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ON THE CONSTRUCTION OF SPLIT-FACE TOPOLOGIES
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ALAN GLEIT(i)

ABSTRACT. We give a general theorem to facilitate the construction of interesting

examples of split-face topologies of compact, convex sets.

Introduction. Let K be a compact convex set in a locally convex topological

vector space. Let F be a closed face of K and F be the union of all faces of K

disjoint from F. It is always true that K = co(F U F') [1, Proposition II.6.5].

The face F is said to be split if F1 is a face and K is the direct convex sum of F

and F1 [1, p. 133], i.e. if each x E K can be expressed by a unique convex

combination

x = Xy + (l - X)z

with 0 < X < l, y E F and z E F'. The collection

[F n extreme points of K \ F closed split face of K)

forms the closed sets for a topology on the extreme points of K called the split-

face or facial topology [1, p. 143]. Much is known about the split-face topology

but there is a distinct lack of many interesting examples. This paper provides the

first general results which may help to alleviate this problem.

We are much indebted to P. Taylor whose example (reproduced below) started

us in the right direction.

Throughout, for a set D C y we let Dc be the complement of D in Y.

The construction. Let Y be a compact Hausdorff space and X a closed subset.

Let x ~* px be a weak* continuous map of X into (/i e C*(Y): /¿(l) = 1}.

Suppose X is divided into three disjoint pieces Xx, X2, and X3 with the following

properties:

(1) For each x E X2, px is a probability measure.

(2) For each x E X, px \ Xx U X2 = 0.

(3) For each x E X3, px = 8(x).

(4) Xx U X2 * Y.
Let A = {/ e C(Y):f(x) = Px(f) for all x E X). We note that 1 G A. Let

$: C*(Y) -* A* be the canonical map. For a set F C Y, we let
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292 ALAN GLEIT

P(F) = {p E C*(Y): p > 0,p(i) = 1,/i supported by F}.

LetK= $P(Y). We shall identify .y E Y with $8(y) E K. Let 3 be the Choquet

boundary of A which, by our identification, is a subset of Y. Clearly, 3

Q Y — X2. We now make the further assumption:

(5)o = Y- X2.

First, some obvious remarks.

Remark 1. A^, X2, and X3 are Borel sets.

Indeed, it is trivial that X3 is closed. As 3 = Y — X2, we have that X2 U X3

= p~x(P(Y)) and so X2 U X3 is closed. The remark is now clear.

Remark 2. There is an M < oo so that ||pj| < M each x E X.

Indeed, since X is compact and p is weak* continuous, the image of p is weak*

compact and, so, norm bounded.

Theorem 1.

A1 = (w e C*(Y): w(B) = w(B D A¡) + w(B n X)

~Ixux PxiB)dwix)fov each Borel B Q y\.

Proof. The proof is contained in the proof of Theorem 1.2 of [5], which we

reproduce here. We may assume X3 ¥= 0 with no loss of generality (if it is empty,

add a point of Y - (Xx U X2) to X). Let

M = {8(x) - px: x E Xx U X2)

and A" = M U {0} = [ô(x) - px: x EX}. As the map

(1) x -> S(x) - px

is continuous, X is weak* compact. The map (1) is clearly one-to-one from

Xx U X2 onto M. Since X3 is closed, both M and Xl U X2 are locally com-

pact. Hence (1) is a proper map [2, Chapter 1, §10, No. 3, Corollary] and so

Xx U X2 is homeomorphic to M [2, Chapter 1, §10, No. 1, Proposition 2].

Let Z be the weak* closed convex hull of X' and W its linear span. Clearly the

weak* closure of IF is A1. Using [7, Proposition 1.2], we get

W = <w E C*(Y): There is a bounded regular Borel measure v'

on M such that w(/) = jMp(f)dv'(p) for each/ E C(Y)\.

