
On the Construction of the Inclusion Boundary Neighbourhood for Markov
Equivalence Classes of Bayesian Network Structures

Vincent Auvray
Electrical Engineering and
Computer Science Dept.

University of Liège
auvray@montefiore.ulg.ac.be

Louis Wehenkel
Electrical Engineering and
Computer Science Dept.

University of Liège
Louis.Wehenkel@ulg.ac.be

Abstract

The problem of learning Markov equivalence
classes of Bayesian network structures may be
solved by searching for the maximum of a scor-
ing metric in a space of these classes. This paper
deals with the definition and analysis of one such
search space. We use a theoretically motivated
neighbourhood, the inclusion boundary, and rep-
resent equivalence classes by essential graphs.
We show that this search space is connected and
that the score of the neighbours can be evalu-
ated incrementally. We devise a practical way
of building this neighbourhood for an essential
graph that is purely graphical and does not ex-
plicitely refer to the underlying independences.
We find that its size can be intractable, depend-
ing on the complexity of the essential graph of
the equivalence class. The emphasis is put on
the potential use of this space with greedy hill-
climbing search.

1 INTRODUCTION

Learning Bayesian network structures is often formulated
as a discrete optimization problem : the search for an
acyclic structure maximizing a given scoring metric.

If we do not give any causal semantics to the arrow, we may
consider that two Bayesian network structures are(distri-
bution) equivalentif they can be used to represent the same
set of probability distributions. Moreover, common scor-
ing metrics assign the same value to equivalent structures
and are thus also saidequivalent. The ignorance of these
facts may degrade the performance of greedy learning al-
gorithms, but taken into account, they can also improve it
(see [Chickering, 2002a] and [Anderssonet al., 1999]). In
order to do so, we may assign to each equivalence class
the score of its elements and search for the best class. The
definition of a search space of equivalence classes is not

trivial and is the topic of this paper. Our space is character-
ized by the fact that the classes are represented by essential
graphs and the use of a notion of neighbourhood already
proposed for Bayesian network structures : theinclusion
boundary neighbourhood. Although this new space can be
used by learning algorithms with various search strategies,
we put the emphasis on greedy hill-climbing search. As we
will see, the size of this neighbourhood is very large in the
worst case but our results can serve as a basis for sensible
approximations and are interesting by themselves.

In section 2, we present material used subsequently and
mostly relevant to equivalence issues. The inclusion
boundary is formally defined in section 3. Section 4 cov-
ers the generation of the neighbourhood and how to score
its elements incrementally. Section 5 gives early comments
on the hypothetical application of the space with greedy
hill-climbing search. We conclude in section 6.

As a reviewer pointed out, the recent pa-
per [Chickering, 2002b] partly deals with the same
topic and presents, by another approach, corroborating
results.

2 PRELIMINARIES

This section reviews notions required for a precise under-
standing of the paper, settles our notations and presents
some of our theorems. The reading of these latter theorems
is rather tedious and can be delayed until they are actually
used in section 4.

2.1 GRAPHICAL NOTIONS

A graphG is a pairG = (VG, EG), whereVG is a finite set
of vertices andEG is a subset of(VG × VG) \ {(a, a)|a ∈
VG}. EG defines thestructureof G in the following way :

• G contains aline betweena andb if (a, b) ∈ EG and
(b, a) ∈ EG, which is noteda− b ∈ G,

• G contains anarrow from a to b if (a, b) ∈ EG and
(b, a) 6∈ EG, which is noteda→ b ∈ G,

• G contains anedgebetweena andb if a− b, a→ b or
b→ a ∈ G, which is noteda · · · b ∈ G.

A graph iscompleteif there is an edge between every pair
of distinct vertices. In this paper, all graphs considered in
the search space have the same set of verticesV . There
is thus a one-to-one correspondence between graphs and
structures. The set of parentspaG(x) of a vertexx in a
graphG consists of the verticesy such thaty → x ∈ G.

A subgraphG′ of a graphG is a graph such that1 VG′ ⊆ VG
andEG′ ⊆ EG ∩ (VG′ ×VG′). Theinduced subgraphGA,
whereA ⊆ VG is the subgraph ofG such thatVGA = A
andEGA = EG ∩ (A × A). A set of vertices iscomplete
in G if the subgraph ofG it induces is complete.

A path is a sequencex0, . . . , xn of distinct vertices where
(xi, xi+1) ∈ EG, i = 0, . . . , n− 1. This path is undirected
if xn, . . . , x0 is also a path. The relation≈ is an equiva-
lence relation between vertices defined bya ≈ b ⇔ a =
b or there exists an undirected path betweena andb. This
relation partitions the set of vertices of a graph into equiv-
alence classes. Acycleis a path with the modification that
x0 = xn. A cycle isdirected if xi → xi+1 ∈ EG for a
least onei ∈ {0, . . . , n− 1}.

A v-structure(h, {t1, t2}) of G, whereh, t1 andt2 are dis-
tinct vertices is a pair such thatt1 → h ∈ G, t2 → h ∈ G
and t1 · · · t2 6∈ G. V (G) denotes the set of v-structures
of G. An arrow p → q ∈ G is protected in G if
paG(p) 6= paG(q) \ {p}. An arrowp→ q ∈ G is strongly
protectedif G induces at least one of the subgraphs of fig-
ure 1.

q

c

p

(a)

p q

c

(b)

p q

c

(c)

p q

c

d

c6=d

(d)

Figure 1: Strongly Protected Arrowp→ q

According to their properties, graphs may be classified in
directed, undirected and chain graphs. Adirected graph
D = (VD, ED) is a graph without any line. Anacyclic
directed graphor DAG is a directed graph that contains no
(directed) cycle. The set of all DAGs defined with the same
set of verticesV is notedD. Obviously, an arrowa→ b ∈
D is protected ifD induces at least one of the subgraphs
(a), (b) or (c) of figure 1.

