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On the Construction of Gaussian Quadrature
Rules from Modified Moments *

By Walter Gautschi

Abstract. Given a weight function a>(x) on (a, ß), and a system of polynomials {p*(x)}"=oi
with degree pk{x) = k, we consider the problem of constructing Gaussian quadrature rules
fff(x)w(x)dx = Yf= i V/ift"') from "modified moments" vk = ^pk(x)w(x)dx. Classical
procedures take pk{x) = xk, but suffer from progressive ill-conditioning as n increases. A
more recent procedure, due to Sack and Donovan, takes for \pk(x)} a system of (classical)
orthogonal polynomials. The problem is then remarkably well-conditioned, at least for
finite intervals [a, /?]. In support of this observation, we obtain upper bounds for the respec-
tive asymptotic condition number. In special cases, these bounds grow like a fixed power of
n. We also derive an algorithm for solving the problem considered, which generalizes one
due to Golub and Welsch. Finally, some numerical examples are presented.

1. Introduction. Let co(x) be a weight function on the (finite or infinite) interval
(a, ß), i.e., measurable and nonnegative on (a, ß), with all moments

(1.1) fh xkcoix) dx,       k = 0,1, 2,

finite and u0 > 0. Given a set {pkix)}k = o of polynomials, with degree pk = k, we
call

(1.2) pk(x)ao(x) dx,       k = 0, 1, 2,...

the modified moment s of co. Clearly, vk = uk, if pk(x) = xk.
A Gaussian quadrature rule associated with the weight function co is a functional

(1.3) GJ = I XYmYl

which has the property that

(1.4) GJ = fix)a>ix)dx,    all/eP2„_

where P2„-i is the class of polynomials of degree :£ In — 1. As is well known, G„
exists uniquely for each n = 1, 2, 3,_In fact, the abscissas QY are the zeros of 7t„(x),
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246 WALTER GAUTSCHI

(1.5) *„tön,) = 0,       r=l,2,...,n,

where {nkix)}k=0 is the system of orthonormal polynomials belonging to the weight
function co,

= 0    r ^ s,
7Tr(x)7Ts(x)<y(x) dx = <5rs

' = 1    r = s.
(1.6) degree nk = k,

The weights A'n), too, can be expressed in terms of these polynomials, e.g., by

(1-7) 4n) = (Ï W£n))]2)   l,       r=l,2,...,n,

showing that Xrn) > 0.
The problem we want to consider is the computation of the functional G„ (i.e., the

computation of the abscissas cfY and weights Xrn)), given the modified moments vt.
In view of (1.5), (1.7), the problem may be considered as solved, once the orthonormal
polynomials {nk} have been obtained accurately.

We note, incidentally, that these polynomials are also useful for the construction
of rules

(i-3)~ Gj = !<;>/(£) + ¿ #•>/(?<">),
r=2

where £ is an arbitrary real number with 7i„_ ̂ Ç) ^ 0, and

(l-4)~ GJ =      fix)wix)dx,   all/eP2n_2.
Ja

The abscissas ¿¡Y, r 2: 2, are then in fact the zeros (other than t¡) of

(L5)~ ^JY) = ^n-xi^nix) - n„ii)nn^xix),

while the weights l¡.n), r = 1, 2,..., n, are still given by the expression on the right
of (1.7), if #•> is replaced by %rn) and If = t\ [2, Sections 1.3-4].

The problem stated, in the special case p4(x) = xk, is classical, and a number of
methods are known for its solution. However, the problem becomes increasingly ill-
conditioned as n increases, as we have shown in [6]. In order to obtain high-order
Gaussian quadrature rules in this manner, it is therefore necessary to resort to
multiple-precision computations. Alternatively, more elaborate procedures may be
used, such as the one in [6], which do not rely on the moments fik.

