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Abstract

A paired many-to-many k-disjoint path cover (k-DPC)
of a graph G is a set of k disjoint paths joining k distinct
source-sink pairs in which each vertex of G is covered by a
path. This paper is concerned with paired many-to-many
disjoint path coverability of hypercube-like interconnec-
tion networks, called restricted HL-graphs. The class in-
cludes twisted cubes, crossed cubes, multiply twisted cubes,
Möbius cubes, Mcubes, and generalized twisted cubes. We
show that every restricted HL-graph of degree m with f or
less faulty elements has a paired many-to-many k-DPC for
any f and k ≥ 2 with f + 2k ≤ m. The result improves the
known bound of f + 2k ≤ m− 1 by one.

1. Introduction

Various interconnection networks were proposed and
their graph-theoretic properties have been investigated with
their applications in parallel computing. Among the proper-
ties, finding parallel paths among nodes in interconnection
networks is one of the important problems concerned with
an efficient data transmission. Usually interconnection net-
works are represented as graphs and parallel paths are stud-
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ied in terms of disjoint paths in graphs. In this paper, we
will use standard terminology in graphs (see [1]).

Let G = (V, E) be an undirected simple graph. A set
of paths in G is called disjoint if they do not share any ver-
tices. In disjoint path problems, one or more source ver-
tices and one or more sink vertices are given to find disjoint
paths between them. Depending on the number of sources
or sinks, there are one-to-one[9, 2, 16], one-to-many[3, 10],
and many-to-many disjoint path problems[11, 13]. Among
them, many-to-many disjoint path problem is the most gen-
eralized one, and will be mainly discussed in this paper.

For a set S = {s1, s2, . . . , sk} of k sources and a set
T = {t1, t2, . . . , tk} of k sinks in V (G), the many-to-many
k-disjoint path problem is to determine whether there exist
k disjoint paths each joining a source and a sink. There are
paired and unpaired types of many-to-many k-disjoint path
problem. In paired type, each source should be joined to a
specific sink, that is, sj should be joined to tj . In unpaired
type, each source can be joined to an arbitrary sink. The
sources and sinks are called terminal in general.

Disjoint path cover of a graph G is a set of disjoint paths
covering all the vertices of G. The problem of finding dis-
joint path covers is closely related with well-known hamil-
tonian path problem and concerned with the application
where the full utilization of vertices is important. Hamil-
tonian path problem can be viewed as a specific case of the
disjoint path cover problem.

The disjoint path cover problem can be extended to a



graph with some faulty elements (vertices and/or edges).
Fault tolerance is one of the important measures in net-
works. Especially, fault-hamiltonicity of various intercon-
nection networks was widely investigated in the literature[4,
5, 6, 12, 15, 17]. A graph G is called f -fault hamilto-
nian (resp. f -fault hamiltonian-connected) if there exists
a hamiltonian cycle (resp. if each pair of vertices are joined
by a hamiltonian path) in G\F for any set F of faulty ele-
ments with |F | ≤ f .

Considering all the above versions of disjoint path cover
problems, we give definitions for a graph G with a set F of
faulty elements.

Definition 1 Given a set of k sources S = {s1, s2, . . . , sk}
and a set of k sinks T = {t1, t2, . . . , tk} in G\F such that
S ∩ T = ∅, a paired many-to-many k-disjoint path cover
joining S and T is a set of k fault-free disjoint paths Pj

joining sj and tj , 1 ≤ j ≤ k, that cover all the fault-free
vertices of G.

Definition 2 Given a set of k sources S = {s1, s2, . . . , sk}
and a set of k sinks T = {t1, t2, . . . , tk} in G\F such that
S∩T = ∅, an unpaired many-to-many k-disjoint path cover
joining S and T is a set of k fault-free disjoint paths Pj join-
ing sj and tij , 1 ≤ j ≤ k, with an arbitrary permutation
(i1, i2, . . . , ik) of {1, 2, . . . , k} that cover all the fault-free
vertices of G.

In this paper, we consider a graph with faulty elements
which has a k-DPC for arbitrary k sources and k sinks rather
than fixed sources and sinks, which is called many-to-many
k-disjoint path coverable graph. It is defined as follows.

Definition 3 A graph G is called f -fault paired (resp. un-
paired) many-to-many k-disjoint path coverable if f +2k ≤
|V (G)| and for any set F of faulty elements with |F | ≤ f ,
G has a paired (resp. unpaired) k-DPC for any set S
of k sources and any set T of k sinks in G\F such that
S ∩ T = ∅.

Many interconnection networks such as restricted HL-
graphs and recursive circulant G(2m, 4) can be constructed
by connecting two lower dimensional networks. We rep-
resent the construction as follows. Given two graphs G0

and G1 with n vertices each, we denote by Vj and Ej

the vertex set and edge set of Gj , j = 0, 1, respectively.
Let V0 = {v1, v2, . . . , vn} and V1 = {w1, w2, . . . , wn}.
With respect to a permutation M = (i1, i2, . . . , in) of
{1, 2, . . . , n}, we can “merge” the two graphs into a graph
G0 ⊕M G1 with 2n vertices in such a way that the vertex
set V = V0∪V1 and the edge set E = E0∪E1∪E2, where
E2 = {(vj , wij )|1 ≤ j ≤ n}. We denote by G0 ⊕ G1 a
graph obtained by merging G0 and G1 w.r.t. an arbitrary
permutation M . Here, H0 and H1 are called components of
H0 ⊕H1.

