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On the Construction of Multivariate (Pre)Wavelets 

Carl de Boor, Ronald A. DeVore, and Amos Ron 

Abstract. A new approach for the construction of wavelets and prewavelets on 
R d from multiresolution is presented. The method uses only properties of shift- 
invariant spaces and orthogonal projectors from L2(R d) onto these spaces, and 
requires neither decay nor stability of the scaling function. Furthermore, this 

approach allows a simple derivation of previous, as well as new, constructions of 
wavelets, and leads to a complete resolution of questions concerning the nature 
of the intersection and the union of a scale of spaces to be used in a multi- 

resolution. 

1. Introduction 

We present a new approach for the construction of wavelets and prewavelets on 
R a from multiresolution. Our method, which is based on our earlier work [BDR], 
[BDR1], uses only properties of shift-invariant spaces and orthogonal projectors 
from L2(R a) onto these spaces, and requires neither decay nor stability of the 
scaling function. Furthermore, this approach allows us to derive in a simple way 
previous constructions of wavelets, as well as new constructions, and to settle 
completely certain basic questions about multiresolution. 

A univariate function ~ E L2(R ) is called an orthogonal wavelet if its normalized, 
translated dilates ~kj.k:= 2k/2r j, k r Z ,  form an orthonormal basis for 
L~(R). In other words, this system is complete and satisfies the orthogonality 
conditions 

(1.1) fR I/IJ'k~Jj"k' = (~(j - j ' )b(k  - k'), j, k,j ' ,  k' e Z ,  

with b the delta function on Z. The concept of prewavelet is somewhat more general 
in that it requires (1.1) to hold only when k ~ k' and hence the functions there are 
not assumed to be orthogonal at a fixed dyadic level k. In particular, ~k(.-j), 
j E Z, are not necessarily orthogonal, and, instead, it is assumed that (~k(. -J))j~z 
forms a stable basis for L2(R) (see the end of this section and Section 2 for the 
definition of stability). 
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On R d, wavelet and prewavelet bases are generated by the translation and 

dilation of the elements of a set W of 2 d - 1 functions from L2(Rn). We say that 

they are an orthogonal wavelet set if {~j,k '= 2ka/2~'( 2k" --J): ~ e W, J S Zd, k e Z} is 

an orthonormal basis for Lz(Rd). Analogously, the set �9 is a prewavelet set if 

(~j,k: ~ E ~P, j e Z d, k~ Z} is a stable basis for L2(Rd), and in addition we have 

orthogonality between levels: 

(1.2) f ~lj, k~Oj,,k,=O, k~k', j,j '~Z ~, ~ , q ~ .  
JR d 

The construction of orthogonal wavelets has a rich history described in the 

monograph of Meyer [Me] and the article of Daubechies [D1]. Prewavelets have 

been stressed only in recent years beginning with Battle [-B]. The paper of Jia and 

Micchelli ['JM] discusses the brief history of prewavelets. Most methods used for 

the construction of wavelets are based on the notion of multiresolution as 

introduced by Mallat [Ma] and Meyer (see [Me]). Multiresolution, which we now 

describe, also forms the starting point for our constructions. 

We say that a space 5: of functions defined on R ~ is shift-invariant if, for 

each s e 5:, the shifts, s ( ' - j ) ,  j ~ Z d, of s are also in J .  More generally, we 

say that 5: is h-shift-invariant if it is closed under hZa-translations. All shift- 

invariant spaces considered in this paper are assumed to be closed subspaces of 

L2(Rd). Important examples of shift-invariant spaces are those generated by a finite 

set (I):= {qh, . . . ,  q~,} of functions from LE(Rd). For  such ~, we define 

to be the L2(Rd)-closure of the finite linear combinations of the 2-k-shifts of the 

functions from ~. We write 

: =  

In case qb consists of a single element cp, we write ~k((p) (instead of 5:k({~0})) and 

we say that 5~(q~) is a principal shift-invariant space. 

Now suppose that we hold in hand a sequence of spaces {5:k}k~Z, with 5 :k a 

2-k-shift-invariant space for each k ~ Z. We say that {5 :k} forms a multiresolution 

if the following conditions are satisfied: 

(i) 5 ~k c ~k  + 1, k ~ Z, 

(1.3) (ii) U 5~k -- L2(Ra), 

(iii) ~ 5 :k = {0}. 

In the usual definition of multiresolution analysis as proposed by Mallat [Ma], 
it is also assumed that 

(a) 5 :k is the 2k-dilate of some fixed principal shift-invariant space 5:(q~), and 

that 
(b) the shifts of q~ form an orthonormal family. 

We do not assume these conditions in our definition (1.3) in order that we can 

discuss more general situations that are covered by the techniques of this paper. 
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However, for the remainder of this introduction, in order to keep the discussion 
simple, we assume (a), i.e., that 60k is of the form 

60k = {s(Zk.): S e 60((0)} 

for some principal shift-invariant space 60((0). Equivalently, each 60k is generated 
by the 2-k-shifts of the dilated function q~(2k'). In this case, condition (1.3)(i) is 
already implied by 

(1.4) 600 c 601. 

Previous constructions of wavelets assume that ~o has L2(Ra)-stable shifts, a 
notion which we now introduce. For a collection F c L2(Ra), we say that F is a 
stable basis (for the space it generates) if there exist positive constants Ca(F) and 
C2(F ) such that, for any finitely supported a :=  (af)fEF, 

' s~Faf f  (1.5) Ca(F) I] a It l~(v) < < C2(F)[I a]l t2(e). 

In the context of wavelets, the family F is taken to be the 2-kZa-shifts of some 
finite set (I), with the totality of shifts taken over all k ~ Z or for some fixed k. 
Discussions of the stability question, including earlier references, can be found in 
[-JM] (also for norms other than the 2-norm) and in [-BDR1]. Because the finitely 
supported sequences are dense in/2(Zd), the L2-stability of the shifts of a function 
q~ implies that the map 

/2(Z a) ~ 60(q~): a~-~ ~ ~p(" - j ) a ( j )  
j ~ Z  d 

is well defined and induces a Hilbert space isomorphism between I2(Z d) and 60(~0). 
Thus, under the stability assumption, (1.4) is equivalent to having a refinement 

equation 

(1.6) ~(x)=  ~ ~ ( 2 x - ] ) a ( j )  
j~Z d 

hold for some sequence a ~ I2(Zd), or, equivalently, to have 

(b = A(b(./2) 

for some 4re-periodic, locally square-integrable function A, called the (refinement) 
mask. 

Given a shift-invariant space 5 e := 60o whose 2k-dilates 60k, k ~ Z, satisfy (1.3)(i), 
we define the wavelet space W as the orthogonal complement of 60o in 5 ea : 

W:= 6010  600. 

It follows that W k := 60k+ 1 @ ~,Gpk, k E Z, is the 2k-dilate of W. The spaces W k, k ~ Z, 

are mutually orthogonal. 
Equivalently W can be defined by projections. If P : - P ~  is the orthogonal 

projector from L2(R a) onto 6 ~ then W = {s - Ps: s e 601}. If (1.3)(ii) and (iii) are 
also satisfied, then the orthogonal decomposition 

(1.7) L2(R a) = ( ~  W k 
k ~ Z  
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is obtained since, for each f e L2(Ra), we have 

f =  ~ (Pkf - -Pk_l f )  with P ~ f - - P k _ l f e W  k-x, keZ,  
keZ 

and Pk is the LE(R d) projector onto 6 ak (which is obtained from P by dilation). 
Indeed, condition (1.3)(ii) implies that limk-~o~ Pkf = f, and (1.3)(iii) implies that 
limk-~-~ Pkf = O. Note that Pk -- Pk-1 is the orthogonal projector of L2(R a) onto 
W k - 1 .  

Wavelets and prewavelets are obtained from multiresolution analysis by finding 
generators for  the space W. For example, in the univariate case, Mallat [Ma] 
begins with a function ~p e L2(R ) which has orthonormal shifts and satisfies (1.3) 
(with 6 pk := 5ek(q~)) and shows that Wis a principal shift-invariant space W = 6P(0) 
with 0 an orthogonal wavelet. The Mallat construction can also be applied to a 
function ~0 whose shifts are only L2(R)-stable by first orthonormalizing these shifts. 

Unfortunately, if q~ is of compact support (and its shifts are not orthonormal), 
then the orthogonal wavelet ~ will generally not have compact support. This 
motivated the study of prewavelets. We obtain prewavelets ~ by finding gen- 
erators of W whose shifts form an L2(R)-stable basis for W (but not necessarily 
an orthonormal system). Chui and Wang [CW] and Micchelli [Mi] have shown 
in the univariate case that if ~0 has compact support and L2(R)-stable shifts and 
(1.3) is satisfied (again with 5ek:= ~~ then there is a compactly supported 
prewavelet ~ which generates W. Chui and Wang even characterize the ~k e W 
of minimal support (in a sense to be made clear in Section 5) which generates 
W. We give a simple derivation of (a slightly stronger version of) these facts in 
Section 5. 

In the multivariate case the construction of orthogonal wavelet and prewavelet 
sets is far more involved. Micchelli [Mi] and Jia and Micchelli [JM] have studied 
multiresolution in the case when the function q~ has L2(Rd)-stable shifts and satisfies 
two regularity conditions. The first of these is that the periodization 

(1.8) I~ol ~ ~ I~o("-j)[ 
j eZ  d 

of I~ol is in L2(Ta). (Note that this requirement is satisfied if q~ has suitable decay 
at ~.)  Secondly, they require that r satisfies the refinement equation (1.6) with 
the coefficient sequence a in [~(Za). 

In contrast with the present literature, we only need to assume here that the 
function r is in L2(Rd), satisfies the refinement condition (1.3)0) (with 6zo := 6e(~0), 
and ~szk the 2k-dilate of 6~~ and that its Fourier transform ~b satisfies 

(1.9) supp ~b = R d. 

Here and later, the support of an L2(Rd)-function f is defined only modulo a 
null-set as {x: f (x)r  0} and the Fourier transform of a function f e L l ( R  d) is 
defined by 

(1.10) f(Y) := j,~[d e_yf, 
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where, here and throughout, 

eo: x~--" e i x ~  

is the complex exponential with frequency 0 ~ R a. (We use without further mention 
basic facts from Fourier analysis including the fact that the Fourier transform has 
an extension to L2(Ra).) In particular, our analysis applies whenever <p has compact 
support since then ~b is analytic and its zero set is of measure zero (unless q~ = 0). 
We note that we do not need to assume that q~ has L2(Rd)-stable shifts, nor impose 
any decay conditions, nor any conditions on the refinement coefficients a. In fact, 
we do not even need to assume the refinement condition in the form (1.6), only 
in the original form (1.3)(i). 

Under the above assumptions, we show in this paper that conditions (1.3)(ii) 
and (iii) of multiresolution automatically hold. Further, our derivation of (1.3)(iii) 
from (1.3)(i) does not make use of (1.9). We even provide a characterization of 
property (1.3)(ii) for the case when (1.9) fails to hold. We also show that (1.3Xii) 
and (iii) automatically hold whenever q~ is of compact support. Details can be 
found in Section 4. Previous results on the matter (see, e.g., [JM] and [$6]) were 
derived under the stability assumption and under suitable decay conditions. 

The main goal of multiresolution is to construct a set W of 2 a - 1 functions 
which generate the wavelet space W (i.e., W = S:(tP)) and have other prescribed 
properties. We index the elements in tp by the set V'.'= V\{0}, with V the set of 
vertices of the cube [0 . .  �89 A major advantage of our approach is that it is almost 
trivial to find generating sets W for IV. Once one such set W is found, we can then 
find (all) other generating sets by simple operations on the Fourier transforms of 
the elements of tp. 

Two particularly interesting generating sets which are obtained by our construc- 
tion are discussed in Section 3. First, we show that (1.9) implies that W always 
possesses a generating set �9 which provides an orthonormal basis for 14, i.e., an 
orthogonal wavelet set. Secondly, under slightly more restrictive assumptions on 
q~, we show that there is a function w E L2(R a) whose half-shifts w(. + v), v E V', 
form a generating set for IV. Special cases of this latter result have been proved 
in [MRU] and [Mil] ,  see also [LM I. 

A more delicate problem is the construction of multivariate wavelets and 
prewavelets which have compact support. If the function ~0 of multiresolution has 
compact support, it is quite easy to find generating sets W for W whose elements 
are compactly supported. On the other hand, if q~ has L2(Ra)-stable shifts, we would 
like the shifts of the functions in W to form an L2(Rd)-stable basis for IV. While it 
has been shown by Meyer [Me, Chapter III, Section 6] and Jia and Micchelli 
[JM1] that such generating sets always exist, their proofs are not constructive. 
On the other hand, several authors, including Riemenschneider and Shen [RS1], 
Chui, St6ckler, and Ward [CSW], Lorentz and Madych [LM], and St6ckler [$6], 
have given constructions of prewavelet sets W under various conditions on q~ and 
in some cases with restrictions on the space dimension d. We discuss this question 
in Section 7 where we use our characterizations of the wavelet space W to recover 
and slightly improve some of these constructions. 

A particularly interesting application of wavelet constructions is to functions q~ 
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which are B-splines or box splines. In this regard we obtain the compactly 

supported univariate spline prewavelets of Chui and Wang [CW1] and derive 

various orthogonal wavelets and prewavelets obtained from box splines. 

As we have already noted, our construction of wavelets and prewavelets is based 

on our earlier results on the structure of shift-invariant spaces. We use two facts 

repeatedly. The first is an exact description of finitely generated shift-invariant 

spaces. For  example, we have shown in [-BDR] that the principal shift-invariant 
space 5e(go) is described by its Fourier transforms: 

(1.11) 5:((o) = ( ~  ~ L2(Rd): z is 2re-periodic}. 

Here and later, for a set of functions F, we define i f :=  {f:fE F} to be the set of 

its Fourier transforms. A similar characterization holds for a finitely generated 

space (see Section 2). 