The general problem was considered recently by Sack and Donovan [12], in the
case of polynomials {pk} satisfying a recurrence relation

(1.8)    xPj(x) = ajPj+ xix) + bjPj(x) + CjPj.,(x),      j = 0, 1, 2,... ;       p_ t(x) = 0,

with known coefficients a¿ / 0, bj,Cj.lî{pk} sire themselves orthogonal polynomials
(e.g., Legendre polynomials, or Chebyshev polynomials of the first and second kind),
and (a, ß) is a finite interval, the results reported in [12] suggest that the problem is
now remarkably well-conditioned. This new approach is therefore a useful alternative
to the procedures mentioned above, in cases where the modified moments are accu-
rately computable.
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THE CONSTRUCTION OF GAUSSIAN QUADRATURE RULES 247

It seems worthwhile, therefore, to investigate the condition of the general problem
in the case of polynomials {pk} which are orthogonal with respect to some other
weight function w(x) on the interval (a, b) [not necessarily equal to (a, /?)],

(1.9) degree pk = k, pr(x)ps(x)w(x) dx = 0       (r # s).
Ja

Such polynomials always satisfy a recurrence relation of the form (1.8). In Section 2
we obtain upper bounds for the condition number of this problem, relative to both
finite and infinite intervals (a, b). Asymptotic estimates of the condition number are
given in Section 3 for certain classical weight functions on the interval [—1, 1].
Rather strikingly, these estimates grow only like a fixed power of n. The condition
is less favorable, in general, if the interval (a, ß) is infinite. In Section 4 we then derive
an algorithm for solving the problem under study. The algorithm reduces to one
given by Golub and Welsch [8] for the case pk(x) = xk and is similar (although not
identical) to the algorithm of Sack and Donovan [12]. Some numerical examples are
presented in Section 5. In particular, we obtain Gaussian quadrature rules G„ for
n = 1(1)8, 16, 32, relative to the weight functions

1 (.      cos       \
co(x) = -   1 +   .    mux   ,       m = 1(1)12,

2 \        sin )

on [— 1,1]. Tables of the respective Gaussian abscissas and weights may be found on
the microfiche card attached to this issue.

2. Condition of the Problem. In studying the condition of our problem, it is con-
venient to consider normalized modified moments as defined by

(2.1) \ = Km

where

(2.2)

pkix)a>ix) dx,       k = 0, 1, 2,...,

■b
2Pk(x)w(x) dx.

The normalized moments vt are invariant under different normalizations of the
orthogonal polynomials {pk}.

The problem stated in Section 1 is then equivalent to solving the system of In
(nonlinear) algebraic equations

(2.3) K l>2 ¿ YPÁQ = vk,       k = 0, 1, 2,..., 2n - 1,
r = 1

for the unknowns XrYr- We can write these equations in vector form,

(2.4) Fiy) = v,

by letting   yT = [Al5  ..., Xn,  £,,  ...,  £„],   vr = [v0,   v,,  ...,   v2r,_,],   FT =
[F0,Fi,...,F2n_x], and

(2.5) Fkiy) = K m t KPÁU       k = 0, 1,..., In - 1.
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248 WALTER GAUTSCHI

In conformity with (1.3), we denote the solution of (2.4) by

(2.6) yl = [/<"\ ..., /<">, £<">,..., £„">]•
Given a vector norm || • ||, and an associated matrix norm, we may define, as in

[6], a (relative) asymptotic condition number k„ for the problem (2.4), viz.

(2.7)
\y0\

Il^o)]"1«.

where Fyiy) denotes the Jacobian matrix of F(y). An elementary computation shows
that

(2.8)
where

FJy0) = HZA,

(2.9)   H = diag(/iö1/2, K x,\ ..., KYM       A = diag(l,..., 1, Xlt..., A„)

are diagonal matrices, and

(2.10)

Potét)
Pité.)

Poté«)     PÓtéi)
Pité.)      P'itéi)

Poté»)
Pité»)

J>2»-ltél) •■■ P2»-lté»)      Pán-ltél) ■■■ P2»-lté»)„

(For simplicity, we have written tr for {J."*, and Xr for A¡.B) in (2.9), (2.10).) Therefore,

(2.11) K„  ^
IIJ'O

A i II !!■=■- i tr- iZ~lH

For the following, it turns out to be convenient to work with the L,-norm

(2.12) Z b*l.    yT = bo.yi,---,^»-!]-
k = 0

Theorem 2.1. Lef [a, b] fee a finite interval. With {/A(x)}" =, denoting the Lagrange
interpolation polynomials associated with the abscissas fY{rn)}"= x >

(2.13)

?el

(2.14)

(2.15)