Vaidya et al.[18] introduced a class of hypercube-like
interconnection networks, called HL-graphs, which can be
defined by applying the ⊕ operation repeatedly as follows:
HL0 = {K1}; for m ≥ 1, HLm = {G0 ⊕ G1|G0, G1 ∈
HLm−1}. Then, HL1 = {K2}; HL2 = {C4}; HL3 =
{Q3, G(8, 4)}. Here, C4 is a cycle graph with 4 vertices,
Q3 is a 3-dimensional hypercube, and G(8, 4) is a recur-
sive circulant which is defined as follows: the vertex set is
{vi|0 ≤ i ≤ 7} and the edge set is {(vi, vj)|i+1 or i+4 ≡ j
(mod 8)}. G(8, 4) is isomorphic to twisted cube TQ3 and
Möbius ladder with four spokes.

In [12], a subclass of nonbipartite HL-graphs, called re-
stricted HL-graphs, was introduced by the authors, which
is defined recursively as follows: RHLm = HLm for
0 ≤ m ≤ 2; RHL3 = HL3\Q3 = {G(8, 4)}; RHLm =
{G0 ⊕ G1|G0, G1 ∈ RHLm−1} for m ≥ 4. A graph
which belongs to RHLm is called an m-dimensional re-
stricted HL-graph. Many of the nonbipartite hypercube-
like interconnection networks such as crossed cube, Möbius
cube, twisted cube, multiply twisted cube, Mcube, gener-
alized twisted cube, etc. proposed in the literature are re-
stricted HL-graphs with the exception of recursive circu-
lant G(2m, 4) and “near” bipartite interconnection networks
such as twisted m-cube. In fact, every G(2m, 4) with odd
m is an m-dimensional restricted HL-graph. Some works
on HL-graphs and restricted HL-graphs were appeared in
the literature; for example, hamiltonicity of HL-graphs[8],
fault-hamiltonicity of restricted HL-graphs[12], and fault-
panconnectivity and fault-pancyclicity of restricted HL-
graphs[14].

Only a few works can be found for many-to-many k-
disjoint path cover problem with k ≥ 2. It was shown
in [13] and [11], respectively, that every m-dimensional
restricted HL-graph and recursive circulant G(2m, 4) are
f -fault paired many-to-many k-disjoint path coverable for
any f and k ≥ 1 with f + 2k ≤ m − 1, and every m-
dimensional restricted HL-graph is f -fault unpaired many-
to-many k-disjoint path coverable for any f and k ≥ 1 with
f +k ≤ m−2. Every m-dimensional crossed cube, m ≥ 5,
was shown to have a paired 2-DPC consisting of two paths
of equal length by Lai et al. in [7].

In this paper, we show that every m-dimensional re-
stricted HL-graph is f -fault paired many-to-many k-disjoint
path coverable for any f and k ≥ 2 with f + 2k ≤ m.
The bound on f + 2k is improved by one as compared
with [13]. The necessary condition given in [13] says
“f + 2k ≤ m + 1.” Thus, the gap between the bound
achieved and the bound m + 1 of necessity is just one.

2. Construction of Paired Disjoint Path Covers

Let H0 = G0 ⊕ G1 and H1 = G2 ⊕ G3. Here, G0 and
G1 are called subcomponents of H0 ⊕H1. The main prob-



lem studied in this section is how paired many-to-many dis-
joint path coverability and unpaired many-to-many disjoint
path coverability of Gi’s and Hj’s are translated into paired
many-to-many disjoint path coverability of H0 ⊕ H1. To
achieve simpler construction, we make an assumption that
each Gi has 2m−2 vertices and is of degree m − 2. Thus,
Hj has 2m−1 vertices and is of degree m − 1. The main
theorem will be stated as follows. We denote by δ(G) the
minimum degree of a graph G.

Theorem 1 Let m ≥ 5. Let Gi, i = 0, 1, 2, 3, be a graph
of degree m− 2 having 2m−2 vertices. Suppose each Gi is
(a) f -fault paired many-to-many k-disjoint path coverable
for any f and k ≥ 2 with f + 2k ≤ δ(Gi) and (b) f -fault
unpaired many-to-many k-disjoint path coverable for any f
and k ≥ 1 with f + k ≤ δ(Gi) − 2. Let H0 = G0 ⊕ G1

and H1 = G2 ⊕ G3. Furthermore, we suppose each Hj is
(c) f -fault paired many-to-many k-disjoint path coverable
for any f and k ≥ 2 with f + 2k ≤ δ(Hi) and (d) f -fault
unpaired many-to-many k-disjoint path coverable for any f
and k ≥ 1 with f + k ≤ δ(Hi) − 2. Then, H0 ⊕ H1 is
f -fault paired many-to-many k-disjoint path coverable for
any f and k ≥ 2 with f + 2k ≤ δ(H0 ⊕H1) = m.

For a vertex v in H0 ⊕ H1, we denote by v̄ the vertex
adjacent to v which is in a component different from the
component in which v is contained.

Definition 4 A vertex v is called free if v is fault-free and
not a terminal, that is, v /∈ F and v /∈ S ∪ T . An edge
(v, w) is called free if v and w are free and (v, w) /∈ F .

We denote by H[v, w|G,F ] a hamiltonian path in G\F
joining a pair of fault-free vertices v and w in a graph G
with a fault set F , that is, 1-DPC[{(v, w)}|G,F ]. A path in
a graph is represented as a sequence of vertices. A v-w path
refers to a path from vertex v to w, and a v-path refers to a
path whose starting vertex is v.