In the case that go has L2(Rd)-stable shifts, (1.11) is well known, and the functions 

must be in L2(Ta), with 

T d 

the d-dimensional torus, i.e., the cube [ - 7 : . .  rc]d with the usual identification of 

its boundary points. Assuming supp 0 = Ra, we have shown in [BDR1] that there 

is always a function go. which generates 5:(go), (i.e., 5:(go.) = 5a(go)), whose shifts 

are Lz(Rd)-stable; in fact they can be taken to be orthonormal. 

The second result which we frequently employ is the explicit formula (2.11) of 

the next section for the orthogonal projector P = P~ from Lz(R d) onto the principal 

shift-invariant space 5:(go). 

With these results in mind, our construction proceeds as follows. We show that 

if go is in L2(R d) with supp 0 = Rn and if the space sequence (sek(go))k~Z satisfies 

(1.3)(i), then we can give an alternate description of 5:1: 

(1.12) ~9 ~1 = Y((I)), 

where (I).'= (go(. + v))wv. It follows that 

wv := go(" + v) - P~(go(. + v)), v 6 V', 

are a set of generators for W. We then use our characterization of finitely generated 

shift-invariant spaces to obtain other generators with more favorable properties. 

Because of our description of the projector P~,, all these generators are described 
in a concrete way in terms of their Fourier transforms. In this way we are able to 

construct an orthonormal basis for the wavelet space without using either the 
refinement equation or the mask, and, further, without making any assumption 

on the stability or orthogonality of the shifts of go. Under further assumptions (e.g., 

when go is compactly supported), generators of the wavelet space that can be 

written as a finite linear combinations of go(2" - j ) ,  j e Z d, are obtained. 

As already alluded to in our definition (1.3), we actually work in the more general 
setting of nonstationary wavelets in this paper, which means that our spaces 5 ek, 

while still being assumed to be generated by the 2-k-shifts of some function gok, 
will not be assumed to be the dilate of 5 :~ or of any other space in the sequence 
{5:J}. It turns out that this generalization can be handled at no additional cost 
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and leads to interesting bases for Lz(Rd). For  example, in Section 6 we discuss 

such an example based on exponential splines, and in Section 8 we discuss their 

multivariate analog, the exponential box splines. 

An outline of the present paper is as follows. In Section 2 we review and extend 

results from our earlier work which will be needed in the sequel. In Section 3 we 

describe generating sets and bases for wavelet space W. In Section 4 we analyze 

conditions (1.3)(ii) and (iii) of multiresolution. In Section 5 we apply our construc- 

tions to derive univariate wavelets and prewavelets with various desirable prop- 

erties. In Section 6 we discuss exponential B-splines as wavelets. In Section 7 we 

consider the construction of wavelets in the multrivariate case. We conclude with 

a brief discussion in Section 8 of exponential box splines as wavelets, and describe 

stable bases for their associated wavelet spaces. 

2. Shift-Invariant Spaces 

Our analysis is based on the structure of shift-invariant spaces given in our earlier 

work [BDR], [BDR1]. In this section we review some of these facts and develop 

them somewhat further in directions pertinent to the construction of wavelets. We 

have already mentioned in (1.11) a characterization of 50 = ~(cp) in terms of 

Fourier transforms. A similar characterization of the space ~k(cp), generated by 

the 2-k-shifts of cp, easily follows from (1.11) by dilation: 

(2.1) ~-~'~) = {z~b ~ L2(Rd): z is 2k+ 1re-periodic}. 

In the context of the principal shift-invariant space ~(q)), it is important to 

know whether some given function f e 6:(~o) generates this space, i.e., whether 

6e(f) = ~(qg). With the aid of (1.11), we obtain the following simple answer 
[BDR1] to this problem: 

Corollary 2.2. Let 6:((p) be a principal shift-invariant space, and let f ~ ~9~ Then 

f generates ~(q~) if  and only if supp f ~ supp (~. 

Proofi If q0~ 6v(f), there exists, by (1.11), a 2re-periodic ~ such that ~b = zf, and 
hence supp f ~ supp 0. 

For  the converse, we assume that s u p p f  = supp 0 and want to show that 

~ ( f )  = 6e(q~). Since we assume that f ~  b~ then, by (1.11), there exists ~ such 
that f = ~ a.e. Defining z' to be 1/z on supp ~ and 0 elsewhere, we obtain that 

a.e. ~b = v 'f  on supp z, but since supp r = supp f D supp ~b (the last inclusion by 
assumption), the equality holds everywhere. By (1.11), we conclude that q)e 6:(f),  
and hence 6 : ( f )  = ~(q~). �9 

The above description of principal shift-invariant spaces in terms of their Fourier 
transforms can be generalized to the finitely generated shift-invariant space 6:(qb) 
as follows (see Theorem 1.7 of [BDR1]): 

(2.3) ~(q~) = z~o(~ e Lz(Re): z~, is 2re-periodic, qo s q~ . 
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From the description (1.11) of the principal shift-invariant space J(~0), we see 
that the Fourier transform of a function s ~ ~(q~) is determined by its values of T d 
(at least when supp 0 = Rd) �9 It is possible to factor out this redundancy with the 
aid of the braeket produet which is defined for f ,  g E L2(R d) by the formula 

(2.4) [f ,  9] := (fo)o = ~ f ( .  + fl)O(" + fl). 
f l e  2 ; ~ Z  d 

Note that [f ,  g] is in LI(T a) whenever f ,  g ~ LE(Ra) . Also, by the Cauchy-Schwarz 
inequality, 

(2.5) I[f, g]l 2 < I f ,  f Jig, g], 

with the right side finite a.e. The importance of (2.4) lies in part in the following 

formula, valid for f ,  g ~ L2(Ra): 

f, if, (2.6) ~ f ( x  -j)O(x) dx = (~)a ~ e_ j fg  = (~)d ~ e_j[f,  0], J~ zd, 

which shows that the inner product o f f ( .  - j )  with g is the j th Fourier coefficient 

of [f ,  8]- 
It is easy to derive the following three elementary properties of the bracket 

product. The first two follow from (2.6), while the third one follows directly from 

the definition (2.4). 

Lemma 2.7. I f  f, g ~ L2(Rd), then the shifts o f f  are orthogonal to the shifts of g if 

and only if I f ,  O] = O. 

I f  f, g ~ L2(R d) are compactly supported, then [ f  , O] is a trigonometric 

Lemma 2.9. I f  f g ~ L2(R a) and z has period 2n, then [zf, O] = z[f ,  O] = If ,  fO]. 

The bracket product also appears naturally in the computation of the norms 

of elements s ~ ~9~(r By (1.11), ~ = z 4 and 

(2.10) (22) d/2 fl s IIL.~R.) = II gll L.tK') = tl ~[4, 4 ]  X/2 II L.W)" 

There is a simple description for the orthogonal projector P := P~ from L2(R a) 
onto the principal shift-invariant space 6a(~o). For each f ~ L2(Ra), P ~ f  is the best 
L2(Ra)-approximation to f from 5a(q~) and is characterized by the orthogonality 
of the error f - P~of to 5~(q0. It was shown in [BDR] that P~ is described by 

^ 

/ - - .  EL 42 
(2.11) P ~ f  - - -  4 

E4, 4 ]  

where we use the convention (throughout this paper) that 0 times any extended 
number is 0; in particular 0/0 is defined to be 0. (We note that, by the definition 
of the bracket product, 4 vanishes whenever [4, 0] does.) There is a similar 
formula (which we do not need) in the case when 5 p is finitely generated (see 

[BDR1]). 

Lemma 2.8. 
polynomial. 
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There are several interesting points to be made about bracket products and the 
projector P~. First, from (2.6), it follows that q~ has orthonormal shifts if and only 
if [~b, ~] = 1 a.e. on T d. In this case, formula (2.11) is the (Fourier transform of 
the) usual one for projecting onto 5:(q~). In the case that 60 does not have 
orthonormal shifts, but [~b, r  # 0 a.e., the function ~0. with Fourier transform 

(2.12) ~b. . -  [~b, ~] 1/2 

is in 5:(~p), has orthonormal shifts, and generates 5P(cp), i.e., 5:(q~.) = 5:(q~). 
Since the square root of the bracket product appears very frequently, we 

introduce the following notation: 

2~1/2 
(2.13) r : =  [ r  r  = Z [(P(" "~ fl)] / ' 

fl 6 2~rZ d / 

with the sum taken, offhand, pointwise, hence defined for any tp on R d if we allow 
it to take the value ~ .  From (2.6), we conclude that the map L2(R d) -* LE(Td): 

~ ~ is nonlinear, norm-preserving, and onto: 

Lemma 2.14. The function q~ is in L2(R a) /f and only if (o �9 L2(Td). Moreover, 

Turning back to the orthogonal projection, we can write it in the form 

A r 
(2.15) P~of = If,  fi]~b, /~ .'= (0 2, 

and check that/]6~ = 1 on supp ~, and therefore, by the above lemma, ~ �9 L2(R a) 
if and only if 1/~b �9 Lz(supp ~). In such a case, by (2.5), If ,  if] �9 LI(Ta), and we can 
formally write the orthogonal projection P~f in the form 

(2.16) P~T = ~' tp(. +j) [ f , /~]v( j ) ,  
jEZ d 

with If , / ) ]  v(j) the jth Fourier coefficient of If,/~]. 
A special case of the above occurs when q~ has LE(Rd)-stable shifts, i.e., when 

(~0(. + J))j~z, forms a stable basis for 5:(~o). As is explained below, this stability is 
equivalent to having C 1 _< ~ _< C 2 a.e. on T ~ for constants Cx, C 2 > 0. In this case 
the formal expansion (2.16) converges (unconditionally) and hence the orthogonal 
projection takes the explicit form 

(2.17) P~f = ~ q~(" + j)#f(j), pf(j):= f f(x)#(x + j) dx. 
j~Z d JRd 

A similar analysis applies to the structure of the spaces 5:k(<p) generated by the 
2-k-shifts of the function ~o. We only need the case 5:1(q~) in the sequel. In this 
case the bracket product is replaced by the double-bracket product 

(2.18) ~f, 9~ := ~ f(" +/3)0(" + fl), 
p e 4~Z d 
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which is a 4n-periodic function. The role of f is played by 

2 , , 1 / 2  

(2.19) f : =  ~ I f ( '+ /~) l  ) , fELE(Rd). 
fl ~ 4~zZ d 

Note that j7 is a nonnegative 4n-periodic function, and 

(2.20) f(x) 2 = ~ f ( x  + fl)2, 
Be4~V 

with V the vertices of the cube [0. .  1/2] d. 

In particular, ~ characterizes stability and orthogonality of the ha/f-shifts of ~p. 
Namely, the orthogonality of the half-shifts is equivalent to ~ = 2 -n/z a.e., and 
the stability is equivalent to the boundedness a.e. of ~ anf 1/~. 

We next describe in more detail the structure of the finitely generated space 
5 P = 5~ a more complete discussion can be found in [BDR1]. First, for s E 5 p, 
the representation (2.3) for ~ is local in the sense that we can independently assign 
the values z~(x) for x 6 T d and q~ ~ ~. The choice of %(x) determines the value of g 
at all points in x + 2nZ d. This means that the structure of 5 P is determined by the 

vectors (~(x + fl))p~2~zd, q~ ~ ~, x ~ T d. For example, for any fixed x, these vectors 
are linearly independent if and only if the associated Gramian matrix 

(2.21) G(qb) := ([~b, ~])~,0~* 

has nonzero determinant at x. In particular, if det G(q5) = 0 on a set of positive 
measure in T d, then the representation (2.3) is not unique. 

We say that the set of generators �9 provides a basis for 5 p (that is, their shifts 
are a basis) if the representation (2.3) is unique for each s e ~ ,  or, equivalently, if 
det G(q)) is nonzero a.e. All bases for 5p have the same number of elements. We 
note [BDR1] that not every finitely generated shift-invariant space 5f contains a 
basis. We also note that G(q~) is a nonnegative definite matrix, hence q5 is a basis 
if and only if det G(q~) > 0 a.e. on T d. 

We further say that a set of generators qb provides an L2-stable basis for 6e(@) 
if each s ~ 5 r has a unique representation 

(2.22) s = ~ ~', (p(" - j)cj,~,(s) 
(Oet~ j e Z  d 

and the coefficients satisfy 

(2.23) C, ~, ~, [cj,~(s)12~ tlslL2=r C2 Z Z Icj,~(s)l 2 
tpet~ j e Z  d r j e Z  d 

with absolute constants C1, C2 > 0. Any Lz-stable basis is obviously a basis. It 
can be easily checked that the present definition coincides with the (seemingly 
weaker) one given in the introduction. 

We recall from [BDR1] that the finite generating set �9 for 5 ~ is an L2-stable 
basis for ~ if and only if, for some matrix norm II" II (and hence all matrix norms), 

(2.24) II a(~)ll, II a(~)- ' t l  ~ L~(Td) �9 
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In particular, this is the case only if 

(2.25) C~ < det G(~) < C2, a.e. on T d, 

for absolute constants Ca, C2 > 0. 
In the case that the entries of G(q)) are continuous, the "a.e." in (2.25) can be 

removed, and more importantly, (2.25) becomes equivalent to the L2-stability of 
�9 . Furthermore, in this case the right inequality of (2.25) trivially holds, and thus, 
due to the continuity of det G(~), stability is equivalent to the condition 

det G(qO(x) > O, Vx ~ T ~. 

This latter characterization of stability was obtained by Jia and Micchelli [JM] 
under slightly stronger assumptions (which imply the continuity assumption). 

With the notions of basis and Lz-stable basis in hand, the following theorem 
shows how from one �9 which provides a (stable) basis for 5 p we can obtain other 

sets with the same property. In this theorem, T .'= (z0,,0)0~v.~, denotes a square 
matrix whose entries are 2r~-periodic measurable functions. 

Theorem 2.26. Let ~b provide a basis for ~ = ~(t~). For any set vr of functions 

from ~(~b), we have: 

(i) ~P provides a basis for ~ if and only if if~ = T ~  for some T which is 

nonsingular a.e. 

(ii) ~P provides a basis for ~ if and only if it 9enerates 5 ~ and ~ ~P = ~ ~. 

(iii) ~P provides a basis for ~9 ~ if and only if 4~ ~P = 4~ �9 and det G(W) ~ 0 a.e. 

