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1. Introduction 

The reciprocal f*(x) of a polynomial f(x) of degree n is defined by f*(x) = xnf(1/X). 
A polynomial is called self-reciprocal if it coincides with its reciprocal. 

Self-reciprocal polynomials over finite fields are used to generate reversible 
codes with a read-backward property (J. L. Massey [13], S. J. Hong and D. C. 
Bossen [10], A. M. Patel and S. J. Hong [15]). The fact that self-reciprocal 
polynomials are given by specifying only half of their coefficients is of importance 
(E. R. Berlekamp [2]). Also, there is an intimate connection between irreducible 
self-reciprocal polynomials over ff~q and the class of primitive self-complementary 
necklaces consisting of beads coloured with q colours (R. L. Miller [14] and the 
references given there). The numbers of these polynomials are at the same time 
the numbers of certain symmetry types of periodic sequences (E. N. Gilbert and 
J. Riordan [8]). Furthermore, we demonstrate how self-reciprocal irreducible 
polynomials can be used to construct certain infinite subfields GF(q "z~) of the 
algebraic closure of Fq. 

Every self-reciprocal irreducible polynomial of degree n > 2 has even degree. 
On the other hand any polynomial f of degree n may be transformed into 
a self-reciprocal polynomial fQ of degree 2n given by fQ(x)=x"f(x+ 1/x). 
It is natural to ask under which conditions the irreducibility o f f  is inherited by f e .  

For  the smallest field F 2, R. R. Varshamov and G. A. Garakov [16] gave the 
following answer: 

If fE~'z[X ] is irreducible then fQ is irreducible if and only if 
the linear coefficient of f is one, i.e. f '(0) = 1. 
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This means in particular that the number of self-reciprocal irreducible monic (srim) 
polynomials of degree 2n (n > 1) over F 2 is equal to the number of irreducible 
monic polynomials of degree n with linear coefficient equal to 1. The method of 
proof in [16], however, does not suggest what criterion might look like an 
appropriate generalization to the case of any larger field Fq. 

In this paper we show how a different approach leads to a simple proof of 
their result and allows a generalization to any even or odd q. Due to the quadratic 
nature of the transformation f~-+fQ the conditions for f depend for even q on the 
trace function and for odd q on quadratic residues in F*. 

The second section introduces the subject of srim polynomials in greater detail. 
We want to call attention to the fact that the product of all sirra polynomials of 
fixed degree has structural properties very similar to those of the product of 
all irreducible monic polynomials over a finite field Fq. In particular, we 
find the number of all srim polynomials of fixed degree by a simple M6bius 
inversion. 

The third section presents the generalization, mentioned above, of the criterion 
of Varshamov and Garakov. Note that in general the conditions to be exploited 
cannot be read off as easily from the sequence of coefficients of f as in the case 
with IF 2. The final section shows how infinite sequences of srim polynomials can be 
defined in principle. In the case of characteristic 2 a simple criterion allows the 
construction of such sequences. Concerning fields of odd order, however, our 
discussion is incomplete due to a number of number-theoretic questions which 
we have not settled. 

2. Th e  R o l e  o f  the P o l y n o m i a l  x q" + i _ 1 

Some remarks on self-reciprocal polynomials are in order before we can state the 
main theorem of this section. 

• If  f is self-reciprocal then the set of roots of f is closed under the inversion map 

~ - 1  (~ #0).  

• I f fEFq[x ]  is irreducible and if the set of roots o f f  is closed under inversion, then 

f , ,  , f - - f  (x) if f ( x ) = x - - l A q # 2  
~x)= ~ f (x)  otherwise. 

• I f  f is self-reciprocal and f ( -  1) ¢ 0 then f has even degree. 