2.1. Proof of Theorem 1

Given a fault set F , a set of k sources S =
{s1, s2, . . . , sk}, and a set of k sinks T = {t1, t2, . . . , tk}
in a graph G, a paired many-to-many k-disjoint path
cover joining S and T in G\F is denoted by k-
DPC[{(s1, t1), (s2, t2), . . . , (sk, tk)}|G,F ]. We are to
construct a k-DPC[{(s1, t1), (s2, t2), . . . , (sk, tk)}|H0 ⊕
H1, F ] for any given F with |F | ≤ f , S and T with
|S| = |T | = k ≥ 2 such that f + 2k ≤ m.

F0 and F1 denote the sets of faulty elements in H0 and
H1, respectively, and F2 denotes the set of faulty edges
joining vertices in H0 and vertices in H1, so that F =
F0 ∪ F1 ∪ F2. Let f0 = |F0|, f1 = |F1|, and f2 = |F2|.
We also denote by ki the number of source-sink pairs in Hi,

i = 0, 1, and by k2 the number of source-sink pairs between
H0 and H1. We assume w.l.o.g. that

k0 ≥ k1, and if k0 = k1, f0 ≥ f1.

We let I0 = {1, 2, . . . , k0}, I2 = {k0 + 1, k0 + 2, . . . , k0 +
k2}, and I1 = {k0 +k2 +1, k0 +k2 +2, . . . , k0 +k2 +k1}.
We assume that {sj , tj |j ∈ I0} ∪ {sj |j ∈ I2} ⊆ V (H0)
and {sj , tj |j ∈ I1} ∪ {tj |j ∈ I2} ⊆ V (H1).

We have |F | ≤ f , k = k0+k1+k2 ≥ 2, and f+2k ≤ m.
Observe that a paired many-to-many k-disjoint path cover
in H0⊕H1 with a virtual fault set F ∪F ′, where F ′ is a set
of arbitrary m − 2k − |F | fault-free edges, is also a paired
many-to-many k-disjoint path cover in H0 ⊕ H1 with the
fault set F . Thus, we can assume

f + 2k = m and |F | = f.

By the condition (d), each Hi is m−4-fault hamiltonian-
connected, or equivalently, f + 2k − 4-fault hamiltonian-
connected. Since m ≥ 5 and k ≥ 2, we have that

Hi is 1-fault hamiltonian-connected and
f -fault hamiltonian-connected.

Hereafter in this section, an f -fault k-DPC refers to an
f -fault paired many-to-many k-disjoint path cover joining
the set of sources and the set of sinks. There are four cases,
Cases I through IV.

Case I: k1 ≥ 1 or f0 ≤ f − 1.
In this case, H0 is f0-fault paired many-to-many k0+k2-

disjoint path coverable. By the assumption of k0 ≥ k1, if
k1 + k2 ≥ 1, H1 is f1-fault paired many-to-many k1 + k2-
disjoint path coverable.

Procedure PairedDPC-A(H0 ⊕H1, S, T, F )
/* under the condition of k1 ≥ 1 or f0 ≤ f − 1 */

1. Pick up k2 free edges joining vertices in H0 and ver-
tices in H1. Let the free edges be (xj , yj), j ∈ I2, with
xj ∈ V (H0).

2. Find k0 + k2-DPC[{(sj , tj)|j ∈ I0} ∪ {(sj , xj)|j ∈
I2}|H0, F0].

3. Case k1 + k2 ≥ 1:

(a) Find k1 + k2-DPC[{(sj , tj)|j ∈ I1} ∪
{(yj , tj)|j ∈ I2}|H1, F1].

(b) Merge the two DPC’s with the k2 free edges.

4. Case k1 + k2 = 0:

(a) Let (x, y) be an edge on some path in the k0+k2-
DPC such that all the x̄, (x, x̄), ȳ, and (y, ȳ) are
fault-free.



(b) Find H[x̄, ȳ|H1, F1].

(c) Merge the k0 +k2-DPC and the hamiltonian path
with edges (x, x̄) and (y, ȳ). Discard the edge
(x, y).

Lemma 1 When k1 ≥ 1 or f0 ≤ f − 1, Procedure
PairedDPC-A constructs an f -fault k-DPC.

Proof: We claim the k2 free edges in Step 1 exist. There
are 2m−1 candidate free edges and f+2k blocking elements
(f faults and 2k terminals). The number of nonblocked can-
didates is at least 2m−1− (f +2k) = 2m−1−m > m > k2

for any m ≥ 5. Thus, the claim is proved. The k0 + k2-
DPC in H0 exists when k0 + k2 ≥ 2, if k1 ≥ 1, we have
f0 +2(k0 +k2) ≤ f +2(k−1) ≤ m−1, and if f0 ≤ f−1,
we have f0 + 2(k0 + k2) ≤ (f − 1) + 2k ≤ m− 1. When
k0+k2 = 1, the k0+k2-DPC is a hamiltonian path between
two vertices in H0. The hamiltonian path exists since H0 is
f -fault hamiltonian-connected and f0 ≤ f . Similarly, we
can show the existence of k1 + k2-DPC in Step 3(a) and the
hamiltonian path in Step 4(b). We claim the edge (x, y) in
Step 4(a) exists. There are at least |V (H0)| − f0 − k can-
didate edges, and at most f1 + f2 elements can block the
candidates. Since each element blocks at most two can-
didates, the number of nonblocked candidates is at least
|V (H0)| − f0 − k − 2(f1 + f2) ≥ 2m−1 − k − 2f >
2m−1 − 2m ≥ 6 for any m ≥ 5. Note that f + 2k = m. ¥

Case II: k1 = 0, f0 = f , k0 ≥ 1, k2 ≥ 1, and for some
a ∈ I2, s̄a is not a terminal.