(iv) ~P provides an L2-stable basis for ~ if ~b does and ~P = T ~  with IrZll,/IT-11I 
in Lo~(Td). 

The above is easily proved by noticing the effect of the transformation T on 
the Gramian: 

(2.27) G((T~) v) _- TG(~)T*, 

with T* the conjugate transpose of T; see Corollary 3.31 of [BDR1] for more 
details. 

A special case of the above occurs when T is a diagonal matrix. In this case 
provides a new basis if and only if ~P c LE(R a) and the 2~-periodic functions {Zo, o} 

are different from zero a.e. o n  T d. Also, ~P is an L2-stable basis if �9 is, and the 
%,o and their reciprocals are in L~(Td). 

If �9 provides a basis for 5" := ~(~),  then �9 can be orthonormalized by 
a Gram-Schmidt orthogonalization. We summarize this fact in the following 
theorem whose proof is left to the reader (and can be found in [BDR1]). 

Theorem 2.28. Let t~ provide a basis for ~9 ~ := ~9~ 

(i) Then there is a set r of generators for ~ that provides an orthonormal basis 

for ~ .  

(ii) I f  the functions in �9 have compact support, then there is a set 

= . . . .  , 
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of compactly supported functions which 9ire the orthogonal decomposition: 

(2.29) 5 ~ = 5a(go *) @ " "  G 5"(go*). 

The half-shift-invariant space 5~a(go), generated by go, is identical with 6e(~), 
�9 := (go(. + v))~ v, and Vis the vertices of the cube [0. .  1/2] ~, as before. Clearly, 
orthonormality or L2-stability of the half-shifts of go is the same as orthonormality 
or L2-stability of the full shifts of ~. Thus, there must be a relation between G(~) 
and ~ which we now derive. 

Given a 4re-periodic function f ,  the functions 

Z d 

(2.30) Q~(f):= ~ e~(" + #)f(" + #), v ~ - ,  
tte4~V 

are 2u-periodic. If A has been obtained by choosing exactly one point from each 
of the cosets v + Z n, v ~ V, then 

e-~Qo(f) 
(2.31) f = 2 2 d 

v~A 

is a decomposition of f into its 2zc-periodic components Q,(f)/2 a, v e A. 

Since Zd/2 is the disjoint sum V + Z d, and e~ is 4re-periodic for v ~ Zd/2, we find 
that, for v, u E V, 

(2.32) [evO, euqb] = ~ e~(-+ f i)e_,( '+/~)l~('+ fl)l 2 
fl~21tZ d 

= eo_,(.  + #)E(o, + #)2 
~ 4 ~ V  

~2 
= O _,(go ). 

With this, we can easily compute the eigenvalues and eigenvectors of G(qb). 

Lemma 2.33. For each # ~ 4nVand x E T a, the number 2a~o(x + #)2 is an eigenvalue 

of G(~)(x), with eigenvector au := (ev(x + #))v~v. 

Proof. In view of (2.32), the vth component of G(~)au is 

y, -2 Qv-u(go )eu('+ #) = e,(" + #) ~, e,_~(" + #)Q~_,(q32) = 2%~(" + #)q3(. + p)2, 
u~V u~V 

where, in the last equality, we used (2.31) as well as the 2re-periodicity of Qv_,(q32). 

Corollary 2.34. I f  supp gb = R d, then the set qJ .'= (go(. + v))wv is a basis for 5r 

Proof. From Lemma 2.33, det G(dO) = const l-L~4~v ~3(. + #)z. From our assump- 
tion on the support of ~, it follows that ~, hence det G(q~), does not vanish a.e., 
hence �9 is a basis for 5a(~). �9 
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3. Generators for the Wavelet Space 

We give in this section various descriptions for wavelet spaces and their generators 
and bases. As mentioned earlier, we develop this analysis in the following more 
general framework than usually considered in the multiresolution construction of 
wavelets: We suppose that go and q are functions in L2(R d) with the property 

(3.1) ~(go) = ~1(~). 

As before, 5~(go) denotes the principal shift-invariant space generated by go, and 
5~101) denotes the space generated by the half-shifts of q. Thus, ,5~1(~/) is also the 
2-dilate of 5f(q(./2)). 

We define the wavelet space Was the orthogonal complement of 5~(go) in 5P101): 

w:= ~1(~) | ~(go). 

The purpose of this section is to find generating sets and bases for W. The analysis 
of this section also applies to the other wavelet spaces: 

(3.2) w k  := 5 pk + 1 0 5 ~k 

(which might be generated by some other L2-functions ) after a suitable dilation. 
In the case of stationary decompositions usually considered in wavelet construc- 
tions, we have 17 = go(2"), and 5~1(q) is the 2-dilate of 5P(go). However, (3.1) is much 
more general since we can begin with any q ~ Lz(R d) and take for go any element 
in 5Pl(q). Indeed, 5r yx(q), because sPa(t/) is invariant under shifting by 
half-integers, afort iori  by integers. 

Since 5p(go) c 5~(q), we have 

(3.3) ~b = AO 

for some 4re-periodic function A. We call A the refinement mask. In effect we are 
extending the concept of refinability here since we are not assuming that go 
can be written in the form 

(3.4) go--- ~ q(" -- j)a(j) 
j~zd/2 

for some sequence a (with convergence in the sense of L2(Rd)). 
We do assume that 

(3.5) supp ~ = supp 4. 

Although this assumption is not essential for our wavelet constructions (e.g., a 
referee has pointed out that many of our results hold under the weaker assumption 
that ~ and ~ are both positive a.e.), it significantly simplifies the underlying 
analysis. In case go and ~/ are compactly supported, as is the case in almost all 
wavelet constructions, (3.5) automatically holds, since then supp ~b -- supp ~ = R d. 

We now describe our first set of generators for W; other generating sets and 
bases for Wwill be obtained from this set by using the transformations T described 
in Theorem 2.26. We let (as earlier) V denote the vertices of the cube [0. .  1/2] d. 

We continue to use the abbreviation V' .'= V\{0}. 
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It is clear that  the space 5e~(~/) is generated by the half-shifts (r/(. + v))~v of ~/, 

and this is, indeed, the usual starting point  for most  of the wavelet constructions 

now in the literature. However,  we show below that, because of (3.5), 5p l (q)=  
5el(cp), and therefore 5el(r/) = 5e(@) with 

(3.6) @.'= (~p~ := r + v))~ v. 

The generating set @ is attractive since the generator  ~p of 50((o) is one of its 

elements. 

Theorem 3.7. I f  6e(cp) c 6el(~/) and supp ~3 = supp ~, then 

(3.8) 5al(q) = 5e~(~o) = 50(@) 

with ~b := (~p(. + v))v~ v. 

Proof.  The second equality is clear. As for the first equality, let g := ~/('/2) and 

f . ' =  (o(./2). Since ~p ~Ael(r/), we have f~Aa(g). By assumption, supp ~ = suppf .  

Therefore, by Corol lary 2.2, 6a(f)  = Ae(9). Our  claim then follows from the fact 

that 5al(q~) and 5el(r/) are the 2-dilates of 5e(f)  and 5~ respectively. �9 

It is very simple to find elements of W. If f e 6el(~/), then since P~o is the 

or thogonal  projector  onto  6e(~p), the error  f - P ~ f  is in W. If we choose 2 d - 1 

such functions f in an appropria te  way, we obtain a basis for I4>'. Most  wavelet 

constructions begin with the functions f = 7(" + v), v e V. However,  there are too 

many  of these functions and one of them must  somehow be eliminated (destroying 

symmetry). Our  last theorem asserts that 6el(r/) is also generated by (r + v))~v. 

Starting with the (r ~p(. + v))~ v gives the set 

~C:= (w,:= ~p~ - PCPv),~v'. 

It is easy to see that  ~ r  is a generating set for W, i.e., W = Se(~C). Indeed, since 
P~,~p, is in 6e(~p), ~p, must be in :T(~p) @ 6~(w,). Therefore, {r w ~ generates 6el0/). 

It follows that ~/C generates IV. 
F r o m  (2.11), we obtain a simple description of the Fourier  t ransform of the wv: 

~ - ~  [ 0 o ,  ~ 2  ~ v '  
(3 .9)  ~,:= ~bv - P ~ o v  = ~b~ - -  % v ~  : =  v \ { o } .  

[~, O] 

Theorem 3.10. I f  5~ c 5~i(~/) and supp ~ = supp 0, then W : =  5~ i E) 500 is a 

finitely generated shift-invariant space and ~tC := (wv)v~ v, (defined as in (3.9)) is a 

generating set for W: 

(3.11) W = 6Q(~#r). 

I f  supp ~b = R d, then ~ provides a basis for W. 

Proof. We have already shown that  ~ r  is a generating set for W. If supp ~b = R ~, 

then by Corol lary 2.34, the set @ provides a basis for 6e(@). We have shown that 
@, := {~p} u ~r is another  generating set for ~(@). Since # ~ ,  = ~:qb, Theorem 
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2.26(ii) asserts that (I), also provides a basis for 5P(~). Hence, det G((I),) is nonzero 
a.e. From the orthogonality between W and 5~(~p), we find that 

det G(qb,) = ~32 det G(~).  

Therefore, det G(~U) is also nonzero a.e., thus ~ provides a basis for W. �9 

The set ~/U is our first set of generators for W. We shall find several others in 
the following sections. The idea is simple. We transform ~r to a new set of 
generators by using one of the matrices T whose entries are 2zc-periodic functions. 
The intent is to choose T in such a way that the new set (T~/r 2) v of generators has 
more favorable properties. Our next result illustrates this procedure and provides 
a set of generators which are compactly supported functions whenever ~o is--a 
property the generators in ~W lack. 

Theorem 3.12. Assume that Y(cp) c 5at(q), supp (b = supp 0 = R a, and that [~b, q3] 
(or equivalently (9) is bounded. Then the 2 a - 1 functions 

~c.'= (([~, ~ ] ~  - [~v, ~]~)v)~v, 

provide a basis for the wavelet space W. I f  ~o has compact support, then the functions 

in ~ are also of compact support. 

Proof. Since "/r is obtained from ~r by multiplying by the 2n-periodic scalar 
matrix [~b, ~b]I, which is assumed here to be bounded, we conclude that 

~ Lz(Ra). Furthermore, supp ~b = R ~ implies, by Theorem 3.10, that ~//" pro- 
vides a basis. Hence, by Theorem 2.26, ~ provides a basis for W as well. 

It remains to show that the functions in ~ are compactly supported whenever 
~0 is. By Lemma 2.8, [~b~, q3] is a trigonometric polynomial. Therefore, the inverse 
transform of [~b,, ~b]~b is a finite linear combination of the shifts of ~o, hence is 
compactly supported since q~ is. The same argument shows that the inverse 
transform of [~b, ~b]~b~ is also compactly supported, and thus, indeed, the functions 
in ~ are compactly supported. �9 

The next theorem shows that W always has a set of generators consisting of 
orthogonal wavelets. 

Theorem 3.13. Let 5P(~o) c 5e~(q) and supp ~b = supp 0 = Ra.  Then: 

(i) There is a set of generators q? for Wwhich provides an orthonormal basis for W. 

(ii) I f  in addition q~ has compact support, then there is a subset ~? = (O~)v~v' of 

compactly supported functions from W which provides a basis for W and 

satisfies 

~(~'v)  _L ~(~ , , ) ,  v ~ u. 

Proof. (i) By Theorem 3.10, ~ / i s  a basis for Wand therefore we need only apply 
Theorem 2.28(i). 
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(ii) By Theorem 3.12, the functions in ~ provide a basis for W and are of 
compact support whenever q~ is. Therefore, we need only apply Theorem 2.28(ii). 

We next discuss conditions under which the half-shifts w(- + v), v e V', of a 
function w �9 L2(R a) provide a basis for 141. Clearly, w must be an element of 5e1(~/). 

Theorem 3.14. Let 6P(~o) ~ 6ei(rl) and supp q3 = supp 0 = R d. Then: 

(i) I f  w e 5el(r/), then the functions w(. + v), v e V', are all in W if  and only if 

~ ,  r is 2n-periodic. 

(ii) I f  w is a generator for  5~l(rl) and ~ ,  ~o~ is 2re-periodic, then the functions 

(w(" + v))~v, provide a basis for W. 

Proof. 
as in (2.6), 

(3.15) 

_ 1 

fR W(X -- j)C~(x) dx (2~)a fR~ 

(i) Since w e Lz(Ra), the function [[~, (b~ is in L l ( [ -2 rc . .  2n]e). Proceeding 

e_jw(p = ~ -2n..2~1 d 

Z d 

Now, the functions w(- + v), v �9 V', are all in W if and only if the inner products 
appearing in (3.15) are zero whenever j e (Za/2)kZ a. i.e., if and only if W~, ~b~ has 
period 2z~. 

(ii) From the facts that the half-shifts of w generate 5at(r/), and supp ~ = R d, we 
easily conclude that supp ~ = R d, and therefore, by Corollary 2.34, 

~, ,= (w(. + v))~v 

provides a basis for yl(~/). Equivalently, G(~/r is nonzero a.e. on T d. It follows 
that the Gramian of any subset of :~ , ,  and in particular the subset "r k{w}, is 
nonzero a.e. as well, while, by (i), this latter set lies in W, since we also assume 
that [[~, ~ is 2zt-periodic. Thus, we have found 2 d -  1 functions in W (namely, 
the functions in ~z,\{w}) whose Gramian is nonzero a.e., while Theorem 3.10 

asserts that W contains a basis of cardinality 2 d - 1. Thus, Theorem 2.26(iii) 
ensures that ~C,\{w} is basis for W. �9 

We give some examples of functions w which satisfy the assumptions of Theorem 
3.14. Since any function we W is in 6el(r/), we must have k = z0 for some 
4rt-periodic z, and so 

(3.16) Wff, (b~ = ~-c~, ~b~ = ~W0, (b~. 

