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1. Summary. It has been shown in {1] that all partially balanced incomplete
block (PBIB) designs with two associate classes, can be divided into a small
number of types according to the nature of the association relations among the
treatments. One simple and important type is the group divisible (GD). The
combinatorial properties of GD designs have been studied in [2] and the analysis
along with that for other types is given in [1]). Here we give methods of construct-
ing GD designs. These designs are likely to prove useful in agricultural, genetic
and industrial experiments.

2. Introduction. An incomplete block design with » treatments each replicated
r times in b blocks of size k is said to be group divisible (GD) if the treatments
can be divided into m groups, each with n treatments, so that the treatments
belonging to the same group occur together in A, blocks and treatments belong-
ing to different groups occur together in A\; blocks. If Ay = A, = X (say) then
every pair of treatments occurs together in A blocks and the design reduces to
the well known balanced incomplete block (BIB) design.

It has been shown in {2] that the parameters v, b, r, F, m, %, A and A, satisfy
the following relations and inequalities.

(2.0) v = mn, bk = vr
(2.1) M — 1) + An(m — 1) = r(k — 1)
(2.2) Q=r—nNn=0, P =7k — vy 20.

The GD designs were divided into three classes: (a) Singular GD designs charac-
terized by Q = 0, (b) Semi-regular GD designs characterized by ¢ > 0, P = 0,
(e) Regular GD designs characterized by @ > 0, P > 0. The combinatorial
properties of each class were separately studied. These will be referred to at
appropriate places so far as they are relevant to the problem of construction of
GD designs, which is the main concern of this paper. We shall confine ourselves
to the practically useful range v = 10, r < 10, & < 10, and choose A and A,
not to exceed:3, except for a few singular and semi-regular designs of special
interest.

As noted in [1] GD designs besides being a sub-class of PBIB designs [3], [4]
with two associate classes, can also be regarded as a sub-class of inter- and intra-
group balanced incomplete block (IIGBI) designs [5].
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3. Some types of balanced incomplete block (BIB) designs.

(a) The construction of GD designs can in many instances be made to depend
on known solutions for BIB designs {6], [7], [8], [9]. We shall here bring together
certain results with a view to subsequent use. The parameters of a BIB design
will be denoted by a starred letter in order to distinguish them from the parame-
ters of GD designs. Thus the number of treatments will be denoted by v*, the
number of blocks by b*, the number of replications -of each treatment by r*,
the number of treatments in each block by k*, and the number of times any two
treatments occur together in a block by A*. The design is said to be resolvable
[10] if the blocks can be grouped in such a way that each group contains a com-
plete replication.

(b) The simplest type of BIB design is the unreduced type with & = 2, the
blocks of which are obtained by taking all possible pairs of ¢ treatments. The
parameters are

(3.0) v*=1, b* = i(t — 1)/2, ™ =t-1, k* =2, =1

We shall later use the fact that when ¢ is even, the solution can be expressed
in a resolvable form. For example, if ¢ = 6, then we can write the 15 blocks as

(L4), ©3), (0 =)
@0, G4, (1,x)
@3.1) G, 40, (2 )
(47 2), (0, 1)7 (3, w)
0,3, (1,2), (4 =)

where the treatments are 0, 1, 2, 3, 4 and «, and the three blocks in any par-
ticular row of (3.1) give a complete replication. In the general case when ¢ =
2u the solution can be generated by developing the initial blocks

(32) (1,2?1, - 2)7(2) 2u — 3)7 Tty (u -1, u))(oy °°) mod (2u - 1)!

the treatment « remaining unchanged. The designs (3.0) will be referred to as
belonging to series (u).

(c) BIB designs with parameters
(3.3) =5 bW =54s rr=s+1 kt=s N\N=1

may be said to belong to the orthogonal series 1 (0S1). They are also called
balanced lattices [11], and can be obtained from a complete set of orthogonal
Latin squares [6], [7]. They can, however, be more readily obtained by using
certain difference sets {12] due to one of the authors, which have been given in
Table I, and whose use is explained below. X

For example let s = 4. If we develop the difference set for s = 4, mod (s —1),
we get fifteen blocks of the BIB design

+(3.35) v* = 16, b* = 20, r™* =5, k* = 4, A =1
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They are given by the columns of the scheme

1 2 3 456 7 8 9 10 11 12 13 14 O
3 4 56 7 8 910 11 12 13 14 0 1 2
4 5 6 7 8 9 1011 12 13 14 0 1 2 3
12 13 14 0 1 2 3 4 5 6 7 8 9 10 11

The remaining blocks are obtained by starting with the block 0, s + 1, 2(s 4+ 1),
© and deriving other blocks by adding 1, 2, --- , s to the treatments of this
block, remembering that « is invariant under addition. Thus 5 other blocks are
given by the columns of the scheme

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14

©® o o o 00,

3.4)

(3.45)

TABLE [
Difference sets for generating BIB designs belonging to the orthogonal series 0S 1

s I Difference set Modulus
2 1, 2 mod (3)

3 1, 6, 7 mod (8)

4 1, 3, 4, 12 mod (15)
5 1, 3, 16, 17, 20 mod (24)
7 1, 2, 5 11, 31, 36, 38 mod (48)
8 1, 6, 8, 14, 38, 48, 49, 52 mod (63)
9 1, 13, 35, 48, 49, 66, 72, T4, 77 mod (80)

The design is resolvable, the ¢th replication being obtained by taking the ith
blogk from (3.45), and the sth and every succeeding (s + 1)st block from (3.4).
We may thus rearrange the twenty blocks and get the design in the form, where
the replications are separated by vertical lines,

1611 0’27121 3 813 214 914 3’51004
(3.5) 3813 5| 4 914 6 510 0 7611 1 8,712 2 9
) 491410\510 011 611 112,712 213 813 3 14
122 7 0 (13 3 8 ©» |14 4 9 o [0 510 © |1 6 11 .

(d) BIB designs with parameters
(3.6) Y =b*=54+s+1, r=k=s+1 A=1

may be said to belong to the orthogonal series 2 (0S 2). The solution for any
design of 08 2 can be obtained from the corresponding design of 0S 1 by taking
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s 4+ 1 new treatments, and by adding the ith new treatment to each block of the
tth replication, and finally adding a new block containing all the new treatments.
A solution is, however, more readily obtained by using the following difference
sets due to Singer [13], which have been given in Table I1.

Thus the blocks for the BIB design

(3.65) v* = b* = 13, r* = k* = 4, A =1

obtained by using the difference set corresponding to s = 3, are given by the
columns of the scheme

0 1 2 3 456 7 8 9 10 11 12
3.7) 1 2 3 45 6 7 8 9 10 i1 12 0O
) 3 4 5 67 8 9 10 11 12 0 1 2
9 10 11 12 0 1 2 3 4 5 6 7 8.
TABLE I1
Difference sets for generating BIB designs belonging to the orthogonal series 0S 2
s ' Difference set Modulus
2 0, 1,3 mod (7)
3 0,13, 9 mod (13)
4 0, 1, 4, 14, 16 mod (21)
5 0, 1,3, 8 12,18 mod (31)
7 0, 1, 3, 13, 32, 36, 43, 52 mod (57)
8 0, 1,3, 7,15, 31, 36, 54, 63 mod (73)
9 0, 1,3, 9,27, 49, 56, 61, 77, 81 mod (91)
11 0, 1, 3, 12, 20, 34, 38, 81, 88, 94, 104, 109 mod (133)

(e) BIB designs which are resolvable or (and) for which X = 1 are especially
important for the construction of GD designs. We present in Table ITI designs
of the type for which 7* £ 11, and which do not belong to the series u, 0S8 1
or 0S 2 already considered. The reference to the series is in the notation used
in {8]. In each case the complete solution can be developed from certain initial
blocks.

Designs marked 4- are resolvable. For (2), (5) and (9) the initial blocks pro-
vide a complete replication. Hence, in developing, the replications remain sepa-
rate. For (6) the first seven blocks provide a complete replication and when
developed yield replications I-VII. Each of the other three initial blocks when
developed yields a complete replication. The solutions given here have been
taken or adapted from [8], [14] and [15]. In developing the initial blocks the
suffixes and « should be kept invariant. (For the use of binary symbols see
Section 6.) '
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TABLE III
BIB designs which are resolvable or (and) for which X\ = 1.