All the sources and all the faulty elements, if any, are
contained in H0. Notice that H0 may not be f0-fault many-
to-many k0 + k2-disjoint path coverable since f0 + 2(k0 +
k2) = f + 2k 6≤ m − 1. Nevertheless, if k ≥ 3, there
always exists an f0 + 1-fault k0 + k2 − 1-DPC in H0 with
sa being a virtual fault. The k0 + k2 − 1-DPC (instead of
k0 +k2-DPC) can be utilized to construct an f -fault k-DPC
in H0 ⊕ H1. In fact, (sa, s̄a) plays a role of the free edge
for sa-ta path.

When k = 2, this approach will not be applied since the
existence of f0 + 1-fault k0 + k2 − 1-DPC, or equivalently
f0 + 1-fault hamiltonian path in H0 is not guaranteed. We
consider the subcase k = 2 first, as shown in the follow-
ing Procedure PairedDPC-B. The procedure is applicable
for the case k1 = 0, f0 = f , and k0 = k2 = 1, regardless
of whether the s̄2, 2 ∈ I2, is a terminal or not. It utilizes
fault-hamiltonicity of components H0 and H1. Its correct-
ness is straightforward since each Hi is f -fault hamiltonian-
connected and 1-fault hamiltonian-connected.

Procedure PairedDPC-B(H0 ⊕H1, S, T, F )
/* under the condition of k1 = 0, f0 = f , and k0 = k2 = 1
*/

1. Regarding s1 as a virtual free vertex, find a hamil-
tonian path Ph = H[s2, t1|H0, F0]. Let Ph =
(s2, Px, x, s1, P

′
1, t1).

2. Case x̄ 6= t2:

(a) Find a hamiltonian path P ′h = H[x̄, t2|H1, ∅].
(b) Let P1 = (s1, P

′
1, t1) and P2 = (s2, Px, x, P ′h).

3. Case x̄ = t2:

(a) Pick up an arbitrary edge (u, v) on Ph with
u, v 6= x.

(b) Find a hamiltonian path P ′h = H[ū, v̄|H1, {t2}].
(c) Let P1 = (s1, P

′
1, t1) and P2 = (s2, Px, x, t2),

and then replace the edge (u, v) with (u, P ′h, v).

Procedure PairedDPC-C(H0 ⊕H1, S, T, F )
/* under the condition of k1 = 0, f0 = f , k0 ≥ 1, k2 ≥ 1,
k ≥ 3, and there exists a source sa, a ∈ I2, with s̄a being
not a terminal */

1. Pick up k2 − 1 free edges joining vertices in H0 and
vertices in H1. Let the free edges be (xj , yj), j ∈
I2\a, with xj ∈ V (H0).

2. Regarding sa as a virtual fault, find k0 + k2 − 1-
DPC[{(sj , tj)|j ∈ I0}∪{(sj , xj)|j ∈ I2\a}|H0, F0∪
{sa}].

3. Find k2-DPC[{(s̄a, ta)} ∪ {(yj , tj)|j ∈ I2\a}|H1, ∅].
4. Merge the two DPC’s with (sa, s̄a) and the k2− 1 free

edges.

Lemma 2 When k1 = 0, f0 = f , k0 ≥ 1, k2 ≥ 1, k ≥ 3,
and there exists a source sa, a ∈ I2, with s̄a being not a
terminal, Procedure PairedDPC-C constructs an f -fault k-
DPC.

Proof: The existence of k2 − 1 free edges can be proved
in the same way as in the proof of Lemma 1. The k0+k2−1-
DPC exists since f0+1+2(k0+k2−1) = f+1+2(k−1) =
m− 1. The existence of k2-DPC is obvious. ¥
Case III: k1 = 0, f0 = f , k0 ≥ 1, either k2 = 0 or k2 ≥ 1
and for every j ∈ I2, s̄j is a terminal.

This is one of the hardest cases. An f0-fault k0 + k2-
disjoint path coverability of H0 is not guaranteed. The con-
struction of an f -fault k-DPC relies on the construction of
k−1-DPC in H1 or when f ≥ 1, k-DPC in H1. Notice that
if v is a free vertex or a terminal in {sj , tj |j ∈ I0}, then v̄ is
always a free vertex. We consider the subcase k0 ≥ 2 first.
In this case, fault-hamiltonicity of H0 and k − 1-disjoint
path coverability of H1 are employed.

Procedure PairedDPC-D(H0 ⊕H1, S, T, F )
/* under the condition of k1 = 0, f0 = f , k0 ≥ 2, and
either k2 = 0 or k2 ≥ 1 and s̄j is a sink for every j ∈ I2 */



1. Pick up k2 free edges (xj , yj), j ∈ I2, with xj ∈
V (H0) and yj ∈ V (H1) such that (sj , xj) is an edge
and fault-free.

2. Regarding s1 and t1 as virtual free vertices, find
a hamiltonian path H[s2, t2|H0, F0 ∪ F ′ ∪ F ′′],
where F ′ = {sj , xj |j ∈ I2} and F ′′ =
{sj , tj |j ∈ I0\{1, 2}}. Here, F ′ and F ′′ are
virtual fault sets. Let the hamiltonian path be
(s2, Pu, u, s1, P

′
1, t1, v, Pv, t2).