As a consequence, self-reciprocal irreducible polynomials have even degree with 
the single exception of f (x)  = x + 1. The following theorem provides the means for 
finding the product of all srim polynomials of fixed degree: 

T h e o r e m  1. i) Each srim polynomial of degree 2n (n > 1) over Fq is a factor of the 
polynomial 

Hq,n(x): = xq.+ 1 _ 1. 

ii) Each irreducible factor of degree > 2 of Hq,.(x) is a srim polynomial of degree 
2d, where d divides n such that n/d is odd. 
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Proof. 
i) If f is srim of degree 2n then {~t, ~q, ~q2, . . . .  ~q . . . .  } is the set of  roots  of f in 

Fq2.. Because this set is closed under  inversion we have 

3! j~[0 ,2n  - 1] :~  q~ = ~-1  

which means  that  ~ is a roo t  of Hqj. Obvious ly  Hqj(x)lx q2~-I - 1. O n  the o ther  
hand  f(x) lx q2"- 1 - 1, so that  2n 12j. I t  follows that  j = n. 

ii) Let g be an i r reducible  factor of degree > 2 of  Hq,.. As a consequence,  a 
roo t  ~ of g satisfies ~q" = ~ -  1, i.e. the set of  roo ts  of  g is closed under  inversion.  
F r o m  this we know that  g is self-reciprocal of  even degree 2d, say. By the a rguments  
given in i) it follows that  2d divides 2n and g is a factor  of Hq,d. Because of Hq,d[Hq., 
we have qd + 1 [q" + 1, which is possible  only in the case when n/d is odd.  [ ]  

If we define Rq,,(x) as the p roduc t  of all srim po lynomia l s  of degree 2n (n > 1) over  
Fq then Theorem 1 takes the form: 

H q , . ( x )  = ( x  1 + e .  _ 1) 1-] Rq,d(x) (1) 
gin 

n/dodd 

where eq - q m o d  2, i.e. x ~ +e, _ 1 collects the single l inear  factor  x + 1 if q is even 
resp. the two l inear  factors (x + l)(x - 1) if q is odd.  

If  we further use the ' no rmal iza t ion '  

OOn(X):= nq ,n (X) / (x  1 +eq _ _  1) 

then we can invert  the p roduc t  formula  (1) by M6bius  invers ion to get 

L e m m a  2. The product Rq,,(x) of all srim polynomials of degree 2n satisfies 

Rq,,(x) = H H°,,/d(x) "td)" (2) 
din 

d odd 

Note  that  due to the fact that  ~ #(d) = 0 for n > 1 the normal i za t ion  is of concern  
db 

only in the case n = 2 s (s > 0), i.e. 

Rq,n(X) = H Hq,n/d( x)"(d)' if n # 2 s (s > 0). 
aln 

dodd 

Example. By Eq. (2) the p roduc t  R4,z(X ) of all srim polynomia l s  of degree 4 
over IF 4 is equal  to (x ~7 + 1)/(x + 1). A comple te  fac tor iza t ion of this po lynomia l  
over F 4 gives the four srim polynomia l s  of degree 4: x 4 + cox 3 + x z + ~ox + 1; 
X 4 -~- O)2X 3 -~- X 2 + (/)2X -~ 1; x 4 + x 3 + O)X 2 -~- X + 1; x 4 + x 3 + O)2X 2 -~- X + 1. Here  

~o denotes  a pr imit ive e lement  of F4:~o + o~ 2 -- 1. 
M a k i n g  use of (2) we are able to count  the number  of srim po lynomia l s  of  fixed 

degree: 

Theorem 3. Let Sq(n) denote the number of srim polynomials of degree 2n over lFq. 

l ( q " -  1) i f q i s  odd  ^ n : 2  ~ 

Sq(n) = I 1 ./a (3) 
[ ~- ~ ,u(d)q otherwise.  
[ z n  dl n 
\ dodd 
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Remarks 

• Note the analogy of this procedure to the usual determination of the number 
Nq(n) of all irreducible monic polynomials of fixed degree n over Fq: 

N q ( n ) = ~ # ( d ) q  n/d 

(Lidl/Niederreiter [11]). The role ofx  qn- 1 _ 1 in the case of irreducible polynomials 
is played by the polynomial x q" ÷ 1 _ 1 in the case of self-reciprocal irreducible 
polynomials. 

• Carlitz determined the numbers Sq(n) in his paper [4]. In [5] Cohen gave a 
simplified proof of Theorem 3 avoiding the distinction between even and odd q. 
The treatment of self-reciprocal polynomials in Cohen [6] is very similar to that 
given here. 

