
 Open access Journal Article DOI:10.1109/TIT.2011.2173733

On the Construction of Structured LDPC Codes Free of Small Trapping Sets
— Source link

Dung Viet Nguyen, Shashi Kiran Chilappagari, Michael W. Marcellin, Bane Vasic

Institutions: University of Arizona

Published on: 01 Apr 2012 - IEEE Transactions on Information Theory (IEEE)

Topics: Low-density parity-check code, Tanner graph, Disjoint sets, Permutation matrix and Binary symmetric channel

Related papers:

 Error Floors of LDPC Codes

 Low-Density Parity-Check Codes

 Trapping set ontology

 Analysis of Absorbing Sets and Fully Absorbing Sets of Array-Based LDPC Codes

 Regular and irregular progressive edge-growth tanner graphs

Share this paper:

View more about this paper here: https://typeset.io/papers/on-the-construction-of-structured-ldpc-codes-free-of-small-
2g9tsqkcvy

https://typeset.io/
https://www.doi.org/10.1109/TIT.2011.2173733
https://typeset.io/papers/on-the-construction-of-structured-ldpc-codes-free-of-small-2g9tsqkcvy
https://typeset.io/authors/dung-viet-nguyen-lqfrlsrn5s
https://typeset.io/authors/shashi-kiran-chilappagari-4hu09da2gq
https://typeset.io/authors/michael-w-marcellin-2vm7eldy9h
https://typeset.io/authors/bane-vasic-48yu0p6xej
https://typeset.io/institutions/university-of-arizona-3bsodx28
https://typeset.io/journals/ieee-transactions-on-information-theory-2ramdyt3
https://typeset.io/topics/low-density-parity-check-code-3k9aqckr
https://typeset.io/topics/tanner-graph-3o2hl8yb
https://typeset.io/topics/disjoint-sets-2caus7z3
https://typeset.io/topics/permutation-matrix-1dssz8le
https://typeset.io/topics/binary-symmetric-channel-37i3insk
https://typeset.io/papers/error-floors-of-ldpc-codes-214ydwin32
https://typeset.io/papers/low-density-parity-check-codes-vltmv2dex4
https://typeset.io/papers/trapping-set-ontology-42n5y4r90e
https://typeset.io/papers/analysis-of-absorbing-sets-and-fully-absorbing-sets-of-array-4j0bpfnt4w
https://typeset.io/papers/regular-and-irregular-progressive-edge-growth-tanner-graphs-4lk89d1cm7
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-the-construction-of-structured-ldpc-codes-free-of-small-2g9tsqkcvy
https://twitter.com/intent/tweet?text=On%20the%20Construction%20of%20Structured%20LDPC%20Codes%20Free%20of%20Small%20Trapping%20Sets&url=https://typeset.io/papers/on-the-construction-of-structured-ldpc-codes-free-of-small-2g9tsqkcvy
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-the-construction-of-structured-ldpc-codes-free-of-small-2g9tsqkcvy
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-the-construction-of-structured-ldpc-codes-free-of-small-2g9tsqkcvy
https://typeset.io/papers/on-the-construction-of-structured-ldpc-codes-free-of-small-2g9tsqkcvy

On the Construction of Structured LDPC
Codes Free of Small Trapping Sets

Item Type Article

Authors Nguyen, Dung Viet; Chilappagari, Shashi Kiran; Marcellin, Michael
W.; Vasic, Bane

Citation D. V. Nguyen, S. K. Chilappagari, M. W. Marcellin and B.
Vasic, "On the Construction of Structured LDPC Codes Free
of Small Trapping Sets," in IEEE Transactions on Information
Theory, vol. 58, no. 4, pp. 2280-2302, April 2012, doi: 10.1109/
TIT.2011.2173733.

DOI 10.1109/tit.2011.2173733

Publisher IEEE

Journal IEEE Transactions on Information Theory

Rights Copyright © 2012 IEEE.

Download date 30/05/2022 15:44:17

Item License http://rightsstatements.org/vocab/InC/1.0/

Version Final accepted manuscript

Link to Item http://hdl.handle.net/10150/641976

http://dx.doi.org/10.1109/tit.2011.2173733
http://rightsstatements.org/vocab/InC/1.0/
http://hdl.handle.net/10150/641976

On the Construction of Structured LDPC Codes Free

of Small Trapping Sets
Dung Viet Nguyen, Student Member, IEEE, Shashi Kiran Chilappagari, Member, IEEE,

Michael W. Marcellin, Fellow, IEEE, and Bane Vasić, Fellow, IEEE

Abstract—We present a method to construct low-density parity-
check (LDPC) codes with low error floors on the binary symmetric
channel. Codes are constructed so that their Tanner graphs are free
of certain small trapping sets. These trapping sets are selected from
the trapping set ontology for the Gallager A/B decoder. They are
selected based on their relative harmfulness for a given decoding al-
gorithm. We evaluate the relative harmfulness of different trapping
sets for the sum–product algorithm by using the topological rela-
tions among them and by analyzing the decoding failures on one
trapping set in the presence or absence of other trapping sets. We
apply this method to construct structured LDPC codes. To facili-
tate the discussion, we give a new description of structured LDPC
codes whose parity-check matrices are arrays of permutation ma-
trices. This description uses Latin squares to define a set of permu-
tation matrices that have disjoint support and to derive a simple
necessary and sufficient condition for the Tanner graph of a code
to be free of four cycles.

Index Terms—Error floor, Latin squares, structured low-density
parity-check codes, trapping sets.

I. INTRODUCTION

B
Y now, it is well established that the error-floor phenom-

enon, an abrupt degradation in the error rate performance

of low-density parity-check (LDPC) codes in the high signal-to-

noise-ratio (SNR) region, is due to the presence of certain struc-

tures in the Tanner graph that lead to decoder failures [1]. For

iterative decoding, these structures are known as trapping sets

(see [2] for a list of references).

To construct LDPC codes with provably low error floors, it is

essential to understand the failure mechanism of the decoders

in the high SNR region as well as to fully characterize trap-

ping sets. These prerequisites are met for decoders on the binary

Manuscript received August 24, 2010; revised September 21, 2011; accepted
September 27, 2011. Date of current version March 13, 2012. This work was
supported by the National Science Foundation under Grant CCF-0963726,
Grant CCF-0830245, and in part by the Advanced Storage Technology Con-
sortium, International Disk Drive Equipment and Materials Association. The
material in this paper was presented in part at the 2010 IEEE Information
Theory Workshop, Dublin, Ireland, at the 47th Annual Allerton Conference
on Communications, Control, and Computing, Monticello, IL, Sep. 2009, and
at the 48th Annual Allerton Conference on Communications, Control, and
Computing, Monticello, IL, Sep. 2010.

D. V. Nguyen, M. W. Marcellin, and B. Vasić are with the Department
of Electrical and Computer Engineering, University of Arizona, Tucson, AZ
85721 USA (e-mail: nguyendv@ece.arizona.edu; marcellin@ece.arizona.edu;
vasic@ece.arizona.edu).

S. K. Chilappagari was with the Department of Electrical and Computer
Engineering, University of Arizona, Tucson, AZ 85721 USA. He is now
with Marvell Semiconductors, Inc., Santa Clara, CA 95054 USA (e-mail:
shashickiran@gmail.com).

Communicated by P. O. Vontobel, Associate Editor for Coding Techniques.

erasure channel (BEC), in which case trapping sets are known

under the notion of stopping sets [3]. For the BEC, the definition

of stopping sets is fully combinatorial and the code construction

strategy is simply to maximize the size of the smallest stopping

set as well as to minimize the number of the smallest stopping

sets. Such a level of understanding has not been gained for other

channels of interest.

On other channels, such as the binary symmetric channel

(BSC) or the additive white Gaussian noise channel (AWGNC),

knowledge of trapping sets is far from complete due to the

complex nature of iterative decoding algorithms, such as the

sum–product algorithm (SPA). As a result, code performance

is typically improved by increasing the girth of the Tanner

graph [4]–[8]. The basis for these approaches is mostly based

on two facts. First, a linear increase in the girth results in

an exponential increase of the lower bound on the minimum

distance if the code has column weight [9]. Second,

trapping sets containing shortest cycles in the Tanner graph

are eliminated when the girth is increased. In addition, several

recent results can be used to justify the construction of a code

with large girth: the error correction capability under the bit

flipping algorithms was shown to grow exponentially with

the girth for codes with column weight [10]; and the

lower bound on the minimum BSC pseudocodeword weight

for linear programming decoding was also shown to increase

exponentially with the girth [11]. Notably, this lower bound

on the minimum BSC pseudocodeword weight of an LDPC

code whose Tanner graph has girth greater than 4 was proven

to be tight if and only if the minimum pseudocodeword is a

real multiple of a codeword [12]. It is worth noting here that

the lower bound on the minimum stopping set size also grows

exponentially with the girth for codes with column weight

[13].

For a given column weight , increasing the girth of a Tanner

graph requires either increasing the number of variable nodes,

thus requiring a longer code, or decreasing the row weight

and increasing the number of check nodes, which lowers the

code rate. In most cases, at a desirable length and code rate, the

girth cannot be made large enough for the Tanner graph to be

free of the most harmful trapping sets that mainly contribute to

decoding failures in the error-floor region. These trapping sets

dictate the size of the smallest error patterns uncorrectable by

the decoder and hence also dictate the slope of the frame error

rate (FER) curve [2]. To preserve the rate while lowering the

error floor, a code must be optimized not by simply increasing

the girth but rather by more surgically avoiding the most harmful

trapping sets.

In this paper, LDPC codes are constructed so that they are free

of small harmful trapping sets. We focus our attention on regular

column-weight-three codes as these codes allow low decoding

complexity but exhibit high error floor if they are not designed

properly. A key element in the construction of a code free of

trapping sets is the choice of forbidden subgraphs in the Tanner

graph, since this choice greatly affects the error performance

as well as the code rate. This choice is well determined if the

Gallager A/B algorithm is used on the BSC since the necessary

and sufficient conditions for a code to guarantee the correction

of a given number of errors are known [14], [15]. However, for

the SPA on the BSC and on the AWGNC, the choice of for-

bidden subgraphs is not clear since the conditions on a Tanner

graph for the code to achieve a given guaranteed error correc-

tion capability have not been characterized. In a series of pa-

pers [16]–[18], we used the notion of instantons to predict the

error floors as well as to study the phenomenon from a statis-

tical mechanics perspective. In [19], we showed how the family

of instanton based techniques can be used to estimate and re-

duce error floors for different decoders operating on a variety of

channels. Unfortunately, the instanton search is computationally

prohibitive for the construction of moderate length codes, and

in this paper, we propose another, simpler, method.

In the absence of a complete understanding of trapping sets

for the SPA, the choice of forbidden subgraphs may be derived

based on the understanding of trapping sets for simpler decoding

algorithms as well as on the intuition gained from experimental

results. This is the approach we take in this paper. A basis for

removing harmful trapping sets for the SPA is the observation

made in [19] that the decoding failures for various decoding

algorithms and channels are closely related and that subgraphs

responsible for these failures share some common underlying

topological structures. These structures are either trapping sets

for iterative decoding algorithms on the BSC or larger subgraphs

containing these trapping sets.

The method consists of three main steps. First, we develop a

database of trapping sets for the Gallager A/B algorithm on the

BSC. This database, which is called the trapping set ontology

(TSO),1 contains subgraphs that are responsible for failures of

the Gallager A/B decoder and also specifies the topological re-

lations among them. Second, based on the TSO, we determine

the relative harmfulness of different subgraphs for the SPA on

the BSC by analyzing failures of the decoder on one subgraph

in the presence or absence of other topologically related sub-

graphs. This analysis is performed repeatedly on a number of

“test” Tanner graphs, which are intentionally constructed to ei-

ther contain or be free of specific subgraphs. The relative harm-

fulness of a subgraph is evaluated based on its effect on the

guaranteed correction capability of a code. Finally, a code is

constructed so that its Tanner graph is free of the most harmful

subgraphs.

We remark that our construction attempts to optimize a code

for the SPA on the BSC. Due to much higher complexity, sim-

ilar analysis on the AWGNC is difficult. However, experimental

results show that codes constructed for the BSC also perform

1This database of trapping sets was partially presented in [20] and is available
online at [21].

very well on the AWGNC. It should be noted that in [22], exten-

sive computer simulation and hardware emulation suggest that

absorbing sets mainly contribute to error floors of codes under

the SPA on the AWGNC. Since absorbing sets are combinato-

rially similar to trapping sets for the Gallager A/B decoder, our

newly constructed codes are also free of some (and probably the

most harmful) absorbing sets and hence understandably possess

good error performance on the AWGNC. Although absorbing

sets were defined in the context of research that dealt with the

AWGNC, the failure mechanism of the SPA due to these objects

is not understood well enough to suggest an explicit strategy to

construct good codes. As a result, optimizing codes for the BSC

in order to obtain good performance on the AWGNC remains a

reasonable approach.