An undirected graphU = (VU , EU) is a graph without any
arrow. TheskeletonS(G) of a graphG is the undirected

1Throughout this paper,A ⊂ B means thatA is a proper
subset ofB, whileA ⊆ B means thatA = B orA ⊂ B.

graph resulting from ignoring the orientation of the arrows
in G. An undirected graph ischordal if every (undirected)
cycle of length≥ 4 has a chord, i.e. a line between two
non-consecutive vertices of the cycle. Aperfect ordering
of an undirected graphU is a total ordering ofVU such
that the directed graphD obtained by directing every line
a − b ∈ U from a to b if a precedesb in the ordering is
acyclic and contains no v-structure.D is called aperfect
directed versionof U . The following theorem holds true
(see e.g. [Cowellet al., 1999]).

Theorem 2.1 An undirected graph is chordal if, and only
if, it admits at least one perfect ordering.

Maximum cardinality search(MCS) is an algorithm that
checks if an undirected graph is chordal and, if so, provides
a perfect ordering. A description of MCS can be found
in [Cowell et al., 1999]. Let us just note that MCS can be
used to immediately andconstructivelyprove lemma 2.2.

Lemma 2.2 Given a chordal undirected graphU and a
non-empty set of verticesA ⊆ VU inducing a complete sub-
graph, any permutation ofA is the beginning of a perfect
ordering ofU .

For example, leta andb be a pair of adjacent vertices of
U . We deduce from the application of the lemma 2.2 with
A = {a} that there exists a perfect directed versionD of U
such thata→ b ∈ D.

The next lemma is used in theorem 2.7.

Lemma 2.3 The removal ofa − b from a chordal undi-
rected graphU that does not induce the subgraph of fig-
ure 9 for anyh ∈ VU produces a chordal undirected graph.

Proof. Let us prove that ifa − b is a chord for a cycle of
lengthm ≥ 4, thenU induces the subgraph of figure 9.a-
− b divides that cycle into two sub-cycles. Letx be one of
them. On the one hand, the existence of a cyclec of length
3 containinga − b implies thatU induces the subgraph of
figure 9. On the other hand, if there exists a cyclec of
lengthn ≥ 4 containinga − b then there exists a cyclec′

containinga− b and of lengthn′ such that3 ≤ n′ ≤ n−1.
Such ac′ can be obtained as follows. By the chordality of
U , c has (at least) one chord. That chord dividesc into two
sub-cycles.c′ can be chosen as the sub-cycle containing
a − b. By an inductive reasoning starting withc = x and
ending withn = 3, we conclude thatU induces the sub-
graph of figure 9. �

A consistent extensionof a graphG is a DAGD such that
D has the same skeleton asG, the same set of v-structures
and every arrow ofG is present inD. Dor and Tarsi
(see [Dor and Tarsi, 1992]) found an algorithm to check if
a graph possesses a consistent extension and, if so, to find
one.

A chain graphC is a graph without any directed cycle.
DAGs and undirected graphs are special cases of chain
graphs. The set ofchain componentsof a chain graphC
is the set of equivalence classes of vertices induced by the
relation≈ in C. Each subgraph ofC induced by a chain
component is undirected, because otherwiseC would con-
tain a directed cycle.

2.2 BAYESIAN NETWORKS

Graphs are sometimes used to represent sets of conditional
independences between random variables.

A Bayesian networkB for a set of random variablesX =
{x1, . . . , xn} is a pair (D,Θ), whereD is a DAG de-
fined on a set of vertices in one-to-one correspondence
with X and Θ = {θ1, . . . , θn} is a set of parameters
such that eachθi defines a conditional probability distri-
bution P (xi|paD(xi)). Such a Bayesian network repre-
sents the probability distributionP (X) defined asP (X) =∏n
i=1 P (xi|paD(xi)).

Let us defineI(D) as the set of conditional independences
U ⊥ V |W 2 such thatW d-separates3 U andV in D. One
can show that the independences ofI(D) are verified in
P (X). Conversely, if a probability distributionP (X) ver-
ifies the independences of a setI(D), thenP (X) can be
decomposed in a product

∏n
i=1 P (xi|paD(xi)) and is thus

representable by a Bayesian network defined onD.

2.3 EQUIVALENCE OF DAGS

Two DAGsK,L ∈ D (or their structure) areindependence
(or Markov) equivalentif I(K) = I(L). This relation in-
duces equivalence classes inD.

Distribution equivalence implies independence equiva-
lence, but the converse is not true in general. The subse-
quent developments are all based on independence equiv-
alence, even if not explicitely mentioned. To use them in
our learning problem, we place this paper in any context
where independence and distribution equivalences are log-
ically equivalent.

Verma and Pearl (1990) derived the following theorem.

Theorem 2.4 Two DAGs are equivalent if, and only if, they
have the same skeleton and the same set of v-structures.

An equivalence class is thus characterized by a skeleton
and a set of v-structures.

The essential graph4 E = (VE , EE) of an equivalence

2The notationU ⊥ V |W means that the sets of variablesU
andV are independent given the set of variablesW .

3See [Cowellet al., 1999] or [Pearl, 1988] for a definition of
d-separation and all the details.

4Essential graphs are also called completed partially directed
acyclic graphs.

class noted[E] is defined byVE = VD for anyD ∈ [E]
andEE = ∪D∈[E]ED. Let us make a few comments about
E. E has the same skeleton as the DAGs of[E]. E has the
arrowa → b if, and only if, every DAG of[E] also has it.
Similarly, a − b ∈ E if, and only if, there exist two DAGs
of [E] such that one has the arrowa → b and the other
hasb→ a. For example, we deduce from theorem 2.4 that
E and the DAGs of[E] have the same skeleton and set of
v-structures.