• As is well known (Miller [14]), Eq. (3) has an interpretation as the number 
of all primitive self-complementary necklaces of length n in q colours - this holds 
even if q is not a prime power. This is proved by means of de Brujin's method of 
counting. 

• For further references to the literature on self-reciprocal polynomials see the 
notes of Chap. 3, p. 132 in Lidl/Niederreiter [11]. 

3. Construction of Irreducible Self-Reciprocal Polynomials 

In Galois theory it is occasionally useful to remark that for any self-reciprocal f (x)  
of even degree 2n, x-nf(x)  is a polynomial g(y) of degree n in y :=  x + 1/x. Proceeding 
in the reverse direction we use this quadratic transformation to construct 
self-reciprocal polynomials (Carlitz [4], Miller [14], Andrews [1], and Cohen [6]). 

Definition. For f (x) = a i x '  , a o ~ 0 ~ an, set 
i=0  

f e (x ) :=  xnf(x + 1/X) = ~ ai(1 + x2)ix n-i. 
i=0  

Remark. The coefficients o f f  can be retrieved uniquely from the coefficients of f o  
by an inversion formula (Andrews [1]). 

The self-reciprocal polynomial fQ of degree 2n has a simple behaviour with 
respect to reducibility: 

Lemma 4. I f  f is irreducible over Fq of degree n > 1 then either fQ is a srim poly- 
nomial of degree 2n or fQ is the product of a reciprocal pair of irreducible 
polynomials of degree n which are not self-reciprocal. 

Note: two polynomials g and h constitute a reciprocal pair if 

37 eF*:g*(x) = 7h(x). 

Proof. If e is a root of fQ then ~ + 1/e is a root of f ,  by definition of f e .  The 
irreducibility of f implies that ~ + 1/e has degree n, i.e. 
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(~ + 1/c¢) q" = e + 1/~ (n minimal!).  (4) 

This is equivalent to (~q"+ 1 _ 1)(eq-- 1 _ 1) = 0. So, either (eq"+ 1 _ 1) = 0, which by 
Theorem 1 means that  fQ is irreducible, or (eq"- 1 _ 1) = 0, which means  that  each 
irreducible factor of  f e  is of  degree n. If  such a factor  would be srim (which would 
be possible only in case n even) then ~q./2 + a _ 1 = 0 would contradict  the minimal i ty  
o f n i n ( 4 ) .  []  

Remark. G a r b e  in t roduced in [7] the level of a po lynomia l  f which was 
subsequently identified by Cohen  [6] as the order  of  fQ. The quest ion if there are 
polynomials  of m a x i m u m  order and m a x i m u m  level was answered by Cohen  in 
[6]: For  fields of even order  q and every n there is a primitive polynomia l  f of 
degree n over  Fq such that  fQ is irreducible of  order  q" + 1 and there is a primitive 
polynomial  f of degree n such that  fQ factorizes as a p roduc t  of two primitive 
polynomials .  

The proper ty  of the t ransformat ion  f~--~fQ as stated in L e m m a  4 can be put  in a 
different way: 

• I f n > l  then 

I~,(x) - Rq,,(x)Iq,,(x) 
Rq,,/2(x) 

where Iq,,(x) denotes the product  of all irreducible monic  polynomials  of degree 
n over  Fq and Rq,,/2(x):= 1 if n is odd. 

• Fur thermore ,  this relation allows a different way to deduce the formula  in 
Theorem 3 for the number  of srim polynomials .  (For  the p roof  of these claims 
G6tz  [9].) 

Remark. Because of the l emma just proved we can proceed as follows if we want  
to construct  a srim polynomial  of degree 2n over  Fq: 

i) generate a monic  irreducible polynomia l  f of  degree n 
ii) t ransform f into fQ 

iii) test, if 

which is equivalent  to 

gcd(x q. 1 _ _  1 , fO(x ) )=  1 

x q" ~- x (mod fO(x)). 