As the title of this paper indicates, we focus on constructing

structured LDPC codes. This is motivated by the fact that these

codes are attractive for a number of applications. For example,

encoding of quasi-cyclic (QC) LDPC codes can be efficiently

implemented using shift registers with linear complexity [23],

while decoding can be parallelized by exploiting the block struc-

ture of the parity-check matrices [24], [25]. Furthermore, as we

show in this paper, symmetry and structure in a Tanner graph

can greatly accelerate the trapping set search and enumeration

as well as code construction.

To facilitate the discussion on removing trapping sets in struc-

tured codes, we give a new description of structured LDPC

codes whose parity-check matrices are arrays of permutation

matrices. In this description, Latin squares are used to define a

set of permutation matrices that have disjoint support and to de-

rive a simple necessary and sufficient condition for the Tanner

graph of a code to be free of four cycles. As this description

is concise and simple, it facilitates our discussion on the con-

struction of codes free of small trapping sets. Besides, the class

of codes to be described is general as it includes many existing

structured LDPC codes. The new description also results in cer-

tain advantages. For example, the class of codes to be described

contains array LDPC codes [26] but also includes higher rate

codes than shortened array LDPC codes [4], [27], when the

Tanner graphs are required to satisfy certain constraints.

The rest of this paper is organized as follows. Section II

presents our TSO for the Gallager A/B decoder. The analytical

construction of a code free of trapping sets is difficult, and

hence, we resort to an efficient search of the Tanner graph

for certain subgraphs. We briefly discuss these search tech-

niques in Section III, with more details given in Appendix A.

In Section IV, we describe structured LDPC codes whose

parity-check matrices are arrays of permutation matrices

obtained from Latin squares. In Section V, we describe, in

general, the construction of a code free of certain trapping

sets. We present the construction of codes for the Gallager A/B

algorithm in Section VI and the construction of codes for the

SPA on the BSC in Section VII. In Section VIII, we discuss the

performance of a constructed code on the AWGNC and then

conclude the paper.

Before proceeding to Section II, we provide some back-

ground related to LDPC codes. Let denote an LDPC

code over the binary field . is defined by the null space

of , an parity-check matrix of . is the biadja-

cency matrix of , a Tanner graph representation of . is a

bipartite graph with two sets of nodes: variable (bit) nodes

and check nodes .

A vector is a codeword if and only if

, where is the transpose of . The support of ,

denoted as , is defined as the set of all variable nodes

(bits) such that . A -left-regular LDPC code

has a Tanner graph in which all variable nodes have degree

. Similarly, a -right-regular LDPC code has a Tanner graph

in which all check nodes have degree . A -regular

LDPC code is -left-regular and -right-regular. Such a code

has rate [28]. The degree of a variable node

(check node, respectively) is also referred to as the left degree

(right degree, respectively) or the column weight (row weight,

respectively). The length of the shortest cycle in the Tanner

graph is called the girth of .

II. TSO

In this section, we describe our trapping set database known

as the TSO. The “ontology” indicates that the database is

augmented by the topological relations among the trapping

sets. We start with a brief discussion of trapping sets and related

objects.

A. Trapping Sets

Denote by the transmitted codeword. Consider an iterative

decoder and let be the decision vector

after the th iteration. A variable node is said to be eventually

correct if there exists a positive integer such that for all with

, .

Definition 1 [1]: A trapping set for an iterative decoding al-

gorithm is a nonempty set of variable nodes in a Tanner graph

that are not eventually correct. A set of variable nodes is

called an trapping set if it contains variable nodes and

the subgraph induced by these variable nodes has odd-degree

check nodes.

On the BSC, when decoding with the Gallager A/B algorithm,

or the bit flipping (serial or parallel) algorithms, trapping sets

are partially characterized under the notion of fixed sets. By par-

tially, we mean that these combinatorial objects form a subclass

of trapping sets, but not all trapping sets are fixed sets. Fixed sets

have been studied extensively in a series of papers [2], [10], [14],

[29]. They have been proven to be the cause of the error floor in

the decoding of LDPC codes under the Gallager A/B algorithm

and the bit flipping algorithms. For the sake of completeness,

we give the definition of a fixed set as well as the necessary and

sufficient conditions for a set of variable nodes to form a fixed

set.

Assume the transmission of the all-zero codeword2 over the

BSC. With this assumption, a variable node is correct if it is 0

and corrupt if it is 1. Let be the channel

output vector and let denote the set of variable nodes that

are not eventually correct.

2The all-zero-codeword assumption can be applied if the channel is output
symmetric and the decoding algorithm satisfies certain symmetry conditions
(see [30, Def. 1 and Lemma 1]). The Gallager A/B algorithm, the bit flipping
algorithms and the SPA all satisfy these symmetry conditions.

Definition 2: For transmission over the BSC, is a fixed

point of the decoding algorithm if and only if there exists a pos-

itive integer such that for all .

If and is a fixed point, then

is called a fixed set. A fixed set is an elementary fixed set if all

check nodes in its induced subgraph have degree one or two.

Otherwise, it is a nonelementary fixed set.

Remark: The classification of fixed sets as elementary and

nonelementary fixed sets is identical to the classification of

trapping sets as elementary and nonelementary trapping sets

in [31].

Theorem 1 [10]: Let be an LDPC code with -left-regular

Tanner graph . Let be a set consisting of variable nodes

with induced subgraph . Let the check nodes in be partitioned

into two disjoint subsets; consisting of check nodes with odd

degree and consisting of check nodes with even degree. Then,

is a fixed set for the bit flipping algorithms (serial or parallel)

iff: 1) every variable node in has at least neighbors in

, and 2) no collection of check nodes of share a

neighbor outside .

Note that Theorem 1 only states the conditions for the bit

flipping algorithms. However, it is not difficult to show that these

conditions also apply for the Gallager A/B algorithm. A similar

characterization of fixed sets for the Gallager A/B algorithm is

also given in [32].

The harmfulness of a fixed set is determined by its critical

number. A fixed set is more harmful if it has a smaller critical

number. The critical number of a fixed set is defined as

follows.

Definition 3 [29]: The critical number of a fixed set is the

minimal number of variable nodes that have to be initially in

error for the decoder to end up in the fixed set.

Determining the smallest critical number of fixed sets present

in a code or in general determining the weight of the smallest

uncorrectable error patterns is a key step for estimating the FER

performance of the code in the error-floor region. The problem

of estimating the error floor of LDPC codes under hard-decision

decoding on the BSC was considered in [29], [32], [33].

Although it has been rigorously proven only that fixed sets

are trapping sets for the Gallager A/B algorithm and the bit

flipping algorithms on the BSC, it has been widely recognized

in the literature that the subgraphs of these combinatorial ob-

jects greatly contribute to the error floor for various iterative

decoding algorithms and channels. The instanton analysis per-

formed in [19] suggests that the decoding failures for various

decoding algorithms and channels are closely related and sub-

graphs responsible for these failures share some common un-

derlying topological structures. These structures are either trap-

ping sets for iterative decoding algorithms on the BSC, of which

fixed sets form a subset, or larger subgraphs containing these

trapping sets. In [34], the notion of absorbing sets was defined.

In odd-column-weight codes, these are sets of variable nodes

which satisfy condition 1 of Theorem 1. These authors also de-

fined fully absorbing sets, which are combinatorially identical

to fixed sets (in odd-column-weight codes). By hardware emu-

lation, they found that absorbing sets are the main cause of error

floors for the SPA on the AWGNC. Various trapping sets identi-

fied by simulation (for example, those in [35] and [36]) are also

fixed sets.

From these observations, it is expected that an LDPC code

will have good performance in the error-floor region if the cor-

responding Tanner graph does not contain subgraphs induced

by fixed sets. However, it is impossible to construct an LDPC

code whose Tanner graph is free of all fixed sets when the length

of the code is finite. It is also well known that imposing con-

straints on a Tanner graph reduces the rate of a code. Clearly,

only subgraphs of some fixed sets can be avoided in the code

construction. These need to be chosen carefully in order to ob-

tain the best possible error-floor performance while maximizing

the code rate.

Before one can attempt to determine the fixed sets that shall

be forbidden in the Tanner graph of a code, there are two im-

portant issues that need to be addressed. First, a complete list

of nonisomorphic fixed sets (up to a proper size) for a given

set of code parameters (e.g., column weight and row weight)

is needed. This is because the notion of an fixed set (trap-

ping set) is not sufficient. Given a pair of positive integers ,

there are possibly many fixed sets which induce nonisomorphic

subgraphs containing variable nodes and odd-degree check

nodes. Second, the topological relations among subgraphs in-

duced by fixed sets need to be explored. The importance of these

relations is threefold. First, the subgraph induced by a fixed set

may be contained in the subgraph induced by another fixed set.

In such a case, the absence of one subgraph yields to the absence

of the other. Second, these relations help reduce the complexity

of the search for subgraphs in a Tanner graph. Finally, these re-

lations reduce the complexity of the analysis to determine the

harmfulness of subgraphs.

In Section II-B, we present our database of fixed sets for

regular column-weight-three LDPC codes with the special em-

phasis on their topological relationships. For the sake of sim-

plicity, and because the term “trapping set” is widely used in the

literature, we drop the term fixed sets and refer to these objects

by the general term trapping sets. Therefore, in the remainder

of this paper, a trapping set should not be understood as a set

of noneventually correct variable nodes. Instead, it should be

understood as a set of variable nodes in a given code with a

specified induced subgraph or as a specific subgraph indepen-

dent of a code (a precise description is given in Section II-B).

In this context, we use the term erroneous set to refer to a set

of noneventually correct variable nodes. We also remark that in

this paper, if a code is said to be free of some trapping sets, then

these trapping sets should be understood as trapping sets of the

Gallager A/B algorithms.

B. TSO of Column-Weight-Three Codes for the Gallager A/B

Algorithm on the BSC

In the remainder of this paper, we use the following definition

of a trapping set.

Definition 4: Trapping sets are fixed sets of the Gallager A/B

algorithm, i.e., trapping sets are sets of variable nodes whose

induced subgraphs satisfy conditions 1 and 2 of Theorem 1.

Fig. 1. Graphical representation of the ��� ����� trapping set: (a) Tanner graph
representation. (b) Line–point representation.

This slight abuse of terminology is motivated by the desire to

use the terminology that is common in the literature.

1) Graphical Representation: The induced subgraph of a

trapping set (or any set of variable nodes) is a bipartite graph.

In the Tanner graph (bipartite graph) representation of a trap-

ping set, we use “ ” to represent variable nodes, “ ” to rep-

resent odd-degree check nodes, and “ ” to represent even-de-

gree check nodes. There exists an alternate graphical represen-

tation of trapping sets which allows their topological relations

to be established more conveniently. This graphical represen-

tation is based on the incidence structure of lines and points.

In combinatorial mathematics, an incidence structure is a triple

where is a set of “points”, is a set of

“lines,” and is the incidence relation. The ele-

ments of are called flags. If , we say that point

“lies on” line . In this line–point representation of trapping

sets, variable nodes correspond to lines and check nodes corre-

spond to points. A point, represented as a circle, is shaded black

if it has an odd number of lines passing through it; otherwise,

it is shaded white. An trapping set is thus an incidence

structure with lines and black-shaded points. The girth of

the line–point representation equals the girth of the associated

Tanner graph representation. To differentiate among trap-

ping sets that have nonisomorphic induced subgraphs when nec-

essary, we index trapping sets in an arbitrary order and as-

sign the notation to the trapping set with index .

Depending on the context, a trapping set can be understood

as a set of variable nodes in a given code with a specified in-

duced subgraph or it can be understood as a specific subgraph

independent of a code. To differentiate between these two cases,

we use the letter to denote a set of variable nodes in a code

and use the letter to denote a type of trapping set which cor-

responds to a specific subgraph. If the induced subgraph of a set

of variable nodes in the Tanner graph of a code is isomor-

phic to the subgraph of then we say that is a trapping set

or that is a trapping set of type . is said to contain type

trapping set(s).

Example 1: The trapping set is a union of a six-

cycle and an eight-cycle, sharing two variable nodes. The Tanner

graph representation of is shown in Fig. 1(a). The set of

odd-degree check nodes is . These check nodes are

represented by black-shaded squares. In the line–point represen-

tation of which is shown in Fig. 1(b), , , and are repre-

sented by black-shaded points. These points are the only points

that lie on a single line. The five variable nodes

are represented by black-shaded circles in Fig. 1(a). They corre-

spond to the five lines in Fig. 1(b). As an example, the column-

weight-three MacKay random code of length 4095 from [37]

has 19 617 sets of variable nodes whose induced subgraphs are

isomorphic to the subgraph of . These sets of variable nodes

are trapping sets.

Remark: To avoid confusion between the graphical rep-

resentations of trapping sets, we note that the Tanner graph

representation of a trapping set always contains or . The

line–point representation never contains or . We also

note that circles represent variable nodes in a Tanner graph

representation but they represent check nodes in a line–point

representation. In the remainder of this paper, we only use the

line–point representation.

2) Topological Relation: The following definition gives the

topological relations among trapping sets.

Definition 5: A trapping set is a successor of a trapping

set if there exists a proper subset of variable nodes of

that induce a subgraph isomorphic to the induced subgraph of

. If is a successor of then is a predecessor of .

Furthermore, is a direct successor of if it does not have a

predecessor which is a successor of .

Remark: A trapping set can have multiple, incomparable

predecessors.