LetD∗ denote the essential graph of the equivalence class
containing the DAGD. The following theorem ensures that
the essential graphE can be used as a representation of[E]
(see [Anderssonet al., 1999]).

Theorem 2.5 LetK,L be two DAGs.I(K) = I(L) if, and
only if,K∗ = L∗.

The set of (conditional) independencesI(E) represented
by an essential graphE is defined as the setI(D) of (con-
ditional) independences of anyD ∈ [E].

Essential graphs are characterized by a theorem of Anders-
son (see [Anderssonet al., 1999]).

Theorem 2.6 A graphG is an essential graph, i.e.G =
D∗ for some DAGD if, and only if,G satisfies the following
conditions :

• G is a chain graph ;

• for every chain componentτ ofG,Gτ is chordal ;

• G does not induce the subgrapha→ b− c ;

• every arrow ofG is strongly protected inG.

Let E denote the set of essential graphs defined on the set
of verticesV .

We proved the following theorem, used in section 4.2.

Theorem 2.7 LetE be an essential graph such thata−b ∈
E andE does not induce the subgraph of figure 9 for any
h ∈ VE . The graphG obtained by removinga− b fromE
is essential.

Proof. Obviously,G is a chain graph and does not induce
v1 → v2− v3. LetS be an induced subgraph ofE strongly
protecting an arrowp→ q. If S is of the type of figure 1(d)
anda − b ∈ S, thenG induces a subgraphS′ of the type
of figure 1(b). Otherwise,S is also an induced subgraph
of G. Every arrow ofG is thus strongly protected inG.
Let τ be a chain component ofE. If a − b ∈ Eτ then
by lemma 2.3,Gτ is chordal. Otherwise,Gτ = Eτ .
Hence, every subgraph ofG induced by one of its chain
components is chordal. By theorem 2.6,G is an essential
graph. �

The essential graphD∗ can be obtained from
D by the following algorithm and theorem
from [Anderssonet al., 1999].

Algorithm 2.1 Let G0 be a graph. Fori ≥ 1, convert
every arrowa → b ∈ Gi−1 that is not strongly protected
in Gi−1 into a line, obtaining a graphGi. Stop as soon as
Gk = Gk+1(k ≥ 0) and returnGk.

Theorem 2.8 If G0 = D, then algorithm 2.1 returnsD∗.

Note that other algorithms exist, but we extend this one by
theorem 2.10. Let us first introduce a lemma and some
notation. DefineQ(G) as the set of arrows of the graph
G that are strongly protected inG only by one or more
subgraphs of the type of figure 1(d).

Lemma 2.9 LetS andL be graphs such that

(i) every arrow ofL is strongly protected inL,

(ii) every arrow ofL is present inS,

(iii) for each a → b ∈ Q(L), S induces one of the
subgraphs of figure 2.

a b

d

c

(a)

a b

d

c

(b)

a b

d

c

(c)

a b

d

c

(d)

a b

d

c

(e)

a b

d

c

(f)

Figure 2: Induced Subgraphs

Let S′ be the graph obtained fromS by converting every
non strongly protected arrow into a line. The graphS′ sat-
isfies the above hypotheses concerningS.

Proof. Let a → b be an arrow ofL. Suppose first that
a → b ∈ Q(L). Let us consider the induced subgraphs
of figure 2. In each case, the arrowsc → b andd → b
strongly protect one another by a subgraph of the type
of figure 1(b) induced on{b, c, d}. In case 2(a),a → b
is strongly protected by an induced subgraph of the type
of figure 1(d), while in the other cases, that arrow is
strongly protected by (at least) one induced subgraph of
the type of figure 1(c). Moreover, in case 2(e),a → d is
strongly protected by a subgraph of the type of figure 1(a)

on {a, c, d}. Similarly, in case 2(f),a → c is strongly
protected. By construction,S′ thus induces one of the
subgraphs of figure 2, and in particulara → b ∈ S′.
Suppose now thata → b 6∈ Q(L). By hypothesis (i),
a → b is strongly protected inL by (at least) one induced
subgraph of the type of figure 1(a), 1(b) or 1(c). Because
every arrow ofL is present inS, a → b is also strongly
protected inS and thusa→ b ∈ S′. �

Theorem 2.10 LetD be a DAG andG0 a graph such that

(i) VG0 = VD,

(ii) every arrow ofG0 is present inD,

(iii) every arrow ofD∗ is present inG0,

(iv) for eacha → b ∈ Q(D∗), G0 does not induce the
subgraph of figure 3 for anyc, d ∈ VG0 .

a b

c

d

Figure 3: Forbidden Subgraph

Algorithm 2.1 applied toG0 returnsD∗.

Proof. Let G0, . . . , Gk be the sequence of graphs pro-
duced by algorithm 2.1. Obviously,S(Gk) = S(D∗).
Let us show thatGk andD∗ have the same arrows and
thusGk = D∗. On the one hand, leta → b be an ar-
row of Q(D∗). D∗ thus induces a subgraph of the type
of figure 1(d) to strongly protecta → b. By hypotheses
(iii) and (iv), G0 induces one of the subgraphs of figure 2.
By an inductive application of lemma 2.9 beginning with
S = G0 andL = D∗, we deduce that the arrows ofD∗

are present inGk. On the other hand, note that by hypoth-
esis (ii) and the description of algorithm 2.1, every arrow
of Gk is present inD. If a → b ∈ Q(Gk), D thus in-
duces a subgraph of the type of figure 2(d), 2(e) or 2(f).
We deduce from theorem 2.8 and an inductive application
of lemma 2.9 beginning withS = D andL = Gk that the
arrows ofGk are present inD∗. �

The first three hypotheses of this theorem are, for example,
satisfied ifG0 is obtained fromD by converting some ar-
rows a → b ∈ D such thata − b ∈ D∗ into lines, or if
G0 is such thatVG0 = VD andEG0 = ∪G∈XEG, where
X ⊆ [D∗].