We would like the function in (3.16) to be Of period 2n. One obvious choice is to 
take z = 1/~,  ~ which gives the function w o with Fourier transform 

(3.17) ~0 = ~0, ~ ~, ~ 
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The half-shifts Wo(" + v), v ~ V', will generate W provided w o ~ L2(Rd). Note the 
intimate relation between the present Wo and the "dual function"/~ which was 
defined in (2.15). Indeed, w o is orthogonal to each ~o(. +j) ,  j~Zd/2\{O} since 

[~ffo, ~ = 1. 
In general, Wo will not be in Lz(R d) because of the division by ~q3, ~b~ = ~z. 

However, we can multiply fro by any 2re-periodic function and obtain the Fourier 
transform of other candidates. For example, multiplying by l~u~4~v ~ ( ' +  #)2 
gives the function w with Fourier transform 

(3.18) ft..= ~b I-[ ~(" + #)2. 
#E4.~V' 

This function w also has the advantage of being of compact support whenever ~0 
is. Since ~0 is a generator for 5~1(r/) and ~z > 0 a.e. (because supp ~b = Rd), the 
function w of (3.18) is a generator for 5~1(q) (because its support is Ra). Applying 
(ii) of Theorem 3.14, we obtain the following corollary. 

Corollary 3.19. Let 5P(~o) c 6ca(r/) and supp ~b = supp ~ = R a. I f  the function w, 

defined by (3.18), is in L2(Ra), then the set (w(. + v): v~ V'} provides a basis for W. 

I f  ~o has compact support, then so does w. 

We note that the abeve w is in L 2 whenever ~ or ~3 is bounded. For example, 
this is the case whenever ~o has compact support. 

We have shown so far that it is easy to obtain generating sets for Wwith various 
properties. They can be chosen to provide a basis or an orthogonal basis for W. 
They can be chosen to be the shifts of one function w and to have compact support 
if ~o has. There is one important problem we have not yet discussed, and that is 
how to find an L2(Rd)-stable basis for W consisting of compactly supported 
functions. It is easy to see that the generating set ~ will have this property if the 
half-shifts of ~o are Lz(Ra)-stable (this assumption is not realistic in the stationary 
case, but can be satisfied in other situations, see Section 8). We discuss this problem 
in Section 5 (in the univariate case) and in Section 7 (for the multivariate case). 
However, first we examine in the next section the other two conditions in (1.3), 
i.e., (1.3)(ii) and (iii). 

4. Multiresolution 

In this section we analyze conditions (1.3)(ii) and (iii). Our setting is as follows. 
We have for each k e Z a function ~o k s Lz(R d) and the space 6 ek := 5ek(~Ok) generated 
by its 2-g-shifts. Alternatively, 6 ek is the 2k-dilate of the principal shift-invariant 
space ~(~0k(2-k')). We noted in (2.1) that the functions s e 5  ~ are characterized 
by the representation 

(4.1) 3 = Z(pk , r of period 2 k+ 17r. 

We first study condition (1.3)(ii). It should be noted that we have completely 
characterized in [BDR] density properties of (arbitrary) shift-invariant subspaces 
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of Lz(Rd). However, the present setting is so simple that it does not require any 

of this general machinery. 

We begin with the following lemma: 

Lemma 4.2. Let 6 ak, k ~ Z, be a nested sequence. Then ~ 6 ak is a closed translation- 

invariant subspace of L2(Rd). 

Proof. Let X := ~ 5 ak. Then X is certainly closed. Now, let f e X. Since 
6ek ~ 5ek § ~ f e 5~ k for all k sufficiently large. Since 5ek is 2-k-shift-invariant, 

f t :=  f ( . +  t) is in X for any t = 2-kj, j e  Z d, which means that f~ is in X for all 

dyadic t = 2-kj, j ~ Z ~, k ~ Z. Since translation is a continuous operation in L2(Rd), 

we obtain that ft is in X for all t ~ R ~. Moreover, if g e X and f e X, then II gt - f t l l  = 

Ilg - f II- Approximating g by functions f ~ X shows that gt ~ 3f. �9 

It is well known (see, e.g., pp. 203-206 of [Ru]) that a closed translation- 

invariant subspace X of L2(R d) is characterized by its Fourier transforms. Precisely, 

= L2(f~) for some measurable set f~ (called the spectrum of X). 

Theorem 4.3. Let (5 ek := 6ek(~Ok))k~Z be a nested sequence. Then U 5ek = L2(Rd) if 

and only if f~o := U supp ~k = Rd (modulo a null-set). 

Proof. Let X : =  U 5ek" From the above remarks on translation-invariant spaces, 

= Lz(f~ ) for some measurable set ~ c R ~. We have X = L2(R a) if and only if 

f~ = R a modulo a null-set. We verify that ~ = f~0 modulo a null-set which will 

complete the proof. Since each cpk is in X, we must have supp ~bk c f~ modulo a 

null-set, and, so, f~o c f~ modulo a null-set. Now suppose that ~\f~o contains a 

set f~  of positive measure. From (4.1), each element in 6 ek, k e Z, has Fourier 

transform which vanishes on t2x. Hence, each element in U 6ek has Fourier 

transform which vanishes on f~. Taking the closure, we see that each element in 

X has Fourier transform which vanishes on f~.  This is absurd since X contains 

L2(~1). �9 

The role of (1.3)(ii) in multiresolution analysis is to guarantee that 

lira P k f  = f 
k ~ o 9  

for each f ~ L2(Rd). 

Corollary 4.4. Let (5 ek := 5Pk(Cpk))k~Z be a nested sequence, and ~k~z supp ~k = Rd- 

Then the orthogonal projectors Pk from Lz(R ~) onto 6 ek satisfy limk~ ~ P k f  = f for 

all f ~ L2(Ra). 

Proof. Since 5 e k c  5 r Theorem 4.3 says that IIf - Pkfl[ = dist(f, 5 ak) ~ 0. 

We next consider in more detail the stationary c a s e  ~ok = ~k(~(2k.)) ' k G Z, i.e., 

the case when 5 ek is the 2k-dilate of 5 p~ = 5e(~o), which is the usual situation treated 
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in multiresolution. The following is a very simple sufficient condition for (1.3)(ii), 
in the event of a stationary multiresolution. 

Theorem 4.5. Let  r be an Lz(Re)-function, and for each k~ Z, let 5 pk be the 

2k-dilate o f  5~(q~). Assume that (SCk)k is nested. Then (sfk)k satisfies (l.3)(ii) /f ~b is 

nonzero a.e. in some neighborhood of  the origin. 

Proof. Here Ck = ~0(2k'), and therefore ~b k = Ck~O('/2k). Thus if ~b is nonzero a.e. 
on ~, then ~bk is nonzero a.e. on 2kD. Now, if f~ is some neighborhood of the 
origin, we obtain that ~k supp C~ k = R e, since UR 2kf2 = Re. By Theorem 4.3, 
(1.3)(ii) holds. �9 

Of course, (1.3)(ii) can also hold when ~b vanishes at every neighborhood of the 
origin on a set of positive measure. For example, this is the case if d = 2 and 

supp ~ = {x ~ Rz: x~ < txl  I}. 

Special cases of Theorem 4.5 have been established by other authors. For 
example, in the univariate case and under certain restrictions on the smoothness 
and decay of r MaUat [Ma] showed that whenever q~ has orthonormal shifts, 
assumption (1.3)(i) implies that U 5Pk = Lz(Rd) �9 Recently, this was generalized to 
the multivariate case by Jia and Micchelli [JM] who replaced orthonormality by 
L2(Ra)-stability and replaced Mallars other conditions by the requirements that 
r e Lz(Te), and that (p satisfy the refinement equation (1.6) for a sequence a from 
II(Za). In both of these examples, the conditions used imply that ~b is continuous 
and ~b(0) # 0, hence these results indeed follow from Theorem 4.5. Note that, by 
the same token, Theorem 4.5 certainly applies whenever q~ a L~(R a) ~ L2(R a) and 
~(0) # 0. 

We return to the general case of the spaces 5~ a = 5~k(cpk) introduced at the 
beginning of this section, in order to discuss condition (1.3)(iii). We need the notion 
of Lebesgue points: recall that i f f  is locally in LdRd), a point x e R e is said to be 
a Lebesgue point of f if 

lim --1 fQ lel-~0 [Q[ f (u)  du = f (x) ,  

with the limit taken over cubes Q which contain x. For each locally integrable f ,  
almost every point is a Lebesgue point (see, e.g., p. 121 of [BS]). We need the 
following simple lemma (which certainly is known). 

Lemma 4.6. I f  t) is a measurable subset of  R d and a ~ 0 is a f ixed real constant 

such that, for each dyadic t ~ R e, we have fl  + at = fl  modulo a null-set, then fl  = R e 

or D = ~ ,  modulo a null-set. Moreover, if f is any measurable function on R e which, 

for each dyadic t, satisfies f("  + at) = f a.e., then f = const, a.e. 

Proof. By replacing f (resp. ~) by f la . )  (resp. c~-lf~), we can assume that a = 1. 
Let a ~ R a be a Lebesgue point ofx := )Cn. Then with Q~ := [ - 6 / 2 . .  6/2] d, we have 

(4.7) lira fi-~ f )~(x + a) dx = z(a). 
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Now, for any dyadic number t, we have Z(X + t) = )~(x), a.e. in x. Hence, for any 

set Q of finite measure, 

(4.8) fe )6x + a + t) dx --- fe Z(x + a) dx. 

If y e R d is any other Lebesgue point of Z, then using the density of the dyadic 

points, we can, for each 5 > 0, find a t0 such that y s a + to + Qo. Using (4.8), we 

find 

)~(Y) = lim 6-e ~ )~(x + a + t~) dx = tim S-d ~ )C(x + a) dx = z(a)" 

Hence, )~ is constant a.e. and our result follows. 

If the function f is as described in the lemma's statement, then, for each y e R, 

the set f~:= {x: f (x)  <_ y} satisfies f~ + t = f2, modulo a null-set, for each dyadic 

t. Hence f2 = R e or f~ = ~ ,  modulo a null-set, and it follows that f is a constant 

a.e. If f is complex-valued, this argument can be applied to both its real and its 

imaginary parts. �9 

Note that the only property of the set of dyadic points used in the proof of this 

lemma is their density. 

Theorem 4.9. Given the sequence 5 ok..= r , k ~. Z ,  set Y := ~k  5r Then Y is 

a linear subspace of LE(R e) of dimension <_ 1. 

Note that the nestedness assumption (1.3)0) is not made here. Further, as the 

proof below makes clear, the result remains valid even when {5~k}k is replaced by 

a subsequence {SekJ}j, provided that limj_._co k i = - o o .  

Proofi Assuming Y # {0}, we show that dim Y = 1. 

Let f ,  g be two functions in Y, hence 

(4.10) f = 7Jk~l)k, 0 = ~k~Ok, Tk' qk are 2k+lTc-periodic, k e Z .  

We prove that, necessarily, supp f = supp 9. For  this, consider 

A := supp 0 n (Rd\supp f).  

Since O(x) ~ 0 on A, it follows from (4.10) that (Ok(X) V~ 0 a.e. on A for all k, and 

hence, since f (x)  = 0 on A, we must have Zk(X ) = 0 a.e. on A for all k. Since each 
z k is 2 k+ In-periodic, we conclude (by taking k --* - o o  in the first equality of (4.10)) 

that f = 0  on the set A + D ,  with D'.={jUlr: jeZd,  k e Z } .  Since A + D  is 
invariant under dyadic shifts, Lemma 4.6 shows that either A + D = R d or A + D 

is a null-set. Since f is nontrivial and vanishes on A + D, we conclude that A + D 

is a null-set, hence so is A. By symmetry, it follows that supp f -- supp 0- 
Hence, to complete the proof, it is sufficient to show that the function 

F:  R --. 
f(x) # 0, 

[0, otherwise, 
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equals c)~suppy for some constant c. Since f is not trivial, F takes on nonzero values. 

In particular, for given e > 0, we can choose a set A c R a of positive measure such 

that 0 ~ F(A), and F(A) is contained in a disk of diameter e. Let x ~ A and t - 2 k+ lrcj 

with k e Z and j ~ Z d. Then f(x) ve O. If also f ( x  + t) ~ O, then 

O(x) ,l~(x) ,7~(x + t) O(x + t) 

F(x) - f ( x )  Zk(X ) ZR(X + t) f ( x  + t) F(x + t), 

while F(x + t) = 0 otherwise. It follows that F(A + D) c F(A) u {0}, while by 

Lemma 4.6 (and the fact that A, hence A + D, is not null), A + D = R a. We 

conclude that F assumes its nonzero values in a disk of arbitrary small diameter, 

and hence must be constant on its support. �9 

It can indeed happen that Y has dimension 1. For  example, if tp k = r for each 

k (not to be confused with the stationary case: q~k = q~(2*'), all k), then q~ is 

obviously in Y. Other, less trivial, examples are also possible (see Section 6). In 

passing, we note the following immediate consequence of Corollary 2.2 (and its 
scaled versions): 

Proposition 4.11. Let f e Nk~Z ~'G~ Then f generates all the spaces 5 ak if and 

only if supp f = supp (o h, all k. In particular, the spaces (~k(q)k))k are generated all 

by a single function only if supp (oh = supp (ok' for all k, k' E Z. 

We also note that, for any nested sequence X k c7. Sk+ 1 of closed subspaces of 

a Hilbert space, the corresponding orthogonal projectors Pk := Px~ converge 

strongly to the orthogonal projector P_ ~o onto X_ ~o := (-]k Xk as k ---, - ~ (hence 

converge strongly to the orthogonal projector Poo onto X~ := ~)k Xk as k ~ ~).  
Therefore, in particular: 

Theorem 4.12. Let ~tPk :=  ~%,gk(~Ok), k e Z, be a nested sequence, and let Y = (~k~Z 5~k 

be the (one- or zero-dimensional) space of Theorem 4.9. Then limk, _~ Pk f  = Pr f 
for all f ~ L2(Ra). 

Proof. Here, for completeness, is a proof which only uses the fact that Xk:= 6 r 

is a nested sequence of closed linear subspaces ofa  Hilbert space, with Y.'= (-]k Xk. 