Lef, furthermore,

(2.16)

(2.17)

L„ = X  Ía(x)w(x)í/x,
a   A = 1

an =   max  |/1(,^>)|.
1 <X<n

M„ =  max |p„(x)|,        h„ =
a<x<b

pj,(x)w(x) dx,

max   cll<?A — x| : a = x — b, X = 1,2,..., n).
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Then, using the Lrnorm (2.12) in (2.7), we have

(2.18) k-„ g kYk^Y,

where

(2.191) k<Y = max(l, 1/min A<">)[1 + (lan + 1) A„]/[Mo +  ¿ |£»>|) ,

(2.192) kY =     max     (Ay/i¿/2),
0Síl£2n- 1

(2.193) KÍ>3> = LB||v||1.

Remarks. 1. The quantity kJ,1' depends only on the weight function co(x), the quan-
tity k[2) only on w(x), while k{„3) depends on both co(x) and w(x).

2. Normally, [a, /?] = [a, b], in which case A„ — b — a.
Proof of Theorem 2.1. The key issue in the proof is a bound on the norm of E "1H ~ '.

We first determine H~ ' explicitly.
Let

(2.20)
(2.21)

Pxix) = /2(x)[l - mY)ix - &">)],

e,(x) = /f(x)(x - ¿Y)
denote the fundamental Hermite interpolation polynomials belonging to the abscissas
WY}. Let

(2.22)

Then, as in [4], one shows that

(2.23)

2»-l 2»-l

Pxix) =   £   aXllPlfx),       QÀix) =   X   °inPnix\
n=o M=o

A = K],        B = [fe J.

By the orthogonality of {pkix)}, one obtains from (2.22)

«*-fc
r* i r*fiWp^xMx) dx,       bAM = —      ßA(x)pM(x)w(x) dx,

or, in view of (2.20), (2.21),

(2.24)

where

(2.25)
and

(2-26)     «iM =

a¿M = ^ (a^ - 2*xn)ßxY       b^ =-j-ß^>

sY = m\n\

ñ(x)p¿x)wix) dx,       ßXfi = ljix)pJx)(x - ft"»Wx) dx.

We are now in a position to bound the norm of S    H  \ From (2.26), we have
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250 WALTER GAUTSCHI

n       f*6
(2.27) EW^X       lHx)\pllix)\wix)dx = MllLn,

X=l X=X Jo

(2.28)
i n      fb: i/y ̂  z
1 X=X Ja

»„Ml |x - ¿:<r>|w(x)dx g m,aA

Therefore, by (2.24),

Z K\ g ^ (1 + 2 AB<7B)LB,        Z I* J ^ ^ A„Ln.
¿=1 "u a=i "h

Consequently,

(2.29) ||S-1H-1\\x^[l + (2<7„ + 1) AB]LB     max     MJh'J2.
0guS2»-l

The theorem now follows from (2.11) and (2.29), by observing that

(2.30) llalli =  Z W + IÄ1) = Mo +  Z 10%
r=l r=X

and
(2.31) || A"* || x = max(l, 1/min AjB)).

The following theorem is not restricted to finite intervals [a, b].
Theorem 2.2. Let (a, b) be a finite or infinite interval. In addition to the notations of

Theorem 2.1, let

l!(x) w(x) dx,

(2.32)
^»,2 = [[i»-?; w(x) dx.

Then, using the Lx-norm (2.12) in (2.7), we have

(2.33) *„ ̂  fcj»

where

(2.34)

(2.35)

(1)     max(l, 1/min Ají0)
- = /io + sî-iier

kJ,2> = (LB1/2+(l + 2<7B)LB/22)||v||1.

Proo/. The proof is virtually the same as that for Theorem 2.1, except that the sums
in (2.27), (2.28) are estimated differently, using Schwarz's inequality:

x=x

'b      n

I
x=x

Z I« J ^        Z  l2xix)\p,ix)\wix) dx

Z £(*)
X=l

w(x) dx
1/2

ptix)wix)dx\>      =K'2Ll!l
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z i/y ̂ Z  /2(x)|x - i<T>||P(<(x)|w(x) dx

<

a   X= 1

b I

Z '¿Ml* - ,e(»)
»awi-* -

.X= 1
w(x)dx rp2(x)w(x)dxV/2 = h'J2L\{2.