Serial Series

ol o Initial blocks Modulus

Parameters
b* [l 2 N «

@) T, 13 26 6 3 1 (1,39), (2,6,5) mod (13)

(2)+ Vil 15 35 731 (11721741)x (31’12’52); (61)22132)y mod (7)
(51,42;62)y (01,02,00)

3) Fy 25 50 8 4 1j (00,01,41,13), (00,32,21,02) mod (5, 5)

(4)/ T, 19 57 9 3 1 (1,7,11), (2,14,3), (4,9,6) mod (19)

BGY+ | F, 28 63 9 4 1] (01,,024,10.,20:), (211,121,§22,112), mod (3, 3)
(01,,02,,105,20;), (21,,12,,22,,115),
(0137023;101’201)1 (213:12312211111)7
(001 ,002,003, % )

@)+ | (T) |21 70 10 3 1f (01,0:,05), (11,21,41), (15,22,45), mod (7)
(12,23,41), (31,52,63), (82,55,61),
(33,51,62) ’Reps I—VII, (11,2;,42)
Rep VIII; (12,2:,45) Rep IX;
(1;,22,41) Rep X

) (Gy) |41 8 10 5 1| (1,37,16,18,10), (8,9,5,21,39) mod (41)

(8) (@) |45 99 11 5 1] (01,,02,,105,205,00.), mod (3, 3)
(211,12,22,,11;,00,),
(012,02,,10,,204,005),
(21,,12,,22,,11,,00:),
(01;,02,,105,205,00,),
(213;123,226,11 ﬁyml) L
(014,02,,10,,20,,005)
(214,12,,22,,11,,005),
(014,025,102,20,,00,),
(21;,12;,22,,11,,00,),
(001,002,00:;,004,005)

@+ | B | 8 14 7 4 3 (0,1,24), 3,56,=) mod (7)

4, Construction of singular GD designs. It has been shown in [2] that if in a
BIB design with parameters v*, b*, r*, k* A\* we replace each treatment by a
group of n treatments, we get a singular GD design with parameters

v = ¥ b = b¥ r o= r¥ k = nk*
m= 1)*, n=n, kl = T*, Az A*,

(4.0)

. Conversely, every singular GD design is obtainable in this way from a cor-
responding BIB design. The problem of constructing singular GD designs, there-
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fore, offers no difficulty. However, if r* and A* differ too much, then in the
derived GD design, the accuracy of the within group and between group com-
parisons will appreciably differ. We give in Table IV some cases of practical
interest.

A singular GD design may be considered to belong to the same series as the
corresponding BIB design. The series has been shown along with the serial
number in Table IV. It is clear that if a BIB design is resolvable the same is
true of a GD design derived from it. Resolvability has been denoted by +.

As an example consider design (11) of Table IV. The blocks of the correspond-
ing BIB design are given by (3.7). Replacing each treatment ¢ by two treatments

TABLE 1V

/
Parameters of some singular GD designs, and the corresponding BIB designs from
which they are derivable

Parameters of BIB Parameters of corresponding
Serial no. and series design singular GD design

U A S A v b r k m n M N
1) u+ 4 6 3 2 1 12 6 3 6 6 3 3 1
2) ut 4 6 3 21 6 6 3 8 6 4 3 1
3) u+ 4 6 3 2 1 20 6 3 10 6 5 3 1
(4) 082 7 73 31 14 7 3 6 7 2 31
5) 0S2 7 73 31 21 73 9 7 3 31
6) u 5 10 4 2 1 10 10 4 4 5 2 4 1
7)) u 5 10 4 2 1 15 10 4 6 5 3 4 1
8) u 5 10 4 2 1 20 10 4 8 5 4 4 1
9) 0S1+ 9 12 4 3 1 18 12 4 6 9 2 4 1
(10) 081 4 9 12 4 3 1 27 12 4 9 9 3 4 1
(11) 082 13 13 4 4 1 26 13 4 8 13 2 4 1

i, and 4;, we see that the blocks of the GD design under consideration, are
given by the columns of the scheme

01 11 21 31 41 51 61 71 81 91 101 1‘11 121
0, 1o 2 32 4, 5, 6, 7. 8 95 10, 1l, 12,
1, “2 31 4 5 6 71 8 9 101 1L 12, O
1, 22 3 45 5 6, 72 8 9 10, 11 12, 0.
3, 4 5 6 7 8 9 10, 11; 12, 0 L 2
3, 4 By 6y T 8 9 10 11 12, 0, 1o 2,
91 101 111 121 01 11 21 31 41 51 61 71 81
9, 10, 11, 12, 0, 1, 25 3. 42 52 6 7. 8.

(4.1)

. The treatments 4; and 4, belong to the same group (i = 0, 1, ---, 12). They
occur together in the same block four times. Two treatments not belonging to
the same group occur together in a block just once.
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5. Method of “omitting varieties” for the generation of GD designs. Consider
a BIB design with parameters

(5.0) v¥, b*, r¥ k*, X*=1.

A particular treatment 8 occurs in r blocks. The remaining v* — 1 = r*(k* — 1)
treatments can be divided into r* groups, each containing k* — 1 treatments,
two treatments belonging to the same group if they occur together in the same
block with 8. If we form a new design by omitting the treatment 6, and all the
blocks containing it, we evidently get a GD design with parameters

v* — 1, b = b* — r¥, r=7r*—1, k= k*,
™, n=kK —1, A= 0, A = 1.

THEOREM 1. By omitiing a particular treatment @ from a BIB design with param-
eters (5.0), we obtain a GD design with parameters (5.1). Two treatments belong to
the same group if they occur together in the same block as 6.

In particular, if we start with a BIB design belonging to the orthogonal
series 08 1, with parameters given by (3.3), we get a series of regular GD de-
signs with parameters

v
m

([

(6.1)

(52 v=b=g§~1, r=k=s m=s+1, n=s5—1, 4=0, =1

The method of obtaining the blocks of a design of 0S 1 using the difference
sets in Table I has already been explained. To get the corresponding design of
(5.2), it is convenient to omit the treatment o . Thus taking s = 4, the blocks of

the GD design

(5.3) v=>b=15, r=Fk=4, m = b, n =3, M= 1 =0
are given by the columns of the scheme (3.4), and the groups are given by the
columns of (3.45), if the last row containing only « is omitted.

The BIB designs (1)-(8) of Table III may also be employed to generate cor-
responding GD designs. For example the blocks of

(5.4) v* =13, b* = 26, r* = 6, k* = 3, AN=1
obtained by developing the initial blocks given in Table III are

1 23 4567 8 910111202345 6 7 8 910111201
(5.5) 3456789101112 0 126789101112 0 1 2 345
101112012 3 4 5 6 785678 9101112 0 1 234

Omitting the treatment 0, the blocks of the GD design

v=12, b=20, r=5 k=3,
(56) m = 6, n = 2, M= 0, =1
are given by the columns of the scheme
P 1 23 467 8 910122345 6 7 811121
(6.7) 3 45 6 89101112 16789101112 2 35
9101112 12 3 4 5 75678 91011 1 24,
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and the groups are given by the columns in

511 2 9 10 4
(5.8) 7 68 12 1 3.

We give in Table V parameters of BIB designs with A = 1, together with the
parameters of GD designs derivable from them by omitting a variety. Designs of
the orthogonal series 08 2, and the semi-regular GD designs derivable from them
have not been included, as the latter will be obtained in Section 7, as members
of a more general class.