To show that iimk_~ _| P k f  = Pr f ,  it is sufficient to show that Pk f  ~ g weakly 

implies that g = P r f  and g = limk~ _ ~ Pkf. For, it implies that P r f  is the only 

limit point of (Pkf)k, and, further, implies that (Pkf)k has limit points since, being 
bounded, it has weak limit points_ 

So, let g be the weak limit of (Pk f)k. Since every Xj is closed and convex, hence 

weakly closed, and contains every Pk f  with k __<j, it must contain g; therefore, 

g s Y On the other hand, Xk:= f - - P k f  is perpendicular to Xk, hence to Y, 

therefore, so is the weak limit, x : =  f -  g. In short, g = Prf .  Since Y is the 
intersection of the nested sequence (X~)k, it follows that 

lira Ilxkll = s u p  dist(f, Xk) < dist(f, Y) = Ilxlt. 
k +  - - o o  k 
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Because of the weak convergence we also have (Xk, X) ~ (X, X), and therefore 

0 <_ I lPk f -g l [  2-- [Ix--Xkll 2= Ilxll 2 -  2 Re(X, Xk)+ IlXkll 2 

--, -Ilxll 2 + limllxkll 2 < 0 
k 

as k runs to - 0o. In other words, lim k P k f  = g = Pr f .  �9 

Since Y c ~k,  it is orthogonal to each of the wavelet spaces W k := ~pk+ 1 E) ~k,  

k ~ Z. Therefore, applying Corollary 4.4 and Theorem 4.12, we obtain the following 

orthogonal decomposition of L2(Rd). 

Corollary 4.13. Let ~/~k :~_ ~k(~gk), k ~ Z ,  be a nested sequence, and let 

f~o := U supp Ok = Rd (modulo a null-set). 

I f  Y is the (one- or zero-dimensional) subspace of Theorem 4.9, then  

LE(R ~)= Y @ @ W k. 
kzZ 

The significance of the last corollary is the following. Let 0Y be any nontrivial 

element of Ywith IIOYII = 1. If, for each k e Z, the set q~k provides an orthonormal 

basis for the wavelet space W k, then the totality of functions 0 r  and ~( ' - - j2 -k) ,  

j ~ Z d, Ip ~ Wk, k ~ Z, is an orthonormal basis for L2(Rn). Thus, even when Y is 

nontrivial, multiresolution produces a basis for L2(Rn). Similarly, we obtain an 

L2-stable basis whenever the qJk provide an L2-stable basis for W k whose stability 

constants are independent of k e Z. 
In the stationary case, i.e., the case when ~0k = ~00(2k'), the following corollary 

shows that Y is necessarily trivial. 

Corol lary 4.14. For q~ E L2(Rd), define 6ek := ~,cPk(~p(2k.)) ' k ~ Z. Then ~k~Z ~ k  = 

(o). 

Note that, as in Theorem 4.9, the nestedness condition (1.3)(i) is not required, 

hence is not assumed. 

Proof. We suppose that f is a nontrivial function in L2(R a) which is in each of 
the spaces 5 ek and derive a contradiction. By the assumptions here, each S~ k is the 

2-dilate of 6 ek- 1, and hence Nk S~k is invariant under dilation by 2. On the other 

hand, by Theorem 4.9, this space is at most one-dimensional. Therefore, if 

f ~ Ok 5ak, then there exists some 2 such that 

(4.15) f(2") = 2f a.e. on R d. 

It is now easy to show that this is impossible for f ~ L2(Rd)\{0}. Indeed, for each 

C > 0, the sets Fk:= {X: 2 k ___ Ixl < 2 k+l and If(x)l > Cl,~l k} satisfy 

Fk = 2Fk-~ and meas(Fk) = 2 d meas(Fk_ 1) for all k. 
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If f is not the zero function, then, for some C > 0, meas(Fo)# 0. From (4.15), 
]f(x)l > CI2[ k for x e 2kFo . Therefore, 

frill2 >_ meas(Fo) ~ (2al,~lZ) k, C 2 
d k~Z 

which shows that f is not in Lz(R d) because the series diverges. �9 

The importance of Corollary 4.14 is that, in the stationary case, it is not 
necessary to assume property (1.3)(iii). Moreover, in the case that ~0 has compact 
support, condition (1.3)(ii) is already implied by (1.3)(i). We have therefore the 
following corollary. 

Corollary 4.16. If, for the compactly supported function ~p in L2(Ra), the sequence 

5~k:= 5ak(~0(2k')), k6Z,  is nested, i.e., satisfies (1.3)0), then conditions (1.3)(ii) and 

(iii) are automatically satisfied and we have the orthogonal decomposition 

L2(R d) = @) W k 
k~Z 

with W:= 5 el Q 5 a~ the wavelet space and W k its 2k-dilate, k ~ Z. 

5. Univariate Wavelets and Prewavelets 

After showing in the last section that conditions (ii) and (iii) of (1.3) hold in quite 
a general setting, we now turn our attention back to wavelet constructions. We 
start with a separate discussion of the univariate case, since this case is significantly 
simpler than its multivariate counterpart. 

As in Section 3, we are only interested in studying one of the wavelet spaces, 
namely, W.'= 6el G 5 e~ The other wavelet spaces, wk:= ~k+l @ ~ k  are ob- 

tained by identical methods, and, furthermore, in the stationary case each of the 
wavelet spaces is obtained from W by dilation. 

We work in the same setting as in Section 3: We assume that (p, q ~ L2(R) satisfy 

(5.1) 5e(q~) = 5r 

and 

(5.2) supp ~b = supp ~ = R. 

As before, we remind the reader that this last assumption is always satisfied when 
~o and t /are compactly supported. 

We have seen in Section 3 that W is a principal shiftinvariant space and there 
is always a generator w. for Wwhose shifts form an orthonormal system. However, 
in general we can say nothing about the support of w.,  or the decay of w.(x) as 
I xl  --, ~ .  In this section we want to go further and find other generators for W 
with favorable decay properties. In particular, in the case r /=  (p(2.) usually studied 
in wavelet constructions, we recover various generators for W given by other 
authors. 
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Our starting point is the function w of Theorem 3.10, i.e., the function whose 
Fourier transform is 

^ ^ 

(5.3) w:= el/2CP [~b, ~3] p" 

We know from Theorem 3.10 that w provides a basis for W. 
We wish to express the generators that follow in terms of q. For this we use 

the refinement relation (1.6): 

(5.4) ~ = A0 

with A a 47~-periodic function. 

Theorem 5.5. Let 

(5.6) } : =  2e-1/2A(" + 2rc)~(. + 2rc)20 = 2e_ ~/J0, ~ ( "  + 2~)0. 

I f  ~ ~ L2(R), then its inverse transform tp is a 9enerator for the wavelet space. 

Moreover, ~ has orthonormal (resp. stable) shifts if the shifts of  q~ and the half-shifts 

of  ~1 are orthonormal (res. stable). 

Proof. We alreadff know that the function w of (5.3) is a generator for W. We 
will show that v~/~, is 2n-periodic. Since (5.2) implies that supp ~ = R, this will 
prove, by (1.11), that w ~ 5P(~) and hence ~ generates W. 

Since el/2(" + 2/~) = --el/2, and el/2 is 4re-periodic, we see that 

= ei/ (4 - 4 ("  + 

while [~b, 4] = 4 2 "~- 4(" -~- 2n) 2. Substituting this into (5.3), we obtain that 

2~(" + 2re) 2 
- •2 el/z0. 

Since ~b = AO, and A is 4re-periodic, ~ = I AI~. Therefore, we see that 

z - =  ~ = ( O ) - 2 A A (  �9 + 2=)e,. 

Since A is 4re-periodic and ~ and e 1 are 2re-periodic, we conclude that, indeed, the 
ratio ff/~ is 2re-periodic and hence ~ generates W. 

To prove the rest of the theorem, we first compute ~ as follows: 

(5.7) ~2 = 4{iZ (. + 2r012~(. + 2g)4#2 + IAI2#4#(. + 2rC)2} 

= 4~(" + 2~z)2#2{IA (" + 2g)]z#( �9 + 2~z) 2 + IA[2~ 2} 

= 4~(" + 27r)2#2{4( �9 + 2~) z + c~ 2} 

= 4~(" + 2~)2~242. 

If qo has orthonormal shifts and r/ has orthonormal half-shifts, then ~b 2 = 1 a.e., 
and ~2=  �89 a.e. We conclude that ~ 2 =  1 a.e., and hence 6 has orthonormal 
shifts. Similarly, if q~ has L2(R)-stable shifts and t/has L2(R)-stable half-shifts, then 
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the functions ~3 and ~ and their reciprocals are bounded. It follows that ~ has the 
same property and hence the shifts of ~ are Lz(R)-stable. �9 

Remark 5.8. It also follows from (5.7) that the stability constants C1(~), C2(~,) > 0 
for ~k, i.e., the positive constants in the inequality CI(~k) < ~ < C2(~) a.e., can be 
chosen as 

C,(~k) = 2C,(~o)C~(t/) 2, j = 1, 2, 

where Cj(~o) and Cj{t/), j = 1, 2, are the stability constants associated with ~ and 
respectively. 

Note that when t /=  x/~q~(2.), the orthogonality assumption or the stability 
assumption on the half-shifts of t/is equivalent to the corresponding assumption 
on the shifts of q~. Further, in the orthogonal case, ~(. + 2~z) 2 --- 1, hence formula 
(5.6) is reduced to 

(5.9) ~ = e-1/2A(" + 2z00, 

which gives the usual wavelet obtained by multiresolution. Note also that the 
theorem incidentally proves that ~ ~ L2(R), hence ~k is in L2(R), whenever t /has  
L2(R)-stable half-shifts. 

Mallat has proved the orthonormal part of the above theorem (for r/:= v/2q~(2 .)) 
without the assumption (5.2), but with additional hypotheses on the decay and 
smoothness of ~0. Several authors have used Mallat's approach to construct 
orthonormal wavelets, including Daubechies [D] in her celebrated construction 
of wavelets w of compact support and arbitrary high orders of differentiability. 
However, the difficult part of the Daubechies construction is to show the existence 
of compactly supported functions q~ which satisfy (5.4), have arbitrarily high orders 
of differentiability, and have shifts which are orthonormal. 

As an example, if q~ is the B-spline ~o = N(.[0 . . . . .  r) of order r with knots at 
0, . . . ,  r, then 6~ is the space of all cardinal splines or order r which are in L2(R). 
The function ~k is then the spline wavelet of Battle and Lemarie (see [B]). 

The prewavelet part of Theorem 5.5 has been proved by Micchelli in [Mi], but 
under different hypotheses. He does not assume (5.2), but assumes that q~ satisfies 
the refinement equation (1.6) with coefficients a ~ Ix(Z). Similar ideas have been 
employed by Chui and Wang [CW], [CWl] .  In particular, when q~ is the cardinal 
B-spline, the prewavelet ~ of Theorem 5.5 is their compactly supported spline 
wavelet (except for an integer shift). 

The remainder of this section is devoted to the important case when the 
functions q~ and t/are compactly supported. We are interested in finding functions 
w from W which have minimal support. In the context of compact support, the 
notion of linear independence is encountered: We say that the shifts of the 
compactly supported q~ are linearly independent if, for each sequence c, the sum 
~j~z q~(" - j)c(j) is identically zero if and only if c(j) = 0 for all j ~ Z (note that, 
for each x ~ R, the series has only a finite number of nonzero terms and hence 
converges pointwise). We remark that linear independence of the shifts of (p implies 
that these shifts are L2(R)-stable (see [JM]). 
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In what follows we denote by diana f~ the length of the smallest interval 
containing the subset f~ of R. With the aid of [R2], the following result on linearly 
independent generators was proved in [BDR1]. 

Result 5.10. Let 5: be a univariate principal shift-invariant space which & generated 

by a compactly supported function. Then there exists a compactly supported ~o ~ S# 

that satisfies all of  the following conditions: 

(a) The shifts of ~o are linearly independent. 

(b) Every compactly supported f ~ 6 e can be written as a finite linear combina- 

tion of the shifts of  ~o. 

(c) diam supp ~ < diam supp f for every f ~ 6:. 

Furthermore, up to a shift and a scalar multiplication, ~o is characterized by any 

of these three properties. 

Corollary 5.11. I f  q~ has compact support, then the wavelet space W has a compactly 

supported generator whose shifts are linearly independent. 7his generator enjoys all 

the properties of ~o in Result 5.10. 

Proof. By the case d = 1 in Theorem 3.12, W is principal and has a compactly 
supported generator. It is therefore enough to apply Result 5.10. �9 

In view of the attractive properties of a linearly independent generator, it is 
desirable to find a constructive method to find the linearly independent generator 
of W. For this, we assume (without loss of generality in view of Result 5.10) that 
the generator t / for  ~l(t/) has linearly independent half-shifts. In view of Result 
5.10, any compactly supported function in 6v101) has Fourier transform z0 with z 
a 4n-periodic trigonometric polynomial. We are interested in the properties of z 
that characterize linear independence of the shifts of (zO)v. 

If z is a nontrivial 47z-periodic trigonometric polynomial, then 

z = e,,,/2 ~ o:(j)ej/2 
j=0  

with ~(0)u(n)# 0 and m e Z. We call n the modified degree of z and write 
mdeg z := n. From this it easily follows that if f and g are compactly supported 
and ~ = zf  for some 4~-periodic trigonometric polynomial, then 

mdeg z 
(5.12) diam supp g = diam supp f + 

If z and ~ are two 4n-periodic trigonometric polynomials, we say that ( divides 
z if z/( is also a 4re-periodic trigonometric polynomial. With this, we have the 
following characterization of the linearly independent generators of W. 

Proposition 5.13. Assume tl is compactly supported and has linearly independent 

half-shifts. Let w be any compactly supported generator of the wavelet space W. Then 
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w is the linearly independent generator of the wavelet space (and thus enjoys all the 

properties of the q~ in Result 5.10) /f and only if the 47z-periodic trigonometric 

polynomial z in the representation ~ = zO is not divisible by a nonconstant 2n- 

periodic trigonometric polynomial. 