Hence, as previously,

HS"1//-1 f. ^L„,'2 +(1 + 2o-n)L\%
and Theoiem 2.2 follows from (2.11), (2.30), and (2.31).

For infinite intervals (a, ß) the bounds in (2.18) and (2.33) are likely to be very large,
even for only moderately large n, on account of the smallness of min Ajn). Severe ill-
conditioning, in such cases, is therefore a potential hazard. Example (iii) of Section 5
illustrates this point.

3. Asymptotic Estimates of Condition Number. We illustrate Theorem 2.1 of the
previous section by considering some special (classical) weight functions. We use the
notation

an ~ b„    as    n -* oo

to express the fact that |a„/b„| remains between positive bounds not depending on n,
as n —> oo.

Theorem 3.1. Let [a, b] = [a, 0] = [- 1, 1].
(a) // üj(x) = (1 - x2f, -\ ^ a = 0, fhen kJ,1» = &», where k(1) ~ n2"+3 as

n —► oo.
(b) //• w(x) = (1 - x)a(l + x)", a > -1, ß > -1, fhen, as n -> oo, k„2) ~

n«+i/2 jy a 2> —i, a/j¿ Y2) ~ 1 if q < — 2, where q = max(a, p1).
(c) If co(x) = w(x), fhen k„3) = ¿u3/2.
(d) // co(x) = (1 - x2f, -1 < a ^ 0, and w(x) = (1 - x2f, ß = -\, then

k-„3) ̂  /c„3), where,as n - oo, k„31 ~ n" + 3/2 i/a / 0, and /c„3) ~ n" + 7/2 if at = 0.**

Proof, (a) The polynomials 7tk(x), in this case, are the ultraspherical polynomials
Y'Y^ix), properly normalized. We assume the zeros £, = SfY of P¡¡"'°°(x) numbered in
decreasing order,

(3.1) 1 > {, > i2 > - > ¿J„>  -1.

They are symmetrically distributed with respect to the origin, i.e., £r = — ¿¡„+l_r.
It is known [14, p. 121] that for | a | = j,

(3.2) Cos(r-^\s¿rScos(r-lM,       r = 1, 2,..., [n/2].

From this one obtains by an elementary computation

cot —--i < y iíj < —l—.
2(n +1) - r=¡ '   ' - sin(?r/2n)

It follows that Z"= i \ir\ ~ n> ar>d therefore

**The result in the case a = 0 could be sharpened to read k¡,31 ~ n" + 5/2ln2n. See footnote ***.
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252 WALTER GAUTSCHI

»
(3.3) p0 +  Z |£r| ~ n    as n -* oo.

r= 1

For the corresponding Christoffel numbers AJ"' we have [14, p. 350] min Ajn) =
A'"', whenever a = — \. (Note that for a = -\ all Ajn) are equal to n/n.) Moreover
[14, p. 350], A?> ~ n'2"-2. Therefore,

(3.4) max(l, 1/min Ajn)) ~ n2x+2    as n -> oo.

In order to estimate a„ in (2.15), we recall (see, e.g., [11, p. 63]) that for a g 0,

(3.5) vxix) > | a |    on - 1 = x ^ 1,

where

vkix) = 1 - 2l'Mx)ix - ZÙ
We distinguish two cases, depending on whether l'xi£x) = 0 or l'xi£x) < 0. In the
first case we let x = 1 in (3.5), and obtain

Using (3.1) and (3.2), we get

\ri£ )\ < 1 ~H <_* ~l«l      =   1 ~1MI
\'x^x)\      2(1 _ ¿j = 2^ _ cos(7t/2n))      4 sin2(7:/4n) '

In the second case we let x = — 1 in (3.5) and obtain by a similar reasoning

ua < ifM * 4r^4\ *2(1 + ^) = 2(1 + £„) = 4 sin2(7r/4n) '

Thus, in either case,

l — lot!Mx)\ < 4 sin2(7t/4n) '

and it follows that

(3.6) o-„ = max \l'x(ix)\ = ön,       ä„
x

Combining (3.3), (3.4), and (3.6) gives the desired result.
(b) With p^(x) = Pj,a,w(x), and q = max(a, ß), we have for the quantity M^ in