Conversely, every DAGD ∈ [E] can be recovered fromE
by theorem 2.11 (see [Anderssonet al., 1999]).

Theorem 2.11D ∈ [E] if, and only if,D is obtained from
E by orienting the lines of every undirected (chordal) sub-
graph induced by a chain component ofE according to a
perfect ordering.

As expected, by definition of the perfection of an ordering,
the orientation of the lines does not introduce any new v-
structure. Besides, one can see that the elements of[E] are
the consistent extensions ofE. Dor and Tarsi’s algorithm
applied toE thus returns aD ∈ [E].

2.4 SCORING METRICS

A scoring metricscore for DAGs isdecomposableif it can
be written as a sum (or product) of functions5 of only one
vertex and its parents, i.e.

score(D) =
∑
x∈V

f(x, paD(x))

A scoring metric for DAGs isequivalentif it assigns the
same value to equivalent DAGs. In this paper, this property
is supposed to hold, as for example with the well-known
BDe score. In such a case, the score of an equivalence class
(or its essential graph) is defined as the score of (any of) its
elements.

3 DEFINITION OF THE INCLUSION
BOUNDARY NEIGHBOURHOOD

The neighbourhood of a Bayesian network structure is of-
ten defined in terms of operations performed on that struc-
ture, such as the addition, removal or reversal of an arrow.
For example, the graphs of figure 4 are typically neigh-
bours. This kind of neighbourhood is constructed very sim-

a b

c

(a)

a b

c

(b)

Figure 4: Adjacent DAGs

ply and efficiently. Furthermore, if a decomposable scoring
metric is used, the score of the neighbours of a structure can
be calculated incrementally, i.e. with just a few evaluations
of f .

The same idea is applicable to search spaces of essential
graphs, with operators such as the addition of an arrow, a
line or a v-structure, the reversal of an arrow,. . . However,
the situation is complicated by the constraints on essen-
tial graphs : the graph modified by an operator must

5The dependence of the metric on the data is not made explicit.

satisfy the conditions of theorem 2.6. The recent pa-
per [Chickering, 2002a] shows that these problems can be
overcome by carefully choosing the operators so as to fi-
nally get an efficient algorithm, and in particular keep an
incremental evaluation of the scoring metric.

In these latter two cases, the neighbourhood is defined by
modifications performed on the graph, without any refer-
ence to the independences represented. Instead, it may
be defined as its inclusion boundary. LetG be a set of
graphs representing (conditional) independences. A graph
G′ ∈ G belongs to theinclusion boundary with respect to
G of G ∈ G if G′ 6= G and one of the following mutually
exclusive conditions is satisfied :

(i) I(G′) = I(G),

(ii) I(G) ⊂ I(G′) and there is noG′′ ∈ G verifying
I(G) ⊂ I(G′′) ⊂ I(G′),

(iii) I(G′) ⊂ I(G) and there is noG′′ ∈ G verifying
I(G′) ⊂ I(G′′) ⊂ I(G).

This idea has already been used
in [Kočka and Castelo, 2001] withG = D, i.e. with
Bayesian network structures. The DAGs of figure 4 are
then no longer neighbours. We transpose this idea to
define a space based on equivalence classes represented
by essential graphs, i.e.G = E . In this case, the first
condition is never satisfied. For a particularE ∈ E the set
of essential graphs defined by (ii) and (iii) are respectively
notedN+(E) andN−(E). By definition, these sets never
intersect. Note that ifM ∈ N+(N), then obviously
N ∈ N−(M), and conversely.

Our search space isconnectedif, between anyM,N ∈
E , there exists a finite sequence of essential graphs
E1, . . . , El, such thatE1 = M , El = N andEi+1 is a
neighbour ofEi for i = 1, . . . , l − 1. This property is im-
portant for local search.

Theorem 3.1 The search space is connected.

Proof. There exists an essential graphU defined on the
finite set of verticesV = {v1, . . . , vn} (i.e. U ∈ E) and
such thatI(U) = ∅. Indeed, letD be the DAG such
that paD(vi) = {v1, . . . , vi−1}. We haveU = D∗.
For eachE ∈ E , the following facts hold. IfE 6= U ,
I(U) ⊂ I(E) and thusN−(E) 6= ∅. For allG ∈ N−(E),
|I(G)| < |I(E)|6. The setI(E) is finite. Hence, there
exists a finite sequence of essential graphsE1, . . . , El,
such thatE1 = E, El = U andEi+1 ∈ N−(Ei). By the
symmetry of the neighbourhood, the sequenceEl, . . . , E1

is such thatEi ∈ N+(Ei+1). For allM,N ∈ E , there
thus exists a sequenceM, . . . , U, . . . , N with the required
properties. �

6|X| denotes the cardinality of the setX.

Some questions still need an answer. Is the size of this
neighbourhood tractable? Can the elements of the neigh-
bourhood be generated efficiently and/or scored incremen-
tally? The next section addresses them by explicitely build-
ingN+(E) andN−(E).

4 CONSTRUCTION OF THE INCLUSION
BOUNDARY NEIGHBOURHOOD

The construction ofN(E) = N+(E) ∪ N−(E) from the
conditions (ii) and (iii) is not immediate. Moreover, given
G ∈ E , it is not trivial to check whetherG ∈ N(E) or
not. These difficulties stem from the fact that the condi-
tions are expressed throughI(E) instead ofE’s graphical
components.