If is a successor of , then the topological relation be-

tween and is solely dictated by the topological properties

of their subgraphs. In the Tanner graph of a code , the pres-

ence of a trapping set does not indicate the presence of a

trapping set . If is indeed a subset of a trapping set in

the Tanner graph of , then we say that generates ; oth-

erwise, we say that does not generate .

3) Family Tree of Trapping Sets: The following proposition

follows from Theorem 1.

Proposition 1: Every trapping set contains at least a cycle.

Proof: Assume that is a trapping set that does not contain

a cycle, i.e., the induced subgraph of is a tree. Take any vari-

able node as the root of the tree then the variable nodes which are

neighboring to the leaf nodes with largest depth have only one

adjacent check node with degree greater than 1. Therefore, these

variable nodes have at least as many odd-degree check nodes as

even-degree check nodes. This indicates that is not a trapping

set, which is a contradiction. Consequently, all trapping sets can

be obtained by adjoining variable nodes to cycles.

Remark: Any cycle is a trapping set for regular column-

weight-three codes.

We now explain how larger trapping sets can be obtained by

adjoining variable nodes to smaller trapping sets. We begin with

the simplest example: the evolution of trapping sets from

the trapping set.

Example 2: The line–point representation of a trap-

ping set may be obtained by adding one additional line to the

line–point representation of the trapping set. The new line

must pass through exactly three points to conform with the given

variable node degree. The process of adding a new line can be

considered as the merging of at least one point on the new line

with certain points in the line–point representation of the

Fig. 2. ��� �� trapping sets can be obtained by adding a line to the ��� �� trap-
ping set: (a) �������� trapping set, (b) �������� trapping set, and (c) ��� ��
trapping set; or by adding a line to the ����� trapping set: (d) ����� trapping
set.

trapping set. We use to denote the points on the line that are

to be merged with points in the line–point representation of the

predecessor trapping set. If a black-shaded point is merged with

a point, then they become a single white-shaded point. Sim-

ilarly, if a white-shaded point is merged with a point, then

the result is a single black-shaded point. Before merging points,

one must decide on: 1) the number of the points on the new

line; and 2) which points on the line–point representation of the

predecessor trapping set are to be merged with the points.

Because the merging must ensure that every line passes

through at least two white-shaded points, there must be at least

two points on the line to be merged, i.e., there can be two or

three points. It is easy to see that if the girth is at least six,

then white points cannot be selected. Consequently, if there are

two points, then there are two distinct ways to select two

black-shaded points. The merging, which is demonstrated in

Fig. 2(a) and (b), results in two different trapping sets.

On the other hand, if there are three points, then there is

only one distinct way to select three black-shaded points. The

merging, which is demonstrated in Fig. 2(c), results in the

trapping set. We remark that the line–point representation of

the trapping set may also be obtained by adding a line

to the line–point representation of the trapping set, as

demonstrated in Fig. 2(d). Note that the trapping set is

neither a successor nor a predecessor of the trapping set.

The evolution of a trapping set from one of its predecessors

in a regular-column-weight three code can now be described

in a more general setting. Since every trapping set is a direct

successor of some trapping set, it is sufficient to only consider

the evolution of direct successors from their predecessors. Con-

sider an trapping set . Since has variable nodes, its

line–point representation contains lines. Each line has three

points lying on it, with at most one point shaded black. There are

black-shaded points, each with an odd number of lines passing

through it. An trapping set may be obtained

by adding lines. These new lines (and the points on them)

form an incidence structure and since is a direct successor of

, this incidence structure is connected.3 A successor trapping

set is obtained by pairwisely merging the points with cer-

tain points of . The evolution of elementary trapping sets from

their predecessors is further simplified by the following lemma.

Lemma 1: Let be an elementary trapping set. Then, any

elementary direct successor of can be obtained by pairwisely

merging the points of one of those incidence structures listed

in Fig. 3 with certain black-shaded points of .

Proof: See Appendix B.

3Each incidence structure corresponds to a bipartite graph. An incidence
structure is connected if the corresponding bipartite graph is connected.

Fig. 3. Possible incidence structures formed by � new lines for elementary
trapping sets.

Fig. 4. ��� ����� trapping set and its successors of size less than or equal to 8 in
girth-8 LDPC codes. (a) ��������. (b) ��� �����. (c) ��� �����. (d) �	� �����.
(e) ��������. (f) �	� �����. (g) �	�
����.

4) Examples: For the following examples, let us consider

regular column-weight-three LDPC codes of girth and

elementary trapping sets.

Example 3: With the evolution of the trapping set

from the trapping set presented previously, we show the

family tree of trapping sets originating from the

trapping set with and in Fig. 4. The derivation of

this family tree is explained as follows.

1) Since and , only the structures shown in

Fig. 3(b)–(d) can be chosen to merge with the

trapping set. Each of these structures have two points.

Due to symmetry, there is only one way of choosing two

black-shaded points in the line–point representation of the

trapping set. Merging the line–point representa-

tion of the trapping set with the structures shown

in Fig. 3(b)–(d) results in the trapping set, the

trapping set, and the trapping set, re-

spectively.

2) Similarly, only the structures shown in Fig. 3(b) and (c) can

be chosen to merge with the trapping set to result

in the trapping set and the trapping set,

respectively.

3) Finally, only the structure shown in Fig. 3(b) can be

chosen to merge with the trapping set. There

are two distinct ways to select two black-shaded points in

the line–point representation of the trapping set.

Fig. 5. �
�
� trapping set and its direct successors of size less than or equal
to 8 in girth-8 LDPC codes (excluding the �������� and ���
���� trapping
sets shown in Figs. 1(b) and 6(a), respectively). (a) �
�
�. (b) ���
����. (c)
��������. (d) ��� �����. (e) �	������. (f) �	������. (g) �	������.

Fig. 6. ���
���� trapping set and its successors of size less than or equal to 8 in
girth-8 LDPC codes. (a) ���
����. (b) ��� �����. (c) �	� �����. (d) ��������.
(e) �	����
�. (f) �	������. (g) �	�
����. (h) �	�
����. (i) �	�
��
�.

Fig. 7. Obtaining a larger trapping set by adding lines to a smaller one.

However, one of them leads to a girth violation. The other

results in the trapping set.

Example 4: By selecting two black-shaded nodes in Fig. 5(a)

and merging them with two nodes in Fig. 3(c), a

trapping set can be obtained. Two distinct ways to select

black-shaded nodes result in two different trapping sets: the

trapping set shown in Fig. 6(a) and the

trapping set shown in Fig. 5(b). The merging is demonstrated

in Fig. 7(a) and (b). The family tree of trapping sets

originating from the trapping set with and

is illustrated in Fig. 6.

Example 5: In the same manner, other direct successors of

the trapping set can be generated. Those trapping

sets with and are shown in Fig. 5. For a more

complete list of trapping sets from the TSO, interested readers

are referred to [21].

Remarks: A trapping set may originate from different pre-

decessors. For example, the trapping set is not only a

Fig. 8. All ��� �� trapping sets where � � �� in girth-8 LDPC codes.
(a) ��� �����. (b) ��� �����. (c) ��������. (d) ���������. (e) ���������.
(f) ���������. (g) �������	�. (h) �������
�. (i) ���������.

direct successor of the trapping set, but also a direct suc-

cessor of the trapping set. The evolution of the

trapping set from the trapping set is demonstrated in

Fig. 7(c).

5) Codewords: Let be a codeword of and let

. Then, is an trapping set where

. Conversely, contains codewords of Hamming

weight if the Tanner graph of contains trapping sets.

Consequently, has as its minimum distance if and only

if 1) the Tanner graph of contains no trapping set where

and 2) the Tanner graph of contains at least one

trapping set. For regular column-weight-three codes,

an trapping set is a direct successor of an

trapping set. Therefore, the line–point representation of an

trapping set may be obtained by pairwisely merging

three black-shaded nodes in the line–point representation of

an trapping set with three nodes in Fig. 3(a). In

other words, from a list of all possible trapping sets,

all possible trapping sets can be derived. The line–point

representations of all possible trapping sets where

of girth-8 codes are shown in Fig. 8. It can be proven easily that

all of these trapping sets are elementary.

III. SEARCHING FOR SUBGRAPHS IN A TANNER GRAPH

In this section, we briefly describe the main idea behind

our techniques of searching for elementary trapping sets from

the TSO in the Tanner graph of a regular column-weight-three

LDPC code. An efficient search of the Tanner graph for trap-

ping sets relies on the topological relations among trapping sets

defined in the TSO and/or carefully analyzing their induced

subgraphs. Trapping sets are searched for in a way similar to

how they have evolved in the TSO. Recall that by Proposition

1, the induced subgraph of every trapping set contains at least a

cycle. Therefore, the search for trapping sets begins with enu-

merating cycles. Also recall that a cycle with variable nodes
is an trapping set. After the cycles have been enumerated,
they will be used in the search for larger trapping sets. A larger
trapping set can be found in a Tanner graph by expanding a
smaller trapping set. More precisely, given a trapping set of
type in the Tanner graph of a code , our techniques search
for a set of variable nodes such that the union of this set with

forms a trapping set of type , where is a successor
of . Our techniques are sufficient to efficiently search for a
large number of trapping sets in the TSO, especially for those
to be avoided in the code constructions that we will present
in subsequent sections. They can be easily expanded to search
for other trapping sets as well. Notably, the complexity of the
search for trapping sets in the Tanner graph of a structured code
can be greatly reduced by utilizing the structural property of
its parity-check matrix. Details on the implementation of these
techniques are given in Appendix A. An implementation of our
search algorithms can be downloaded from [20].

Let us mention other methods of searching for trapping sets
in the Tanner graph of a code. It is well known that this problem
is NP hard [38], [39]. Previous work on this problem includes
exhaustive [40], [41] and nonexhaustive approaches [42], [43].
The main drawback of existing exhaustive approaches is their
high complexity. Consequently, constraints must be imposed on
trapping sets and on the Tanner graph in which trapping sets
are searched for. For example, the method in [40] or [41] can
only search for trapping sets with , in
a Tanner graph with less than 1000 variable nodes. The com-

plexity is much lower for nonexhaustive approaches. However,
these approaches cannot guarantee that all trapping sets are enu-

merated, and hence are not suitable for the purpose of this paper.
In [32], an algorithm was proposed for enumerating the smallest
weight error patterns uncorrectable by a hard-decision decoder
on the BSC instead of enumerating trapping sets. This approach
is also not suitable for the purpose of this paper. We remark that
our approach of searching for larger trapping sets by expanding
smaller ones is also the approach used in a recent work [44].

IV. STRUCTURED LDPC CODES WITH PERMUTATION
MATRICES OBTAINED FROM LATIN SQUARES

In this section, we give a description of structured LDPC
codes whose parity-check matrices are arrays of permutation
matrices obtained from Latin squares. The class of codes
described in this section is suitable to show our general method
of constructing structured LDPC codes free of small trapping
sets.

A. Permutation Matrices From Latin Squares

A permutation matrix is a square binary matrix that has ex-

actly one entry 1 in each row and each column and 0’s else-

where. Our codes make use of permutation matrices that have

disjoint support. These sets of permutation matrices can be ob-

tained conveniently from Latin squares.

A Latin square of size (or order) is a array in which

each cell contains a single symbol from a -set , such that each

symbol occurs exactly once in each row and exactly once in each

column. A Latin square of size is equivalent to the Cayley table

(or multiplication table) of a quasi-group on elements (see

[45, pp. 135–152] for details).

For mathematical convenience, we use elements of to index

the rows and columns of Latin squares and permutation ma-

trices. Let denote a Latin square defined on

the Cayley table of a quasi-group of order . We de-

fine , an injective map from to , where

is the set of matrices of size over ,

as follows:

such that

if

if

According to this definition, a permutation matrix corre-

sponding to the element is obtained by replacing the

entries of which are equal to by 1 and all other entries of

by 0. It follows from the aforementioned definition that the

images of elements of under give a set of permutation

matrices that do not have 1’s in common positions. This defi-

nition naturally associates a permutation matrix to an element

and simplifies the derivation of parity-check matrices

that satisfy the row–column (RC) constraint [46], as will be

later demonstrated in this section.

Example 6: Let be a quasi-group of order 4 with Cayley

table

The Latin square obtained from the Cayley table of is

The injective map sends elements of to four permutation

matrices:

B. LDPC Codes as Arrays of Permutation Matrices

It is now straightforward to describe an LDPC code whose

parity-check matrix is an array of permutation matrices. Let

be a matrix over a quasi-group

, i.e.,

...
...

. . .
...

(1)

With some abuse of notation, let be

an array of permutation matrices obtained by replacing elements

of with their images under , i.e.,

...
...

. . .
...

(2)

Then, is a binary matrix of size . The null space of

gives an LDPC code of length . The column weight and

row weight of are and , respectively.

Remark: Different permutations of rows and columns of the

Latin square result in different sets of permutation matrices.

These sets of permutation matrices result in different permuta-

tions of in (2). Since permuting rows and columns of only

leads to the relabeling of the variable nodes and check nodes of

the corresponding Tanner graph, different permutations of rows

and columns of the Latin square result in equivalent codes.