3. Find k0+k2−1-DPC[{(yj , tj)|j ∈ I2}∪{(s̄j , t̄j)|j ∈
I0\{1, 2}} ∪ {(ū, v̄)}|H1, ∅].

4. Merge the hamiltonian path and the DPC with
{(sj , xj , yj)|j ∈ I2}, {(sj , s̄j), (tj , t̄j)|j ∈
I0\{1, 2}}, and {(u, ū), (v, v̄)}. Discard edges
(s1, u) and (t1, v).

Lemma 3 When k1 = 0, f0 = f , k0 ≥ 2, and either k2 =
0 or k2 ≥ 1 and s̄j is a terminal for every j ∈ I2, Procedure
PairedDPC-D constructs an f -fault k-DPC.

Proof: For each j ∈ I2, we can pick up a free edge
(xj , yj) one by one since there are δ(H0) = m − 1 candi-
dates and at most f+2(k−1) = m−2 blocking elements (f
faulty elements, 2k0 terminals, k2 − 1 sources, and k2 − 1
free edges picked up). The hamiltonian path in H0 exists
since f0 + 2(k0 − 2) + 2k2 = f + 2k − 4 = m− 4. Obvi-
ously, the k0 + k2 − 1-DPC exists in H1. ¥

We come to the case that k1 = 0, f0 = f , k0 = 1, and ei-
ther k2 = 0 or k2 ≥ 1 and s̄j is a terminal for every j ∈ I2.
By the assumption of k ≥ 2, we have k2 ≥ 1. Further-
more, the case k2 = 1 was already considered in Procedure
PairedDPC-B, and thus we assume k2 ≥ 2. Therefore, we
have k ≥ 3 and m ≥ 6. Remember t1 ∈ V (H0) and
tj ∈ V (H1) for all j ≥ 2. There are two procedures de-
pending on whether f ≥ 1 or not. For the case f ≥ 1, we
utilize fault-hamiltonicity of H0 and 0-fault k-disjoint path
coverability of H1.

Procedure PairedDPC-E(H0 ⊕H1, S, T, F )
/* under the condition of k1 = 0, f0 = f ≥ 1, k0 = 1,
k2 ≥ 2, and s̄j is a sink for every j ∈ I2 */

1. Pick up k2 − 1 free edges (xj , yj), j ∈ I2\2, with
xj ∈ V (H0) and yj ∈ V (H1) such that (sj , xj) is an
edge and fault-free.

2. Regarding s2 as a virtual free vertex, find a hamilto-
nian path Ph = H[s1, t1|H0, F0 ∪ F ′], where F ′ =
{sj , xj |j ∈ I2\2}.

3. There exists a free vertex x2 such that (s2, x2) is an
edge of Ph. Removing s2 and x2 from Ph results two
subpaths (s1, Pu, u) and (v, Pv, t1). Let y2 = x̄2.

4. Find k0 +k2-DPC[{(yj , tj)|j ∈ I2}∪{(ū, v̄)}|H1, ∅].
5. Merge the hamiltonian path and the DPC with
{(sj , xj , yj)|j ∈ I2} and {(u, ū), (v, v̄)}.

Lemma 4 When k1 = 0, f0 = f ≥ 1, k0 = 1, k2 ≥ 2,
and s̄j is a sink for every j ∈ I2, Procedure PairedDPC-E
constructs an f -fault k-DPC.

Proof: The existence of k2 − 1 free edges can be proved
in a very similar way as in the proof of Lemma 3. The
hamiltonian path Ph exists since f0 + 2(k2 − 1) = f +
2k − 4 = m − 4. The k0 + k2-DPC exists in H1 since
2(k0 + k2) = m− f ≤ m− 1. ¥

Finally, we have f = 0. We will show that for ‘some’ k2

free edges joining vertices in H0 and vertices in H1, there
exist two DPC’s: a k0 + k2-DPC from sources to the union
of sink t1 and endvertices of the free edges in H0 and k2-
DPC between sinks and endvertices of the free edges in H1.
The construction of a k0 + k2-DPC in H0 is a little compli-
cated. It consists of two subcases, as shown in Steps 1 and
2 of the following procedure.

For a vertex v in G0 (resp. G1), v̂ denotes the vertex
in G1 (resp. G0) which is adjacent to v. Let I ′2 = {j ∈
I2|sj ∈ V (G0)} and I ′′2 = I2\I ′2, and let k′2 = |I ′2| and
k′′2 = |I ′′2 |, so that k′2 + k′′2 = k2. It is assumed w.l.o.g. that
k′2 ≥ k′′2 .

Procedure PairedDPC-F(H0 ⊕H1, S, T, F )
/* under the condition of k1 = 0, f = 0, k0 = 1, k2 ≥ 2,
and s̄j is a sink for every j ∈ I2 */

1. Case k′′2 ≥ 1 or k′′2 = 0 and ŝa is a free vertex for some
a ∈ I ′2:

(a) Let xa be a vertex in H0 such that (sa, xa) ∈ E
and (sb, xa) 6∈ E for some a, b ∈ I2.

(b) Pick up k2−2 free edges (xj , yj), j ∈ I2\{a, b},
with xj ∈ V (H0) and yj ∈ V (H1) such that
xj 6= xa.

(c) Find k0 + k2 − 1-DPC[{(s1, t1), (sb, xa)} ∪
{(sj , xj)|j ∈ I2\{a, b}}|H0, F

′], where F ′ =
{sa}. Let the sb-path in the DPC be
(sb, P

′, xb, xa).