Proof. By Result 5.10, every compactly supported we W c 6e1(~/) can be ex- 
pressed in the form ff = zO for some 4n-periodic trigonometric polynomial z. If 

= 2(, where 2 is a 2n- and ( is 4n-periodic trigonometric polynomial, then, by 
Corollary 2.2, w' := ((~) ~ is also a compactly supported generator for W. 

By  (5.12), 

mdeg z mdeg ( 
diam supp w = diam supp q + - - ,  diam supp w' = diam supp r /+  - - ,  

2 2 

hence diam supp w' _< diam supp w, with equality if and only if mdeg ( = mdeg z, 
i.e., if and only if mdeg 2 = 0. Our claim follows then from the fact (see Result 
5.10) that the linearly independent generator is characterized by the minimality of 
its support. �9 

In view of the last result, the search for the linearly independent generator of 
W can be carried out as follows: assuming ~/has linearly independent half-shifts, 
we find some particular compactly supported w ~ W, and write ff = zO. Then z is 
necessarily a trigonometric polynomial. Factoring z = 2(, where 2 is a 2n-periodic 
factor of maximal degree, if ,  defined by ~ ,  = (~ is the linearly independent 
generator of W. 

Corollary 5.14. Assume that q9 and rl are compactly supported and the half-shifts 

of r 1 are linearly independent, and that (9 =:A~. Then the linearly independent 

generator ~ .  for the wavelet space W = 5~t(q) O 5g(q~) is given by 

where ( := z/2, and 2 is a 2n-periodic trigonometric polynomial of maximal degree 

that divides 

z:= e-1/zA(" + 2n)~(. + 2n) 2 = e-1/2~0, 49~(. + 2n). 

Proof. From Theorem 5.5, we know that ~ := (tO)v generates W. Thus the claim 
follows from the argument preceding this corollary, as soon as we show that z 
indeed is a trigonometric polynomial. 

The function ~2 is a trigonometric polynomial by the analogue of Lemma 2.8, 
since it is the 4n-periodization of I~[ 2 for the compactly supported q. The mask 
A is also a trigonometric polynomial by Result 5.10, since ~/and ~0 are compactly 
supported and I/is a linearly independent generator of ~1(/~). �9 

Result 5.10 tells us that the search for a linearly independent generator is, 
necessarily, the same as the search for a minimally supported generator in the 
sense that we are minimizing diam supp w among all generators w. Chui and Wang 
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[CW] considered a slightly different notion of rninimality: they were interested in 
finding a generator w for W which can be expressed in the form ~ = z0, with ~ a 
trigonometric polynomial of minimal degree (they assume that the refinement 
mask A = ~/0 is a polynomial, to guarantee the existence of such ~). Thus, while 
we minimize diam supp w over all possible generators w, Chui and Wang minimize 
diam supp w only over those w which can be written as a finite linear combination 
of the half-shifts of ~/. However, because of Result 5.10, the two notions coincide 
if we assume (as we do) that the half-shifts of q are linearly independent, and, 
furthermore, as is proved by Jia and Wang in [JW], this assumption holds in the 
stationary case in case ~0 has stable shifts and the mask has no 2~z-periodic 
polynomial factor. In any event, with straightforward modifications, the arguments 
used in Proposition 5.13 and Corollary 5.14 can be applied to show that the same 
characterization holds for the "minimal w" in the [CW] sense. 

Chui and Wang stated their results in terms of the symmetric zeros of the 
polynomials involved. Let us pause for a moment to see how symmetric zeros 
enter into the characterizations provided above. If z is a 4n-periodic trigonometric 
polynomial, then, up to some exponential factor, we can write z = P(el/2) for some 
algebraic polynomial p with deg p = mdeg z. However, for any algebraic poly- 
nomial q, q(el/2) is 2n-periodic if and only if it can be written as an algebraic 
polynomial in e~ = e2/2, i.e., if and only if q involves only even powers, or, what 
is the same, if and only if all the zeros of q occur in symmetric pairs. Thus the 
quotient z/2 in Corollary 5.14 can be equivalently characterized by the lack of 
symmetric zeros in p/q. 

If we take for q~ a cardinal B-spline and for r/its 2-dilate, then the half-shifts of 
q are linearly independent. In this case the spline wavelet ~ of Chui and Wang 
(given by Theorem 5.5) is the minimally supported wavelet of W guaranteed by 
Corollary 5.11 because the function z of Corollary 5.14 is known to have no 
2n-periodic polynomial factor. It thus follows that ~ has linearly independent 
shifts. 

6. An Example of Nonstationary Decompositions: Exponential B-Splines 

We have carried out the analysis in this paper without making the assumption 
that r/is the 2-dilate of ~o. The reason for this is twofold: First, the assumption 
q = ~o(2.) does not simplify either the idea or the details of our approach. Second, 
and more importantly, there are various interesting examples where the "finer" 
function r/is not obtained from cp by dilation. This is the case, for example, for 
exponential B-splines, exponential box splines, and various radial basis functions. 
In this section we briefly discuss what seems to be the simplest example in this 
direction: the exponential B-splines. 

The exponential B-spline N~:= Na('I0 . . . . .  n) is a generalization of the (poly- 
nomial) B-spline N(" 10 . . . . .  n). It can be defined by its Fourier transform as follows. 
Let 2'be a parameter vector (21,..., 2,)e C". Then 

e x'~-ir - 1  
~ ( y )  

o = 1  
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The polynomial B-spline corresponds to the choice 4 = 0. Splines in tension 
correspond to the choice n = 4, 41 = '~2 = 0, 43 = - 4 4 .  

In general, Na is (n - 2)-times continuously differentiable and is supported on 

[0 . .  n]. On each interval [ j . . j  + 1], N~ coincides with a function in the kernel 
K~ of the differential operator ~ := 1-[7, = 1 (D - 4,.). The shifts of N~ are linearly 

independent if and only if 

(6.1) 4 m - 4j r 2niZ\0, Vm, j. 

Furthermore, when (6.1) holds, every f ~ Ka can be expressed as a linear combina- 
tion of the shifts of Na. 

With the above knowledge in hand, it should be clear that N 4 cannot be written 

in terms of its 2-dilate, unless 2 = 0: upon dilating N4 we obtain a function which 

is piecewise in K2~ and therefore every element of ~1(N~(2.)) is piecewise in K2x 

while N a is piecewise in Kx. Thus, the usual framework of multiresolution analysis 
cannot be applied to exponential B-splines. 

On the other hand, from the Fourier transform of N 4, we see that 

f i  e4-/2-'r/2+l f i  e4m/2-ir/2_l 
(6.2) /#4(Y) = 

m=X 2 . = ,  (2~/2 ~ i~-2)" 

The second factor on the right-hand side of (6.2) is recognized as/#4/2(./2), and thus 

/#4 = A~t2/#*/2('/2), 

with A a the 4n-periodic trigonometric polynomial 

r~r e a~-iy/2 + 1 
Ax(y) := 11 

m = l  2 

Note that/#4/2(-/2) is the Fourier transform of 2N4/2(2. ) which is supported on 
[0 . .  n/2], and is piecewise in K 4 (with breakpoints at the half-integers). 

We fix a vector 4 and define the spaces 6 ek := 6Pk(~Ok), k ~ Z, with ~o k := N4/2~(2k'). 
The generators ~o k then satisfy the nonstationary refinement equations 

(gk = 2A z/2k+l(" /2k)(Ok + 1" 

We observe that 2Aa/2~+1(./2 t) can be written as 

2 -"  ~ o- j (e  2 ' /2k  . . . . .  ea'/2~')e-ljyt2k+', 
j = o  

where a i ( t , , . . . ,  t,) is the homogeneous symmetric polynomial of degree j in 

t 1, � 9  tn. 
The scale of spaces 6 ek, k e Z, clearly satisfies condition (1.3)(i) of multiresolution. 

Since supp ~b k = R, (1.3)(ii) follows from Theorem 4.3. According to Theorem 4.9, 
the space Y := ~k 6ek has dimension < 1. The following theorem, which is a special 

case of Theorem 8.4, provides a complete description of this space. 

Theorem 6.3. Let {~9 ~ be a multiscale of spaces generated by exponential 
B-splines. Let Y:= (~k~z ~9~k. Then Y is one-dimensional if and only if Re 2/:~ 0, 
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j = 1, . . . ,  n. Otherwise, Y is trivial. In case Y is one-dimensional, it is spanned by 

the Green's function G (or more precisely the fundamental solution of the differential 

operator ~)  whose Fourier transform is given by 

(6.4) G(y) = 1~ ( 2 , . -  iy) -~. 
m=l 

In this case, 5 ~k = ~q~ fo r  every k. 

For convenience, we define from now on W_~ := ~ 5#k, and obtain in this 
fashion the decomposition 

L:(R) = Q 
-oo<k< +r 

valid for the wavelet decomposition based on any exponential B-spline. 
An interesting and important problem in the context of nonstationary decompo- 

sitions is the stability question. Let ~k be the compactly supported wavelet func- 
tion given by (the appropriate scaled version of) Theorem 5.5 for (Ok := N~/2~(2k'). 

Then the wavelet space W k .'= 5~k+ 1 O 5~k is a principal 2-k-shift-invariant space 

generated by ~k- The 2-k-shifts of (Ok are linearly independent if and only if 

(6.5) 2,. - ;t~ r 2 ~+ l~iZ\O, 

as can be easily concluded from (6.1) by rescaling. We see that, for large enough 
k (say, k > ko > -oo),  (o k is always a linearly independent generator, and in 
particular a stable generator of its space. Further, if 2 e R", then the linear 
independence (and hence the stability) holds for all k. By Theorem 5.5, q/k provides 
a stable basis for the wavelet space Wk for every k > ko. At the same time, the 
s u m  O k  W k is orthogonal, afortiori the s u m  Ok>k 0 W k is orthogonal. Nevertheless, 
these arguments do not imply that {~k(" -- 2=kj)}k>ko, S~Z ~ forms a stable basis for 
(~k>ko Wk, since it is still necessary to show that the stability constants associated 
with the basis {~(" - 2-kj)}j~z~ of Wk can be chosen independently of k > k o. This 
question does not arise in the stationary case, since then ~k is obtained by dilating 
~o and the stability constants do not change with k. 

The main tool in this discussion of stability is the following consequence of 
Theorem 5.5 and Remark 5.8: 

Corollary 6.6. Let ( ~ k =  ~k(q)k)) k be a nested sequence of spaces in L~(R), 
and, for k ~ Z, define ~]k :~-- 2k/2~(2k'), with ~b the wavelet generator of Theorem 5.5 
corresponding to the choice (p:= q)k('/2k), r l :~ ~Ok+l('/2 k) in that theorem. Let 

l~k := q)k('/2k), k E Z, and - 0 o  < ko < kl <- ~ .  Then the set 

V := {$k(" -- 2-kj))ko<k<k,,~*Z ~ 

is an L2-stable basis for the space Oko<k<k Wk (with W k'= 5#k+1 0 5#k) if and only 

if there exist positive constants C1 and C2 such that 

1 L~(T) 1 [[Okl[Loo(T) ~ C2 and ~Ik -- C1 
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for every k o < k < kv  Furthermore, the stability constants Cj(Ud) for the choice 

F := W in (1.5) can then be take as C 3, j = 1, 2. 

Proof. As explained in the paragraph preceding this corollary, we only need to 

check, for each k, the stability constants associated with the basis 

Wk := (~k(" -- 2-  kj))j ~ Zd 

for W k. By Theorem 5.5 and Remark 5.8, these constants are determined by the 

constants associated with the sequence (~o,,(- -- 2-"j))j,z~, m = k, k + 1. By scaling, 

these latter constants are observed to be identical with the constants associated 

with the sequences (r/,,(" -J))j~z, m = k, k + 1. With this, the bounds 3 �9 Cj , )  = 1, 2, 

follow from Remark 5.8. �9 

Corollary 6.7. Let (~k(~gk))k be a nested sequence of exponential B-spline spaces, 

i.e., (~k = NX/Ek(2k') for some (fixed) ~ ~ C". Let ko > - ~  be chosen such that (6.5) 

holds for every k >~ ko. Let ~k o be the generator of W o defined by Theorem 5.5, and 

let I~k be the analogous generator of Wk, k ~ Z. Let 

qJ := (~k(' -- 2-Uj))k>_k0.j~V . 

Then �9 forms a stable basis for (~k~*o Wk. 

Proofi We observe that ~]k : =  ~0k(2-k') is the function N;~/2k , and, by the assump- 

tion here, the shifts of each r/k form a stable basis for 6a(r/k). All the functions r/k, 

k ~ Z, are supported in [0 . .  n] and they converge uniformly as k ~ o0 to the 

polynomial B-spline No. From this it easily follows the Ok converges uniformly, 
as k ~ ~ ,  to 37 0. Thus, for sufficiently large k 1 and for every k _> k~, 

II01ILo~(T~) ~ IrN011L~(T~I + 

and 

II1/Okl]L~(T~) < 111/570IlL.IT")+ ~. 

I t  follows, thus, that supk>koliO~IIL~(~) and supk>~olI1/OklIL~(~) are finite, and our 

claim follows from Corollary 6.6. �9 

A more subtle analysis is required in the consideration of the stability of the 
full basis (q/k(" -- 2-kj))k.j �9 We omit these details here. 

7. Multivariate Prewavelets 

We have given in Section 3 various sets of generators for the wavelet space W. In 
particular, we have shown how to obtain generating sets which provide an 

Lz-stable basis or more generally an orthonormal basis for W. However, our 
constructions were lacking in the following sense: If r/has compact support, then 

the elements in the generating sets which provide an Lz-stable basis need not be 
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of compact support, nor can they be shown to decay at any rate. On the other 
hand, it has been proved by Meyer [Me, Chapter III, Section 6] (and also by Jia 
and Micchelli [JM1]) that, under some general assumptions on the generator ~o 
of 6 a~ (e.g., ~o is compactly supported and provides a stable basis for 5e~ there 
are always generating sets consisting of nicely decaying functions which provide 
an L2-stable basis for IV. However, the proofs of these facts are not constructive, 
hence leave open the question of how to obtain such generating sets explicitly. 
We do not provide a solution to this problem in its entirety, but we build on 
previous constructions, of Lorentz and Madych [LM] and Riemenschneider and 
Shen [RS], which can be applied in certain special but important cases. 