TABLE V

Parameters of BIB designs with X\ = 1 not belonging to the series 0S 2 and GD
designs derivable from them by “omitting varieties”

Serial 110. and series Parameters of BIB design Parameters of GD design

AN S S A & v b Tk o m o n NN

(1) 081 16 20 5 4 1 15 15 4 4 5 3 01
(2) 081 25 30 6 5 1 24 24 55 6 4 01
3) 081 49 56 8 7 1 8 48 7 7 8 6 0 1
(4) 081 64 72 9 8 1 63 63 8 8 9 7 0 1
(3) 081 8 90 10 9 1 8 8 9 9 10 8 0 1
6) T, 13 26 6 3 1 12 20 5 3 6 2 0 1
(7) T, 15 36 7 3 1 I+ 28 6 3 7 2 01
8 F 25 50 8 4 1 24 42 7 4 8 3 0 1
9 T, 19 57 9 3 1 | 18 48 8 3 9 2 0 1
(10) F, 28 63 9 4 1 27 54 8 4 9 3 01
(11) 1, 21 70 10 3 1 20 60 9 3 10 2 01
(12) & 41 82 10 5 1 0 72 9 5 10 4 0 1
(13) G, 45 99 11 5 1 41 8 10 5 11 4 0 1

6. Method of differences for generating GD designs.

(a) The method of differences has been extensively used in [8] and [9] for the
construction of BIB designs. We shall here adapt it to the construction of GD
designs. Consider a module M with a finite number of elements. To each ele-
ment let there correspond h treatments, the treatments corresponding to the
element z being

(6.0) Ty, Loyt ,Tn.

Thus there are v = gh treatments. Treatments denoted by symbols with the same
lower suffix ¢ may be said to belong to the 7th class.

Let z and x(”) be two different treatments of the sth and jth classes respec-
tively, where x(“) and 2 are elements of M. Let
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6.1) 2™ -z = d, 2@ — z™ = —4d.

We then say that the pair of treatments z{* and z{” give rise to the difference

d of the type [4, j] and difference —d of the type [j, 7]. When ¢ = j the differences
are called “pure” and when i # j the differences are called “mixed”. The dif-
ferences d of the type [¢, j] and —d of type [, 7] are said to be “complementary”’
to one another. Thus every pair of treatments gives rise to a pair of comple-
mentary differences, one difference corresponding to each order of writing the
treatments. Clearly there are h different types of pure differences and h(h — 1)
different types of mixed differences. Since every nonzero element of M can appear
in a pure difference, and every element (zero or nonzero) in a mixed difference,
the total number of different possible differences is

(6.15) h(g — 1) + h(h — 1)g = v(v = 1)/g.
If #is an arbitrary element of M and
(6.2) £ =z% 40 2P =z+09,

then the pair of treatments z{® and z¥ give rise to the same pair of comple-
mentary differences as ™ and z. Since 6 can take g different values, we get
g pairs of treatments giving rise to differences d and —d of types [Z, j] and (7, 7]
respectively, and it is easy to see that there are no other treatment pairs which
give rise to the same differences. The »(v — 1)/2 treatment pairs thus give rise
to just v(» — 1)/g differences, which checks with (6.15).

Given an initial block B containing k treatments we can get g blocks by de-
veloping it in the following manner. Let 6 be any arbitrary element of 3. Then
we get a new block B, corresponding to 6 by replacing each treatment z; in
the initial block by z; where ¥’ = z + 6. By varying 6 we get all the g required
blocks. The initial block B gives rise to k(k — 1) differences namely, the dif-
ferences which arise from the k(k — 1)/2 pairs of treatments which can be formed
from the treatments in B. If any pair of treatments occurs in B, then all the ¢
pairs of treatments which give rise to the same differences as the given pair,
occur in the corresponding positions in the blocks developed from B.

(b) TuEOREM 2. Let M be a module with m elements and to each element of M let
there correspond n treatments. Let it be possible to find ¢ initial blocks

By, By, -+, B;

each containing k treatments, and an initial group G containing n treatments such
that

(i) the n(n — 1) differences arising from G are all different, and

(i) among the k(k — 1)t differences arising from the initial blocks each difference
occurs . times, except those which arise from G, each of which occurs \, times.

Then by developing the initial blocks B, B:, - - , B, we get the GD design

s with parameters » = mn, b = mi, r = kt/n, k, m, n, A, X, the group being

obtained by developing the initial group G.
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Proor. Two treatments belong to the same group if and only if the differ-
ences arising from them occur among those arising from @. By the conditions
of the theorem and what has been said before any such pair will occur among
the developed blocks A, times, and all other pairs will occur A; times. Also in the
developed blocks each treatment must occur in (n — 1)\, + n(m — 1)\, pairs.
But if this treatment occurs in r blocks then this number of pairs is also r(k — 1).
Hencde » must be the same for all treatments and is given by

(6.25) (n— M4 nim— 1D\ =rlk—1).

Again the total number of pairs in all the developed blocks is mk(k — 1)¢/2 and
this must equal mnr(k — 1)/2 since each treatment occurs in 7(k — 1) pairs.
Hence r = kt/n. This completes the proof.

In particular let M be the module of residue classes mod (m), and lét the
initial group G consist of treatments

(6.3) 01,05, ---,04.

Then to get a GD design with parameters v, b, r, k, m, n, A1, \; we have to find
¢ initial blocks such that among the k(k — 1)¢ differences arising from these
blocks each pure difference and each nonzero mixed difference arises just A, times,
and each zero mixed difference arises \; times. The designs (1)—(7) of Table VI
have been obtained by using this special case of Theorem 2. For example for
design (2) of Table VI, the complete set of blocks obtained by developing the
given initial blocks mod (7), are given by the columns of the scheme

21 31 4 5 6 0 11 25 32 4 5 62 0 1
02 12 22 32 4-2 52 62 01 11 21 31 4.1 51 61.

(6.4)

The groups obtained by developing the initial group are given by the columns
of the scheme

01 11 21 31 41 51 61

(6.5) O 1 2 32 45 55 6.

(c¢) The scope of the method of differences can be further extended by using
the concept of “partial cycle’” (P.C.), (cf. [14]). We shall illustrate the use of
this concept by considering a specific example.

Let M be the module of residue classes mod (15), and to each element of M
let there correspond a unique treatment. Consider the set of treatments
(0,3,6,9,12). This set cannot form an initial group for the purposes of Theorem
2, since the differences arising are not all different but are the elements 3,6,9,
12 each repeated five times. We however note that if we develop this set, then
the complete cycle of 15 sets consists of the three sets (0,3,6,9,12), (1,4,7,10,13)
and (2,5,8,11,14) each repeated five times. We can therefore say that the complete
cycle is divisible into 5 equal parts. If we take only a partial cycle, namely 14 of
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TABLE VI
GD designs which can be generated by the method of differences
L |
Serial |, Foqmeters Initial group, Initial blocks ' Modulus
. mon MM ) }
1) |14 28 6 31 (0,0) (11,61,02), (21,51,00), | mod (7)
7 2 01 ; (31,41,02), (12,22,42) :
(2) 114 14 4 4| (0,,0) (11,21,41,05), (12,2,4:,0:) [ mod (7)
7 32 01 |
@) |2 52 8 40,00 (1,3,9,02), (2,6,5,0), | mod (13)
13 2 01} (12,34,92,01), (22,62,52,01) ;
(4) 118 54 9 3| (0,00 (01,3,15), (01,42,04), 1 mod (9)
(04,52,8:), i
9 2 2 1 (01162772)! (01311:41)2
(01,21,22)
|
5) 130 75 10 4 | (0.,0.) (01,2,,14,,4,), mod (15)
(02,2¢,142,41), '
15 2 21 (01,417101;12))
(04,43,105,1,),
(01,81,02,82)
6) |39 78 10 5| (0,,0.,0;) (11,31,91,0,05), mod (13)
(21,61,51,02,03),
13 3 21 (12,32,92,05,01),
(22,62,52,03,01),
(13’33;93701)02),
(23:63353101:02)
(7) 10 20 8 4 (01)02) (01)12)22142)7 (02111121:41)y mOd (5)
5 2 0 3 (01322732:42): (03’21’31l41)
8) {16 32 6 3| (0,4,8,12) (0,1,10), (0,2,5) mod (16)
4 4 0 1|4 PC
@ |24 72 9 3| (048,12,16,20) 0,1,11), (0,2,7), (0,3,9) mod (24)
4 6 0 1}j1PC.
(10) {15 30: 6 3| (0,5,10) (0,6,8), (0,11,14) mod (15)
5 3 01(H4PC
(11) |15 45 9 3 (0,3,6,9,12)' 0,6,12), (0,3,4), (0,2,7) mod (15)
3 5 2 1¥%PC.
(12) (12 12 4 4| (0,6) (0,1,4,6) mod (12)
6 2 2 1] PC.
(13) 12 36 9 3| (04,8 0,1,3), (0,1,6), (0,2,5) mod (12)
4 3 0 2|3 PC. N
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Serial |, Pafameters, ' Initial group Tnitial blocks Modulus
no. m # M A [
4) |26 26 9 91 (0,13) . (0,1,2,8,11,18,20,22,23) mod (26)
13 2 03 : % P.C.
(15) |35 70 10 5 (00,10,20,30,40,50,60) | (10,20,40,01,04), mod (7, 5)
5 7 2 1 ¥PC. (10,20,40,02,03)
(6) | 33 33 7 7] (00,10,20,30,40,50, (10,40,50,90,30,01,02) mod (11, 3)
3 11 2 1| 60,70,80,90,0)
1, P.C.
a7 |15 30 8 4| (00,10,20,30,40) (00,40,21,22), (00,20,11,12) | mod (5, 3)
3 5 1 2!l¥PpPcC.
(18) | 15 30 10 5 | (00,10,20) (00,10,21,22,24), mod (3, 5)
5 3 2 3|1%PC. (00,10,21,22,23)
19) | 24 60 10 4 | (00,30,60,90, (00,10,40,01) C.C. mod (12, 2)
3 8 2 1| 01,31,61,91) (00,20,50,31) C.C.
% P.C. (00,60,01,61) 14 P.C.
(20) | 24 80 10 3 | (00,20,40,60) (00,1061) C.C. mod (8, 3)
6 4 0 1|} PcC. (00,50,71)  C.C.
00,1142) C.C.
(00,01,02) 14 P.C.
1) |12 30 10 4 | (00,01,30,31) (00,20,30,11) C.C. | mod (6, 2)
3 4 2 3|14PC. (00,10,50,41) C.C.
(00,20,01,21) 14 P.C.