The following lemma7 simplifies the expression of the
neighbourhood.

Lemma 4.1

N+(E) = {G ∈ E|∃K,L ∈ D : K∗ = G,L∗ = E
andK is obtained fromL by the
removal of one arrow},

N−(E) = {G ∈ E|∃K,L ∈ D : K∗ = G,L∗ = E
andK is obtained fromL by the
addition of one arrow}.

If a decomposable scoring metric is used, an important
corollary is the possibility to evaluate incrementally the
score ofE’s neighbours from the score ofE. Using the
notations of the last lemma, for eachG ∈ N(E) we have

∆Gscore = score(G)− score(E),
= score(K)− score(L),
= f(x, paK(x))− f(x, paL(x)), (1)

wherex is the destination of the arrow added or removed
in L. We see that very little is sufficient to estimate the
increment in score, in particular the complete knowledge
of G is not needed.

The expressions of lemma 4.1 suggest a practical way of
buildingN(E). Given a DAGD, letR(D) be the set of
DAGs that can be constructed by removing or adding an ar-
row toD. Obviously, we haveN(E) = ∪D∈[E] ∪M∈R(D)

{M∗}. However, this approach is redundant in the sense
that the sets of the unions are not necessarily disjoint. For
example, the DAGs of figures 5(a) and 5(b) belong to the
equivalence class represented by the essential graph of fig-
ure 5(c). The removal ofa → b from both of these pro-
duces DAGs of the same class, represented by figure 5(d).

7Our proof of this lemma usesMeek’s conjecture, recently
proved in [Chickering, 2002b], and can be obtained upon request
to the first author.

a b

c

(a)

a b

c

(b)

a b

c

(c)

a b

c

(d)

Figure 5: Removal Producing Equivalent DAGs

To circumvent this pitfall, we divide our task in two parts :
the identification of the neighbours and, if necessary, their
construction. Letc : N(E) → X be an injective function,
i.e. such thatG1 6= G2 implies c(G1) 6= c(G2). In this
paper,c is called acharacterization functionand c(G) a
characterization ofG. A given x ∈ X is valid if it char-
acterizes aG ∈ N(E), i.e. there exists aG ∈ N(E) such
thatc(G) = x.

With a characterization functionc, we may buildN(E) by
first identifying the valid elements ofX and then, for each
such element, obtaining the correspondingG ∈ N(E). We
will use two such functions :c1 to build N−(E) and c2
for N+(E). They are defined as follows. We deduce from
theorem 2.4 that eachG ∈ N(E) is characterized by its
skeletonS(G) and set of v-structuresV (G). Let T be the
set of skeletons that are obtained fromS(E) by removing
or adding a line. There is a one-to-one correspondence be-
tweenT and the set of unordered pairs of vertices such that
eacht ∈ T is associated to the pair{a, b} of vertices that
are the endpoints of the line removed or added to obtaint
fromE. We see from lemma 4.1 that, for eachG ∈ N(E),
S(G) ∈ T .

Besides, the setV (G) for G ∈ N(E) can be decom-
posed as(V (G) \ V (E)) ∪ (V (E) \ (V (E) \ V (G))). By
lemma 4.1,V (G) \V (E) andV (E) \V (G) are the sets of
v-structures respectively created and destroyed by the addi-
tion or removal8 of an arrow in aD ∈ [E]. We deduce from
the following obvious lemma thatV (E) \ V (G) depends
only onS(G) (or the pair of vertices corresponding to it).

Lemma 4.2 If the execution of the operation correspond-
ing to a given pair{a, b} destroys a v-structurev from
a D ∈ [E] then that operation destroysv from every
G ∈ [E].

Gathering these observations, we have a first characteri-
zation functionc1 : N(E) → X1 : G → c1(G) =
(g1(G), g2(G)) = ({a, b}, O), where{a, b} are the ver-
tices associated toS(G) andO = V (G) \ V (E). The
previous discussion also leads to the validity condition of
lemma 4.3.

Lemma 4.3 A pair ({a, b}, O) ∈ X1 characterizesG ∈
N(E) if, and only if,∃K,L ∈ D : K∗ = G,L∗ = E,K is

8This operation on DAGs mirrors the operation performed on
S(E) to obtainS(G).

obtained fromL by performing the operation associated to
{a, b} andO = V (K) \ V (L).

Let A(v, {a, b}) ⊆ [E] denote the set of DAGs where the
operation associated to{a, b} creates the v-structurev and
let R({a, b}) denote the set{v|A(v, {a, b}) 6= ∅}. Obvi-
ously, if ({a, b}, O) is valid thenO ⊆ R({a, b}).

We also use a slightly modified version ofc1, defined as
follows. Given{a, b}, letY be the set∩O∈ZO whereZ =
{O|({a, b}, O) ∈ X1 is valid}. In other words,Y consists
of the v-structures that are created in every DAG of[E] by
the operation. The functionc2 : N(E) → X2 : G →
c2(G) = (g1(G), g2(G) \ Y) is injective. LetW ({a, b})
denote the set{v|A(v, {a, b}) 6= ∅ andA(v, {a, b}) 6=
[E]}. The validity condition forc2 is given by the next
lemma.

Lemma 4.4 A pair ({a, b}, O) ∈ X2 characterizesG ∈
N(E) if, and only if,O ⊆ W ({a, b}) and∃K,L ∈ D :
K∗ = G,L∗ = E,K is obtained fromL by performing
the operation associated to{a, b},O ⊆ V (K) \ V (L) and
W ({a, b}) \O 6⊆ V (K) \ V (L).