Therefore, a code is completely specified by a quasi-group

along with a matrix over .

C. Deriving Parity-Check Matrices That Satisfy the RC

Constraint

The Tanner graph of a code constructed as above is free

of four cycles if and only if its parity-check matrix satisfies the

RC constraint. The RC constraint requires that any two rows

(columns) of a parity-check matrix have 1’s in at most one

common position. The following lemma gives the necessary and

sufficient conditions on such that the matrix (in (2)) satis-

fies the RC constraint.

Lemma 2: Let , , , and be entries of

. Then, satisfies the RC constraint iff the equations

do not hold simultaneously for any , ; ,

; ; and any , .

Proof: We will prove that does not satisfy the RC con-

straint iff the aforementioned equations hold simultaneously for

some entries , , , and of with ,

and some , .

does not satisfy the RC constraint if and only if there exist

, , , and which are entries of with

, such that the matrix

does not satisfy the RC constraint.

Fig. 9. Row and column indices of the 1 entries in the common positions.

Assume that does not satisfy the RC constraint and let

, , , be the row indices and the column indices,

respectively, of the 1 entries of in the common positions

as demonstrated in Fig. 9. From the definition of the map in

Section IV-A, one can see that the equations listed in Lemma 2

hold simultaneously.

Conversely, assume that the aforementioned equations hold

simultaneously for some , , , and with

, , and some , , , . Then, the

1 entries of include those with positions shown in Fig. 9.

Therefore, does not satisfy the RC constraint.

For the following two corollaries of Lemma 2,

is a Galois field, where , and is prime. Let

be a primitive element of . The powers of , ,

, give all elements of and

.

Corollary 1: Let , and let be

the multiplicative operation of . The Tanner graph

corresponding to contains no cycle of length four iff

for any , ; ,

; ; .

Remark: The LDPC codes obtained when is a multiplica-

tive group of a finite field were proposed under a different for-

mulation in [46].

Corollary 2: Let and let be

the subtractive operation of . The Tanner graph corre-

sponding to contains no cycle of length four iff

for any , ; ,

; ; .

Remark: The LDPC codes obtained when is an additive

group of a finite field include array LDPC codes [26].

D. Remarks

For simplicity, all the codes constructed in this paper are de-

rived from the additive group of a finite field, i.e., the codes for

which Corollary 2 holds. For any parity-check matrix which

is an array of permutation matrices, we can permute the rows

and columns to obtain such that the topmost and leftmost

permutation matrices of are identity matrices. The matrix

is, then, the image of a matrix under , where entries on the

first row and first column of are . Therefore, in

the rest of this paper, we only consider matrices of which

elements on the first row and on the first column are zeros. We

denote as the submatrix of such that

(3)

and then write .

V. CONSTRUCTION OF CODES FREE OF SMALL TRAPPING SETS

In this section, we give a general method to construct regular
LDPC codes free of a given collection of trapping sets. More
precisely, codes are constructed so that their Tanner graphs are
free of a given collection of subgraphs from the TSO. It is impor-

tant to note that our method of constructing codes free of small
trapping sets can also be applied to construct random codes, al-

though the complexity required to search for trapping sets would
be much higher. We organize our discussion by considering
two separate problems: 1) determining a collection of forbidden
subgraphs, i.e., which subgraphs that should be avoided in the
Tanner graph; and 2) constructing a Tanner graph which is free
of a given collection of subgraphs.

A. Determining the Collection of Forbidden Subgraphs

Let us give a general rationale for deciding which trapping

sets should be forbidden in the Tanner graph of a code. As pre-

viously mentioned, these trapping sets are chosen from the TSO.

It is clear that if a predecessor trapping set is not present in

a Tanner graph, then neither are its successors. Since the size

of a predecessor trapping set is always smaller than the size of

its successors, a code should be constructed so that it contains

as few small predecessor trapping sets as possible. However,

forbidding smaller trapping sets usually imposes stricter con-

straints on the Tanner graph, resulting in a large rate penalty.

This tradeoff between the rate and the choice of forbidden trap-

ping sets is also a tradeoff between the rate and the error-floor

performance. While an explicit formulation of this tradeoff is

difficult, a good choice of forbidden trapping sets requires the

analysis of decoder failures to reveal the relative harmfulness of

trapping sets. It has been pointed out that for the BSC, the slope

of the FER curve in the error-floor region depends on the size

of the smallest error patterns uncorrectable by the decoder [2].

We, therefore, introduce the notion of the relative harmfulness

of trapping sets in a general setting as follows.

Relative Harmfulness: Assume that under a given decoding

algorithm, a code is capable of correcting any error pattern of

weight but fails to correct some error patterns of weight .

If the failures of the decoders on error patterns of weight

are due to the presence of trapping sets of type , then

is the most harmful trapping set. Let us now assume that a

code is constructed so that it does not contain trapping sets

and is capable of correcting any error pattern of weight .

If the presence of trapping sets of type leads to de-

coding failure on some error patterns of weight , then is

the second most harmful trapping set. The relative harmfulness

of other trapping sets is determined in this manner.

Remarks: According to the previous discussion, a smaller

trapping set might not necessarily be more harmful than a larger

one. Besides, for two trapping sets with the same number of

variable nodes but with different number of odd-degree check

nodes, the one with the smaller number of odd-degree check

nodes might not necessarily be more harmful.

Example 7: Let us consider a regular column-weight-three

LDPC code of girth 8 on the BSC and assume the Gallager A/B

decoding algorithm. Since such a code can correct any error

pattern of weight two, we want to find subgraphs whose pres-

ence leads to decoding failure on some error pattern of weight

three. Since a code cannot correct all weight-three errors if its

Tanner graph either contains trapping sets or contains

trapping sets, the most harmful trapping sets are the

trapping set and the trapping set.

To further explain the importance of the notion of relative

harmfulness, let us slightly detour from our discussion and re-

visit the notion of erroneous sets. These are sets of variable

nodes that are not eventually correct. It is indeed possible, in

some cases, to identify some small erroneous sets in a code by

simulation, assuming the availability of a fast software/hard-

ware emulator. Unfortunately, erroneous sets identified in this

manner generally have little significance for code construction.

This is because the dynamics of an iterative decoder (except the

Gallager A/B decoder on the BSC) is usually very complex and

the mechanism by which the decoder fails into an erroneous sets

is difficult to analyze and is not well understood. Usually, the

subgraphs induced by the sets of noneventually correct variable

nodes are not the most harmful ones. Although avoiding sub-

graphs induced by sets of noneventually correct variable nodes

might lead to a lower error floor, the code rate may be exces-

sively reduced. A better solution is to increase the slope of the

FER curve with the fewest possible constraints on the Tanner

graph. This can only be done by avoiding the most harmful trap-

ping sets.

For the Gallager A/B algorithm on the BSC, the relative harm-

fulness of a trapping set is determined by its critical number.

Hence, there have been several works in the literature in which

the critical numbers of trapping sets are determined and codes

are constructed so that the most harmful trapping sets are elim-

inated. Examples of these works include [2], [29], [47], [48].

Nevertheless, determining the relative harmfulness of trapping

sets for other algorithms in general is a difficult problem. The

original concept of harmfulness of a trapping set can be found

in early works on LDPC codes as well as importance sampling

methods to analyze error floors. MacKay and Postol [36] were

the first to discover that certain “near codewords” are to be

blamed for the high error floor in the Margulis code on the

AWGNC. Richardson [1] reproduced their results and devel-

oped a computation technique to predict the performance of a

given LDPC code in the error-floor domain. He characterized

the troublesome noise configurations leading to the error floor

using trapping sets and described a technique (of Monte Carlo

importance sampling type) to evaluate the error rate associated

with a particular class of trapping sets. Cole et al. [49] further

developed the importance sampling-based method to analyze

error floors of moderate-length LDPC codes, while we used in-

stantons to predict error floors [16]–[18].

The main idea of our method is to determine the relative

harmfulness of trapping sets from the TSO for the SPA on the

BSC. It relies on the topological relationship among these trap-

ping sets and will be presented in Section VII. Before presenting

this method, we describe the construction of codes for the Gal-

lager A/B algorithm on the BSC in Section VI.

B. Construction of a Code by Progressively Building the

Tanner Graph

We now give an algorithm to progressively construct a

-regular LDPC code whose parity-check matrix is an

array of permutation matrices. Our construction algorithm is

inspired by the PEG algorithm [50] and the method in [27]. Let

be a -regular LDPC code whose parity-check matrix

is an array of permutation matrices. The condition

that a Tanner graph is free of a given collection of subgraphs

can be understood as a set of constraints imposed on such a

Tanner graph. Assume that the Tanner graph corresponding

to is required to satisfy a set of constraints. Let denote this

set of constraints.

The construction is based on a check and select-or-disregard

procedure. The Tanner graph of the code is built in stages,

where is the row weight of (is the number of columns

of). Usually, is not prespecified, and a code is constructed

with the goal of making the rate as high as possible. Although

for the class of codes under consideration, one can easily obtain

some good lower bounds on the rate, determining the maximum

possible rate is beyond the scope of this paper.

At each stage, a set of new variable nodes are introduced

that are initially not connected to the check nodes of the Tanner

graph. Blocks of edges are then added to connect the new vari-

able nodes and the check nodes. Each block of edges corre-

sponds to a permutation matrix and hence corresponds to an el-

ement of . An element of may be chosen randomly, or it

may be chosen in a predetermined order. After a block of edges

is tentatively added, the Tanner graph is checked for condition

. If the condition is violated, then that block of edges is re-

moved and replaced by a different block. The algorithm pro-

ceeds until no block of edges can be added without violating

condition . Details of the construction are given in Algorithm

1. For mathematical convenience, we append a symbol to the

quasi-group and define , the all-zero matrix of di-

mension . Also, let be a matrix of size , where

is the column weight of the code to be constructed. All entries

of are set to .

Algorithm 1 Progressively Building the Tanner Graph

all-zero matrix;

while do

while do

if then

else

if satisfies then

end if

end if

end while

end while

Delete the last column of

The complexity of the algorithm grows exponentially with

the column weight. The speed of a practical implementation of

the algorithm also depends strongly on how the condition is

checked on a Tanner graph. However, for small column weights,

say 3 or 4, and small to moderate code lengths, the algorithm is

well handled by state-of-the-art computers. For example, with

the searching techniques described in Section III, the construc-

tion of a (790, 555) code which has girth 8, minimum distance at

least 12 and which does not contain either or trap-

ping sets takes less than 20 seconds on a 2.3 GHz computer.

Remarks:

1) It is worth mentioning that an alternative approach to the

previous construction based on a check and select-or-dis-

regard procedure is one in which a subgraph is described

by a system of linear equations. Elements of a given ma-

trix are particular values of variables of these systems of

equations. The Tanner graph corresponding to con-

tains the given subgraph if and only if elements of form

a proper solution of at least one of these linear systems of

equations. For array LDPC codes, equations governing cy-

cles and several small subgraphs have been derived in [4]

and [34]. However, the problem of finding such that its

elements do not form a proper solution of any of these sys-

tems of equations is notoriously difficult. In a recent work

[51], LDPC codes free of some absorbing sets were ana-

lytically constructed. However, that work only considers

a class of regular LDPC codes known as separable, circu-

lant-based codes and a limited number of small absorbing

sets.

2) Algorithm 1 can be alternatively described as a process

of progressively constructing an incidence structure. The

construction begins with an incidence structure consisting

of points with no lines. Blocks of parallel lines are then

added based on a check and select-or-disregard procedure,

similar as in [27] and [52].

3) One can easily come up with several variations of Algo-

rithm 1. An interesting problem is to find more sophisti-

cated algorithms which can result in codes with higher rate.

VI. LDPC CODES FOR THE GALLAGER A/B ALGORITHM ON

THE BSC

The error correction capability of regular column-weight-

three LDPC codes on the BSC decoded with the Gallager A/B

algorithm has been studied in [14], [15], and [47] and can be

summarized as follows.

1) A column-weight-three LDPC code with Tanner graph of

girth cannot correct all errors.

2) A column-weight-three LDPC code with Tanner graph of

girth corrects all errors.

3) A column-weight-three LDPC code with Tanner graph of

girth can correct any two errors if and only if the

Tanner graph does not contain a codeword of weight four.

4) A column-weight-three LDPC code with Tanner graph of

girth can correct any three errors if and only if a)

the Tanner graph does not contain trapping sets,

and b) the Tanner graph does not contain trapping

sets.

The aforementioned conditions completely determine the set

of constraints to be imposed on the Tanner graph of a code

Fig. 10. FER performance of the Tanner code and code � under the Gallager
A/B algorithm on the BSC with maximum of 100 iterations.

to achieve a given error-floor performance. The necessary and

sufficient conditions to correct three errors were derived in [47].

These conditions require that the Tanner graph of the code has

girth and does not contain and trapping set.

It is obvious that the trapping set is indeed the

trapping set. The trapping set should be understood as the

trapping set since it can be shown easily that the crit-

ical number of the trapping set is 4. In the following

example, we present the construction of a code which can cor-

rect three errors.