the complete cycle for our groups, we see that any two treatments, the differences
arising from which are 3,12 or 6,9, occur together just once in a group.
We now note that among the 18 differences arising from the initial blocks

(6.6) (0,6,12), (0,3,4), (0,2,7)

the elements 3,6,9,12 each occur twice, and the other nonzero elements, namely
1,2,4,5,7,8,10,11,13,14 each occur once. If, therefore, we develop these initial
blocks mod (15) we get design (11) of Table VI, the groups consisting of 1§ of
the complete cycle obtained by developing the initial group (0,3,6,9,12). This
is denoted by writing 14 P.C. after (0,3,6,9,12) in the column 3 of Table VI.

We may now state the following obvious generalization of Theorem 2.

TaEOREM 3. Let M be a module with ¢cm elements and to each element of M let
there correspond n/c treatments (c is supposed to be a divisor of n). Let it be possible
to find ¢t initial blocks each containing k treatments, and an initial group G contain-
thg n treatments such that:
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(1) The differences arising from G consist of n(n — 1)/c different diJerences each
repeated c times, the complete cycle of G being divisible into ¢ equal parts.

(it) Among the k(k — 1)t differences arising from the initial blocks each difference
occurs Ng times, except the n(n — 1) /¢ differences arising from G, each of which occurs
A1 times.

Then by developing the initial blocks By, Bz, -+ , B, we get the GD design
with parameters v = mn, b = met, r = ket/n, k, m, n, A1, Nz, the groups being
1/cth part of the complete cycle obtained by developing G.

In particular let ¢ = =, and let M be the module of residue classes mod (mn),
one treatment corresponding to each element of M. Let G be

(6.7) 0, m, 2m, --- , m(n — 1)).

Then the differences arising from G are the n — 1 elementsm, 2m, --- , (n — 1)m
each repeated n times. The complete cycle of G is divisible into n equal parts
and we can get 1/n part of this eycle, by adding 0, 1, --- , m — 1 to the ele-
ments of G and taking residues mod (mn). This gives us the m groups. If it is
possible to find the initial blocks By, B, - - -, B, each with k treatments, such
that the differences arising from them consist of the elements m, 2m, -- - ,
(n — 1)m each repeated A, times, and all’ other nonzero elements of M each re-
peated \; times, then by developing B, , B;, --- , B, we get the blocks of the GD
design with parametersv = mn, b = mnt,r = ki, m, n, A1 , \s . Designs (8)—(14) of
Table VI have all been obtained in this manner.

(d) In applying the method of differences, the use of systems of double modulus
(u, v) is often advantageous. The elements of such a system are binary symbols
xy, where z is a residue class mod (u) and y is a residue class mod (v). In adding
two elements, we add the components separately and reduce the first component
mod (u) and the second component mod (v).

In applying Theorem 3, using systems of double modulus we shall take u = n,
v = m, so that M is a system of double modulus (n, m). We shall illustrate by
considering design (18) of Table VI, where m = 5, n = 3. The initial group G
is (00,10,20), and consists of all elements of M for which the second component
is zero. The complete cycle of G consists of 15 groups divisible into 3 equal parts.
One of these parts is obtained by adding to @ all the element of M for which the
first component is zero. The groups of this “partial cycle’ are taken as our groups
They are given by the columns of

00 01 02 03 04
(6.8) 10 11 12 13 14
20 21 22 23 24.

The fact that the groups are obtained by taking only 14 of the complete
cycle obtainable from @ is dencted by writing 14 P.C. after (00,10,20) in colurn
3 of Table VI. The differences arising from G are all the nonnull elements of
M for which the second component is zero, each repeated 3 times. If we now note
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that among the forty differences arising from the initial blocks (00,10,21,22,24),
(00,10,21,22,23) the elements 10,20 of M each occur twice, and the other nonnull
elements of M each occur thrice, it follows from Theorem 3 that on developing
these initial blocks we shall obtaim all the blocks of design (18) of Table VI.
Designs (15)-(18) of Table VI have all been obtained in this manner. In design
(16), ¢ stands for 10.

(e) Finally instead of considering only complete cycles developed frem initial
blocks, we may also allow partial cycles. This will be illustrated by considering
design (20) of Table VI. M is here a system of double modulus (8,3). The initial
group G consists of n = 4 elements (00,20,40,60). The differences arising from G
are the elements 20,40,60 each occurring four times. For our groups we there-
fore take 14 part of the complete cycle obtained by developing G. Our blocks
should be such that two treatments differing by =£20 or £40 should not be in
the same block, but any two treatments the difference of which is anything else
should occur in a block just once. Now the differences arising from the initial
blocks (00,10,61), (00,50,71), (€J,11,42) are all the elements of M (occurring
once) except 20,40,60,01,02. Hence by developing these initial blocks we would
get all pairs of treatments occurring together except those which differ by =20,
440, +=01. We can therefore complete the solution by adding the initial block
(00,01,02) and taking 14 of the complete cycle obtainable from it, since the dif-
ferences arising from it are 01 and 02 each repeated thrice. Designs (19) and (21)
of Table V have also been obtained in a similar manner. The letters C.C. after
an initial block mean that we have to take the complete cycle developed from it,
whereas 1/n P.C. after an initial block means that only 1/n part of the complete
cycle has to be taken. Of course this notation has been used only for those de-
signs in which some of the initial blocks have partial cycles.

It should be noted that Theorem 3 when properly interpreted remains valid
even when some of the initial blocks have partial cycles. If 1/s part of the cycle
arising from a block is taken, then this block counts only as 1/s blocks, and the
differences arising from it count only as k(k — 1)/s differences (i.e., every set of s
identical differences counts only as one). Thus in design (20) of Table VI, the
number of initial blocks is ¢ = 194 since only 14 of the cycle of the last initial
block is taken. Since to each element there corresponds only one treatment
¢ = n, the relation r = ket/n is seen to remain valid. The k(k — 1)t differences
arising from the initial blocks are the 6 X 3 differences arising from the first three
initial blocks, together with the two differences arising from the last initial
block.