In sections 4.1 to 4.3 we present our method to identify
the valid characterizations and determine the correspond-
ing neighbours and increments in score. As we will see,
the method differs if there is an arrow betweena andb in
E, a − b ∈ E or a · · · b 6∈ E. Let Nab(E) be the sub-
set ofN(E) such that its elements have the same skeleton,
characterized by{a, b}. By analogy with the other type of
neighbourhood cited in section 3, we define three pseudo-
operators9 : removal ofa → b ∈ E, removal ofa − b ∈ E
andaddition of an edge betweena and b to E used in the
corresponding situations and returningNab(E). The con-
struction ofN(E) can then proceed by enumerating the
unordered pairs of vertices and, for each, calling the corre-
sponding pseudo-operator.

We have the following theorem.

Theorem 4.5 For each{a, b},Nab(E) is non-empty.

Proof. Let D be a DAG of [E]. If a · · · b ∈ D, then
the graphD′ obtained by removing that edge fromD is
obviously a DAG. Ifa · · · b 6∈ D then there exists a DAG
D′ obtained fromD by adding an arrow betweena and
b. Indeed, suppose that the addition ofa → b creates the
cyclea, b, vi1 , . . . , vik , a and the addition ofb→ a creates
the cycle b, a, vik+1 , . . . , vik+l , b. D would possess the
cycle b, vi1 , . . . , vik , a, vik+1 , . . . , vik+l , b and would not
be a DAG. By lemma 4.1,D′∗ ∈ Nab(E). �

9These are not operators in the usual sense because they return
a set of states instead of a single one.

4.1 REMOVAL OF AN ARROW a→ b ∈ E

In the context of application of this pseudo-operator,{a, b}
is fixed and the associated operation is the removal ofa→
b. We use the characterization functionc2.

The lemma 4.6 obviously holds true.

Lemma 4.6 The removal of an arrowa → b from a
DAG creates the v-structure(h, {t1, t2}) if, and only if,
{t1, t2} = {a, b} and the DAG induces the subgraph of
figure 6.

h

a b

Figure 6: Creation of a V-Structure

The setW ({a, b}) is easily identified graphically fromE
with the following theorem.

Theorem 4.7 (h, {t1, t2}) ∈ W 10 if, and only if,
{t1, t2} = {a, b} andE induces the subgraph of figure 7.

a b

h

Figure 7: Induced Subgraph ofE

Proof. If we remind the meaning of a line of an essential
graph, the sufficient part is trivial11. By lemma 4.6 and
the definition ofW , {t1, t2} = {a, b} and there exists a
D ∈ [E] inducing the subgraph of figure 6. There also
exists aK ∈ [E] where the removal ofa → b does not
create(h, {a, b}). Such aK must havea→ b and the same
skeleton asD. It thus induces the acyclic subgraph 8(a)
or 8(b). By the acyclicity ofE, K must induce 8(b) and

a b

h

(a)

a b

h

(b)

Figure 8: Induced Subgraphs ofK

a→ h ∈ E. E thus induces the subgraph of figure 7.�

The valid characterizationsO are obviously subsets ofW
and can be obtained with the following theorem.

10The dependence on{a, b} is made implicit for brevity.
11The sufficient part is not used in theorem 4.8.

Theorem 4.8 O is valid if, and only if,O ⊆W and the set
C = {h|(h, {a, b}) ∈W \O} is complete inE.

Proof. By lemma 4.4,O ⊆ W is valid if, and only if,
there exists aD ∈ [E] such thatb → h ∈ D for h ∈
{h|(h, {a, b}) ∈ O} andh → b ∈ D for h ∈ C. The
existence of such aD is checked with theorem 2.11. Letτ
be the chain component ofE containing{h|(h, {a, b}) ∈
W}. The constraints on the orientation of the lines ofE
to obtainD are only related toEτ . Each subgraph ofE
induced by another chain component can thus be directed
according to a perfect ordering12 independently. Hence,
there exists such aD if, and only if, there exists a perfect
ordering ofEτ leading to the required arrows. On the one
hand, leto be such a perfect ordering. The perfect directed
versionH of Eτ has no v-structure and the arrowsh → b
for h ∈ C. Any verticeshi, hj ∈ C must be adjacent
in H, because otherwiseH would possess the v-structure
(b, {hi, hj}). We thus havehi − hj ∈ E. On the other
hand, suppose thatC is complete.C ∪ {b} is then also
complete. By lemma 2.2, for any permutationh1, . . . , hk
of C, h1, . . . , hk, b is the beginning of a perfect orderingo.
Such an ordering leads to the required arrows. �

This theorem has an immediate corollary.

Corollary 4.9 There is a one-to-one mapping between
Nab(E) and the complete subsets of{h|(h, {a, b}) ∈W}.

Suppose thatO characterizesE′ ∈ Nab(E). Let us dis-
cuss the construction ofE′. We use the notations of the
previous theorem. LetD be a DAG obtained from E by (i)
removinga→ b, (ii) directing the lines ofEτ according to
o and (iii), for each subgraphEα of E induced by another
chain component, directing its lines according to a perfect
ordering. From the proof of theorem 4.8, we see that the
setB of these DAGs is a subset of[E′]. The graphG such
thatEG = ∪D∈BED can clearly be constructed fromE by
performing the steps (i) and (ii). Moreover, by symmetry
of o, we know thatE′C is undirected. Let us undirect the
arrows ofG that are present inGC . We have the following
result.

Theorem 4.10 Algorithm 2.1 applied toG returnsE′.