If the gcd is different from 1 then start  f rom i) anew. 
Confronted with this si tuation we ask for a priori  condit ions for f which 

guarantee  that  fQ is irreducible. 
At the beginning of the investigations we note the following simple l emma  

which is also used by Cohen  in [5] in a more  general form: 

L e m m a  5. Let f be an irreducible polynomial of degree n over lFq. Then fQ is 
irreducible if and only if the polynomial 

g(X) :=  X 2 --  •X -~ 1 e F q , [ x ]  (5) 

is irreducible, where fl is any root of  Jl 
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Proof. Let ~ be a root of f e ;  then f : =  a + 1/a is a root o f f .  So f has degree n 
over ~zq, because f is irreducible by assumption. On the other hand, a is a root 
of the polynomial 9 as defined above. Consequently, a is of degree 2n over Fq 
exactly when 9 is irreducible. []  

Lemma 5 tells us that an answer to our question will depend on the properties 
of quadratic extensions. 

At first we shall deal with the case of characteristic 2 so that the trace 
function will play a decisive role. 

Theorem 6. l f f  (x) = x" + ... + al x + aoffF2k[x ] (k >_- 1) is an irreducible polynomial, 
then f e (x )  is irreducible if  and only if the absolute trace of  al/ao is equal to 1. 

Proof. In order to simplify notation we define 

F:--  F2 ,  K : =  F2k , L:=  F2.k.  

The status of quadratic equations in characteristic 2 is well known: For  ct, f ,  ? eL  
the equation ax E + fix + 7 = 0 has 

• one solution in case f = 0 
• no solution in case f v~O ^ TrL/F(O~'~/ f  2) = 1 
• tWO solutions in case f ~ 0  ^ TrL/F(a')'/f 2) = 0 

(MacWilliams and Sloane [12], p. 277). 
This information combined with Lemma 5 leads to: fQ is irreducible if and 

only if the discriminant TrL/r(1/fl 2) of Eq. (5) g = 0 is equal to 1. 
Because of 

TrL/t~ (1/f  2) = (TrL/r ( l / f ) )  2 

we get the condition Trc/v(1/f  ) = 1. 
The transitivity of the trace function gives 

TrL/r ( 1 I f )  = Trr/v (TrL/r (1/f)) = 1. 

On the other hand TrL/r(1/f)  is the second-highest coefficient of the monic 
reciprocal of f(x): x" + (al/ao)x"- 1 + ... + 1/%. Thus the absolute trace of al/a o 
must be 1. []  

Corollary 7. (Varshamov and Garakov). I f  f ( x )  = x" + ... + a l x  + l e F 2 [ x  ] is 
irreducible then fQ(x)  is irreducible if and only if al is equal to 1. 

Proof. The trace function is the identity. []  

Example. In F 4 the elements with trace equal to 0 are 0 and 1. Therefore we get 
the following rule: the Q-image of the irreducible polynomial f ( x )  -- x" + ... + 
a l x  + aoeF4[x ]  is irreducible if and only if a 0 ¢ al and a l ¢  0. For  instance, the 
Q-images o f x  2 -I- o x  d- 1,x 2 + 02x -{- 1,x 2 + x -t- 0, and X 2 "-~ X -{- 0 2 are the 4 srim 
polynomials of degree 4 over F 4 as given (in the same order) in the example after 
Lemma 2. The corresponding rules for F s , F 1 6  . . . .  depend on the particular 
primitive element one uses and are not expressible by the coefficients of f alone. 

When the characteristic of the field Fq is odd we find a necessary and sufficient 
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condit ion for the irreducibility o f f  a which reflects even less directly the properties 
of the coefficients of f :  

Theorem 8. Let q be an odd prime power, l f  f is an irreducible monic polynomial of 
degree n over Fq then f a  is irreducible if and only if the element f ( 2 ) . f ( - 2 )  is a 
non-square in Fq. 

Proof. By Lemma 5 f a  is irreducible if and only if the polynomial  9 is irreducible 
which in the case of odd characteristic is equivalent to 

f12 _ 4 is a non-square  in Fq.. 