7. Construction of semi-regular GD designs with %; = 0.
(2) For a semi-regular GD design P = rk — vA, = 0 by definition. Hence-
from (2.0) and (2.1)

('Z.O) r = An — Mln — 1),
"In this section we shall consider the case \; = 0. This leads tor = A, k = m.
Hence the parameters of the design can be written as

(7.1) v=mn, b=nN, r=nk\,. =m, mnh=0N.
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We shall first establish the equivalence of the design (7.1) with an orthogonal
array A = [\n’, m, n, 2] of strength 2, which may be defined as a matrix A =
(ai;), with m rows and A\n® columns for which each element a;; is one of the
integers 0, 1, 2, --- , n — 1, and which has the orthogonality property that for
any two rows, say ¢ and u, the pairs (a,;, a.;),7 = 1,2, - - -, Asn’ occurring in the
corresponding columns consist of all possible ordered pairs of the integers 0, 1,
2, -+ ,n — 1, each repeated A, times. It follows that each of the integers
0,1,2, ... ,n — 1 appears n\, times in each row of A. Orthogonal arrays have
been studied by Plackett and Burman, Rao, Bush and one of the authors (Bose),
(16], [17], [18], [19], [20], [21], [22].

TrEOREM 4. The existence of a semi-regular GD design with parameters (7.1)
implies the existence of an orthogonal array A = Aan®, m, n, 2] of strength 2, and
conversely.

Proor. Replace any integer z appearing in the ¢th row of A by the treatment
(i — 1)n 4+ z. The ¢th row of the derived scheme now contains the treatments

(7.15) G—1Dn,G—Dn+12,G—n+n— L

We shall show that the columns of the derived scheme give the blocks of the
GD design (7.1), where the ¢th group of treatments is (7.15) Treatments belong-
ing to the ¢th group occur only in the 7th row of the derived scheme. Hence two
treatments belonging to different groups never occur together in the same
block (column). Also from the orthogonality property of A it follows that any
two treatments belonging to different groups occur together in \; blocks. This
proves ourstatement.

Conversely, suppose there exists a semi-regular GD design with parameters
(7.1). Let the sth group of treatments be given by (7.15),7 = 1,2, --- ,m. It
has been shown in {2] that each block of a semi-regular GD design contains the
same number of treatments from each group. Since £ = m in the present case,
each block contains just one treatment from each block. We can now exhibit
the blocks of (7.1) as the columns of a rectangular scheme in which the treat-
ments of the ith group occupy the 7th row. Replacing the treatment

—1n+zx

of the ith group by z,z = 1,2, --- ,n — 1,72 = 1,2, --- , m. We then get an
orthogonal array A of size Asn’, m constraints, n levels and strength 2. This
proves the equivalence of the orthogonal array A and the GD design (7.1).
CoroLLARY. The existence of GD destgn (7.1) tmplies the existence of the GD
design with parameters
v = mn, b =n\, r = nl;, E=m,

(7.2)
m, n, )\1 =V, Xz =1
where my < m.
If the GD design (7.1) is written in a form in which the columns give the blocks,
and the treatments of the ith group appear only in the ith row, then to get the
blocks of (7.2), we have simply to discard the last m — m; rows.
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(b) In special cases the blocks of GD designs with parameters (7.1) can be
obtained more expeditiously by using affine resolvable BIB designs or finite
geometries rather than by directly using orthogonal arrays.

A resolvable BIB design is said to be affine resolvable if any two blocks of dif-
ferent replications have exactly the same number of treatments in common. It
has been shown by one of the authors (Bose) [10], that the necessary and suf-
ficient condition for a resolvable BIB design to be affine resolvable is

(7.25) b* = v* 4 r* — 1.
In this case the number of treatments common to blocks of two different replica-
tions is k* /v* which must therefore be integral. The connection between
orthogonal arrays and affine resolvable BIB designs was noticed by Plackett and
Burman [19].

It is clear that if we dualize an affine resolvable BIB design with parameters
v*, %, r*, k*, \*, we get a semi-regular GD des1gn with parameters

v = b¥ b = v¥ = k¥, k= r*
m = r¥ n = b¥/r¥, M o= 0, A = *Y/p*,

In particular the BIB designs (3.3) belonging to the series 0S 1 are affine re-
solvable and lead by dualization to the blocks of the GD design

v=25+s, b=¢, r=s, E=s+4+1,
m =38+ 1, n =38, A =0, A = 1,

(7.3)

(7.35)

From this we can get the blocks for (ef. Theorem 4, Corollary)

v = ms, b=¢, r=s, kE=m,
(7.4)
m, n=s, M=0, =1,
where m < s +1.

It will appear that we can express the blocks of (7.4) in a resolvable form. This
will be illustrated by considering the special case s = 4. The columns of secheme
(3.5) give the blocks of the BIB design v* = 16, b* = 20,7* = 5, k* = 4, \* = 1
in a resolvable form. Let us write down the dual of this design. The blocks of the
dual corresponding to the treatments of the original can now be numbered
0,1,2,---,14 and . Also the treatments of the dual corresponding to the
blocks of the original can be numbered 1, 2, , 20, and can be divided into
five groups correspondmg to the rephcatlons If in the original (3.5), the treat-
ment ¢ occurs in the block j in the dual we put the treatment j in the block 1.
The blocks of the dual are then given by the columns of the following scheme,
where the last column corresponds to the block «.

4 1 211423 2 2 43133 4
7 85 6 55 86 7 66 875 7 8
(7.45) 111112 910 9 9121011 10 10 12 11 9 12
13 15 15 16 13 14 13 13 16 14 15 14 14 16 15 16
19 17 19 19 20 17 18 17 17 20 18 19 18 18 20 20.
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Finally, we rearrange the blocks so that all blocks containing the same treat-
ment of the last group come together, and arrive at the scheme

1 4 3 2|2 4 1 3| 42131231
8 5 6 7|8 6 7 5|7 56 8 56 78
(7.5) 11 9 12 10 9 10 12 11} 1112 910| 1011 912
15 14 13 1613 15 14 16} 13 1516 14 13 14 15 16

17 17 17 17118 18 18 18| 19 19 19 191 20 20 20 20.

Taking only the first m rows of the scheme (7.5) the columns give the blocks
of the semi-regular GD design

v = 4m, b = 16, r = 4, E=m,
(7.55)
m, n = 4, M= 0, Mo=1
when m < 5, the design is in a resolvable form the replications being separated
by the vertical lines.

(c¢) The connection between orthogonal arrays and finite geometries is given
in [22]. We shall now illustrate the use of finite geometries in obtaining the
blocks of semi-regular GD designs.

Consider the finite projective geometry PG(3, p"), where p is a prime, and
set s = p". There are exactly s + s + 1 lines passing through any point O.
Let us choose O = (0,0,0,1). Choose anym < s* + s + 1 lines through O, and
let the points other than O on these lines correspond to the treatments. We
then have ms treatments divided into m groups, the s treatments corresponding
to points on the same line forming a group. There are s° planes not passing
through O. Each of these planes intersects a linethrough O in a unique point. Hence
if we take these planes for blocks, then each block would contain exactly one
treatment from each group. Also any treatment is contained in s* blocks. Two
treatments belonging to the same group do not occur together in any block,
but the points corresponding to two treatments of different groups are joined
by a line through which s of the planes chosen for blocks pass. Hence two treat-
ments not belonging to the same group occur together in s blocks. We thus get
a semi-regular GD design with parameters

7.6) v = ms, b=¢, r=s, E=m,
: m, n=s, A =0, Az = §;
where m < s + s 4+ 1.

We shall now show that if m < §*, then the blocks can be obtained in a re-
solvable form. Choose any plane through O, say z; = 0, and call it the fundamen-
tal plane. There are s* lines on the fundamental plane not passing through O.
Through each of these lines there pass s planes chosen as blocks, which obviously
give a complete replication provided that none of the m lines, the points of
“which (other than O) give the treatments, lie on the fundamental plane. Since
there are s” lines through O not lying on the fundamental plane, we can get the
blocks of (7.6) in a resolvable form if m < s
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Againif s < m < & + s, we can divide the blocks into s sets of §* each, such
that the blocks of any set give s complete replications. This can be done by
taking a fundamental line, say z: = 0, 3 = 0. Let the lines whose points cor-
respond to the treatments be different from the fundamental line. Then the s
blocks corresponding to planes passing through the same point of the funda-
mental line give s complete replications.