Proof. Let us show thatG satisfies the hypotheses of theo-
rem 2.10. Obviously,G satisfies the first three conditions.
Let us show thatG does not inducep→ q− r and thus sat-
isfies the last hypothesis. Suppose thatG inducesp → q-
− r. If p → q ∈ E, then by construction ofG, E also
inducesp→ q−r, which is impossible sinceE is an essen-
tial graph. Otherwise, using the notations of theorem 4.8,
q, r ∈ C andp ∈ τ \ C. But the arrows ofG are directed
according to an ordering beginning with a permutation of
C. Thus, there can not be an arrow from a vertex ofτ \ C

12The existence of such an ordering is guaranteed by theo-
rems 2.6 and 2.1.

to one ofC. �

In a sense,E′ can thus be constructed incrementally from
E.

The increment in score is easily evaluated with formula (1),
yielding :

∆Gscore = f(b, (paE(b) \ {a})∪C)− f(b, paE(b)∪C)

4.2 REMOVAL OF A LINE a− b ∈ E

The operation associated to{a, b} is the removal of the ar-
row betweena andb. We usec2. The setW ({a, b}) can be
identified graphically by the following theorem, the proof
of which is very similar to that of theorem 4.7.

Theorem 4.11 (h, {t1, t2}) ∈W if, and only if,{t1, t2} =
{a, b} andE induces the subgraph of figure 9.

a b

h

Figure 9: Induced Subgraphs ofE

The valid characterizationsO are subsets ofW and are
found with theorem 4.12, whose terms are identical to those
of theorem 4.8.

Theorem 4.12O is valid if, and only if,O ⊆ W and the
setC = {h|(h, {a, b}) ∈W \O} is complete inE.

Proof. Let τ be the chain component ofE containing
{h|(h, {a, b}) ∈ W}. Once again,O ⊆ W is valid if,
and only if, there exists a perfect orderingo of Eτ such
that the removal from the perfect directed versionH of
Eτ creates the v-structures ofO but not those ofW \ O.
One the one hand, ifC is complete, thenC ∪ {a, b} is
complete. By lemma 2.2, ifh1, . . . , hk is a permutation
of C then there exists a perfect orderingo beginning with
h1, . . . , hk, a, b. Thato has the required properties. On the
other hand, leto be such a perfect ordering. Suppose that
a → b ∈ H13. For eachh ∈ C, H{a,b,h} is the subgraph
of figure 10(a) or 10(b). As can be seen, by combining

a b

h

(a)

a b

h

(b)

Figure 10: Induced Subgraphs ofE

those subgraphs, everyhi, hj ∈ C must be adjacent inH.

13This is a matter of notation.

OtherwiseH would possess the v-structure(b, {hi, hj}).
C is thus complete inE. �

Given aO characterizingE′ ∈ Nab(E), E′ can be con-
structed with a procedure analogous to the one given in sec-
tion 4.1. LetG be the graph obtained fromE by removing
a − b and directing the lines ofEτ according to a perfect
ordering ofEτ beginning with a permutation ofC followed
bya, b. The arrows ofG present inGC are then undirected.
One can see from the proof of theorem 4.12 thatG satisfies
the hypotheses of theorem 2.10 and can thus be used as a
starting point for algorithm 2.1. Besides, ifE does not in-
duce a subgraph of the type of figure 9, i.e.W = ∅, then
E′ can be constructed by a simpler procedure. Indeed, by
theorem 2.7, the graphG obtained by removinga− b from
E is essential. Moreover,G has the same skeleton and set
of v-structures asE′. Hence,E′ = G.

The increment in score is given by the next formula, where
a andb can be permuted by symmetry.

∆Gscore = f(b, paE(b) ∪ C)− f(b, paE(b) ∪ C ∪ {a})

4.3 ADDITION OF AN EDGE TO E

The operation associated to{a, b} is the addition of an ar-
row betweena andb. We usec1. We have the following
lemma.

Lemma 4.13 If (h, {t1, t2}) ∈ R({a, b}), then (i)
{t1, t2} = {a, t}, h = b andE induces the subgraph of
figure 11(a) or 11(b), or (ii){t1, t2} = {b, t}, h = a and
E induces the subgraph of figure 11(c) or 11(d).

a b

t

(a)

a b

t

(b)

a b

t

(c)

a b

t

(d)

Figure 11: Induced Subgraphs ofE

Let P be the set of v-structures verifying the thesis of
lemma 4.13. For each valid({a, b}, O), we haveO ⊆
R({a, b}) ⊆ P .

We didn’t find simplegraphical necessary and sufficient
constraints onE to determine the validity of a given char-
acterizationO, but we have lemma 4.14 and theorem 4.15.
Let us introduce some notation. LetPi, i = 1, . . . , 4 be the
partition ofP such that, for each element ofP1, P2, P3 or
P4, E induces a subgraph of the type of, respectively, fig-
ure 11(a), 11(b), 11(c) or 11(d). Each validO ⊆ P can be
decomposed into the setsOi = O ∩ Pi, i = 1, . . . , 4.

Lemma 4.14 If O is valid, thenO ⊆ P and (at least) one
of the two following conditions is satisfied.

(i) O2 = P2, O3 = O4 = ∅ andF1 = {t|(b, {t, a}) ∈
O1} is complete inE ;

(ii) O4 = P4,O1 = O2 = ∅ andF3 = {t|(a, {t, b}) ∈
O3} is complete inE.