Fix w E W and find the associated measure v on M. Using the homeomorphism

between M and XY UX2, j/ induces a measure v on Xr U X2. Passing to fi-

nite sums and taking limits we get
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w(f) = fM Áf)dv'(p)

= "(/)- /««**(/>*«■

But then we get [3, V, §3, Corollary to Proposition 12]

w(B) = v(B)-jx^px(B)dv(x)

for each Borel 77 Q Y. In particular, for 77 ç A', U X2 we have p^(77) = 0 and

so h>(77) = v(B). Thus w \ Xx U X2 = v and so

W = (w E C*(Y): For each Borel 77 ç Y,

w(B) = w(BDXx) + w(B n X2) -   fxvXjPx(B)dw(x)y

Thus, to complete the proof, we need show that W is already weak* closed.

By [4, V.5.9] it suffices to show W is norm closed. But this is clear using Re-

mark 2 above.
Recall that for a measure jit on a nonempty compact set A' in a lctvs E,

r(¡x) = x is the resultant of ¡i if for each continuous linear functional / on E we

have/(x) = ffdp..

Lemma 2. With the identification of y E Y with $(ô(y)) in A*, we have:

(1) K = <D7>(3).
(2) If x E C*(Y) is the resultant of u, a measure supported by E\t(K), then

regarding p. as a measure on Y supported by 3 we have $(p.) = x = r(p,).

(3) Let u e C*(Y) and associate to it a measure u' on 3 by

¡¿(B) = p.(B n 3) +fXi Px(B)d¡i(x).

Then r(p.') = <%).

Proof. (1) is just [7, Proposition 1.2]. For (2), let / e A = weak* linear

functional on K. Then

*(/) = LmP(f)Mp) = f, S(x)(f)dti(x)

= itf) = <%)(/).

As for (3), let/ E A. Then

./W)) -J^rVWip) = f-'(f)

= fj(x)dKx) +fx¡ Px(f)dp.(x) = f^ttxldtiW+f^fWd^x)
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since px = 8(x) for x E X2 on A

= p(f) - <%)(/).

A set D Ç y is said to he full if the following conditions hold:

(1) For all x E Xx, (8(x) + px)(B) ¥= 0 for some B Q D implies that 8(x) + px

is supported by D.

(2) For all x E X2, x ED implies px is supported by D.

Elementary properties of full sets are contained in the next lemma.

Lemma 3. (1) If D is full, then for all x E Xx, we have:

(8(x) + px)(B) # 0   for some B Q Dc

=> 8(x) + px is supported by Dc.

(2) If D or Dc is full, then for all x E Xx we have:

x E Dc => px | D = 0.

(3) D is full iff the following two conditions hold:

(a) For all x E Xx, x E Dc => px supported by Dc.

(b) For all x E Xx U X2, x E D => px supported by D.

Corollary 4. Let D be full. Let p be supported by D n 3 and v be supported by

Dc n 3. If $(ju.) = d>(i>), then <">(fi) = 0 = $(»»). Hence, neither p nor v can be

positive measures.

Proof. Since <">Qt) = <b(v), we have p — v E A±. Thus, for any Borel B E Y

we have,by Theorem 1,

p(B) - v(B) = p(BHXx) + p(B n X2) - f        px(B)dp - v(B n A¡)
(21 Jx¡ux2

-p(BnX2)+fx^px(B)dv.

Let E Q D be Borel. Then v(E) = v(E n Xx) = v(E n A*2) = 0. By Lemma

3(2), Sx, PxiE)dv = 0. As v is supported by 3 = Y — X2, fXl pxiE)dv = 0.

Hence, from (2),

(3) p(E) - p(E n X,) + p(E n X2) - fxuXi Px(E)dp.

Similar reasoning shows that for Borel G Q Dc, p(G) = p(G D Xx) = p(G

H X2) = fx¡ux2 PxiG)dp = 0. Hence, (3) holds for each Borel set in Y and so

p E A1. Hence, $(/t) = 0 = $(y). If p were positive, say, then ||^|| = p(l) > 0.

As 1 E A, p(l) = dj>(/i)(l) = 0, a contradiction.