Again, this condit ion for fl is equivalent to the condit ion given in the theorem as 
the following computa t ion  shows: 

f12 - - 4  is a non-square in Fq, 

¢~(fl2 _ 4)~q-- 1)/2 = _ 1 ¢~{ [(2 - fl)( - 2 - fl)]~q"- 1)/(q- 1)}~q- 1)/2 = _ 1 

¢ ~ { / ( 2 ) . / ( - 2 ) }  (q- 1)/2= _ 1 , ¢ ¢ - / ( 2 ) . f ( - 2 ) i s  a non-square  in lFq. [ ]  

Example. Over the field F 5 there are 10 irreducible monic  polynomials  of  
degree 2. Six of  them yield by evaluation 

/ ( 2 ) . f ( -  2)¢{ + 1} --  (~t:~)2. 

These polynomials are x 2 + x + 2, x 2 + 2x + 3, x 2 + 2x + 4, x 2 + 3x + 3, x 2 + 3x + 4 and 
x 2 + 4x + 2. The Q-images of these 6 polynomials  are exactly the 6 srim polynomials  
of degree 4 over F 5. 

Remark. In their paper Varshamov and Ga ra kov  [16] assert on p. 409 that "almost"  
all of their results could be generalized to "higher characteristics". G6tz  [9] has 
given a proof  of Corol lary 7 which avoids the complicated induction arguments  
used by these authors  and he points out that  the crucial fact they use is: 

((1 + x + x 2 +- - -  + x 2" ' ) . )o  = (x2"+ 1 _it_ 1)/(X -~- 1) 

which heavily depends on the Fz-ari thmetic.  

4. Iterated Presentations 

In this section we shall show how one can construct  infinite sequences of irreducible 
polynomials by iterated application of the Q-transformation.  With possible 
exception of the first polynomial  all polynomials  in each sequence are self- 
reciprocal. 

The constructions provide examples of what  Brawley and Schnibben in [3] 
call iterated presentations: 

Definition. An iterated presentation of GF(q N) over GF(q), N a Steinitz number,  is 
a pair of sequences (dl,pi(x)) consisting of a specified divisor sequence do = 1,dl,  
d 2 . . . .  converging to N and a specified sequence of polynomials  fl(x), f2(x) . . . .  such 
that for all i > 0, fi+ l(x) is an irreducible polynomial  of degree d~+ 1/di over GF(qd,). 

In the examples to follow d 1 will be a specified number  n and the quotients 
d~+ 1/di will be 2 for all i >  1. Also, we shall present the intermediate fields by 
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irreducible polynomials over GF(q) of degree d i = 2 i- 1.n, which is an obviously 
equivalent procedure. Accordingly, the fields we are going to present are of the 
type GF(q"2~). 

We first deal with the case of characteristic 2. 

Theorem 9. The Q-transform of  a srim polynomial f (x) = x" + al x"-1 + ... + a l x + 
1 eF2k[,x ] with T r ( a l ) =  1 is a srim polynomial o f  the same kind, i.e. f Q ( x ) =  x2"+ 
?qx 2"-1 + ... + ?qx + 1 satisfies Tr(81) = 1. 

Proof. We use the following notation: 

F:= F 2 ,  K:= F 2 k  , L:= ~7~2nk , G:= F22nk. 

By Theorem 6 fQ is irreducible. If ct is a root o f f  e then fl:= ~ + 1/0t is a root o f f  
and ~ is a root of the irreducible polynomial 0(x):= x 2 + fix + 1 eL[x]  (Lernma 5). 
We have to following identities: 

Tr~/L(~) = fl; Trc/K(00 = 41; TrL/x(fl) = al 

which combine by transitivity to 

Trr/e(gq) = Trr/r  Tr~/r(ct) = Trx/F TrL/x(fl) = Trx/r(al) = 1. [] 

Examples 

1. Starting with ml(x)  = x 2 + x + 1 over F2 and defining mi+ l(x) = mi(x)Q(i > 1) 
we get an infinite sequence of irreducible polynomials over F 2 of degrees 2 i. This 
sequence was used recently by D. Wiedemann 1-17] (also [-3]) to construct an 
iterated presentation of the infinite field GF(22~), a subfield of the algebraic closure 
of F 2. We note in passing that Wiedemann posed the question if for all i the order 
of mi(x) is the maximum possible, namely 2 2'-1 + 1, the (i - 1) th Fermat number. 