(2.16) [14, p. 166]

,1   1A H„ P(P    +    i    +     1) . „ -f ^ 1
(3"7) M« = n* + DriP- + i) ~ *  lîq-~~2'

and

(3.8) M„~ p"1/2    if a < -i

Since
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r(p + a + i)r(p + ß + i)
(2p + a + ß + l)r(p + l)r(p + a + ß + 1)

1/2
~p-1/2,

the assertion follows.
(c) Since co(x) = w(x), we have L„ = p0 (see, e.g., [11, p. 52]), and v0 = Y Ho,

vk = 0 for k > 0, giving k„3) = p3/2 as asserted.
(d) In the ultraspherical case coix) = (1 — x2)*, — 1 < a = 0, it is known that

[14, Problems 58, 60]

¿iftóáA       (-Ka<0), Z ft*)gf    2/,  Jn   ^       (a = 0)'a=i | « | x=i tan2(37r/4(2n + 1))

uniformly on [- 1, 1]. Therefore,

K =w0/|a| (-1 < a < 0),

(3.10) Ln^Ln,

L" = Wo/tan2 4(27Tlj     (a = °X

where m0 = fî_, wix) dx. In particular***,

L.-l (-1 < a < 0),
(3.11) r   •    2       ,       mL„ ~ n2       (a = 0).

From (3.7), (3.9) (with a = ß = q) one finds by a simple computation that MJh\12
is an increasing function of k, if ß > - \, and constant (for k > 0) equal to 2/^/n,
if jß = — j. Therefore,

llvlli =   "l   |vj = Ho      Z   Mk/hl'2 Í p02nM2n_1/h2n2_1,
lc = 0 k=0

and using the asymptotic estimates in (3.7) and (3.9),

(3.12) Mi£Nu,       A/, ~ n" + 3'2.
The desired result now follows from (3.10)—(3.12). Theorem 3.1 is proved.

As an example, suppose we generate the Gaussian rule G„ associated with the
ultraspherical weight function (1 - x2f, — j ^ a ^ 0, using as {pk} the ultraspheri-
cal polynomials with parameter ß, — \ ^ ß ig 0. Then Theorem 3.1, together with
(2.18), tells us that the associated condition number k„ satisfies k„ — ic„, where,
as n -* oo,

Kn ~ n2(a+^)+5    if a # Oanda / ß,

Kn~n2ß + 1 if a = OandjS * 0,

ic„~n3" + 7/2       if a = y?.

***In the case a = 0, the sharper estimate L„ g L*, L* ~ n ln2n could be obtained by using an
estimate for £"-i l'i(x)|> due t0 G- 1- Natanson [10], in conjunction with the inequality £" = i /j(x) g
CB-i I'aWI)2-
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Theorem 3.1, and the example just given, are presented here for the sole purpose of
illustrating the magnitude of the condition number for the problem considered. It is
not suggested that for such classical weight functions Gaussian quadrature rules be
constructed from modified moments, since the respective orthogonal polynomials
are explicitly known.

In practice, <w(x) being given, we have no control over (cj,1'. However, we may
influence the magnitude of k{2\ and to some extent that of fcn3), by an appropriate
choice of the polynomials {pk}. In this connection, part (b) of Theorem 3.1 suggests
the Chebyshev polynomials of the first kind, pk(x) = Tk(x), as both convenient and
well-conditioned. With this choice, in fact, k„2) = (2/tt)1/2.

4. An Algorithm for Generating Orthonormai Polynomials. We now derive an al-
gorithm for generating the orthonormal polynomials {7tk(x)}" = 0 of (1.6), given a set
of polynomials (pt(x)} (orthogonal or not), satisfying the recurrence relation

xpj(x)>i= ajpj+ xix) + bjPjix) + CjPj- ,(x),       j = 0, 1, 2,... ;

(4.1) P-!(x) = 0,   aj /0,
and given the associated modified moments {vt}2" 0 of (1.2). Our aim is toward deter-
mining the coefficients tt}, ßj (/ = 0, 1, 2,..., n - 1) in the recurrence relation

(4.2) X7i,-(x) = a,7tj+1(x) + ßjTijix) + oij.^j^xix),   j = 0,1,2,... ;    n_1ix) = 0.