(d) Let sa-xa path be (sa, xa) and let sb-xb path be
(sb, P

′, xb). Let ya = x̄a and yb = x̄b.

2. case k′′2 = 0 and ŝi is a terminal for every i ∈ I ′2:
/* k2 = 2, s2, s3 ∈ V (G0), and s1, t1 ∈ V (G1) */

(a) Pick up two free edges (x2, y2) and (x3, y3) with
x2, x3 ∈ V (G0) and y2, y3 ∈ V (H1).

(b) Find 2-DPC[{(s2, x2), (s3, x3)}|G0, ∅].
(c) Find H[s1, t1|G1, ∅].



3. Find k2-DPC[{(yj , tj)|j ∈ I2}|H1, ∅].
4. Merge the two DPC’s with edges (xj , yj), j ∈ I2.

Lemma 5 When k1 = 0, f = 0, k0 = 1, k2 ≥ 2, and s̄j is
a sink for every j ∈ I2, Procedure PairedDPC-F constructs
an f -fault k-DPC.

Proof: We first claim the existence of xa in Step 1(a).
When k′′2 ≥ 1, let a ∈ I ′2 and b ∈ I ′′2 . Then, sa and sb

are sources contained in G0 and G1, respectively. There are
m− 2 candidates for xa in G0 and at most 2k0 + (k2 − 1)
blocking terminals. Since 2k0 + (k2 − 1) = k = m− k ≤
m−3, there exists such a vertex xa. When k′′2 = 0 and ŝa is
a free vertex for some a ∈ I ′2, let sb be an arbitrary source in
G0 with b ∈ I2\a. By the structure of G0 ⊕G1, (sb, xa) 6∈
E. Thus, the claim is proved. The existence of the k2 − 2
free edges in Step 1(b) is straightforward. The k0 + k2− 1-
DPC in Step 1(c) exists since 1+2(k0+k2−1) = 2k−1 =
m−1. By the choice of xa, xb is a free vertex different from
xa. Thus, a k0 + k2-DPC in H0 is constructed successfully
in Step 1. If k′′2 = 0 and ŝi is a terminal for every i ∈ I ′2, we
can see that k2 = 2 and {ŝ2, ŝ3} = {s1, t1}. Since G0 is
paired many-to-many k − 1-disjoint path coverable and G1

is hamiltonian-connected, a k0+k2-DPC can be constructed
in Step 2. Existence of the k2-DPC in Step 3 is due to k2 <
k, precisely speaking, due to 2k2 = 2(k−1) ≤ m−1. This
completes the proof. ¥
Case IV: k2 = k and f0 = f .

To construct an f -fault k-DPC in this case, we mainly
utilize unpaired many-to-many disjoint path coverability of
H0 and paired many-to-many disjoint path coverability and
hamiltonicity of subcomponents G2 and G3. By virtue of
unpaired many-to-many disjoint path coverability, we are
able to keep out of some troublesome subcases although this
is one of the hardest cases.

However, there is an exceptional case in which we can-
not apply unpaired many-to-many disjoint path coverability
of H0, the case of k = 2. We consider the exceptional case
first in the following Procedure PairedDPC-G. Its correct-
ness is straightforward since each Hi is f -fault hamiltonian-
connected and 0-fault paired many-to-many 2-disjoint path
coverable.

Procedure PairedDPC-G(H0 ⊕H1, S, T, F )
/* under the condition of k2 = k = 2, f0 = f */

1. Find H[s1, s2|H0, F0]. Let the hamiltonian path
be (s1, Pu, u, v, Pv, s2) for some edge (u, v) with
{ū, v̄} ∩ {t1, t2} = ∅.

2. Find 2-DPC[{(ū, t1), (v̄, t2)}|H1, ∅].
3. Merge the hamiltonian path and 2-DPC with edges

(u, ū) and (v, v̄).

We assume k ≥ 3 and thus m ≥ 6. For a vertex v in
G2 (resp. G3), v̂ denotes the vertex in G3 (resp. G2) which
is adjacent to v. We let I ′2 = {j ∈ I2|tj ∈ V (G2)} and
I ′′2 = I2\I ′2, and let k′2 = |I ′2| and k′′2 = |I ′′2 |. We assume
w.l.o.g. either 2 ≤ k′2 ≤ k′′2 or k′2 ≥ k2 − 1.

Procedure PairedDPC-H(H0 ⊕H1, S, T, F )
/* under the condition of k2 = k ≥ 3, f0 = f , and f ≥ 1
or 2 ≤ k′2 ≤ k′′2 */

1. Pick up k2 free edges (xj , yj), j ∈ I2, with xj ∈
V (H0) and yj ∈ V (G2) such that ŷj is not a termi-
nal.

2. Find an f0-fault unpaired many-to-many k2-disjoint
path cover joining {sj |j ∈ I2} and {xj |j ∈ I2} in
H0. Let sj-path in the unpaired k2-DPC join sj and
xij

, j ∈ I2.

3. Case f ≥ 1: Find k2-DPC[{(yij , tj)|j ∈ I2}|H1, ∅].
4. Case f = 0 and 2 ≤ k′2 ≤ k′′2 : Find k2-DPC in H1 as

follows.