For ease of notation, for each D C Y we let TD = 4>P(Z?) = [<b(v) EA*:vis

a probability measure supported by D).
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Proposition 5. If D is full, then both TD and Td_D are faces of K.

Proof. As the map 4> is affine, both TD and T3_D are convex subsets of K.

Suppose k E TD and k = an + (1 - a)m with n, m E K and 0 < a < 1.

Choose u supported by D D 3 and r, X in 7>(3) so that k = $(/i), « = Í>(t), and

/n = $(A). In order to show TD is a face, it clearly suffices to show that

v = ar + (1 - a)\ is supported by D n 3. Write p = ^¡(Z> n 3) + v\(Dc n 3).

Noting that *(j>) = A: = $0*), we get <Sf(v\(Dc n 3)) = $(fi - H(# n 3)). By

Corollary 4,v\Dc C\ 3 = 0 as it cannot be positive. Thus v E P(D n 3) and so

TD is a face. A similar argument shows Td_D is a face.

We recall that for a face F of K, the union of all faces disjoint from F is

denoted by F'. If face(A) denotes the minimal face of K containing k, then

F' = U {face(A:): A S F). To show that 7¿ is a split face for D closed and full,

we must first describe T'D. Toward this goal, we have the following lemma.

Lemma 6. Suppose TD is a face of K. Then T'D C TdnDc.

Proof. Let k E T'D. Then k = <ï>(/t) for p. a probability measure supported by

3. We claim that p(D) = 0. Indeed, if not, then p = a(p\ D)/p(D) + (1 - a)v

where v is either the zero measure or is supported by 3 - D. Then

* = ot*(^) +(l-o)*i»

shows that    #((ju | D)/u(D))  E fcce(fc).    As   (p\D)/p(D) E P(D)    we   have

$((/* | D)/p(D)) E íace(k) n T¿ = 0 since A: G Ti,. This contradiction estab-

lishes the claim and the lemma.

Theorem 7. Let D be a closed full set. Then TD is a closed split face of K with

Ext TD = D n 3 a«cf T'D = TdnDc-

Proof. The proof proceeds in three steps. We first claim that TD is a closed face.

From Proposition 5, we need only show that TD = $P(D) is compact. As $ is

continuous and P(D) compact, this is clear. Also clear are the facts Ext T0

= D D 3 and TD = TDnS. We next claim that T'D — TdnDC. From Lemma 6, we

need only show that TdnDc Q T'D. Let « E TD n TdnDC. Then « = <%) = *(")

with jot E P(D n 3) and v E P(DC 0 3). But this clearly cannot occur by

Corollary 4 and so TD n 7¿nDc = 0. As 7¿nflC is a face, ^nflc Q Tj.

Finally, we claim that TD is split. Let k E K - (TD U T'D) and suppose we

have two decompositions of k:

k = axnx + (1 - ax)mx

= a2n2 + (1 — a2)«i2

where 0 < a, < 1, «,■ 6 T¿, and m¡ E T'D. Find /x, E P(D n 3) and r, E P(7)c

n 3) so that $(«,) = «, and $(»»,) = m¡. Then

$(«,«, + (1 - ax)vx) = $(02^ + (1 - a2)v2)
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and so

$(a,/t, - a2/t2) = 3>((1 - a2)v2 - (1 - ax)vx).

From Corollary 4 we get

(4) ®(axpx - a2p2) = 0 = $((1 - a2)v2 - (1 - (*,>,)•

Applying a,/t, - a2/t2 to 1 E^we get ax — a2 = 0. Hence (4) yields 0(ju, - f^)

= 0. Hence nx = n2. Similarly mx = w2 and the decompositions of k coincide.

We should now like to begin to prove a converse of Theorem 7.

Lemma 8. Lei 5 e X and suppose ^(r) = $(ps) for some measure r supported by

(Xy U X2)c.  Then t = ps.

Proof. If i E X3 C 3, then t = 8(s) = ps clearly. So assume that s E Xx U A"2.