Example 8 (Correct All Weight-Three Errors): Let us con-

sider the (155, 64) Tanner code [53]. This code is a (3, 5)-regular

LDPC code. Its Tanner graph contains trapping sets

and hence cannot correct three errors under the Gallager A/B

algorithm on the BSC. Let and be a primitive element

of . Let be an LDPC code defined by the parity-check

matrix where

is a (155, 64) LDPC code with girth and min-

imum distance . The Tanner graph of contains no

trapping sets. Therefore, is capable of correcting

any three-error pattern under the Gallager A/B algorithm on the

BSC. The FER performance of under the Gallager A/B al-

gorithm for a maximum of 100 iterations is shown in Fig. 10.

The FER performance of the Tanner code is also shown for

comparison.

In a similar manner, codes that can be guaranteed to correct

more errors can be constructed.

We end this section with a discussion on the harmfulness of

two trapping sets, say and , which have the same critical

number . To compare the harmfulness of and , we use the

notion of an inducing set of a trapping set defined as follows.

Definition 6: An inducing set of size of a trapping set

is a set of variable nodes such that if these variable nodes are

initially in error then the Gallager A/B decoder will fail on a

trapping set of type .

With this definition, the harmfulness of and having

common critical number is compared as follows: is more

harmful than if the number of inducing sets of size of is

larger than the number of inducing sets of size of (see [20]

for a more detailed discussion). This concept is demonstrated

by the following example.

Example 9: The , , and trapping sets

all have critical number . The number of inducing sets of

size 4 of the and trapping sets is 1, while for

the trapping set, it is 2. Consequently, the

trapping set is more harmful than the trapping set and the

trapping set. We now construct a code which can cor-

rect three errors and which is also free of the trapping

set.

Let and be a primitive element of . Let be

an LDPC code defined by the parity-check matrix

where

is a (265, 108) LDPC code with girth and minimum

distance . The Tanner graph of is free of and

trapping sets. The FER performance of under the Gal-

lager A/B algorithm for a maximum of 100 iterations is shown

in Fig. 10. For comparison, we also show the FER performance

of a code which is labeled in the plot as “IES 2-lifting.” It is a

(310, 126) LDPC code which is constructed from two copies of

the Tanner code by the internal edge swapping (IES) algorithm

[48]. It can be seen that although the length of is about 15%

shorter than the length of the IES 2-lifting code, the slope of the

FER curves of both codes is 4 and has a slightly better perfor-

mance in the error-floor region. This indicates that the number

of weight-four error patterns that the IES 2-lifting code fails to

correct is larger than the number of weight-four error patterns

that fails to correct.

VII. LDPC CODES FOR THE SPA ON THE BSC

In this section, we present the construction of regular

column-weight-three codes for the SPA on the BSC. The main

element of the construction is the determination of the set of

most harmful trapping sets. Following the discussion of the

notion of relative harmfulness in Section V-A, we approach this

problem as follows.

Let us consider an LDPC code and assume that can cor-

rect any error pattern of weight under the SPA on the BSC. We

are interested in determining the trapping sets whose presence

leads to decoding failure on error patterns of weight . To

simplify this problem, we only focus on initial error patterns of

weight that surely lead to decoding failures of the Gallager

A/B algorithms on the BSC. The basis for this simplification is

as follows. Since it is well known that the SPA algorithm has

a superior performance in both the waterfall and the error-floor

regions compared to that of the Gallager A/B algorithm, we sur-

mise that an error pattern correctable by the Gallager A/B algo-

rithm is correctable with high probability by the SPA algorithm,

although this fact remains unproven. The initial error patterns of

weight that are surely uncorrectable by the Gallager A/B

algorithm can be easily derived from the TSO.

Assume the transmission of the all-zero codeword and let

be the received vector input to the decoder. Also, assume that

, a trapping set of type from the TSO with

variable nodes. In other words, all the initially corrupt

variable nodes belong to the trapping set . This error pattern

results in a decoding failure of the Gallager A/B algorithm and

hence is an initial error pattern of interest. As the decoder oper-

ates by passing messages along the edges of the Tanner graph,

the decoding outcome depends heavily on the immediate neigh-

borhood of the subgraph induced by variable nodes in . In

many cases, a decoding failure of the SPA will only occur if

generates a trapping set of type , where is a successor

of . In such cases, the presence of in a code makes it in-

capable of correcting any error pattern of size , and hence,

is a harmful trapping set.

To evaluate the harmfulness of the trapping set, all ini-

tial error patterns that consist of variable nodes of a trapping

set must be considered. Let be the set of all trapping sets

of type . Partition into two disjoint sets and

such that a trapping set in generates at least one trap-

ping set while a trapping set in does not generate any

trapping set. For each trapping set , perform decoding

on the input vector where , at a cross-over

probability of the channel. Let be the set of trapping sets

such that decoding is successful upon error pattern .

Define and to be the rate of successful decoding for

trapping sets in and at the cross-over probability of

the channel as follows:

(4)

(5)

The harmfulness of trapping sets of is evaluated by com-

paring and for a wide range of . The larger the dif-

ference , the more harmful trapping sets are.

The harmfulness of trapping sets is also compared with the

harmfulness of other successor trapping sets of , which is de-

termined in the same fashion.

We note that this characterization of relative harmfulness, al-

though heuristic, plays a critical role in the construction of good

high-rate codes as no explicit quantification of harmfulness of

trapping sets is known. This characterization of harmfulness

also helps a code designer to determine more or less the exact

subgraphs that are responsible for a certain type of decoding

failure. It is, therefore, superior to searching for trapping sets

by simulation.

We continue our discussion with three case studies in which

we evaluate 1) the relative harmfulness of the and

trapping sets, 2) the relative harmfulness of the

trapping set, and 3) the relative harmfulness of the , ,

and trapping sets. For a better illustration of the rela-

tionship among these trapping sets, a hierarchy of trapping sets

of interest originating from the trapping set is shown in

Fig. 11. Hierarchy of trapping sets of interest originating from the ��� �� trap-
ping set for regular column-weight-three codes of girth 8.

Fig. 11. For the first case, we present a detailed analysis. For

the other two cases, we only give the results of the analysis. The

analysis to be presented is a step toward the guaranteed correc-

tion of four, five, and six errors under the SPA on the BSC. For

simplicity, we assume that codes have girth in all exam-

ples, although the method of construction can be applied to girth

6 codes which would likely result in higher rate codes.

A. Harmfulness of the and Trapping Sets

Since we consider codes with girth , let us mention an

existing code of such girth. Consider the (530, 373) integer lat-

tice code (or shortened array code [4]) given in [27]. This code

has minimum distance and, hence, is unable to correct

all weight-four error patterns. Clearly, the first step toward the

guaranteed correction of four errors is to eliminate the ,

, and trapping sets, which are the low-weight

codewords. We, therefore, construct a code with minimum dis-

tance . Let and let be a primitive element

of and let specify that the Tanner graph of a code has

girth and contains no , and

trapping sets. Using the method of construction described in

Section V-B, we obtain a regular column-weight-three code

with parity-check matrix where

is a (530, 373) code. Similar to the aforementioned integer

lattice code, has column weight 3, row weight 10 and rate

.

The Tanner graph of contains 17 066 trapping sets.

We partition the collection of trapping sets into nine dis-

joint sets based on whether a trapping

TABLE I
DISJOINT SETS OF ����� TRAPPING SETS IN THE LDPC CODE � . A

INDICATES THAT THE ����� TRAPPING SETS IN GENERATE AT LEAST

ONE CORRESPONDING TRAPPING SET

set generates , , or trapping sets.

Note that, for simplicity, we do not differentiate among different

and trapping sets in this analysis, although a more

detailed treatment may reveal some differences in the harmful-

ness of those trapping sets. The classification and sizes of dif-

ferent sets of trapping sets are shown in Table I.

To evaluate the harmfulness of the , ,

, and trapping sets, we perform decoding on all

input vectors where , a trapping set

of . The result is as follows. For the trapping sets in ,

, , and , the decoder successfully decodes all input

vectors at all 250 values of that have been considered,

i.e., . For the

trapping sets in , , , , and , the rate of successful

decoding is shown in the form of a histogram in Fig. 12. As an

example of how to interpret the result, consider the trapping

sets in . It can be seen that there are about 160 values (65%

of all tested values) of at which decoding is successful for all

input vectors . For about 90 values (30% of all tested values)

of , decoding is successful for approximately nine out of ten

input vectors .

The following facts can be observed.

1) The trapping sets in , , and do not gen-

erate either or trapping sets. The rate of

successful decoding is 100% for all tested values of .

2) The trapping sets in , , and generate at

least one trapping set. Decoding is not always suc-

cessful, but the rate of successful decoding is more than

90% for all tested values of .

3) The trapping sets in generate at least one

trapping set. The rate of successful decoding

is significantly lower in general compared to ,

, and .

4) The trapping sets in generate at least one

and one trapping set. The rate of suc-

cessful decoding is lowest in general.

5) The trapping sets in generate at least one

trapping set, while the ones in do not. In

general, .

6) The trapping sets in generate at least one

trapping set while the ones in do not. In general,

.

Fig. 12. Rate of successful decoding for different sets of ��� �� trapping sets in code � .

7) The trapping sets in generate at least one

trapping set, while the ones in do not.

for all tested values of .

The aforementioned observations strongly suggest that both

and trapping sets are harmful. However, the

harmfulness of the trapping set is much more evident

than the harmfulness of the trapping set. Besides, it is

interesting to notice that for all tested values of .

All trapping sets in generate at least one trapping

set, one trapping set, and one trapping set. In

this case, the presence of trapping sets seem to increase

the rate of successful decoding. This “positive” effect of

trapping sets can also be seen when comparing and .

Finally, by comparing and , it is suggestive that the

trapping sets have some negative effect on decoding if

the trapping sets generate and trapping sets.

To further verify our prediction on the harmfulness of the

and trapping sets, we construct another code

with the same parameters as those of . We denote this code

by . The Tanner graph of has stronger constraints than the

Tanner graph of as we impose that it has neither nor

trapping sets. Since trapping sets are not present,

has minimum distance of at least 12.

Let be defined by the parity-check matrix

where

The Tanner graph of contains 16483 trapping sets,

which can be partitioned into four disjoint sets as shown in

Table II.

We again perform decoding on all input vectors where

, a trapping set of . The rate of suc-

cessful decoding for trapping sets in and is shown in

the form of a histogram in Fig. 13. For trapping sets in and

, decoding is always successful.

It can be seen that the results are consistent with the previ-

ously obtained results. Decoding is always successful for the

trapping sets which generate neither nor

TABLE II
TYPES OF ����� TRAPPING SETS IN THE (530, 373) LDPC CODE �

Fig. 13. Rate of successful decoding for different sets of ����� trapping sets
in code � .

trapping sets. Besides, , in general, since the

trapping sets in do not generate trapping

sets. These results validate our prediction on the harmfulness of

successors of the trapping set. We have repeated the ex-

periment for a collection of codes whose Tanner graphs do not

contain either or trapping sets. The consistency

of the results led us to the following conjecture.

Fig. 14. FER performance of codes in Example 10 under the SPA on the BSC.

Conjecture 1: A regular column-weight-three code of girth

can correct any error pattern of weight 4 consisting of

variable nodes of an eight-cycle under the SPA on the BSC if its

Tanner graph contains neither nor trapping sets.

We remark that this conjecture only gives a sufficient condi-

tion. A code may correct any error pattern of weight 4 even if its

Tanner graph contains trapping sets. For example, con-

sider the Tanner code of length 155. The Tanner graph of this code

does not contain a trapping set, but it contains

trapping sets. However, decoding is always successful for all the

trapping sets at any value of . It might be possible to find a

better sufficient condition by taking into account larger trapping

sets, but such an analysis appears to be difficult.

Example 10: The FER performance of , , and the (530,

373) integer lattice code under the SPA with 100 iterations on

the BSC is shown in Fig. 14. For comparison, Fig. 14 also shows

the FER performance of a (530, 373) LDPC code constructed

using the PEG algorithm [50]. This PEG code has girth

and minimum distance . Clearly, , whose Tanner

graph is free of trapping sets, has the best performance.

Although the Tanner graph of contains some trapping

sets, it still outperforms the PEG code. The integer lattice code

has the worst performance although it has girth .

Example 11: Let and let be defined by the parity-

check matrix where

Fig. 15. FER performance of codes in Example 11 under the SPA on the BSC.

is a (810, 569) code with column weight 3, row weight 10,

and rate . The Tanner graph of has girth and

does not contain either or trapping sets. The FER

performance of under the SPA with 100 iterations on the BSC

is shown in Fig. 15. For comparison, Fig. 15 also shows the FER

performance of a (810, 567) PEG constructed code. This code

has girth . It can be seen that has a lower floor than the

PEG code.

B. Harmfulness of the Trapping Set

Assuming the guaranteed correction of four errors, we are

now interested in finding trapping sets whose presence leads to

decoding failure on some error patterns of weight five. There

are two trapping sets with five variable nodes from the TSO that

can be present in the Tanner graph of a regular column-weight-

three LDPC code with girth : the trapping set

and the trapping set. The result of our analysis indicates

that trapping sets are the most harmful and should be

forbidden in the Tanner graph of a code.