(a) Find k′2-DPC[{(yij , tj)|j ∈ I ′2}|G2, F
′], where

F ′ = {yij |j ∈ I ′′2 }.
(b) Find k′′2 -DPC[{(ŷij , tj)|j ∈ I ′′2 }|G3, ∅].
(c) Merge the k′2-DPC and k′′2 -DPC with edges

(yij , ŷij ), j ∈ I ′′2 .

5. Merge the unpaired k2-DPC in H0 and k2-DPC in H1

with edges (xij , yij ), j ∈ I2.

Lemma 6 When k2 = k ≥ 3, f0 = f , and f ≥ 1 or
2 ≤ k′2 ≤ k′′2 , Procedure PairedDPC-H constructs an f -
fault k-DPC.

Proof: The k2 free edges in Step 1 exist since there are
2m−2 candidates and at most f + 2k elements (f faults and
2k terminals) block the candidates. Of course, 2m−2−(f +
2k) = 2m−2 −m ≥ m ≥ k2 for any m ≥ 6. The existence
of unpaired k2-DPC is due to that f0 + k2 = f + k =
m− k ≤ m− 3. The k2-DPC in Step 3 exists since 2k2 ≤
(f − 1) + 2k2 = f + 2k − 1 = m − 1. The existence of
k′2-DPC in Step 4(a) is due to |F ′| + 2k′2 = k′′2 + 2k′2 =
2k− k′′2 ≤ 2k− 2 ≤ m− 2. The k′′2 -DPC in Step 4(b) also
exists since 2k′′2 = 2k − 2k′2 ≤ m− 2. ¥

Now, we have k2 = k ≥ 3, f = 0, and k′2 ≥ k2−1. The
subcase k′2 = k2−1 is considered first in the following. The
vertex α in G2, which is adjacent to the sink in G3, plays
an extraordinary role in the construction. Unpaired many-
to-many disjoint path coverability of H0, hamiltonicity of
G2, and paired many-to-many disjoint path coverability of
G3 are utilized.

Procedure PairedDPC-I(H0 ⊕H1, S, T, F )
/* under the condition of k2 = k ≥ 3, f = 0, and k′2 =
k2 − 1 */



1. Let tk2 be the sink in G3, and let α = ˆtk2 .

2. (a) Case α is a sink:
Pick up k2 free edges (xj , yj), j ∈ I2, with xj ∈
V (H0) and yj ∈ V (G2).

(b) Case α is a free vertex and ᾱ is a source, say sp:
Pick up k2−1 free edges (xj , yj), j ∈ I2\p, with
xj ∈ V (H0) and yj ∈ V (G2).

(c) Case both α and ᾱ are free vertices:
Inclusive of (ᾱ, α), pick up k2 free edges
(xj , yj), j ∈ I2, with xj ∈ V (H0) and yj ∈
V (G2).

3. (a) Case α is a sink or both α and ᾱ are free vertices:
Find an unpaired k2-DPC joining {sj |j ∈ I2}
and {xj |j ∈ I2} in H0. Let sj-path in the un-
paired DPC join sj and xij , j ∈ I2. We let
tp = α if α is a sink, and let yip

= α if both
α and ᾱ are free vertices.

(b) Case α is a free vertex and ᾱ is a source sp:
Regarding sp as a virtual fault, find an unpaired
k2 − 1-DPC joining {sj |j ∈ I2\p} and {xj |j ∈
I2\p} in H0. Let sj-path in the unpaired DPC
join sj and xij , j ∈ I2\p. Let sp-path be (sp),
and let xip = sp and yip = α.

4. (a) Case p 6= k2:
Let q ∈ I2 with q 6= p, k2. Find
H[yiq , tq|G2, F

′], where F ′ = {yij , tj |j ∈
I2\{p, q, k2}} ∪ {yik2

}. Let the hamiltonian
path be (yiq , Pu, u, yip , P ′, tp, v, Pv, tq). Find
k2 − 1-DPC[{(û, v̂), ( ˆyik2

, tk2)} ∪ {(ŷij , t̂j)|j ∈
I2\{p, q, k2}}|G3, ∅]. Merge the hamiltonian
path and k2 − 1-DPC with edges (u, û),
(v, v̂), (yik2

, ˆyik2
), and (yij , ŷij ), (tj , t̂j), j ∈

I2\{p, q, k2}.

(b) Case p = k2:
Let q, r ∈ I2 with q, r 6= k2. Find
H[yiq , tq|G2, F

′], where F ′ = {yij , tj |j ∈
I2\{p, q, r}} ∪ {yip}. Let the hamilto-
nian path be (yiq , Pu, u, yir , P

′, tr, v, Pv, tq).
Find k2 − 2-DPC[{(û, v̂)} ∪ {(ŷij , t̂j)|j ∈
I2\{p, q, r}}|G3, F

′′], where F ′′ = {tk2}.
Merge the hamiltonian path and k2−2-DPC with
edges (u, û), (v, v̂), (yip , tk2), and (yij , ŷij ),
(tj , t̂j), j ∈ I2\{p, q, r}.

5. Merge the k2 disjoint paths joining sj and xij in H0

and k2 disjoint paths joining yij and tj in H1 with
edges (xij , yij ), j ∈ I2.

Lemma 7 When k2 = k ≥ 3, f = 0, and k′2 = k2 − 1,
Procedure PairedDPC-I constructs a k-DPC.