The equation of any plane not passing through O may be put in the form
axy + brs + cx; + x4 = 0 where a, b, ¢ are elements of the Galois field GF(p™).
Varying a, b, ¢ we get all the s® planes. The s planes, for which a and b remain
fixed but ¢ takes the s different possible values, give a complete replication (when
none of the lines, whose points correspond to the treatments, lie in z; = 0),
and the s° planes, for which @ remains fixed, but b and ¢ take all possible values,
give a set of s complete replications (when z; = 0, 2; = 0 is not one of the lines
whose points correspond to the treatments). After the blocks have been cal-
culated the points representing the treatments may be identified with the
treatments 1, 2, ---, ms.

Using PG (3, 2) we find that, if we retain only the first m rows of the scheme

(7.7), then the columns represent the 8 blocks of the semi-regular GD design
v = 2m, b =8, * = 4, k=m,
(7.65)
m, n=2, X1=0, Ae = 2.

The vertical lines separate the replications.

~ Ot W =
[o I~ TS ]
WO WH
-3 Ot W DD
0 Gt b =
O W

7.7)
9 9 10 10 9 9 10 10
11 11 12 12 12 12 11 11

13 13 13 13 14 14 14 14

The groups for (7.65) are given by the first m columns of

1357 9 11 13
(7.75) ‘ 2 46 8 10 12 14.

Similarly using PG(3, 3) we find that, if we retain only the first m rows of the
scheme (7.83), then the columns represent the 27 blocks of the semi-regular
GD design

v = 3m, b =27, r =9, k=m,
3.

7.8
@8 0, N =

m, n = 3, M
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As before the vertical lines separate the replications.

12 312 312 312312312312 3123123
4 5 64 5 6/4 5 656 45 6 45 6 46 4 56 4 56 4 5
7 8 97 8 97 8 949 7 897 89 7 889 789 7897
10 11 12/11 12 1012 10 11{10 11 12j11 12 10j12 10 11j10 11 12{11 12 1012 10 11
13 14 1514 15 13|15 13 14{14 15 13[15 13 14/13 14 1515 13 14]13 14 1514 15 13
16 17 18(17 18 16/18 16 17|18 16 17(16 17 18{17 18 16/17 18 1618 16 17;16 17 18
19 20 21j21 19 20120 21 19(19 20 21{21 19 20{20 21 19{19 20 21{21 19 20/20 21 19
(7.83) 22 23 24|24 22 23|23 24 22{23 24 22|22 23 24(24 22 23|24 22 23|23 24 2222 23 24
25 26 27|27 25 2626 27 25(27 25 26[26 27 25|25 26 27,26 27 2525 26 27(27 25 26

28 28 2829 29 29 30 30 30|28 28 2829 29 29 30 30 30/28 28 2829 29 2930 30 30
31 31 3132 32 3233 33 33/32 32 3233 33 3331 31 31/33 33 3331 31 3132 32 32
34 34 3436 36 3635 35 35/35 35 3534 34 3436 36-36/36 36 3635 35 3534 34 34

37 37 3737 37 3737 37 3738 38 3838 38 3838 38 3839 39 3939 39 3939 39 39.

The groups for (7.8) are given by the first m columns of

1 4 7 10 13 16 19 22 25 28 31 34 37
(7.86) 2 5 8 11 14 17 20 23 26 29 32 35 38
3 6 9 12 15 18 21 24 27 30 33 36 39.

(d) Whenever an orthogonal array [A:n’, m, n, 2] of strength 2 is directly
available we can use it for obtaining the blocks of (7.1). The procedure to be
followed has already been explained in the proof of Theorem 4.

Using the array [18, 7, 3, 2] given in [22], we get the blocks of the semi-regular
GD design

v = 3m, b = 18, r = 6, k= m,
m, 'n=3, )1-_—'0, X2=2,
where m £ 7, by retaining only the first m rows of the scheme.

(7.9

1 2 3 | 1 2 3(1 2 3|1 2 3|/1 2 3,1 2 3
4 5 % l 4 5 6,5 6 4|6 4 556 6 4| 6 4 5
7 8 9,8 9 7,7 8 9|9 7 8/ 9 7 8,8 9 7
(7.92) 10 11 12|12 10 1112 10 11 {10 11 12 11 12 1011 12 10
13 14 15|14 15 1315 13 14 ;14 15 13 |13 14 15:15 13 14
16 17 18 ; 18 16 17|17 18 16 |17 18 16 |18 16 17 ! 16 17 18

19 19 19 19 19 19 20 20 20 20 20 20 21 21 21 21 21 2L

As before, the blocks are given by columns, and the vertical lines divide com-
plete replications. Thus the design is resolvable for m =< 6. The groups are given
by the first m columns of

1 4 7 10 13 16 19
(7.94) 2 5 8 11 14 17 20
36 9 12 15 18 21.

24
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Similarly using the array [32,9,4,2] given in [22] we can get the blocks of the

semi-regular GD design
v = 4m, b = 32, r =38, k=m,
(7.96) .
m, n =4, M =0, A =2

if m £ 9. The design can be obtained in a resolvable form if m < 8.

Plackett and Burman [19] have given orthogonal arrays [4\, 4\ — 1, 2, 2]
for all integral A < 25, except A = 23. These may be used to obtain the blocks
of the corresponding singular GD designs with parameters

TABLE VII
Parameters of semi-regular GD designs with\; = 0,A. £ 3,r < 10

Serial i Parameters Maximum Maximum m for
no. v b r k m n N M m resolvability
(1) 3m 9 3 m m 3 01 4 3
(2) 4m 16 4 m m 4 0 1 5 4
3) om 25 5 m m 5 0 1 6 5
(4) 6m 36 6 m m 6 0 1 3 2
(5) m 49 7 m m 7 0 1 8 7
(6) 8n 64 8 m m 8 0 1 9 8
() 9m 8 9 m m 9 0 1 10 9
8) 0m 100 10 m m 10 0 1 3 2
9) 2m 8 4 m m 2 0 2 7 4

(10) 3m 18 6 m m 3 0 2 7 6

(11) 4dm 32 8 m m 4 0 2 9 8

(12) d5m 50 10 m m 5 0 2 6 5

(13) 2m 12 6 m m 2 0 3 11 2

(14) 3m 27 9 m m 3 0 3 13 9

v = 2m, b = 4\, r = 2\, E = m,

(7.98)
m, n = 2, A o= 0, A2 = A

where m < 4N — 1. Of course only small values of A and m yield designs of
practical interest.

We presen\ﬁ in Table VII the parameters of semi-regular GD designs for which
r = 10, \r = 0, \; < 3, and the blocks for which can be obtained by the methods
discussed in’ this section. The parameter m has been kept arbitrary, but the
maximum value of m for which the design exists and also the maximum value
of m for which the design can be obtained in a resolvable form has been given.

Number (12) is the duplicate of number (3), that is, is obtained by repeating
each block of (3) twice. Numbers (4) and (8) can be obtained by first writing
down the orthogonal array [n’, 3, n, 2] corresponding to an #» X m Latin square
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n = 6, 10, as it is well known that a set of m — 2 mutually orthogonal n X n
Latin squares is equivalent to an orthogonal array [n®, m, n, 2], (cf. [18], [21]).

8. Construction of semi-regular GD designs for which &, # 0, 4;: = 0. Now
P = rk — v\, = 0 by definition, and k = cm since each block contains the
same number of treatments from each group [2]. Using (2.0) and (2.1), the
eight parameters of the design can be expressed in terms of m, n, A\, and ¢ only.
Thus the parameters are

(8.0) v = mn, b = n’\/c, r = nh/c, k=cm,
(8.1) m, n, 1 = nlec — DAg/(n — 1)e, A
Also as proved in [2] for a semi-regular GD design,
(8.2) bzyov—m+41-
b—1 a'\n-—¢c
< =
(83) ™S T cn—1)°
TABLE VIIIA
Parameters of semi-regular GD designs with M # 0, r < 10
Serial no. Parameters Maximum m
v b r k m n M Ae -
(1) 4m 12 6 2m m 4 2 3 3
@) 3m 9 6 2m m 3 3 4 4
3) 6m 20 10 3m m 6 4 5 3"

The values of n, ¢ and \; must be such as to make b, r and )\ integral, but
m may be any integer subject to (8.3). It follows that, if A, 5% 0, the only semi-
regular GD designs in the range r < 10 are those listed in Table VIIIA.