2. If we start with the srim polynomial of degree 10: 

ml(x ) = x 1° + X 9 "q- X 5 + X "t- 1 eF2[-X] 

we get an iterated presentation of GF(25"2®). 

3. If we want to define the field GF(23"2~°) we can start with the polynomial of 
degree 12: 

X 12 -{'- X 11 -]- X 9 + X 7 + X 6 + X 5 "[- X 3 + X + 1 e F 2 [ ' X  ] .  

(Note that x 6 + x 3 + 1 is the only srim polynomial of degree 6 over F 2 !) 

More generally, we are able to give an iterated presentation of the infinite field 
GF(2 "'2~) for any odd n via the following procedure: We start with an irreducible 
polynomial of degree n over F 2 such that both the second-highest and the linear 
coefficient are 1 (call these polynomials of type A). The Q-transformation applied 
to such a polynomial gives a srim polynomial with linear coefficient equal to 1. 
The iterated application of Q will then lead to the desired sequence of extensions 
according to Theorem 9. 

We show that polynomials of type A exist in the case n = 2"m, m odd, which 
is sufficient for our purposes. (In fact, there is computational evidence that 
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polynomials of type A exist for all degrees > 4 and that the numbers of these 
polynomials increase quite rapidly, but we were not able to give an explicit counting 
formula for them.) 

Suppose on the contrary that any irreducible polynomial over F 2 of degree n 
with linear coefficient 1 is of type B, i.e. has second-highest coefficient 0. Let B* 
be the set of reciprocals of the polynomials in B. By assumption, B n B * =  0. By 
Corollary 7 we know that card(B) is equal to the number of srim polynomials of 

degree 2n. But now 2.card(B)= L ~ I~(d) 22mId already exceeds (without taking 
zm dim 

into account polynomials of type x " +  0 - x " - l + - - .  + 0"x + 1!) the number of all 
irreducible polynomials: 

Nz(n) = -  2/~(d) 2"/d = #(d) 2zm/d - -  ~, #(d) 2"/d" 
n din zm dim 2m dim 

This contradiction shows that A cannot be empty. 
When p is an odd prime the conditions under which an irreducible polynomial 

f ( x )GFp[X]  generates an infinite sequence of irreducible polynomials by iterated 
application of Q are much more complicated. In fact, the following investigation 
should be understood as a more experimental attempt to demonstrate the problems 
involved. 

The condition on f e  that makes f e2 irreducible is: 

fQ( 2 ) ' fQ( -  2) = 2z" ( -  1)"f(5/2)'f(- 5/2) is a non-square. 

The condition on fQ2 that makes fQ3 irreducible is: 

fQ~(2)'fQ~(- 2 )=  102"(- 1)"f(29/lO)'f(- 29/10)is a non-square. 

Continuing in this way we get a sequence of conditions in which f has to be 
evaluated at the points +_ T~,(1) for r > 1 where Tp denotes the finite mapping 
Tp:aF--~a+l/a (modp) and T~, denotes the r th iteration of q'p. Obviously, 
T~(a) = a + a ~- 2, so that Tp is also defined for 0. 

We list a few elementary properties of this mapping which we need in the 
sequel: 

(i) Due to the symmetry % ( - a ) = -  Tp(a) we identify % with the mapping 
induced on the set of unordered pairs (a, - a ) .  
(ii) Any element of Fp which has a Tp-preimage has exactly two of them with the 
only exception of (2, - 2). As a consequence, (2, - 2) is contained in a Tp-cycle if 
and only if this is true for (1, - 1). 
(iii) ( 1 , -  1) has no Tp-preimage if and only if - 3  is a non-square in Fp, i.e. 
p = - 1 (mod 6). 
(iv) If p = 1 (mod 6) then 1 has a ~Up-preimage but may not generate a Tp-cycle. 
37 is the first prime of this type. 
(v) We call a prime p Q-singular if0 is the final point of the Tp-orbit of 1 (otherwise 
we call it Q-regular). Necessarily such a prime is = 1 (mod 4) and - +_ 1 (mod 10) 
(when greater than 5), to mention only the simplest congruences to be satisfied. 
For these primes the Q-iteration with irreducible outcome comes to an end after 
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finitely many steps. In order to give an idea of the frequency we list the Q-singular 
primes not greater than 10,000:5, 29, 41, 89, 101,109, 269,421,509, 521,709, 929, 
941, 1549, 1861, 2281, 2521, 2749, 2801, 2909, 3121, 3169, 3469, 5821, 5881, 7109, 8069, 
8969, 9041, 9181. 