Proof: The existence of free edges in Step 2 can be
shown in a similar way to the proof of Lemma 6. Both the
unpaired k2-DPC in Step 3(a) and 1-fault unpaired k2 − 1-
DPC in Step 3(b) exist since k2 = k = m − k ≤ m − 3.
When p 6= k2 (Step 4(a)) the hamiltonian path between yiq

and tq in G2 exists since |F ′| ≤ 2(k2 − 3) + 1 = 2k− 5 =
m−5. By the construction, tk2 6∈ {û, v̂, ˆyik2

}∪{ŷij , t̂j |j ∈
I2\{p, q, k2}}. The k2 − 1-DPC in G3 exists since 2(k2 −
1) = 2k − 2 = m− 2. Similarly, when p = k2 (Step 4(b)),
we can see tk2 6∈ {û, v̂} ∪ {ŷij , t̂j |j ∈ I2\{p, q, r}} and
existence of the hamiltonian path in G2 and 1-fault k2 − 2-
DPC in G3. ¥

When k2 = k ≥ 3, f = 0, and k′2 = k2, the following
Procedure PairedDPC-J constructs a k2-DPC. The proce-
dure is very similar to Procedure PairedDPC-I. Its correct-
ness can be shown similar to Lemma 7, and omitted in this
paper.

Procedure PairedDPC-J(H0 ⊕H1, S, T, F )
/* under the condition of k2 = k ≥ 3, f = 0, and k′2 = k2

*/

1. Let α = ˆtk2 . Here, α is a free vertex in G3.

2. (a) Case ᾱ is a free vertex:
Let (x1, y1) = (ᾱ, α). Pick up k2 − 1 free edges
(xj , yj), j ∈ I2\1, with xj ∈ V (H0) and yj ∈
V (G2).

(b) Case ᾱ is a source, say sp:
Pick up k2−1 free edges (xj , yj), j ∈ I2\p, with
xj ∈ V (H0) and yj ∈ V (G2).

3. (a) Case ᾱ is a free vertex:
Find an unpaired k2-DPC joining {sj |j ∈ I2}
and {xj |j ∈ I2} in H0. Let sj-path in the un-
paired k2-DPC join sj and xij , j ∈ I2. We let
yip = α.

(b) Case ᾱ is a source sp:
Regarding sp as a virtual fault, find an unpaired
k2 − 1-DPC joining {sj |j ∈ I2\p} and {xj |j ∈
I2\p} in H0. Let sj-path in the unpaired DPC
join sj and xij , j ∈ I2\p. Let sp-path be (sp),
and let xip = sp and yip = α.

4. (a) Case p 6= k2:
Let q ∈ I2 with q 6= p, k2. Find
H[yiq , tq|G2, F

′], where F ′ = {yij , tj |j ∈
I2\{p, q, k2}} ∪ {tp}. Let the hamiltonian
path be (yiq , Pu, u, yik2

, P ′, tk2 , v, Pv, tq). Find
k2 − 1-DPC[{(û, v̂), (yip , t̂p)} ∪ {(ŷij , t̂j)|j ∈
I2\{p, q, k2}}|G3, ∅]. Merge the hamiltonian
path and k2 − 1-DPC with edges (u, û), (v, v̂),
(tp, t̂p), and (yij , ŷij ), (tj , t̂j), j ∈ I2\{p, q, k2}.



(b) Case p = k2:
Let q, r ∈ I2 with q, r 6= k2. Find
H[yiq , tq|G2, F

′], where F ′ = {yij , tj |j ∈
I2\{p, q, r}} ∪ {tk2}. Let the hamilto-
nian path be (yiq , Pu, u, yir , P

′, tr, v, Pv, tq).
Find k2 − 2-DPC[{(û, v̂)} ∪ {(ŷij

, t̂j)|j ∈
I2\{p, q, r}}|G3, F

′′], where F ′′ = {yip}.
Merge the hamiltonian path and k2−2-DPC with
edges (u, û), (v, v̂), (yip , tk2), and (yij , ŷij ),
(tj , t̂j), j ∈ I2\{p, q, r}.

5. Merge the k2 disjoint paths joining sj and xij in H0

and k2 disjoint paths joining yij and tj in H1 with
edges (xij

, yij
), j ∈ I2.

2.2. Restricted HL-graphs

In this subsection, we are to construct an f -fault paired
many-to-many k-DPC in an m-dimensional restricted HL-
graph for any f and k ≥ 2 with f + 2k ≤ m by employing
Theorem 1. For our purpose, we need unpaired many-to-
many disjoint path coverability of restricted HL-graphs with
faulty elements. It was considered in [11] as follows.

Lemma 8 [11] Every m-dimensional restricted HL-graph,
m ≥ 3, is f -fault unpaired many-to-many k-disjoint path
coverable for any f and k ≥ 1 with f + k ≤ m− 2.

The existence of a paired many-to-many 2-DPC in 4-
dimensional restricted HL-graphs is checked by a computer
program for each G(8, 4) ⊕ G(8, 4) in RHL4, sources s1

and s2, and sinks t1 and t2. Thus, we have the lemma.

Lemma 9 Every 4-dimensional restricted HL-graph is 0-
fault paired many-to-many 2-disjoint path coverable.

Now, we are ready to state paired many-to-many disjoint
path coverability of restricted HL-graphs.

Theorem 2 Every m-dimensional restricted HL-graph,
m ≥ 3, is f -fault paired many-to-many k-disjoint path cov-
erable for any f and k ≥ 2 with f + 2k ≤ m.

Proof: The proof is by induction on m. For m = 3, the
theorem is vacantly true since f +2k ≥ 4 > m. For m = 4,
the theorem holds true by Lemma 9. Let m ≥ 5. Theorem 1
and Lemma 8 lead to the theorem. ¥
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