1t is clear that, if the blocks and groups for the above designs can be ob-
tained for the maximum value of m, then for any smaller value of m we have
only to discard some of the groups and the treatments belonging to them.
The groups and blocks for the designs in Table VIIIA are given in Table VIIIB
(for the maximum value of m).

Here the groups have been given in full, and only the blocks have to be de-
veloped. The validity of the solution follows from the notion of differences de-
veloped in [8] and explained in section 6(a) of the present paper. For illustration
we shall consider design (3) of Tables VIIIA and B, when m has the maximum
value 3, and prove that the initial blocks shown give rise to it when developed.

The 18 treatments form three groups shown in the 2nd column of Table
VIIIB. The 15 treatments other than «;, ©,, «;fall into three classes accord-
ing to the suffix carried (cf. section 6(a)). We shall distinguish three different
types of pairs.
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(i) Pairs of the type (=, =;);% = 7; 7,7 = 1, 2, 3. Each of the three pairs
(01, w3), (g, ®3), (03, ;) occurs in just one initial block shown in the 3rd
column of Table VIIIB. Since « and the suffixesremain invariant when theblocks
are developed, each of these pairs eccurs five times in the completed design, as
it should since Az = 5 and «; and «; (¢ 5 ;) belong to different groups.

(ii) Pairs of the type (=, u;); 4,5 = 1, 2, 3; where « is an element of the field
of residue classes, mod (5). When developed, the pair («;, u;) gives rise to
five pairs, of which one component is «; and the second component varies over
all the five treatments of the jth class. In the initial blocks, « ; occurs with just
4 treatments of the jth class, if 7 = j, and 5 elements of the jth class, if ¢ # j.
It follows that any pair (=, u;) occurs 4 times in the completed design if ¢ = j

TABLE VIIIB
Blocks and groups for semi-regular GD designs with M # 0, r £ 10

(11,31,41; ©2,32,42; ©3,05,23)

Serial no. Groups ' Initial blocks Modulus

(1) (001,011,101,111) (001,011; 002,102; 003,113) mod (2, 2)
(002,012,102,112) (001,1,11; 002,012; 002,103)
(003,013,103,113) (001,101; 002,1 12; 003,013)

(2) (01,11;21) (01,11; 02,22; 03,253 °°z,°°a) mod (3)
(0,12,2,) (01,21 05,125 05,235 03,%1)
(03»13;23) (01,21; 0:,22; 03,15; 0,4, 03)
( @y, X 2,0 3)

3) (01,11,21,31,41,%1) ! (01,11,21; 12,32,45; 05,135,25) mod (5)
(02,12,22,32,42, © 2) i ( 01,31,41; ©2,02,25; 03,13,23)
(05,15,25,35,43, % 3) i (01,01,21; 05,15,22; ©035,05,25)

and 5 times if ¢ ¢ j. This is as it should be, since « ; and u; do or do not belong
to the same group according as 7 = jor< > jand A, = 4, A = 5.

(iii) Pairs of the type of (u:, u;);4,j = 1, 2, 3, where u is an element of the
field of residue classes mod (5). It can be verified that leaving out «,, «,
o4 the initial blocks give rise to each pure difference 4 times and each mixed
difference 5 times. Henice in the completed design any pair (u:, u;) occurs 4
times if ¢ = j and 5 times if ¢ > j, as it should, since u; and u; do or do not
belong to the same-group according as ¢ = j or ¢ # j.

Again it is easy to see that each of the treatments «,, «,, 3 occurs 10
times in the completed design, since each of these occurs twice in the initial
blocks. The other treatments also occur 10 times in the completed design, since
“each class is represented 10 times in the initial blocks. This completes the proof.

If, in design (3) of Table VIIIA, m = 2, then the corresponding blocks can
be obtained by developing the initial blocks shown in Table VIIIB, after drop-
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ping the treatments with suffix 3. It should be noted that the first two initial
blocks now give a complete replication, and the same is true of the last two
initial blocks. Hence the blocks are obtained in a resolvable form.

9. GD designs derivable by replication addition and subtraction. Consider a
BIB design with parameters v*, b*, r*, k*, A* in which v* is divisible by k*, and
suppose that either a resolvable solution is known, or at least a solution is known
in a form where there are v*/k* blocks which give a complete replication. Then
we can get a GD design with parameters

(9.0) » = v¥ b = tb* + a@w*/k*), r = ir* + a, E = k*
91) m-= o*/k*, n =k M=10*+a A =0

in the following manner. Choose a set of v*/k* blocks giving a complete replica-
tion. Repeat the BIB design ¢ times, and then add the chosen set of blocks a
times. Then we get a GD design with parameters given by (9.0) and (9.1), for
which the groups are given by the chosen set of blocks.

When the BIB design is repeated ¢ times, the chosen set of blocks is also re-
peated ¢ times. Hence instead of adding the chosen set of blocks a times, we could
delete the chosen set of blocks g, times (a, < £). This would give a GD design
with parameters (9.0) and (9.1) with @ = —a, . If the original BIB design is
resolvable, then the derived GD design is also resolvable.

For example, if we start with the BIB designs of the series 0S 1 whose parame-
eters are given by (3.3), we get resolvable GD designs with parameters

92 v=¢8 b=t+8)+as, r=tis+1l)4+a k=3
9.3) m = s, n =s M =t+ aq A=t

where @ = — ¢, and s is a prime or a prime power. As an illustration let s = 4»
t =1,a = —1. The blocks of the BIB design v* = 16, b* = 20, r* = 5, k* = 4,
A* = 1 are given in a resolvable form by (3.5). Hence the blocks of the GD
design with parameters

16, r = 4, k=4,

v = 16, b
- m = 4, n = 4, M= 0, Az =1

are obtained by taking any four replications from (3.5); the remaining replica-
tion then gives the groups.

The blocks of BIB designs belonging to the series 0S 1 can be obtained in a
resolvable form as explained in Section 3, by using the difference sets in Table I.
The blocks for all other BIB designs occurring in Table IX can be found in
Table III, being in a resolvable form in every case except v* = 45, b* = 99,
* = 11, k* = 5, \* = 1. In this case the block (00, , 00, , 005, 00, , 005), when
developed mod (3, 3), provides a complete replication.
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10. Extension of GD designs. Suppose that there exists a resolvable group
divisible design with parameters

(10.0) v = La, b = ra, r, k, m, n, A, A =1
®
TABLE IX
Parameters of GD designs derivable from BIB designs by replication addition or
subtraction
| i -
; Auxiliary!
Serial no. Paramgtex_'s of BIB param- Parameters of GD design
. esign
and series eters
v*  b* r* k* OX\* t a v b r k m n A A

~1]16 16
1116 24
2|16 28
-2 16 32
—1,16 36
—-1125 25
125 35
225 40
-2 /25 50
—1]49 49
49 63
249 70
| 64 64
164 72
| 81 81
—1115 30
1|15 40
2|15 45
—1]28 5%
1|28 69
—1]21 63
—1., 45 90

(1) 0S1+ | 16 20
2) 0S1+ |16 20
(3) 081+ 116 20
(4) 0S1+ |16 20
(5) 081+ |16 20
6) 0814 |25 30
(7) 081+ |25 30
(8) 081+ |25 30
9) 0S1+ |25 30
(10) 0S 1+ | 49 56
(11) 0S1+ | 49 56
(12) 0S1+ |49 56
(13) 081+ | 64 72
(14) 081+ | 64 72
(15) 0S1+ | 81 90
(16) T+ |15 35
a7 T+ |15 35
(18) T+ |15 35
(19) Fa+ |28 63
(20) Fat+ |28 63
@) T+ |21 70
(22) G, 45 99
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so that the b blocks are divisible into r sets of o blocks, each set giving a com-
plete replication. Let

_rlr - a)

! r_ ! . k,=k 1
v T, b —————k+1, r r — a + 1,

~

(10.1)
: , #n'=mn  AM=XN, iA=L

S|
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Then clearly

(10.2) v = m'n/, b'E = v'r,
and it follows from (2.0) and (2.1) that
(10.25) M@ = 1) +an'm’ — 1) = (K — 1).