We denote by

(/, 9) =      fix)gix)coix) dx

the inner product with respect to which the nkix) are orthonormal. Let M = [m0] be
the Gram matrix of order n + 1, i.e.,

(4.3) mtj = (p;, p.)       (¿, j = 0, 1,..., n).
Clearly, M is positive-definite. Let

(4.4) M = RTR,       R = [ru]
be the Cholesky decomposition of M, and

(4.5) S = R-\       S = [SiJ].
Both R and S are upper triangular matrices with positive diagonal elements. By an
observation of Mysovskih [9],

(4.6) Tijix) = sOjp0(x) + sljPlix) + ■•• + SjjPjix),       j = 0, 1,..., n.

Substituting (4.6) into (4.2), we can write

*l>ojPo + ••• + sJ_ljPj_l + SjjPj]

= ^Ooj+iPo + ••• + Sjj+lpj + sJ+1J+lPj+1] + ßj[s0jp0 + ••■ + sJjPj]

+ aj-iisoj-xPo + ■■■ + S/-i,./-iP/-i].
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Each term on the left, in view of (4.1), can be expressed as a linear combination of
p's. Having done this, coefficients of equal p's must agree on both sides, because of
the linear independence of the system {pk(x)}. In particular, comparing the coefficients
of pj+, and pj, one gets

sjJaj = aA+i,j+i'       sjjbj + sj-i,jaj-i = "Aj+i + Pjsjj,

from which

«; =7^%-       fij = bj - j^-aj + ^aj.x-

Since

Sjj = —        H = 0, 1,..., n),
rJj

JJ+l (7 = 0, l,...,n- 1),
rjfj+Uj+i

one finally obtains

(4.7) ./ = 0, 1,..., n - 1.

ßj-bj + '-lf+aj-^-aj-x,rjj rj-ij-i

For / = 0, r_j 0 is to be interpreted as zero, and f-i,-. as an arbitrary nonzero
number.

We note that the formulas (4.7) reduce to those of Golub and Welsch [8], if a} = 1,
bj = Cj = 0, i.e., pifx) = xk. Also, of course, M = R = I, and thus a, = aJ7
ßj = bj, if pkix) = nkix).

Once the Gram matrix M is known, the desired coefficients a,, /?; can thus be ob-
tained from (4.7) by a Cholesky decomposition of M.

The Gram matrix M, on the other hand, can be built up from the modified mo-
ments Vj in the following manner. Applying the recursion (4.1) twice, one has

u = iPi,Pj) = y¿—¡ttx - bi-i)Pi-i - c¡-iP¡-2j\P;j

í(xPi-x,Pj) - &,-i(P¡-i,P¿) - ci-iipi_2,pj)~]a,-i

1
iiPi-x, xpj) - b¡_ xiPi- x, Pj) - Ci- ,(p¡_2, pj)]a¡-i

= -— ÍCjiPi- x, Pj+ x) + bjip¡- x, Pj) + CjiPi-1, Pj- x) - b,- xiPi-i, Pj)ai- 1

-   C¡-l(P¡-25Pj)].

that is,
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(4.8)   mu =-[a/Ht-u+i + (bj - ^-ifo-u + cfnt.lJ.1 - ci-lmi-2,ï\-
ai- 1

(./ = 0, 1,..., 2n),
Since
(4.9) m_1J = 0,       m0j = p0Vj

we have in (4.8) a recursive scheme to progressively build up the matrix M, using (4.9)
as initial values.

The involvement of v2„ in (4.9) may appear puzzling at first, the Gaussian rule G„
being determined uniquely by the first 2n modified moments Vj,j = 0,1,2,..., 2n - 1.
Actually, the role of v2„ is just that of normalizing 7i„(x), and its value affects neither
£"> nor AJ">, in view of (1.5), (1.7).

The algorithm presented here does not compare favorably with the algorithm of
Sack and Donovan [12] in terms of speed and storage requirements. Our derivation,
however, appears to us more transparent than the derivation given in [12].

5. Numerical Examples. All computations described in this section were carried
out on the CDC 6500 computer in single precision arithmetic.