Example 12: Let and let be defined by the

parity-check matrix where is given in (6), as

shown at the bottom of the page. is a (3165, 2554) code

with column weight 3, row weight 15, and rate . The

Tanner graph of has girth and does not contain ei-

ther or trapping sets. The FER performance of

under the SPA with 100 iterations on the BSC is shown in

(6)

(7)

(8)

Fig. 16. FER performance of codes in Example 12 under the SPA on the BSC.

Fig. 16. For comparison, Fig. 16 also shows the FER perfor-

mance of a (3150, 2520) regular QC LDPC code4 constructed

using array masking proposed in [46]. The parity-check matrix

of this code is a 10 50 array of 63 63 circulants or zero ma-

trices, which has column weight 3 and row weight 15. This code

has girth . It can be seen that has a lower error floor

than the code constructed using array masking.

C. Harmfulness of , , and Trapping Sets

With the previous results, we now consider codes free of

and trapping sets and aim for the guaranteed

correction of six errors. To guarantee the correction of six er-

rors, codes must have minimum distances . In other

words, their Tanner graphs should be free of trapping sets

. Similar to the previous discussions, we analyze error

patterns of weight six, focusing on those consisting of variable

nodes of a trapping set. There are three trapping sets of size

6 from the TSO that can be present in the Tanner graph of a

regular column-weight-three LDPC code with girth : the

trapping set, trapping set and the trap-

ping set. The results of our analysis and experiments suggest that

the following trapping sets are harmful (in decreasing order of

harmfulness):

1) The trapping set and the trapping set.

2) The trapping sets which are successors of the

trapping sets below.

3) The trapping sets which are successors of the

, , and trapping sets (see

Fig. 11 for an illustration of the relationship among these

trapping sets).

Example 13: Let and let be defined by the

parity-check matrix where is given in (7). is

a (2388, 1793) code with column weight 3, row weight 12, and

rate . The Tanner graph of has girth and con-

tains neither trapping sets nor trapping sets, nor

4A QC code is a structured code whose parity-check matrix can be represented
as an array of circulants.

Fig. 17. FER performance of codes in Example 13 under the SPA on the BSC.

Fig. 18. FER performance of codes in Example 14 under the SPA on the BSC.

the trapping sets that are generated by either ,

, or trapping sets. The FER performance of

under the SPA with 100 iterations on the BSC is shown in

Fig. 17. For comparison, Fig. 17 also shows the FER perfor-

mance of a (3150, 2518) PEG code. This code has girth .

It can be seen that has a lower error floor than the PEG code.

Example 14: Let and let be defined by a parity-

check matrix where is shown in (8). is a

(4381, 3372) code with column weight 3, row weight 13, and

rate . The Tanner graph of has girth and

does contain either or trapping sets and neither

does it contain trapping sets that are generated by either

, or trapping sets. The FER perfor-

mance of under the SPA with 100 iterations on the BSC is

shown in Fig. 18. For comparison, Fig. 18 also shows the FER

performance of a (4381, 3370) PEG code. This code has girth

. It can be seen that has a lower error floor than that of

the PEG code.

Fig. 19. FER performance of codes in Example 12 under the SPA on the
AWGNC.

VIII. DISCUSSION

Although the codes presented in this paper are optimized for

the BSC, they also have excellent performance on the AWGNC.

As a demonstration, we show the FER performance of the code

from Example 12 under the SPA on the AWGNC in Fig. 19.

Recall that the Tanner graph of has girth and does not

contain and trapping sets and that the (3150,

2520) regular QC LDPC code was constructed using array

masking as proposed in [46]. It can be seen that although

was constructed for the BSC, it outperforms the other code,

which was constructed for the AWGNC.

It can be noticed that in most of the examples in this paper, we

compare the performance of the newly constructed codes with

PEG codes. It is worth mentioning that many improved versions

of the PEG construction exist in the literature. However, many

of these works deal with irregular codes. In other works, codes

with rate and block length (or)

were usually constructed and their simulated performance was

shown in comparison with that of the PEG codes or the MacKay

random codes of the same length. We remark that codes of this

rate and length obtained from our construction can be made free

of many harmful trapping sets. The following code serves as an

example.

Let and let be a primitive element of . Also,

let specify that the Tanner graph of a code has girth and

contains no , , , and trapping sets.

Using the method of construction described in Section V-B, we

obtain a regular column-weight-three code with parity-check

matrix where

is a (498, 247) code with column weight 3, row weight 6, and

rate . The Tanner graph of contains 332

trapping sets but contains no other trapping sets with

and . Fig. 20 shows the FER performance of under

Fig. 20. FER performance of a rate-0.5 code under the SPA on the AWGNC.

the SPA on the AWGNC in comparison with the performance

of the PEG code of length [37]. It can be seen that

has a lower error floor than the PEG code.

It should also be noted that while the method of removing

trapping sets in this paper is applied to codes whose parity-check

matrices are based on permutation matrices, there are other

approaches to define a parity-check matrix of a structured

LDPC code. They include finite geometries [54], balanced

incomplete block designs [52], [55], protographs [56], Cayley

graphs [57], [58], shortened Reed Solomon codes [59], and

algebraic structures [26], [46], [53], [60], [61], to name the

most popular ones. Some codes obtained by these constructions

are equivalent (more on relationships among structured codes

can be found in [62], [63], and the recent work [64]). Most of

the aforementioned constructions only ensure that the Tanner

graphs of codes are free of four cycles. Although a neces-

sary and sufficient condition for a QC code to have a certain

girth was derived in [53] and [65], the search for a code that

satisfies this condition is computationally challenging. Some

constructions also give codes with other desirable properties.

Examples include codes constructed using Cayley graphs and

protograph-based codes. If a code is constructed using Cayley

graphs, then its Tanner graph has good local-girth distribution.

On the other hand, the local neighborhood of a variable node

in the Tanner graph of a protograph-based code is completely

determined by the template protograph. Protograph-based

codes can be made to have desirable symmetries [66] and can

be encoded very efficiently [67].

To summarize, in this paper, we propose a construction of

structured regular column-weight-three LDPC codes free of

certain small trapping sets. The construction relies on the TSO,

the method of searching for trapping sets and the evaluation

of the relative harmfulness of different trapping sets. The

feasibility of our construction is provided by the fact that the

column weight is small. Generalizing our method to construct

higher column-weight codes and irregular codes is possible but

is complicated due to the exponential increase in the number of

trapping sets as well as much higher complexity of the search

algorithms. A large database of trapping sets with complicated

topological relationships will also make it more complex to an-

alyze failures of the decoder on one subgraph in the presence or

absence of other topologically related subgraphs. Consequently,

determining the relative harmfulness of different subgraphs

might also be difficult. Nevertheless, our method might still be

applicable to construct structured regular column-weight-four

codes. Future research problems include the construction of

such codes. This problem requires the derivation of a TSO for

regular column-weight-four codes. Its feasibility also depends

greatly on whether trapping sets can be enumerated and stored.

As the search for new trapping sets after a block of columns

is added only involves one new variable node (due to the use

of the structural property of the code), its complexity might be

well handled by state-of-the-art computers.

APPENDIX A

IMPLEMENTATION OF TECHNIQUES OF SEARCHING FOR

TRAPPING SETS

In this appendix, we provide details on the techniques of

searching for trapping sets. We begin by defining some simple

subroutines that will be used in the search. Then, we discuss the

technique to enumerate cycles. We continue by presenting the

techniques to search for trapping sets and

trapping sets that are generated by trapping sets. Then,

we discuss how the structural properties of a code can be used

to reduce the complexity of the search. Finally, we give some

remarks.

1) Subroutines: We assume that the following simple sub-

routines are used in our search algorithms.

a) .

Let and be matrices with integer elements. is a

matrix with two columns. If is a row of then the

th row of and the th row of share common

entries.

b) .

Let be the parity-check matrix corresponding to a

Tanner graph of an LDPC code. Let be a matrix

with each row of giving a set of variable nodes, i.e.,

elements in each row of form a subset of . Assume

that all the subgraphs induced by variable nodes in rows

of have the same number of odd-degree check nodes.

is a matrix with the same number of rows as . Ele-

ments of the th row of are odd-degree check nodes

in the subgraph induced by the variable nodes in the th

row of .

c) .

Let be the parity-check matrix corresponding to a

Tanner graph . Let be a matrix whose elements are

variable nodes in , i.e., elements of are members of

. is a one-column matrix with the same number of

rows as . The element in the th row of is the number

of check nodes with degree in the subgraph induced by

the variable nodes in the th row of .

d) .

Let be the parity-check matrix corresponding to a

Tanner graph . Let be a matrix whose elements are

variable nodes in . is a one-column matrix with the

TABLE III
NUMBER OF CYCLES OF SEVERAL LDPC CODES AND RUN-TIME OF THE

CYCLE SEARCHING ALGORITHM ON A 2.3-GHZ COMPUTER

same number of rows as . The element in the th row

of is 1 if the variable nodes in the th row of form a

trapping set and is 0 otherwise.

The aforementioned subroutines can be implemented using

simple sparse matrix operations and, hence, are of low com-

plexity.

2) Searching for Cycles of Length : Since every trapping

set contains at least one cycle, the search for trapping sets al-

ways starts with finding cycles in the Tanner graph. All cycles

of length that contain variable node can be found by per-

forming the following steps.

1) Find all the paths of length from each neighbor of

such that these paths do not contain . The set of such

paths that originate from the th neighbor of is denoted

by . It can be shown that

where

2) For every pair of paths , , and ,

determine if they have only one common node and if they

end with the same node. If so, then a cycle of length has

been found. This cycle is induced by the union of the sets of

variable nodes in , in , and . The maximum number

of possible pairs , is .

The two steps described previously are executed for every

variable node. To further simplify the search, after all the cycles

containing are found, can be marked so that all the paths

containing are eliminated in Step 1 of the search at another

variable node . The complexity of searching for cycles is pro-

portional to the maximum number of pairs , and, hence, is

polynomial in the degree of the variable nodes and check nodes

for a given . However, as Step 1 and Step 2 are performed re-

peatedly for every variable nodes, the complexity increases only

linearly in the code length. Note that our search algorithm not

only counts the number of cycles but also records the variable

nodes that each cycle contains. For this reason, existing efficient

algorithms to count the number of cycles in a bipartite graph

(for example, those proposed in [68] and [69]) cannot be ap-

plied directly.

Example 15: To illustrate the search algorithm, we list the

number of cycles in some popular codes, as well as the run-times

of the algorithm on a 2.6-GHz computer in Table III.

3) Searching for Trapping Sets Generated

by Trapping Sets: Let be an trapping set, be

an trapping set and let be a predecessor of .

Further, let be a trapping set of type in the Tanner graph

of a code and assume that generates a trapping set of

type . As discussed in Section II, is obtained by adjoining

one variable node to . The line–point representation of is

obtained by merging two black-shaded nodes in the line–point

representation of with two nodes in Fig. 3(b). Therefore,

to search for , it is sufficient to search for a variable node

that is connected to two odd-degree check nodes in the subgraph

induced by variable nodes in .

Let be a matrix such that each row of contains variable

nodes of a trapping set in the Tanner graph . is the parity-

check matrix which defines . All trapping sets can be found

by performing the following steps.

1) Find all odd-degree check nodes of all trapping sets:

.

2) Form , a one-column matrix with rows where the el-

ement in the th row is variable node .

3) Form a matrix whose th row gives all check

nodes neighboring to the variable node :

.

4) Find all pairs such that the th row of

and the th row of share 2 common entries:

.

5) If is the th row of , adjoin variable node to the

th row of to form the th row of .

6) Determine the number of degree one check nodes in the

subgraph induced by variable nodes in each row of

and eliminate the rows of that do not have

degree one check nodes, to obtain a matrix . Each

row of now contains variable nodes that induce a

trapping set in the Tanner graph of the code.

.

4) Searching for Trapping Sets Generated by

Trapping Sets: Let be an trapping set, be

an trapping set and let be a predecessor of .

Further, let be a trapping set of type in the Tanner graph

of a code and assume that generates a trapping set of

type . Consider two variable nodes that share a check node.

As discussed in Section II, is obtained by adjoining these

two variable nodes to . The line–point representation of is

obtained by merging two black-shaded nodes in the line–point

representation of with two nodes in Fig. 3(c). Therefore,

to search for , it is sufficient to search for a pair of variable

nodes that share a common neighboring check node and each

node is connected to one odd-degree check node in the subgraph

induced by variable nodes in .

The search for trapping sets is very similar to the

search for trapping sets described in the previous

subsection. In particular, the following modifications should be

made.

1) In Step 2, is a two column matrix, each row contains

a pair of variable nodes that share a common neighboring

check node.

2) In Step 3, the th row of gives all degree one check

nodes in the subgraph induced by variable nodes in the th

row of .

3) In Step 5, variable nodes in the th row of are adjoined

to the th row of .

4) In Step 6, is replaced by .

Since Step 4 does not take into account the case in which
two check nodes of a new variable node are merged with two
odd-degree check nodes of , the subroutine IsTrappingSet
is used afterward to eliminate rows of that do not contain
variable nodes that form a trapping set.