We assume throughout this section that ~0 and t/ are L2(Rd)-functions that 
satisfy 

(7.1) ~(q~) ~ S~(t/) 

and 

(7.2) supp ~ = supp 0 = Rd. 

As before, we denote the refinement mask by A, i.e., 

= A~. 

The refinement mask plays a major role in the context of orthogonal wavelets 
(see (5.9)). However, as already observed in Theorem 5.5, the construction of 
prewavelets is based on the function 

(7.3) B := ~0, ~b~ =At/-*2, 

and for that reason we assigned it the above special notation, B. 
The derivations of generators and bases for W that were carried out in Section 

3 involved only the function q~. In order to construct siable bases for W from ~0 
that imitate the decay properties of q~, we would have to assume that q~ has 
L2-stable half-shifts, and this is  a restrictive assumption, and applies only to 
nonstationary refinements (see the next section). Thus, we change our focus from 
q~ to t/, under the assumption that the half-shifts of the new generator, t/, are stable. 
Indeed, it is the L2-stability of t /which allows the construction of an L2-stable 
basis for W. 

We recall the operator Qo of (2.30). 

Corollary 7.4. Assume that q~ and t~ satisfy (7.1) and (7.2). A necessary and sufficient 

condition that w ~ L2(R d) be in W is that there is a 4n-periodic function z such that 

(7.5) 

and 

(7.6) 

= z 0 

Oo(~B) = ~ (~)(" + v) = O. 
v ~ 4 ~ V  

I f  t~ has compact support, then a sufficient condition that w has compact support is 

that z is a trigonometric polynomial (of  period 4x). Moreover,  this last property 
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characterizes the compactly supported elements of W, whenever t 1 has linearly 

independent half-shifts. 

Proof. The first equality in (7.6) is merely the definition of Qo- As for the second, 
since W = 5ca(t/), any function in Whas Fourier transform of the form (7.5). Since, 

for any functions f ,  g ~ L2(Ra), [f ,  g] = Qo(Wf, g~), we conclude that 

[~, O] = Qo([~0,  O~) = Qo(~B). 

Since w r W if and only if [~, ~b] = 0, the main claim of this corollary follows. 
If z is a polynomial and r/is compactly supported, then z~ certainly is the Fourier 

transform of a compactly supported function. In case q has linearly independent 
half-shifts, Theorem 1.3 in [BR] implies that f = c0, with z a trigonometric 
polynomial, whenever f ~ 6ex(r/) is of compact support. �9 

With Corollary 7.4 in mind, we would like to find a set Vo c V of cardinality 
2 n -  1 and 4n-periodic functions %, v~ Vo, that satisfy Qo(%B)= 0. Then the 
functions %0, v ~ Vo, are in ~ Under certain conditions we can choose the %, 
v E Vo, so that the w, := (%0)v v e Vo, provide an L2-stable basis for IV. We begin 
by generalizing a construction used by Lorentz and Madych [LM] (see also [JM] 
and [$6]). 

We can decompose the function B = ~0, ~b~ into its 2re-periodic components, as 
in (2.31): 

Q~(B) 
(7.7) B = ~ e_~B~, B~.'= 2d 

v ~ V  

If 11 and q~ are of compact support, then (by the half-shift analog of Lemma 2.8) 
B = ~0, ~ is a 4~-periodic polynomial. In such a case, the functions B~ are 
2~-periodic polynomials. 

For our first construction, we assume that B is bounded, and that, for some 
v o 6 V, Bvo is bounded away from zero a.e., and set V o .'= V\{vo}. These require- 
ments are fulfilled, for example, for v o = 0, hence V o = V', whenever t/has L2-stable 
half-shifts, and, further, the 4n-periodic refinement mask A is real, nonnegative, 

and continuous, with no 2n-periodic zeros. 

Theorem 7.8. Assume that ~o and t 1 satisfy (7.1) and (7.2), and let B,  be as in (7.7). 
Let v o ~ V, V o := V\{vo}. Then the functions 

(7.9) % := evoB v - evB~o, v ~ V0, 

satisfy Qo(%B) = 0, hence the functions w,, v ~ Vo, with Fourier transform ~ := %~, 
are in W, provided that ~ ~ Lz(Ra). I f  q and q~ have compact support, then the w,, 

v e Vo, have compact support as well. I f  rl has Lz-stable half-shifts, and both B and 

1/B~o are essentially bounded on T a, then (w~)~ ~ Vo provides an L2-stable basis for W. 

Proof. Let v, u e K Since By is 2~-periodic, 

Qo(euB~B) = B~Qo(e,B) = B~Qu(B) = B~Bu 2n. 
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Application of this equality, once with v = v, u = v o, and then with the opposite 
choice, proves that 

2-dQo(%B) = B~B~o -- B~oB ~ = O. 

Hence (7.6) is satisfied and the functions w~, v ~ V o, are in W. 

If t /and  (p have compact support, then, by the half-shift analog of Lemma 2.8, 

B = lit/, q~ is a trigonometric polynomial, hence so is each B~ and each %. This 

implies that each % is compactly supported. 

To show the LE-Stability of the (wv)~Vo, we consider the matrix T := (%,u) . . . .  v 

with diagonal elements zv, ~:= - B~ o, v e V, and with off-diagonal elements %, ~o = 

B~, v e Vo, and with all other entries zero. We observe that T(e~O)~v coincides 

with (v~v)~v0 in all the Vo-entries, and, therefore, for proving the desired stability 

it suffices to show that the shifts of the inverse transforms of T(e~O)~v are stable. 

Recall that we are assuming that the half-shifts of t/ are stable, or, equivalently, 

that the full-shifts of (t/(. + v))~ V are stable. Thus, by (iv) of Theorem 2.26, it 

remains to show that IITII and lIT-111 are essentially bounded on T d. Since we 

assume that B is bounded, so is each component B~, hence T has all entries 

bounded. On the other hand, Idet TI = IBvol 2d and hence, by our assumption, is 

bounded way from 0. This implies that both IITll and ItT-~II are bounded a.e. 
[] 

We note that the boundedness assumption on B is automatically satisfied 

whenever the full-shifts of q and ~0 are stable, since IBI = ~@, with each factor on 

the right being bounded because of the stability assumption. 

The other assumptions of Theorem 7.8 are also met in many instances. The 

most important example is recorded in the following corollary, which also admits 

straightforward extensions to the noncompact support case. 

Corollary 7.10. Let qo and tl be two compactly supported functions with the 

half-shifts o f t  1 and the full-shifts of @ being LE-stable. Suppose that (7.1) and (7.2) 

are satisfied, and the refinement mask A is a trigonometric polynomial (continuity of 

A would suffice, as well). Then q~l:= q0,q~(-.) and t h ' . = t / * t / ( - "  ) satisfy the 

conditions of Theorem 7.8 for v o = O, and hence the sequence (wv)wv, of(compactly 

supported) functions defined there (with respect to @l and th) forms a stable basis 

for the corresponding wavelet space. 

Proof. We observe that 01 = 1012 and 631 = 16312, and hence 631 = IA[201 �9 Because 
of the compact support of t/a and tp t, the nonnegative function 

B := [[01,631~ = IAI2~ 2 

is a trigonometric polynomial (Lemma 2.8), hence bounded (alternatively, it is 

bounded because of the stability assumptions on t /and  q~). Since the half-shifts of 

t/ are stable, 0 possesses no 4n-periodic zero, hence neither does 01 = 1012. 
Consequently, i l  vanishes nowhere. Also, because of the stability of the shifts of 

~0, A has no 2~c-periodic zeros (since such zeros would be inherited by ~, hence 
by ~). This means that B is a nonnegative 4n-periodic function without any 
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21r-periodic zeros. Consequently, Bo is a strictly positive (27r-periodic) trigono- 
metric polynomial. Now apply Theorem 7.8. �9 

We next describe a general procedure for constructing functions z which satisfy 

(7.6). The vertices V form a group under addition modulo one. If J is one of its 

subgroups, then the distinct cosets v + J form a partition of V. We let R c V be 

a set of representers for these distinct costs. A partition R = Row R1 into disjoint 
sets gives the sets Kj..= U~Rj(v + J), j = 0, 1, which are a partition of V. 

Note that if ev, v~ V, is an exponential which is not constant on 4z~J, then 
~ 4 ~ a  %(V) = O. 

Theorem 7.11. Assume that go and q satisfy (7.1) and (7.2), and define, as before, 

B .'= WO, 0]]. Let J be any subgroup of the group V, let v be any element of V for 

which ev is nonconstant on 4re J, and let K be any union of cosets (in V) of J which 

contains O. Then the function W~,K, with Fourier transform 

 o,K:=eo  1-[ 
e 41rK\ 0 

is in W provided it is in L2(Ra). Moreover, if ~l and go have compact support, then w 

is also of compact support. 

Proof. In case ~/and go are compactly supported, B = [[~, gb~ is a trigonometric 

polynomial, and hence each Wv.K (which is then a well-defined L2-function) is 
compactly supported. 

To prove the main claim of this theorem, it is enough, in view of Corollary 7.4, 
to show that 

satisfies 

z:= 1-[ B ( ' + ~ )  

ev(" + p)z(" + #) = O. 
~ 4 ~ V  

Since z(- + v) = z, v ~ 4re J, we can write this last sum as 

Z ~, e v ( ' + r + v ) z ( . + r  + v ) =  Z e v ( ' + r ) z ( ' + r )  
r ~ 4 ~ R  vE4.7~J r E 4 ~ R  

The last sum is 0 because ev is not constant on 4rcJ. 

~, e,(v). 
v~4~J  

The choice K = V in the last theorem shows that all the (Zd/2)\Za-translates of 
the function w, defined by 

v~:=O l~ B( '+cO, 
~ 4 1 t V '  

are in W, provided that k ~ L 2. It is then easy to prove that the V'-shifts of w 

provide a basis for the wavelet space. There is a close relation between the function 
w here and the generator w of W of Corollary 3.19, only that there we used 
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~2 = ~0, 01, while here we use the function B = ~t), 01. It follows, for example, 

that if ~o and t/ are compactly supported and the refinement mask A is a 

polynomial, w here enjoys a smaller support than w of Corollary 3.19. However; 

unless the half-shifts of ~0 are stable, neither of these generators is expected to 

provide a stable basis for W. 

The simplest instance of Theorem 7.11 occurs when J : =  {0, c~} is a group of 

order 2. We obtain the following extension of Theorem 5.5 to the multivariate 

setting. Here, as before, B is defined as Wt), 0~ = .~2. 

Corollary 7.12. Assume that q~ and t 1 satisfy (7.1) and (7.2). I f  r e  V' and e ~ 4 n V '  

satisfy e~(c 0 = - 1 ,  then the function w with Fourier transform 

= e~B(" + cOO 

is in W provided it is in L2(Ra). Moreover,  i f  tl and q~ are of  compact support, then 

w is also of  compact support. 

In some instances, it is possible to find an L2-stable basis from among the 

functions of Corollary 7.12, as is shown in the following theorem of Riemen- 

schneider and Shen [RS] (see also [JM], [RS1], and [CSW]): 

Theorem 7.13. Assume that q~ and t 1 satisfy (7.1) and (7.2) and that B.'= ~0, ~1 is 

real-valued. Assume that q~ has L2-stable full-shifts and tl has L2-stable half-shifts. 

Assume further that there is a one-one mapping ~ f rom V' to 4~V'  that satisfies the 

following two conditions: 

(a) e~(c~(v)) = - 1 for  every v ~ V'. 

(b) e~_,(e(v) - c~(u)) = - 1 for  all v, u E V', unless v = u. 

Then the functions w~, v ~ V', defined by their Fourier transforms 

k~ := 2ae~B( �9 + c~(v))O, v e V', 

provide an L2-stable basis for  W. Furthermore, i f  the full-shifts of  q~ are orthonormal 

and the half-shifts o f  tl are also orthonormal, then ( % ) ~ v '  provides an orthonormal 

basis for  W. I f  t 1 and ~o have compact support, then the functions w,, v e V', are also 

of  compact support. 

Proof. It is easy to conclude from the stability assumption on q that each ~v, 

v ~ V', is in L2(Rd), and hence each wv is a well-defined L2-function. From Corollary 
7.12 and assumption (a), we conclude that each wv is in W. This corollary also 

implies that w v is compactly supported whenever I /and ~0 are. 
We introduce the functions w~*, v E V', with Fourier transform ~* = ~v/t~. These 

functions are in L2(R d) because ~ is bounded away from zero, thanks to the stability 
assumption on the half-shifts of ~/. We now compute the Gramian of these 

functions. First, we see that 

e~_,B(" + ~(v))B(" + ~(u))~O, ~ 
~* = ev_uB('. + o;(v))B(" + or(u)). -~- 2drr'A*~, ~v,  w. l = ~, 
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(Here, we wrote B(. + ~(u)) is instead of B(- + ~(u)), since B is assumed to be real.) 

Therefore, 

(7.14) [~*, ~*] = ~, [[~,*, ~*~(" + #) 
,tt E4r~V 

= 2 za ~ ev-u(" + #)B(" + a(v) + #)B(" + e(u) + #). 
l~41rV 

For any # E 4rcV, the terms in (7.14) corresponding to # and # + ct(v) - a(u) are 

negatives of one another because of our assumption (b), and the (a(v) - a(u))- 

Wv, ^* periodicity of the term B(. + ~(v) + #)B(' + ~(u) + #). Hence "* wu ] = O, v • u. 