(i) We repeat and extend some of the experiments reported by Sack and Donovan
[12]. For pt(x) we choose in turn x\ (1 + x)\ Pk(x), Tt(x), Ukix), where Pk, Tk, Uk
denote, respectively, the Legendre polynomial, and the Chebyshev polynomials of
the first and second kind. We apply the algorithm of Section 4 to produce the coeffi-
cients ar, ßr, r = 0, 1, ..., n — 1, in the recurrence relation for the normalized
Legendre and Chebyshev polynomials, making use of the appropriate modified mo-
ments shown in Table 1. (Notations: (2n)!! = 2-4---(2n), (2n + 1)!! = 1 • 3• 5 •••
(2n + 1), 0!! = (-1)!! = 1, (-3)!! = -1.)

Table 1. Modified moments

°ÁX)
Pk(x)

(1-xT (1-x2)1

xk k even
/codd

(A+xf
Pk(x)       k even

/codd
Tk(x)      k even       - 2/((/c + lXfc - 1))

2/(k+l)
0

2k+1/(k+l)

Uk(x)
/codd
k even
/codd

0
2/(k+l)

0

(fc-l)Ü7t//cü
0

2*(2/c-l)!!7t/(2/c)!!
(fc!)V(/c!!)4

0

n
0

(/c-l)Ü7t/(/c + 2)!!
0

(2k+l)Ü7c/(fc + 2)!
-(/c-l)!!(/c-3)ÜJt/(/c!!(/c + 2)!!)

0
7t/2   (k = 0)

-7t/4   (/c = 2)
0 (otherwise)

For the first two choices of pk(x), as is to be expected, the Gram matrix M becomes
increasingly ill-conditioned with n increasing, and the Cholesky decomposition of AÍ
eventually breaks down on taking the square root of a negative number. Prior to this,
the errors in ar and ßr steadily increase, except for ßr in the first case \pk(x) = xk],
where the algorithm consistently returns the correct value ßr =- 0. Sample values of
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errors are shown in Table 2 for the case co(x) = 1. The Cholesky decomposition, in
this case, fails at n = 23 and n = 12, respectively. The situation is very similar for
the other two weight functions.

Table 2. Errors in the recursion coefficients for normalized
Legendre polynomials.

Pkix) pk(x) = (1 + x)

error in cer error in a. error in ßr

r =   5
10
15
20
25

1.9 x 10"12
5.3 x 10"9
1.9 x 10-5
2.5 x 10"2

1.8 x 10~8
2.3 x 10"2

1.1 x 10-8
1.0 x IQ"x

No problems of any kind are encountered for the remaining three choices of pkix),
even going with n as high as 100. The coefficients ar, ßr are obtained essentially to
machine accuracy, the largest error observed being 7.1 x 10"14.

(ii) Weight functions of interest in Fourier analysis are co(x) = cm(x), and a>(x) =
sm(x), where

(5.1)
cmix) = ïté + cos mux),
sjx) = jii + sin mux),

1 g x g 1;   m = 0, 1, 2,....

Writing Fourier coefficients in the form [15]

(5.2)
lit

J
2ti

/(x)cos mx dx =

/(x)sin mx dx =

/(7rx)cm(x) dx

/(7rx)sm(x) dx

/(7tx)s0(x) dx,

f(7ix)s0(x) dx,

m 1, 2, 3,...,

the first integrals on the right may be calculated by an appropriately weighted Gauss-
ian quadrature rule, and the second integrals by classical Gaussian quadrature. To
the best of our knowledge, no extensive tables exist for Gaussian rules G„ associated
with the weight functions (5.1). Admittedly, their usefulness is somewhat limited,
because the set of points at which / must be evaluated differs from one Fourier co-
efficient to another.

Our algorithm of Section 4 may be used to generate the required orthonormal
polynomials. It is convenient to use it with pk(x) = Pt(x), since the modified moments
can then be expressed in terms of spherical Bessel functions. In fact, using [1, p. 122]
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T   eim«*Pkix)dx = ik(ß\mjk+xl2imn),

we obtain in the cosine-case

(5.3)     v0 = 1,   v2k = i-^J2t+1/2(mjt)   (k > 0),   v2k+1 = 0   (fc è 0),

and in the sine-case

(5.4)     v0 = 1,    v2Jt_, = v~^1/2  Jik-xnimn)   (/c > 0),    v2l = 0   (k > 0).(-1)'+1
(2m)

To compute the Bessel functions in (5.3), (5.4), we use the procedure Japlusrf of
[5], and the Gaussian abscissas and weights have been obtained using the relevant
portions (both sequential and nonsequential) of Algorithm 331 [7]. The results are
checked by having the quadrature rules regenerate the modified moments.