5) Using the Structural Property to Reduce the Complexity
of the Search Algorithms: We discuss how to use the prop-

erty of a structured LDPC code to reduce the complexity of the
search algorithms. Let be a structured LDPC code defined in
Section IV with a Tanner graph representation and a corre-

sponding parity-check matrix . To facilitate the discussion,
we assume that the quasi-group is a cyclic group. Then, is
a QC LDPC code and can be represented as an array of cir-

culant permutation matrices, i.e., takes the following form:

...
...

...
. . .

...

where is a circulant permutation matrix of size for

, .

Let be a function from to defined

as follows:

where and are the quotient and remainder after the

division of by , respectively.

From properties of the parity-check matrix , one can show

the following.

Quasi-cyclicity property: Let

be a subset of variable nodes, then the subgraph in-

duced by all the variable nodes in is isormorphic

to the subgraph induced by all the variable nodes in

, .

Now we can use this property to reduce the complexity of the

search algorithms. Let be a trapping set of type which is

present in the Tanner graph of a code . Then, one can obtain

other type trapping sets, namely , by

shifting variable nodes of using the map . Assume that we

want to find all trapping sets of type by expanding trapping

sets . Instead of expanding every single

trapping set, one can choose to expand only one trapping set

in the set to obtain trapping sets.

The map can then be used on the variable nodes of the ob-

tained type trapping sets to obtain the other type trapping

sets. This significantly reduces the complexity of the search al-

gorithms since the complexity of expanding a trapping set is

much greater than the complexity of shifting variable nodes.

6) Remarks: The aforementioned search procedures may

not differentiate among different trapping sets. For ex-

ample, all and trapping sets are found if they

are searched for as trapping sets generated by the trap-

ping sets. Similarly, all and trapping sets

are found as being generated by the trapping sets. If

searching for a specific type of trapping set is required, then it is

necessary to further analyze the induced subgraph. For example,

TABLE IV
NUMBER OF CYCLES AND TRAPPING SETS OF THE TANNER CODE AND

RUN-TIME OF THE SEARCHING ALGORITHMS ON A 2.3-GHZ COMPUTER

TABLE V
NUMBER OF CYCLES AND TRAPPING SETS OF THE CODE � AND RUN-TIME OF

THE SEARCHING ALGORITHMS ON A 2.3-GHZ COMPUTER

notice that the trapping set is a union of a six-cycle and

an eight-cycle, sharing two variable nodes while the

trapping set is a union of two eight-cycles, sharing three vari-

able nodes. Therefore, to search for all trapping sets

from a list of trapping sets, one would find all pairs of

trapping sets that share three variable nodes, using the

RowIntersectIndex subroutine. The union of each pair of

trapping sets is then a set of five variable nodes. Each set of vari-

able nodes forms a trapping set if its induced subgraph

contains three degree one check nodes. Similarly, all

trapping sets can be found by noticing that they are unions of

two trapping sets, sharing five variable nodes.

Example 16: We end this section by giving the statistics

of small trapping sets present in the popular Tanner code (see

Table IV) as well as in the code (see Table V), which was

given in Section VII. We also give the running times of the al-

gorithms for two different cases: 1) the structural property of

the code is not utilized; and 2) the structural property of the

code is utilized. All the searches were performed on a 2.3-GHz

computer.

APPENDIX B

PROOF OF LEMMA 1

We prove that the incidence structures formed by the new

lines must be one of those listed in Fig. 3. For or ,

the proof is trivial and all possible incidence structures are listed

in Fig. 3(a)–(c). For , we divide the proof into two cases.

Case 1: The incidence structure formed by the new lines

does not contain any cycle: We first argue that no line can

pass through three white-shaded points. To see this, assume that

Fig. 21. Figures used in the proof of Lemma 1.

at least one line passes through three white-shaded points, as

demonstrated in Fig. 21(a). Then, the merging of the incidence

structure formed by the new lines with the line–point repre-

sentation of can be divided into two steps, as demonstrated

in Fig. 21(b) and (c). Consequently, the resulting trapping set is

not a direct successor of .

We also argue that if a line passes through two white-shaded

points, then the third point cannot be a point. This is because

the merging of the incidence structure listed in Fig. 21(d)

with can be divided into two steps, as demonstrated in

Fig. 21(e) and (f). Besides, a line can pass through at most one

black-shaded point. As a result, the incidence structure formed

by the new lines can only be the one listed in Fig. 3(e) (or in

Fig. 3(d) if).

Case 2: The incidence structure formed by the new

lines contains at least one cycle: We first argue that only

one of those lines that form a cycle can pass through three

white-shaded points or pass through two white-shaded points

and a point. The other lines must pass through exactly two

white-shaded points and one black-shaded point. Otherwise,

the merging of the incidence structure formed by the new

lines with the line–point representation of can be divided into

two steps. For example, the merging of the incidence structure

listed in Fig. 21(g) with can be divided into two steps, as

demonstrated in Fig. 21(h) and (i).

Second, the lines that are not part of a cycle can neither pass

through three white-shaded points nor pass through two white-

shaded points and a point. The explanation for this is similar

to the explanation found in case 1.

Finally, we argue that there can be at most one cycle. To see

this, assume that there are two cycles. Since only one of the lines

that form a cycle can pass through three white-shaded points,

the incidence structure formed by the new lines must have the

form as listed in Fig. 21(j). However, since the lines that are not

part of any cycle can neither pass through three white-shaded

points nor pass through two white-shaded points and a point,

there cannot be any point in the incidence structure formed

by the new lines, which is a contradiction.

Consequently, all possible structures formed by the new

lines are listed in Fig. 3(l).

ACKNOWLEDGMENT

The authors highly appreciate the constructive comments and

suggestions made by the anonymous reviewers and especially

by the associate editor P. Vontobel. The work of S. K. Chi-

lappagari was performed when he was with the Department of

Electrical and Computer Engineering, University of Arizona,

Tucson.

REFERENCES

[1] T. J. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annu.
Allerton Conf. Commun., Control, Comput., Monticello, IL, Oct. 1–3,
2003, pp. 1426–1435.

[2] M. Ivkovic, S. K. Chilappagari, and B. Vasic, “Trapping sets in low-
density parity-check codes by using Tanner graph covers,” IEEE Trans.
Inf. Theory, vol. 54, no. 8, pp. 3763–3768, Aug. 2008.

[3] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke,
“Finite-length analysis of low-density parity-check codes on the bi-
nary erasure channel,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp.
1570–1579, Jun. 2002.

[4] O. Milenkovic, N. Kashyap, and D. Leyba, “Shortened array codes of
large girth,” IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3707–3722,
Aug. 2006.

[5] Y. Wang, J. S. Yedidia, and S. C. Draper, “Construction of high-girth
QC-LDPC codes,” in Proc. 5th Int. Symp. Turbo Codes Related Top.,
Lausanne, Switzerland, Sep. 1–5, 2008, pp. 180–185.

[6] S. Kim, J.-S. No, H. Chung, and D.-J. Shin, “Quasi-cyclic low-density
parity-check codes with girth larger than 12,” in Proc. IEEE Int. Symp.
Inf. Theory, Nice, France, Jun. 2007, vol. 53, pp. 2885–2891.

[7] J. Lu, J. M. F. Moura, and U. Niesen, “Grouping-and-shifting designs
for structured LDPC codes with large girth,” in Proc. IEEE Int. Symp.
Inf. Theory, Chicago, IL, Jun. 27–Jul. 2 2004, pp. 236–236.

[8] Y.-K. Lin, C.-L. Chen, Y.-C. Liao, and H.-C. Chang, “Structured
LDPC codes with low error floor based on PEG Tanner graphs,” in
Proc. IEEE Int. Symp. Circuits Syst., Seattle, WA, May 18–21, 2008,
pp. 1846–1849.

[9] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[10] S. K. Chilappagari, D. V. Nguyen, B. Vasic, and M. W. Marcellin,
“On trapping sets and guaranteed error correction capability of LDPC
codes and GLDPC codes,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp.
1600–1611, Apr. 2010.

[11] C. A. Kelley and D. Sridhara, “Pseudocodewords of Tanner graphs,”
IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4013–4038, Nov. 2007.

[12] S.-T. Xia and F.-W. Fu, “Minimum pseudoweight and minimum pseu-
docodewords of LDPC codes,” IEEE Trans. Inf. Theory, vol. 54, no. 1,
pp. 480–485, Jan. 2008.

[13] A. Orlitsky, R. Urbanke, K. Viswanathan, and J. Zhang, “Stopping sets
and the girth of Tanner graphs,” in Proc. IEEE Int. Symp. Inf. Theory,
Lausanne, Switzerland, Jun. 30–Jul. 5 2002, p. 2.

[14] S. K. Chilappagari and B. Vasic, “Error-correction capability of
column-weight-three LDPC codes,” IEEE Trans. Inf. Theory, vol. 55,
no. 5, pp. 2055–2061, May 2009.

[15] S. K. Chilappagari, D. V. Nguyen, B. V. Vasic, and M. W. Marcellin,
“Error correction capability of column-weight-three LDPC codes
under the Gallager A algorithm—Part II,” IEEE Trans. Inf. Theory,
vol. 56, no. 6, pp. 2626–2639, Jun. 2010.

[16] M. G. Stepanov, V. Chernyak, M. Chertkov, and B. Vasic, “Diagnosis
of weaknesses in modern error correction codes: A physics approach,”
Phys. Rev. Lett., vol. 95, no. 22, pp. 228701–228704, Nov. 2005.

[17] V. Chernyak, M. Chertkov, M. G. Stepanov, and B. Vasic, “Error cor-
rection on a tree: An instanton approach,” Phys. Rev. Lett., vol. 93, no.
19, pp. 198702–198705, Nov. 2004.

[18] V. Chernyak, M. Chertkov, M. G. Stepanov, and B. Vasic, “Instanton
method of post-error-correction analytical evaluation,” in Proc. IEEE
Inf. Theory Workshop, San Antonio, TX, Oct. 24–29, 2004, pp.
220–224.

[19] S. K. Chilappagari, M. Chertkov, M. G. Stepanov, and B. Vasic, “In-
stanton-based techniques for analysis and reduction of error floors of
LDPC codes,” IEEE JSAC Capacity Approach. Codes, vol. 27, no. 6,
pp. 855–865, Aug. 2009.

[20] B. Vasic, S. K. Chilappagari, D. V. Nguyen, and S. K. Planjery, “Trap-
ping set ontology,” in Proc. 47th Allerton Conf. Commun., Control,
Comput., Monticello, IL, Sep. 30–Oct. 2 2009, pp. 1–7.

[21] Trapping Set Ontology [Online]. Available: http://www.ece.arizona.
edu/~vasiclab/Projects/CodingTheory/TrappingSetOntology.html
2009

[22] L. Dolecek, Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic,
“Analysis of absorbing sets for array-based LDPC codes,” in Proc. Int.
Conf. Commun., Glasgow, Scotland, Jun. 24–29, 2007, pp. 6261–6268.

[23] Z. Li, L. Chen, L. Zeng, S. Lin, and W. H. Fong, “Efficient encoding of
quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun.,
vol. 54, no. 1, pp. 71–81, Jan. 2006.

[24] C.-H. Liu, C.-C. Lin, S.-W. Yen, C.-L. Chen, H.-C. Chang, C.-Y. Lee,
Y.-S. Hsu, and S.-J. Jou, “Design of a multimode QC-LDPC decoder
based on shift-routing network,” IEEE Trans. Circuits Syst. II: Exp.
Briefs, vol. 56, no. 9, pp. 734–738, Sep. 2009.

[25] Z. Cui, Z. Wang, and Y. Liu, “High-throughput layered LDPC de-
coding architecture,” IEEE Trans. Very Large Scale Integr. Syst., vol.
17, no. 4, pp. 582–587, Apr. 2009.

[26] J. L. Fan, “Array codes as low-density parity-check codes,” in Proc.
2nd Int. Symp. Turbo Codes Related Topics, Brest, France, Sep. 4–7,
2000, pp. 543–546.

[27] B. Vasic, K. Pedagani, and M. Ivkovic, “High-rate girth-eight low-den-
sity parity-check codes on rectangular integer lattices,” IEEE Trans.
Commun., vol. 52, no. 8, pp. 1248–1252, Aug. 2004.

[28] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA:
MIT Press, 1963.

[29] S. K. Chilappagari, S. Sankaranarayanan, and B. Vasic, “Error floors
of LDPC codes on the binary symmetric channel,” in Proc. Int. Conf.
Commun., Istanbul, Turkey, Jun. 11–15, 2006, vol. 3, pp. 1089–1094.

[30] T. J. Richardson and R. L. Urbanke, “The capacity of low-density
parity-check codes under message-passing decoding,” IEEE Trans.
Inf. Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[31] O. Milenkovic, E. Soljanin, and P. Whiting, “Asymptotic spectra of
trapping sets in regular and irregular LDPC code ensembles,” IEEE
Trans. Inf. Theory, vol. 53, no. 1, pp. 39–55, Jan. 2007.

[32] H. Xiao and A. H. Banihashemi, “Estimation of bit and frame
error rates of finite-length low-density parity-check codes on binary
symmetric channels,” IEEE Trans. Commun., vol. 55, no. 12, pp.
2234–2239, Dec. 2007.