In order to generate an infinite sequence of srim polynomials over a field with 
Q-regular characteristic p one has to 

1. determine the length lp of the Up-orbit of 1 and to 
2. find an irreducible polynomial f (x)  that satisfies the conditions: 

f ( 2 ) ' f ( - 2 )  and ( -  1)" ' f (U~,(1)) ' f (Uv(-  1)) 

are non-squares (mod p) for all r = 1,.. . ,  Ip + 1. 

It appears to be difficult to find general propositions concerning these two tasks, 
so at present we have to content ourselves with giving examples in some special 
cases. 

When we are sure that neither p is Q-singular nor 1 is contained in a Up-cycle 
then we can use the following alternative to define infinite sequences of srim 
polynomials: 

Theorem 10. I f  p is a prime satisfying p - 3  (mod4) and p - 5  (mod6) 
then (i) any irreducible polynomial f(x)~Fp[x] of even degree n such that 
f ( U ~ ( 1 ) ) . f ( U ~ ( -  1)) is a non-square for all r >= 1 defines an iterated presentation 
of GF(p"'2®). 
(ii) any polynomial of odd degree n such that f ( 2 ) . f ( - 2 )  is a non-square and 
f (U~(1)) . f (U~(  - 1)) is a square for all r >= 2 defines an iterated presentation of 
GF(p"'2~). 

Note that we do not claim the general availability of the polynomials needed in 
Theorem 10. 

Example. For p = 11 the U 11 -orbit of 1 is 1 -~ 2 -~ ( - 3) ~ 4~-~(- 4). The polynomial 
x 2 + x + 6 may be taken as an example for the case (i) of the theorem whereas for 
(ii) the polyn6mial x + 5 is suitable. 

Finally, if 1 generates a Up-cycle then we have to make sure that the conditions 
'~f (2) ' f ( -2)  is a non-square" and " ( -  1 ) " . f ( 2 ) . f ( - 2 )  is a non-square" are com- 
patible. 

This means that for p - 3 (mod 4) the degree n has to be even. 
The case of the two smallest Q-regular primes is particularly easy: 

I f  f (x )~Fa[x  ] is irreducible of even degree such that f ( 1 ) . f ( - 1 ) =  - 1  then f (x)  
generates an infinite sequence of srim polynomials by Q-iteration. 

As an example one might take x 2 + x + 2~F  3 Ix]. 

I f  f (x)~FT[x ] is irreducible of even degree such that f ( 1 ) . f ( -  1) and f ( 2 ) . f ( - 2 )  
are both non-squares (mod 7) then f (x)  generates an infinite sequence of srim 
polynomials by Q-iteration. 

As an example one might take x2+ x - l e F 7 [ x  ]. 
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W e  close by r ev iewing  the  o p e n  q u e s t i o n s  which  a rose  in this sect ion:  

• W h a t  is the  n u m b e r  o f  p o l y n o m i a l s  o f  type  A? 

• Is there  a c h a r a c t e r i z a t i o n  of  the  Q-s ingu la r  p r imes?  

• F o r  wh ich  p r imes  p is the  ~Pp-orbit of  1 cyclic? 

• F o r  wh ich  pai rs  (p, d) do  there  exist  i r r educ ib le  p o l y n o m i a l s  o v e r  Fp ,  p odd ,  of  

degree  d wh ich  give rise to an  infinite s equence  of  se l f - rec iprocal  i r reduc ib les?  
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Note added in proof. H. Niederreiter has answered completely the question about polynomials of type 
A in his paper "An enumeration formula for certain irreducible polynomials with an application to 
the construction of irreducible polynomials over the binary field" (forthcoming). 