On the other hand, for v = u, 

(7.15) ^* ^* 22a [ w v , w o ] =  ~ B ( ' + ~ ( v ) + # ) z = 2 2 a  ~ B( '+#)2=22aQo(B2).  
tz~ 4~zV ,u~ 4rcV 

Since B 2 = A2~ 4 = Ial2~ 4 = ~2~2 and Qo(~O z) = (0 z, we have 

Qo(BZ)(x)e [m. .M](~(x) )  2 a.e., 

with m and M the essential infimum, respectively, supremum of ~2. Since both m 

and M are positive and finite by the stability assumption on ~/, while ~z is 

essentially bounded away from 0 and infinity by the stability assumption on q~, 

we conclude that Qo(B 2) is also essentially bounded away from 0 and infinity. We 

thus conclude that the Gramian associated with (w~),~v, is diagonal, with the 

diagonal entries bounded above and below by positive constants. On the other 

hand, ~/r (wv)v~v is obtained from ^* �9 "= (w,,),,~v, by multiplying by the scalar matrix 
T := ~2I. Again, the stability assumption on the half-shifts of t/implies that ~ and 

1/4 are bounded, hence that IITI[ as well as lIT-111 are bounded. Thus, from 
Theorem 2.26(iv), we conclude that the basis (w~)v~v, is stable. 

Finally, when t /has orthonormal half-shifts, ~ = 2 -d/2 a.e., and hence 

22aQo(B2 ) = 22aQo(~2~2 ) = 2dQo(~ 2) = 2d~ 2. 

If ~p also has orthonormal full-shifts, ~3 = 1 and hence 22dQo(B z) = 2 d. Thus, (7.15) 

= ~ ^ ^ 2-a2~ implies that ^* ^* A ^ 2 , , [w~, wo] = 2 d, hence [w~, w,] ~/ [Wo,Wv] = = 1, and we 

conclude that G(~K) = I, or, equivalently, that ~K is an orthonormal basis. �9 

We make the following additional remarks concerning Theorem 7.13. As 

Riemenschneider and Shen [RS] note, it is easy to construct mappings with 

properties (a) and (b) in the case d = 1, 2, 3. However, Riemenschneider and Shen 

also note that there are no such mappings when d > 3. On the other hand, there 

is some hope that turning to the more general elements of W given in Theorem 

7.11, an analogue of Theorem 7.13 may be established in higher dimensions. 
We have assumed in Theorem 7.13 that the function B = g0, ~b~ is real. Since 

also B = At/ , B is real if and only if the mask A is real. This is true, for example, 

if q~ is real-valued and symmetric about the origin and ~/= r Moreover, the 

assumption that B (or A) is real can be somewhat weakened. For  example, the 
proof given above supports the following claim: 
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Remark 7.16. The construction detailed in Theorem 7.13 remains valid when 

B = QB' for some real B' and some j e Zd/2. 

8. Box Splines 

Box splines were introduced by the first two authors in [BD] and their exponential 

generalization (sometimes referred to as "exponential box splines") was introduced 

by the third author in [R1]. Box splines have become a main theme in Multivariate 

Spline Theory, and it is certainly beyond the scope of this section to provide a 

good account on box splines. We do not even attempt to provide an overview of 

box splines in the context of wavelet decompositions, because of the already rich 

literature on that matter. Thus, our only aim here is to illustrate the material 

detailed in previous sections via a discussion of this class of examples. 

To define a box spline, we let F be a finite index set consisting of pairs of the 

form 

7 = (xT, 2~), x~ ~ Rd\0, 2~ ~ C. 

The box spline M := Ma can then be defined via its Fourier transform as 

e ~, - iy. x, _ 1 

(8.1) M(Y) = ,~rI~ 2, - iy 'x ,  " 

The notation is indicative of the fact that we usually hold the directions (x~)~ r 

fixed, but may vary the parameters 2 := (2~)~ r. Assuming that span (x~)~r = R d 

(as we do throughout), the box spline is a compactly supported piecewise- 

exponential-polynomial function supported in the zonotope 

The polynomial case corresponds to the choice 2 = 0. Exponential B-splines are 

obtained when d = 1 and x~ = 1, all 7. Tensor splines are obtained whenever all 

the directions are standard unit vectors. The box spline is positive in the interior 

of Zr  whenever 2 is real-valued. 

We first observe that 

A (Y~ffI (Y~ 

with 

This suggests the choice 

A,(y) := if[ 2 
7~F 

e&-iy.x~ + 1 

~k := 2-kaf/i;~/2k('/2k), 
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since then (O k = 2aA;~/2k+~('/2k+l)(gk+l. TO ensure the fact that A~ is a 2n-periodic 

polynomial, we assume that 

(8.2) x~ ~ Zd\0, V~ e F. 

Assuming (8.2), we can define the multiseale generated by the box spline M~ as 

(8.3) 6ek:= 6Pk(~Ok), q9 k .'= M ~/2~(2k" ). 

As before, we use special notation for ~0 o and ~01: 

~0:= q~o, r/:= q~l" 

Note that this is a stationary multiscale if and only if 2 = 0, i.e., if and only if 

M~ is a polynomial box spline. 

Since each ~o k is compactly supported, we know that property (1.3)(ii) is satisfied 

here. With regard to (1.3)(iii), we have the following extension of Theorem 6.3: 

Theorem 8.4. L e t  (~k} be a multiscale of spaces generated by the box spIine 

Ma (as in (8.3)). Let Y.'= Nk~Z ~k. Then Y is one-dimensional if and only if 

Re 2r ~ 0, 7 ~ F. Otherwise, Y is trivial. In case Y is one-dimensional, it is spanned 

by the fundamental solution of the differential operator ~ := Iq,~r(Dx~ - 27) (where 

D x is the directional derivative in the x-direction) whose Fourier transform is given by 

(8.5) G(y) = I~ ( 2 , -  iy'x~) -~. 

In this case, 6~k = 6~k(G) for every k. 

Proof. Let f ~ N k  ~vk be a nonzero function. Since fGc, v-k, it is a linear 

combination of the 2%hifts of the box spline ~0 k ..= M2ka(./2k). Since the ratio (Ok/Cr 

is (a trigonometric polynomial) of period 2 k+ in, (2.1) implies that every function in 
6ek must have the form 

with Zk being 2k+ln-periodic. From the fact that supp G = R d, we conclude that 

all z k agree a.e. with one measurable function z, and this function is necessarily 

invariant under all 2n-dyadic shifts. Lemma 4.6 then implies that z = const., hence 

the Fourier transform of every function in the intersection is a scalar multiple of 

G. Therefore, this intersection is trivial if and only if it does not contain G, and 

otherwise it is spanned by G. Since the ratio (Ok/d is 2 k+ in-periodic, then, again 

by (2.1), G e 6 ak if and only if G ~ LE(Ra). Consequently, the proof of the theorem 
is reduced to the proof of the following claim: "G ~ L2(R d) if and only if Re 2 7 ~ 0 
for every 7 e F." 

If Re 2j # 0 for every characteristic value 2~, then we easily verify that, because 

Xr  is of rank d, d is in L2, hence so is G. On the other hand, if, for some 
~, Re 2, = 0, then d cannot lie in L2(Rd), since it is not even in L2(f~ ) whenever 
the open set f~ contains points from the zero set of y ~ 2~ - iy 'x , .  �9 
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Assuming (8.2), the shifts of M~ are linearly independent only if F is unimodular, 
which means, by definition, that every d • d matrix whose rows are taken from 

the multiset (x~)~ r has determinant - 1, 0, or 1. Further, if 2 is real-valued, the 

unimodularity assumption is also sufficient for linear independence. For  these 

reasons, we assume for the remainder of this section that F is unimodular and 2 

is real-valued. 

We want now to consider the possible applications of the constructions 

proposed in the last section to box splines. It is hard to apply Theorem 7.8 directly, 

since it requires information on the function B, while the available information 

here is on the mask A. Nevertheless, if A has the form 

A = const.~ e_jA', 

where j ~ Zd/2 and A' is nonnegative, then we might choose v e V such that 

j - v 6 Z d to obtain 

Qv(B) 
By.'= 2a - const. ~ e~(" + #)e_j(- + #)B'(" + #) = %-jQo(B'), 

#~4~V 

where B' := (1/const.)ejB. Since B' = A'~ 2, and A' is nonnegative, so is B'. This, 

together with the stability assumption on the half-shifts of t / and  the shifts of q~, 

implies that Qo(B') does not vanish, hence 1/B~ is bounded, and we arrive at the 

following conclusion: 

Corollary 8.6. Let M be a box spline defined by a unimodular F with real parameter 

vector 2. Assume that F also satisfies the following "parity" condition: "F  can be 

partitioned into pairs such that each pair (7, 7') satisfies 

(x~, ,~) = e(~, ~')(x~,, - ~ , ) ,  

where 5(% 7')E { _  1}." Let B:=  [~1, ~o~, with % defined as in (8.3). Then B~o 

vanishes nowhere on T n, where v o ~ V is determined by the condition 

x7 Z d. v o = ~ - - ,  mod 
~or 4 

Consequently, the construction detailed in Theorem 7.8 can be applied with respect 

to this v o. 

Proof. Since B here is a polynomial, it is clear that the functions kv defined in 

Theorem 7.8 are in L 2. Also, for the same reason, B is bounded. Thus, to apply 
Theorem 7.8, we, indeed, need only prove the boundedness of 1/B,o. In view of 

the remarks preceding this corollary, it suffices to show that the mask A in the 

equation ~o = 2dA(o~ is of the form 

A = e_jA', 

with A' nonnegative and j - v o ~ Z d. Here, 

e "L22-lx~'y/2 + 1 

A(y) = 1-~ 2 
y~F 
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Let (7, 7') be a pair in the partitioning of F. Then 

e ;~/2-ixr'y/2 q- 1 e 2~'/2-ixr -1- 1 

2 2 

_ _1 - e(7, 7') e;~/2 + e -ix~'r/2 cosh + cos x e- . 
4 4 

The second factor above is nonnegative. Multiplying the first factor over all pairs 

(7, 7'), we obtain an expression of the form 

const.z e_j, 

where j : =  ~,t~,r,)=l xJ2  = �88 ~ r  x~ E Z d, since each direction appears either as 

an x r or an x 7, and x r, = x~ if e(7, Y') = 1 while x~, = - x  r otherwise. �9 

It should be clear that, under the assumptions of the last corollary, Theorem 

7.8 can be applied to obtain stable bases for all the wavelet spaces of the multiscale 

generated by the box spline M. Also, the assumption that 2 is real is convenient 

but not essential. In general, to obtain a box spline that satisfies the above 

assumptions, one can start with any M that is defined by a unimodular F, and 

replace M by M .  M( - . ) .  The box spline obtained in this way corresponds to the 

choice Vo = 0 in the above corollary. The other variants can be obtained by shifting 

that box spline by j ~ V. 

If d < 3, we can also try to employ the construction detailed in Theorem 7.13. 

Here, given a unimodular F, we want the mask A to be of the form 

A = ejA' 

for some real A'. In the polynomial case (i.e., when 2 = 0), this assumption is always 

satisfied since then for A := Ao we have 

A(y) = ej~y) I-I cos(y.xr), 
~EF 

with j : =  - � 89  ~ r  x~. This observation immediately extends to the case when 

2 ~ iR d, but, however, does not extend to an arbitrary 2. On the other hand, if M 

is a box spline as in Corollary 8.6, and M' is a polynomial box spline (with a 

unimodular set of direction), then M * M' satisfies the requirements of Theorem 
7.13. 

We mentioned previously that for nonstationary decompositions the possibility 

that the half-shifts of ~o are stable should not be excluded. Box splines provide an 
excellent illustration of this point. In order to check the stability of the half-shifts 

of ~o, we consider, as before, the function ~ = [A~/2(./2)1 ~. By our assumptions, 

the half-shifts of ~/are linearly independent, hence stable, which means that ~ is 
positive on R d. Therefore, the zeros of ~ are identical with those of the mask 

A2/2(Y)~ = I-I (e'~'/2-ir/2"Xr+l)2 

7r 
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We observe that the factor e ;~'/2-iy/2"xr -1- 1 has zeros in R d if and only if 2r = 0 

(recall that we are already assuming that 2r is real). Thus we obtain the following 
interesting result: 

Corollary 8.7. Let Mz be the box spline given by a unimodular F and a real 2. 

Then Mz vanishes nowhere if and only if 2 contains no zero entry. Consequently, 

this last condition is equivalent to the stability of the half-shifts of M ~. 

Stronger results can be obtained by a finer analysis. It can be shown that, 
assuming only (8.2) (which is embedded in the last corollary in the unimodularity 
assumption on F), the stability of the half-shifts of Mx is equivalent to the existence 
of nontrivial functions in the intersection ~k 6ak, with (6ek)k the multiscale 
generated by the box spline Mx. 

The stability of the half-shifts of Ma leads to painless constructions of compactly 
supported stable bases for the wavelet space. Here is a sample result in this 

direction: 

Proposition 8.8. Assume that ~p and rl satisfy (7.1) and (7.2), and assume that the 

half-shifts of rp are stable. Let w be either the generator for the wavelet space 

introduced in Corollary 3.19 or in the paragraph after Theorem 7.11. Then w provides 

(i.e., the (Za/2)\Zd-translates of w form) a stable basis for W. 

The last result is less impressive than it might look at first. Indeed, considering 
the box spline multiscale and assuming, say, that 2 is real and contains nonzero 
entries, we can easily find single compactly supported stable generators to each 
of the wavelet spaces associated with the multiscale (~0k) k generated by M. Still, as 
already mentioned in Section 6, it is crucially important to understand the behavior 
of the stability constants as k varies, and in the case of box splines these constants 
deteriorate fast as k increases. This can be observed as follows: if we rescale each 
~0 k and ~0k+ 1 by 2 k+l, and denote the functions obtained by ~/k and r/k+1 
respectively, we obtain a refinement equation of the form 

~k = 2~A~/2 ~+ ~k§ 1" 

Thus complex zeros of the kth-order mask converge (exponentially) to the real 
domain, as k increases. Very large initial entries for 2 might be attempted to be 
chosen, yet the results of [DR] indicate that the asymptotic approximation 
properties of 6~k(~Ok) deteriorate exponentially with the growth of 2. 

The above discussion demonstrates the difficulty of controlling the stability 
constants in case the wavelet constructions are based on the stability of the 
half-shifts of M~. On the other hand, the constructions that make use of the 
refinement equation (such as the one detailed in Corollary 8.6) require only the 
stability of the half-shifts of M~/2(2"). Using methods similar to those employed 
in Section 6, it can be shown that for such constructs the stability constants do 

not blow up as k ---, oo. 
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