[33] H. Xiao and A. H. Banihashemi, “Error rate estimation of low-density
parity-check codes on binary symmetric channels using cycle enumer-
ation,” IEEE Trans. Commun., vol. 57, no. 6, pp. 1550–1555, Jun. 2009.

[34] L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and B.
Nikolic, “Analysis of absorbing sets and fully absorbing sets of
array-based LDPC codes,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp.
181–201, Jan. 2010.

[35] Y. Zhang and W. Ryan, “Toward low LDPC-code floors: A case study,”
IEEE Trans. Commun., vol. 57, no. 6, pp. 1566–1573, Jun. 2009.

[36] D. J. C. MacKay and M. J. Postol, “Weaknesses of Margulis and Ra-
manujan-Margulis low-density parity-check codes,” Electron. Notes
Theor. Comput. Sci., vol. 74, pp. 97–104, 2003.

[37] D. J. C. MacKay, Encyclopedia of Sparse Graph Codes [Online]. Avail-
able: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
[Online]. Available

[38] K. M. Krishnan and P. Shankar, “Computing the stopping distance of
a Tanner graph is NP-hard,” IEEE Trans. Inf. Theory, vol. 53, no. 6, pp.
2278–2280, Jun. 2007.

[39] A. McGregor and O. Milenkovic, “On the hardness of approximating
stopping and trapping sets,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp.
1640–1650, Apr. 2010.

[40] C. C. Wang, S. R. Kulkarni, and H. V. Poor, “Finding all error-prone
substructures in LDPC codes,” IEEE Trans. Inf. Theory, vol. 55, no. 5,
pp. 1976–1999, May 2009.

[41] G. B. Kyung and C.-C. Wang, “Exhaustive search for small fully ab-
sorbing sets and the corresponding low error-floor decoder,” in Proc.
IEEE Int. Symp. Inf. Theory, Austin, TX, Jun. 13–18, 2010, pp. 739–743.

[42] M. Hirotomo, Y. Konishi, and M. Morii, “Approximate examination
of trapping sets of LDPC codes using the probabilistic algorithm,” in
Proc. Int. Symp. Inf. Theory Its Appl., Auckland, New Zealand, Dec.
7–10, 2008, pp. 1–6.

[43] S. Abu-Surra, D. Declercq, D. Divsalar, and W. E. Ryan, “Trapping
set enumerators for specific LDPC codes,” in Proc. Inf. Theory Appl.
Workshop, La Jolla, CA, Jan. 31–Feb. 5 2010, pp. 1–5.

[44] M. K. Dehkordi and A. H. Banihashemi, “An efficient algorithm for
finding dominant trapping sets of LDPC codes,” in Proc. 6th Int. Symp.
Turbo Codes Iterat. Inf. Process., Brest, France, Sep. 6–10, 2010, pp.
444–448.

[45] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial
Designs, Second Edition (Discrete Mathematics and Its Applica-
tions). London, U.K.: Chapman & Hall/CRC Press, 2006.

[46] L. Lan, L. Zeng, Y. Y. Tai, L. Chen, S. Lin, and K. Abdel-Ghaffar,
“Construction of quasi-cyclic LDPC codes for AWGN and binary era-
sure channels: A finite field approach,” IEEE Trans. Inf. Theory, vol.
53, no. 7, pp. 2429–2458, Jul. 2007.

[47] S. K. Chilappagari, A. R. Krishnan, and B. Vasic, “LDPC codes which
can correct three errors under iterative decoding,” in Proc. IEEE Inf.
Theory Workshop, Porto, Portugal, May 5–9, 2008, pp. 406–410.

[48] R. Asvadi, A. H. Banihashemi, and M. Ahmadian-Attari, “Lowering
the error floor of LDPC codes using cyclic liftings,” IEEE Trans. Inf.
Theory, vol. 57, no. 4, pp. 2213–2224, Apr. 2011.

[49] C. A. Cole, S. G. Wilson, E. K. Hall, and T. R. Giallorenzi, “Anal-
ysis and design of moderate length regular LDPC codes with low error
floors,” in Proc. 40th Annu. Conf. Inf. Sci. Syst., Princeton, NJ, Mar.
22–24, 2006, pp. 823–828.

[50] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular
progressive edge-growth Tanner graphs,” IEEE Trans. Inf. Theory, vol.
51, no. 1, pp. 386–398, Jan. 2005.

[51] J. Wang, L. Dolecek, and R. Wesel, “Controlling LDPC absorbing sets
via the null space of the cycle consistency matrix,” in Proc. Int. Conf.
Commun., Kyoto, Japan, Jun. 5–9, 2011, pp. 1–6.

[52] B. Vasic and O. Milenkovic, “Combinatorial constructions of low-den-
sity parity-check codes for iterative decoding,” IEEE Trans. Inf.
Theory, vol. 50, no. 6, pp. 1156–1176, Jun. 2004.

[53] R. M. Tanner, D. Sridhara, and T. Fuja, “A class of group-struc-
tured LDPC codes,” presented at the presented at the 5th Int. Symp.
Commun. Theory Appl., Ambleside, U.K., Jul. 15–20, 2001.

[54] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check
codes based on finite geometries: A rediscovery and new results,” IEEE
Trans. Inf. Theory, vol. 47, no. 7, pp. 2711–2736, Nov. 2001.

[55] B. Ammar, B. Honary, Y. Kou, J. Xu, and S. Lin, “Construction of
low-density parity-check codes based on balanced incomplete block
designs,” IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 1257–1269, Jun.
2004.

[56] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” IPN Progr. Rep. 42-154. Pasadena, CA, Aug. 2003, Jet
Propulsion Lab..

[57] G. A. Margulis, “Explicit constructions of graphs without short cycles
and low density codes,” Combinatorica, vol. 2, no. 1, pp. 71–78, 1982.

[58] J. Rosenthal and P. O. Vontobel, “Constructions of regular and irregular
LDPC codes using Ramanujan graphs and ideas from Margulis,” in
Proc. IEEE Int. Symp. Inf. Theory, Washington, DC, Jun. 24–29, 2001,
pp. 4–4.

[59] I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “A class of low-
density parity-check codes constructed based on Reed-Solomon codes
with two information symbols,” IEEE Commun. Lett., vol. 7, no. 7, pp.
317–319, Jul. 2003.

[60] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello
Jr., “LDPC block and convolutional codes based on circulant matrices,”
IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 2966–2984, Dec. 2004.

[61] L. Chen, J. Xu, I. Djurdjevic, and S. Lin, “Near-shannon-limit quasi-
cyclic low-density parity-check codes,” IEEE Trans. Commun., vol. 52,
no. 7, pp. 1038–1042, Jul. 2004.

[62] I. Djurdjevic, A. V. Kuznetsov, and E. M. Kurtas, “Relationships among
classes of structured LDPC codes and their application to data storage,”
in Proc. 4th Int. Symp. Turbo Codes Related Top.; 6th Int. ITG-Conf.
Source Channel Coding, Munich, Germany, Apr. 3–7, 2006, pp. 1–6.

[63] A. Mahadevan and J. M. Morris, “On RCD SPC codes as LDPC codes
based on arrays and their equivalence to some codes constructed from
Euclidean geometries and partial BIBDs,” Commun. Signal Process.
Lab., Comput. Sci. Electr. Eng. Dept., Univ. Maryland Baltimore
County, Tech. Rep. CSPL TR: 2002-1, 2002, vol. 42–154.

[64] S. Kovalev and V. Y. Krachkovsky, “A simple method to construct
LDPC codes based on projective planes,” in Proc. IEEE Int. Symp. Inf.
Theory, St. Petersburg, Russia, Jul. 31–Aug. 5 2011, pp. 742–746.

[65] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from
circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no.
8, pp. 1788–1793, Aug. 2004.

[66] R. M. Tanner, “On quasi-cyclic repeat-accumulate codes,” in Proc. 41st
Annu. Allerton Conf. Commun., Control, Comput., Monticello, IL, Sep.
22–24, 1999, pp. 249–259.

[67] H. Jin, T. J. Richardson, and V. Novichkov, “Methods and Apparatus
for Encoding LDPC Codes,” US Patent #6 961 888, 2005.

[68] T. R. Halford and K. M. Chugg, “An algorithm for counting short cy-
cles in bipartite graphs,” IEEE Trans. Inf. Theory, vol. 52, no. 1, pp.
287–292, Jan. 2006.

[69] M. Karimi and A. H. Banihashemi, “A message-passing algorithm for
counting short cycles in a graph,” in Proc. IEEE Inf. Theory Workshop,
2010, pp. 1–5.

Dung Viet Nguyen (S’07) received the B.S. degree in electrical engineering
from the University of Arizona, Tucson, AZ, in 2007, where he is currently pur-
suing the Ph.D. degree. His research interests include digital communications
and information theory.

Shashi Kiran Chilappagari (S’05–M’09) received the B.Tech. and M.Tech.
degrees in electrical engineering from the Indian Institute of Technology,
Madras, India in 2004 and Ph.D. in electrical engineering from the University
of Arizona in 2008. He was a Research Engineer in the Department of Electrical
and Computer Engineering at the University of Arizona, Tucson from January
2009 to December 2009. He is currently with Marvell Semiconductor Inc,
Santa Clara, California. His research interests include error control coding and
information theory with focus on the analysis of failures of various sub-optimal
decoding algorithms for LDPC codes.

Michael W. Marcellin (S’81–M’87–SM’93–F’02) was born in Bishop, Cali-
fornia, on July 1, 1959. He graduated summa cum laude with the B.S. degree in
Electrical Engineering from San Diego State University in 1983, where he was
named the most outstanding student in the College of Engineering. He received
the M.S. and Ph.D. degrees in Electrical Engineering from Texas A&M Univer-
sity in 1985 and 1987, respectively.

Since 1988, Dr. Marcellin has been with the University of Arizona, where he
holds the title of Regents’ Professor of Electrical and Computer Engineering,
and of Optical Sciences. He is currently on sabbatical at Universitat Autonoma
Barcelona where he is a visiting professor and Marie Curie Fellow. His research
interests include digital communication and data storage systems, data compres-
sion, and signal processing. He has authored or coauthored more than two hun-
dred publications in these areas.

Dr. Marcellin is a major contributor to JPEG2000, the second-generation ISO
standard for image compression. Throughout the standardization process, he
chaired the JPEG2000 Verification Model Ad Hoc Group, which was respon-
sible for the software implementation and documentation of the JPEG2000 al-
gorithm. He is coauthor of the book, JPEG2000: Image compression funda-
mentals, standards and practice, Kluwer Academic Publishers, 2002. This book
serves as a graduate level textbook on image compression fundamentals, as well
as the definitive reference on JPEG2000. Dr. Marcellin served as a consultant
to Digital Cinema Initiatives (DCI), a consortium of Hollywood studios, on the
development of the JPEG2000 profiles for digital cinema.

Professor Marcellin is a Fellow of the IEEE, and is a member of Tau Beta
Pi, Eta Kappa Nu, and Phi Kappa Phi. He is a 1992 recipient of the National
Science Foundation Young Investigator Award, and a corecipient of the 1993
IEEE Signal Processing Society Senior (Best Paper) Award. He has received
teaching awards from NTU (1990, 2001), IEEE/Eta Kappa Nu student sections
(1997), and the University of Arizona College of Engineering (2000, 2010). In
2003, he was named the San Diego State University Distinguished Engineering
Alumnus. Professor Marcellin is the recipient of the 2006 University of Ari-
zona Technology Innovation Award. From 2001 to 2006, Dr. Marcellin was the
Litton Industries John M. Leonis Professor of Engineering. He is currently the
International Foundation for Telemetering Professor of Electrical and Computer
Engineering at the University of Arizona.

Bane Vasić (S’92–M’93–SM’02–F’10) received the B.Sc., M.Sc., and Ph.D.
degrees in electrical engineering from the University of Nis, Nis, Yugoslavia
(now Serbia), in 1989, 1991, and 1994, respectively.

From 1996 to 1997, he was a Visiting Scientist at the Rochester Institute of
Technology and Kodak Research, Rochester, NY, where he was involved in re-
search in optical storage channels. From 1998 to 2000, he was with Lucent Tech-
nologies, Bell Laboratories (Bell-Labs). He was involved in research in iterative
decoding and low-density parity-check codes, as well as development of codes
and detectors implemented in Bell-Labs chips. Presently, he is a Professor in
the Electrical and Computer Engineering Department, University of Arizona,
Tucson. His research interests include coding theory, information theory, com-
munication theory, and digital communications and recording.

Dr. Vasić is a Member of the Editorial Board for the IEEE TRANSACTIONS
ON MAGNETICS. He served as Technical Program Chair of the IEEE Communi-
cation TheoryWorkshop in 2003 and as Co-organizer of the Center for Discrete
Mathematics and Theoretical Computer Science (DIMACS)Workshops on Op-
tical/Magnetic Recording and Optical Transmission, and Theoretical Advances
in Information Recording in 2004. He was Co-organizer of the Los Alamos
Workshop on Applications of Statistical Physics to Coding Theory in 2004, the
Communication Theory Symposium within the IEEE International Conference
on Communications (ICC 2006), and IEEE Communication Theory Workshop
(CTW 2007).