Hence if b’ and m’ are integers, the parameters v’, b’, v/, k', m’, %/, A1, As given
by (10.1) can be the parameters of a GD design. Suppose a combinatorial solu-
tion of this design is available. We shall show that in this case we can build up a
solution of the GD design with parameters

o =9+, b =b+ b, =7, K =k + 1,
m’ =m+m, n” =n, x;‘j =\, )\’2’ =1,

Let the treatments in (10.0) and (10.1) be different so that there are altogether
v + o treatments. To each block in the 7th replication of (10.0) adjoin the ith
treatment of (10.1), (¢ = 1, 2, ---, r). To the design (10.0) so extended, add
all the blocks of (10.1). This gives us a combinatorial solution of (10.3) where
the groups are the groups of (10.0) and (10.1) taken together. It is easy to see
that the neeessary conditions are satisfied. This method may be called the
method of extension.

As an illustration we shall build up the solution of the GD design

v = 12, b= 24, r =6, k=3,
m = 6, n =2, M=2, I=1,
starting from a solution of
v = 6, b = 18, r = 6, k=2,
m = 3, n = 2 M= 2, =1

which can be obtained by adding one complete replication, say the last, to the
solution (3.1) of the BIB design (3.0). Here @ = 3, and we see from (10.1) that
for extension we require a solution of

=6, bW =86 =3 k=3,

!

m =3, =2 A =2 A= 1.

(10.3)

(10.4)

(10.45)

(10.5)

It is seen from Theorem 2 that a solution of this is obtainable by developing
mod (6) the initial block (0,1,3). However to keep the treatments of (10.5)
distinet from those of (10.45) we may replace the 7th treatment of (10.5) by
a; . Proceeding as explained, the blocks of (10.4) are given by the columns of
the scheme

1 202 313 42 40301401 4 aa az a3 a4 a;

(106) 4 3 ©0 4 01 0 22 1 3 2 23 2 oa az az a4 a5 Ao
Qo Qo Qo A1 Gy Ay A2 A2 A2 A3 A3 G3 Gy Qg Ay A5 G5 A5 A3 Ay A5 Ao Ay A2,



192 R. C. BOSE, 8. S. SHRIKHANDE AND K. N. BHATTACHARYA

and the groups are given by the columns of
01 4 a6 & a
(10.65) '
3 ? © a3 a4 Gg.
Again we can build up the solution of the GD design
v = 24, b = 54, r =9, k

m=8, n=3, .M,=3, =1

I
Lo

(10.7)

by starting with the design

v =15 b = 45, r=9, k=3,
(10.8)

m = 5, n =3, M=3 A=1

which is design (18) of Table IX, and use for extension the solution of
v =9, b =9, v = 4, k= 4,

(10.9)
m =3, n=3, A=3 aM=1

which can be obtained by developing mod (9) the initial block (0,1,3,6).

11, Addition of GD designs. The method of addition consists of getting a new
GD design by taking together the blocks of two suitable GD designs with the
same v and k. It may be regarded as a slight generalization of the method of
replication addition discussed in Section 9. This will be explained by two ex-
amples.

(a) If in (7.4) we put m = s — 1, we get the GD design

v=85—s5 b=2s r=s, k=s—1,
(11.0)

m=s-1, n=s, M=0, A =1,
a solution of which is available if s is a prime or a prime power.

If we take the s blocks formed by taking all possible combinations of s — 1
treatments from the 7th group, we get an unreduced BIB design with param-
eters
(11.15)  v*=b* =3, *=f*=5—-1, M= — 2.

Repeating this for each group and taking together all the BIB designs so formed
we get the GD design

v=§8—-s5 b=8§8—-8 r=s—1 k=s5-1,
(11.2)

m=s-—1, n=s, M=s§—2 A= 0.

- Taken by itself this is a disconnected design in the sense explained in [23]
" and [24], and any contrast between treatments of different groups is nones-
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timable. But if we take together the blocks of (11.0) and (11.2) we get the GD
design
v=8—35 b=2"—s r=2-1 k=s-1,
(11.35)
m=g8—1, n = s, M=8§-—2, A= 1,
As an illustration we give below the blocks for the case s = 4 (Design (3)
of Table X).

143 22 413 421 3123 4211165551 9 9 9
(114) 85 6 78 6 7 57 56 8 5 67 83322776611111010
11912109101211 11129101011 91244438887 121212 11.
The corresponding groups are given by the columns of the scheme
15 9
2 6 10
(11.45) 3 7 11
4 8 12.
TABLE X
Parameters of GD designs obtainable by extension and addition
Serial Parameters
€rial no. v b r k m n M A
(1 12 24 6 3 6 2 2 1
@) 24 54 9 4 8 3 3 1
3 12 28 7 3 3 4 2 1
4) 20 45 9 4 4 5 3 1
(5) 12 32 8 3 2 6 2 1

The first 16 blocks of (11.4) are obtained by taking the first three rows of
(7.5), whereas the remaining 12 blocks are obtained by taking all combinations
of three treatments from each group.

By taking s = 5 in (11.35) we get design (4) of Table X.

(b) Suppose we have solutions available for GD designs with parameters

(11.5) v=mn, b r, k, m, n, A, N\

(116) o' =mn/a, b, ', K=k m =m/a, 2 =mn, A, \
where m’ and « are integers, and
(11.65) Mo A=A 4 Ag = 2] (say).

The m groups of (11.5) can be divided into « sets each of m’ groups. With the
v’ treatments occurring in any such set we can write down a solution for (11.6).
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If we do this for each set and add the ab’ blocks so obtained to the blocks of
(11.5) we get the solution of a GD design with parameters
= mn, b = b 4+ Ve, =7+, kK" =k,

”

(1L.7)

= q n" = m'n, A, A = Ag
where the treatments occurring in a set now belong to the same group. Obviously
every treatment occurs r 4 »’ times in the final design, but we have to show that
any two treatments belonging to the same set occur together Ay times, and any
two treatments belonging to different sets occur together A, times.

If two treatments belong to the same set, they either occur together in the
same group or in different groups. In the first case they occur together in A\
blocks obtained from (11.5) and in A1 blocks obtained. from (11.6). In the second
case they occur together in A, blocks obtained from (11.5) and As blocks ob-
tained from (11.6). It follows from (11.65) that in either case they occur to-
gether \7 times.

Again if two treatments belong to different sets they will occur together in
A2 blocks obtained from (11.5) and in no blocks obtained from (11.6). This com-
pletes the proof. i

As an illustration let us start with the GD design with parameters

v = 12, b = 20, r =5, k=3,

(11.75)
m = 6, n =2 A =0, A =1

the blocks of which are given by the columns of (5.7) and the groups by (5.8).
Let us take o = 2, and let the first three groups belong to the first set and the
last three groups to the second set. Also as noted in Section 10 a solution of the
GD design with parameters
v =b =6, r =k =3, m’ = 3,
(11.8)

n = 2 A= 2, A= 1
is given by the last six columns of (10.6), and the groups by the last three col-
umns of (10.65). We note that Ay + Af = Az + Az = 2. Hence we can build up
a solution of

v = 12, b = 32, r = 8§, k=3,

(11.85)
m =2, n=6M=2 =1

by adding to the solution of (11.75) a solution of (11.8) twice over identifying
a, a1, 0z, 3, 44, a5, once with 5, 11, 2, 7, 6, 8 and next with 9, 10, 4, 12, 1, 3
respectively. Thus the 32 blocks of (11.85) are given by the 20 columns of the
scheme (5.7) together with the twelve columns of the following scheme

, 5 11 2 7 68 9 10 4 12 1 8
(1.9) 11 276 85 10 412 1 39
7 68 5 11 212 1 3 9 10 4.
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The first group consists of the treatments 5, 11, 2, 7, 6, 8 and the second
group consists of 9, 10, 4, 12, 1, 3.

The parameters of GD designs obtainable by extension and addition are
shown in Table X.
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