/3 1/3 1/3

(114)

– SSP3(4,3,3)

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
1/2 0 1/4 1/4 0

0 1/6 1/6 2/3

α α 0 0 0
0 −α α 0 0
1 0 1 − α α 0
1/2 δ η 1/2 − δ − η − α α

0 1/6 1/6 2/3

(115)

α = 0.241694, δ = 0.060424, η = 0.129153

The first order scheme (113) corresponds to the implicit Euler method and is stiffly accurate
and stability preserving. Both properties are also exhibited by the second order scheme (114),
while the third order IMEX RK method (115) is not stiffly accurate.
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