Table 3 of the microfiche section gives 12D values of ¿¡J"', n¡fY, X(Y f°r the Gaussian
rule (1.3) associated with co(x) = cm(x), for n = 1(1)8, 16, 32, m = 1(1)12. (Because
of symmetry, only the nonnegative abscissas and corresponding weights are listed.)
Table 4 contains the analogous information for a>(x) = sm(x), m = 0(1)12.

(iii) To give an example for an infinite interval, we consider the "one-sided"
Gauss-Hermite quadrature rules (1.3) corresponding to co(x) = e~*2 on [0, oo).
Tables for such rules were recently published in [13], [3]. It seems natural, in this
case, to choose pt(x) = Hkix), the Hermite polynomials orthogonal with respect to
a»(x) on ( — oo, oo). Then clearly,

(5.5) v0 = Jn/2,       v2k = 0       (fc> 0).

To compute v2k+l, we start from the explicit representation

Multiplying both sides by e~xl, and integrating between 0 and oo, we obtain, in
view of I? e~x2x2k+1-2r dx = Uk - r)\,

v2*+i e xH2k+xix)dx =  X (-1)        -       h)TT2      (k
o r=o \    2r    ) 2'r\

or, after simplification,

(5.6) v2k+1 =  Z s(rk),       s<k» = 2"(-ir   ft   (20     II     (2i + l).
r = 0 i = r+ 1 i=k-r+l

Each s{Y being an integer, the sum in (5.6) can be evaluated in integer arithmetic
without loss of accuracy, as long as no overflow occurs. Even so, however, it is found
that the Gauss abscissas and weights obtained by our algorithm gradually deteriorate

tThis procedure calls the gamma function T(l + a). Since a = 1/2 in our application, we have replaced
"gamma(l + a)" by its numerical value Jn/2 = .88622692545276 in the procedure body.
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in accuracy. For n = 6, for example, only 9-11 correct significant digits are obtained,
while for n = 12 only the first 2-4 significant digits are correct. It is believed that
this deterioration of accuracy is a reflection of the progressive ill-conditioning of
our problem. The quantity min Ajn), in fact, is about 9.8 x 10"5 for n = 6, and
1.2 x 10"10 for n = 12, resulting in a value of fcj,1» in (2.34) of the order 104 and
1010, respectively.

Note Added in Proof. A substantially greater loss of accuracy is observed in
Example (iii) if for pkix) one chooses the Laguerre polynomials Lkix) instead of the
Hermite polynomials Hkix). It is found that the Cholesky decomposition (4.4), in
this case, breaks down for n = 7, and the final results for n = 6 are correct to only
3 decimal digits (using single precision arithmetic on the CDC 6500).

It is instructive to compare the condition number Kn for these two choices of the
polynomials Plfx) on the basis of Theorem 2.2. The constant /cj,1' in (2.34) being the
same for both choices of Pk, it suffices to compare k(2) in (2.35). Using the Gauss
abscissas published in [3] to compute the Lagrange polynomials lx(x), the quantities
L„ ! and L„2 in (2.32) may be evaluated by 2n-point Hermite quadrature (if Pk = Hk)
and by 2n-point Gauss-Laguerre quadrature (if Pk = Lk). This will give Lnl exactly
(apart from rounding errors), and Ln2 sit least approximately. For n = 6, one obtains

LnA = 3.25 x 1010,       Ln>2 = 3.80 x 1011        (pt = Hk),

Lnil = 1.72 x 1019,       L„,2 = 8.42 x 1021        (p, = Lk).

Since || v ||, is of comparable magnitude in both cases (approximately .808 for Pk = Hk,
and 1.84 for Pk = Lk), one concludes that fcj2' has the order of magnitude 106 in the
case of Hermite polynomials, but the order of magnitude 1011 in the case of Laguerre
polynomials.
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