Proof. By lemma 4.3,∃K,L ∈ D : L∗ = E,K is
obtained by adding toL an arrow betweena and b, and
O = V (K) \ V (L). Let τ be the chain component of
E containing the set of vertices{t|(b, {t, a}) ∈ P1}. By
theorem 2.11, the arrows ofLτ are oriented according
to a perfect ordering ofEτ . Moreover,t → b ∈ Lτ for
t ∈ F1. Everyti, tj are adjacent inLτ , because otherwise
Lτ would possess the v-structure(b, {ti, tj}). F1 is thus
complete inE. Similarly, we deduce thatF3 is complete
in E. If a → b ∈ K, then, by lemma 4.6,O2 = P2

andO3 = O4 = ∅. If b → a ∈ K, thenO4 = P4 and
O1 = O2 = ∅. �

Suppose that a givenO satisfies these conditions. LetG(O)
be the graph obtained fromE as follows. IfO = ∅, simply
adda − b. Otherwise14, if (i) is satisfied, adda → b and
direct every linet − b such thatt ∈ F1 towardsb, while if
(ii) is satisfied, addb → a and direct every linet − a such
thatt ∈ F3 towardsa. We can check the validity ofO with
the next theorem and Dor and Tarsi’s algorithm.

Theorem 4.15O is valid if, and only if,O satisfies the
conditions of lemma 4.14 andG(O) has a consistent ex-
tension.

Proof. SupposeG(O) has a consistent extensionM . The
essential graphM∗ is characterized by({a, b}, O). Indeed,
S(M∗) = S(G) andV (M∗) \ V (E) = V (M) \ V (E) =
V (G) \ V (E). By construction,S(G) is characterized by
{a, b} andV (G) \ V (E) = O. Suppose thatO character-
izesE′ ∈ Nab(E). Let K be one DAG whose existence
is mentioned in lemma 4.3.K is a consistent extension of
G(O). �

As this proof shows, given aO characterizingE′ ∈
Nab(E),E′ can be obtained by applying algorithm 2.1 to a
consistent extensionM of G(O)15. M can also be used to
evaluate the increment in score.

5 APPLICATION TO LEARNING

In this section, the hypothetical use of our search space with
greedy hill-climbing is discussed. This space has valuable

14The conditions (i) and (ii) of theorem 4.14 are now exclusive.
15The global nature of the acyclicity constraint prevents the in-

cremental construction of the essential graphs with the previous
procedure.

properties. First, it is connected. Moreover, the score of
each neighbourE′ of E can be evaluated incrementally
fromE’s score and without constructingE′. If we do need
E′ andE′ ∈ N+(E), then it can be built fromE incre-
mentally by retaining a priori some of its lines.

The main drawback of this search space is that the size of
the neighbourhood can be intractable for structurally com-
plex essential graphs. Indeed, letc be the number of ver-
tices of the largest complete undirected induced subgraph
of E. Sections 4.1 to 4.3 tell us that, in the worst case,
the number of elements ofN(E) is exponential inc. Let
us make some early comments on the impact of this size
on two opposite ways of starting a greedy hill-climbing
search. Suppose that the search starts with the empty es-
sential graph and then adds edges. We expect that the mean
size ofN(E) and thus the computational cost will augment
as we progress in the space. This behaviour is certainly
problematic, but probably comes with a growing need for
more data to support the successive removal of the inde-
pendences. Suppose now that the search starts with the
complete essential graph and then prunes it. In that case,
our neighbourhood is clearly inappropriate. This can be in-
terpreted as the fact that it is too fine-grained for pruning, at
least in the early steps, and that a more aggressive strategy
should be used.

6 CONCLUSION

The topic of this paper is the construction and analysis of
a search space of Markov equivalence classes of Bayesian
networks represented by essential graphs and with the in-
clusion boundary neighbourhood. Our analysis shows that
this space is connected and the score of each neighbour of
an equivalence class can be evaluated incrementally from
the score of that class. Another important contribution is
the suggestion of a procedure to actually build the neigh-
bourhood of a class. As a byproduct, a bound on the size
of the neighbourhood that can be calculated very simply a
priori is determined.

This work can be extended by a careful estimation of the
impact of that size on the learning algorithms to possibly
propose approximations. In a next step, this space can be
compared to others, based on Bayesian networks or equiv-
alence classes, for example on the basis of the performance
of the algorithms using them.

References

[Anderssonet al., 1999] Steen A. Andersson, David
Madigan, and Michael D. Perlman. A characterization
of Markov equivalence classes for acyclic digraphs.

Technical report, Department of Statistics, University
of Washington, 1999.

[Chickering, 1996] David Maxwell Chickering. Learning
equivalence classes of Bayesian network structures. In
E. Horvitz and F. Jensen, editors,Proceedings of Twelfth
Conference on Uncertainty in Artificial Intelligence,
pages 150–157. Morgan Kaufmann, August 1996.

[Chickering, 2002a] David Maxwell Chickering. Learn-
ing equivalence classes of Bayesian-network structures.
Journal of Machine Learning Research, 2:445–498,
February 2002.

[Chickering, 2002b] David Maxwell Chickering. Optimal
structure identification with greedy search. Technical
Report MSR-TR-2002-10, Microsoft Research, 2002.
Submitted toJMLR.

[Cowell et al., 1999] Robert Cowell, A. Philip Dawid,
Steffen L. Lauritzen, and David J. Spiegelhalter.Prob-
abilistic Networks and Expert Systems. Springer, New
York, 1999.

[Dor and Tarsi, 1992] Dorit Dor and Michael Tarsi. A
simple algorithm to construct a consistent extension of
a partially oriented graph. Technical Report R-185,
UCLA Cognitive Systems Laboratory, 1992.

[Kočka and Castelo, 2001] Toḿǎs Kočka and Robert
Castelo. Improved learning of Bayesian networks. In
Proceedings of Seventeenth Conference on Uncertainty
in Artificial Intelligence. Morgan Kaufmann, 2001.

[Pearl, 1988] Judea Pearl.Probabilistic Reasoning in In-
telligent Systems. Morgan Kaufmann, San Mateo, 1988.