Since t - 8(s) E A1, by Theorem 1, for each Borel B Q Y,

i(B) - 8(s)(B) = r(B n Xx) + i(B D X2) -/^ Pjc(Z?)¿t - ßf»(B n A¡)

- 8(s)(B n A,) + Jf^uJ% Pjt(B)rffi(i)W

= i(B n A-,) + r(B n A-2) -/^ Px(Z?)¿t - 8(s)(B) + Ps(B).

As t is supported by (A¡ U X2)c, we get

t(Z?) - 8(s)(B) = -0(5)(5) + Ps(B)

and the result is immediate.

Theorem 9. Let F be a closed split face of K Let D = fn3. 77ie« F = TD, F'

= TinDc, and D is full.

Proof. Since Z^* n 3 = Ext F, we have F = cö(F n 3) and so F = TFnd

= TD. We claim that F" = 7*3nDc. Indeed, let y E 3 n Z)c. Then facei» =

{y} is disjoint from F and so vGF'. Now let peZ^anZJ^CZ^F). Then [1,

Corollary II.6.11] implies that r(p) E F'. Hence TdnDc Q F'. As Lemma 6 yields

/*' = T'D Q TdnDc we have proven our claim.

To show that D is full, we will use the criteria of Lemma 3(3). Let s E A| U X2.

Let vx = p+ | Z), v2 = p+|3 n Z)0,^ = p~\D, and y4 = p~ | 3 n Z)c. Let ß

= Up,.|| and p¡ = vj\\v¡\\ (take /li¡ = 0 whenever ||pj| = 0). Then ps = ßxpx

+ ßilh. - ßilh - ßtN- Hence

(5) $(8(s) + ß3p3 + ß4pA) - *(Aft + Ä/ij).

Applying these elements of /I* to 1 G /I we get

! + & + & = A+&•

Let /J be this common number.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE CONSTRUCTION OF SPLIT-FACE TOPOLOGIES 297

We first assume that s E F. Then

s/(i + ft) + ft <%3)/(i + ft) -/ e F

and so

(6) ^/+f*(*)-§*G«.) + f«<tó.
From the characterization of F' we know that ŒQ^), $0*i) G 7*". Since /, i>(u, )

G Fand Fis split, (6) implies that/ = <%,), $(jii4) = SXj^), and 1 + ft = ft.

Plugging this into (5) yields

$(ô(5) + ft/t3) = $(ft/l1)

and so $(ßxpx - ftu3) = ®(ps)- Since ft ft - ft/i3 is supported by (Xx U A^)0,

Lemma 8 implies that ßx u, - ft jtt3 = ps. Hence ps is supported by £>. So we have

shown that s E D f) (Xx U X2) implies p, is supported by D. Similarly, for

j e Dc n Xx c 3 n Dc C F', we get p, is supported by 3 - D C Dc. Hence

all the criteria of Lemma 3(3) have been verified.

We have now arrived at our characterization of facially closed sets. Recall that

a set D C Ext Kis facially closed if there is a closed split face F with Ext F = D.

Theorem 10. Let D C Y - X2. Then D is facially closed if and only if the

following conditions hold:

(a) D is closed in Y - X2.

(b) Dis full.

Proof. Suppose conditions (a) and (b) hold. From (b) and Theorem 7, we get

Tp is a closed split face and Ext Tp = D n 3. From (a), D C\ d = D and so D

is facially closed. Conversely, suppose D is facially closed. As all facially closed

sets are closed in Ext K = 3, we get (a). Also, there is a closed split face F with

F fl 3 = D. Theorem 9 now yields (b).

As an example of Theorem 10 we cite the following construction. Suppose X,

Y, 3 and p are as above. Suppose further:

(a) X2 = 0.

(b) ps is a finite linear combination of point masses in Xxc for each s E Xx.

(c) For s ¥= s' elements of A^.supp ps n supp p's = 0.

On Y define an equivalence relation ~ by the following: p ~ q means that

there exists an s E Xx with both p and q in supp p, U {s).

Theorem 11. Assume the above hold. Then the factor topology on Y/~ "is" the

facial topology on Y — X2 and it is always Tx.

Proof. A set F Ç y/~ is closed iff F is closed in Y and F is saturated for the

relation ~. Note that F is saturated for the relation ~ iff for every s E Xx,

(supp ps U {s}) n F ¥= 0 implies supp ps U {s} ç F. But the latter statement is
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precisely the statement that F is full. Thus, by Theorem 10, F Q Y/~ is closed

ifi" F is facially closed in Y.

Example 1 (P. Taylor). Let Y be the shaded region of the plane in the following

diagram:

-2 - 1

We take X = {(x + l,y): 0 < y < x,0 < x < 1} and define for s E X:

ps = 8(-x - \,-y) + 8(x + l,-y) - 8(-x - l,y).

Clearly 5 ~* ps is weak* continuous on A* and p,(l) = 1. We have X2 = 0 and

X3 = {(x + \,y) E X: y = 0), with Xx = X - X3. Let

A = {/ e C(Y):f(s) = Ps(f) for all 5 E X).

Then clearly each y E Y is a peak point for A, i.e. for all y E Y, there is an

/ G A with f(y) = 1 > |/(p)| for p ¥= y. Hence 3 = 7 and so all five of our

assumptions are fulfilled. We define ~ on y as we did above: p ~ q iff there is

an s E X with p, q E supp ps U {s}. Clearly each element of the decomposition

under ~ is of the form {(x + 1, y), (x + 1, -y), (-x-l,y), (-x - 1, -y)} for

0 < y < x, 0 < x < Litis easily verified that the projection map it: Y -* Y/~

is open so the factor space Y/~ with the factor topology is first countable, second

countable, compact, and locally compact though not Hausdorff. Via Theorem 11,

the facial topology on Y is first countable, second countable, compact, and

locally compact though not Hausdorff. In [6], we studied the facial topology

(among other topologies on the extreme points of compact convex sets). We

proved there that if (Y, facial topology) satisfied an auxiliary condition (C2), then

the properties of first countability, second countability, and local compactness

for (Y, facial topology) were equivalent. We did not know then whether (C2) was

necessary for the conclusion. The above construction provides the necessary

example for it does not satisfy even (Cl), a weaker condition than (C2).

Proposition 12. There is a compact metrizable convex set K with closed extreme

points whose facial topology is first countable, second countable and locally compact

but which does not satisfy:

(Cl) If {p„} Q Ext(ZC) converges to q and if [p„] converges to p in the facial

topology, thenp belongs to the minimal closed split face containing q.
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Proof. We take K to be the set {p E A* : p(l) = 1 = \\p\\}. Then E\t(K) = Y.

We take p„ = (1 + \/n, l/n), q = (1,0), and p = (-1,0). Clearly p„ -> q and

(p„} converges to both p and q in the facial topology. Finally, the minimal closed

split face containing q is {q} which clearly does not contain p.

Example 2. (Rogalski in [8]). Let dx be Lebesgue measure on [0, 1] and p be

the measure 2^=i 2~"8(xn) where {x„} is an enumeration of the rational numbers in

[0, 1]. We take A", = X3 - 0, X2 = [xx) and

Pxt = 2dx-2% 2-"8(xn).
1 n=2

Then

A={fE C[0,1] \f(x) - Pjc(/) all x G A}

= {/ e C[0,1] | 2 2-"/(*J = //</*}.

All the assumptions regarding the map p are trivial in this case and [8,

Proposition 20] shows that 3 = [0,1] so all of our results above apply. Thus, by

Theorem 10, a set D Q [0,1] is facially closed iff D is a closed subset of the

irrational numbers in [0, 1] or D = [0,1]. Hence, each irrational number in [0, 1]

is a split face (a fact already established in [8, Corollary 25]) but no rational

number in [0, 1] is a split face.

Proposition 13. There exists a compact convex set K whose extreme points Eform

a closed set for which the collection of extreme points which are split faces are dense

in E and for which the collection of extreme points which are not split faces are dense

in E.
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