On the Construction of the Inclusion Boundary Neighbourhood for Markov
Equivalence Classes of Bayesian Network Structures
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Abstract

The problem of learning Markov equivalence
classes of Bayesian network structures may be
solved by searching for the maximum of a scor-
ing metric in a space of these classes. This paper
deals with the definition and analysis of one such
search space. We use a theoretically motivated
neighbourhood, the inclusion boundary, and rep-

resent equivalence classes by essential graphs.

We show that this search space is connected and
that the score of the neighbours can be evalu-
ated incrementally. We devise a practical way
of building this neighbourhood for an essential
graph that is purely graphical and does not ex-
plicitely refer to the underlying independences.
We find that its size can be intractable, depend-
ing on the complexity of the essential graph of
the equivalence class. The emphasis is put on
the potential use of this space with greedy hill-
climbing search.
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trivial and is the topic of this paper. Our space is character-
ized by the fact that the classes are represented by essential
graphs and the use of a notion of neighbourhood already
proposed for Bayesian network structures: theusion
boundary neighbourhoodlthough this new space can be
used by learning algorithms with various search strategies,
we put the emphasis on greedy hill-climbing search. As we
will see, the size of this neighbourhood is very large in the
worst case but our results can serve as a basis for sensible
approximations and are interesting by themselves.

In section 2, we present material used subsequently and
mostly relevant to equivalence issues. The inclusion
boundary is formally defined in section 3. Section 4 cov-
ers the generation of the neighbourhood and how to score
its elements incrementally. Section 5 gives early comments
on the hypothetical application of the space with greedy
hill-climbing search. We conclude in section 6.

As a reviewer pointed out, the recent pa-
per [Chickering, 2002b] partly deals with the same
topic and presents, by another approach, corroborating
results.

2 PRELIMINARIES

This section reviews notions required for a precise under-

as a discrete optimization problem: the search for ansome of our theorems. The reading of these latter theorems
acyclic structure maximizing a given scoring metric.

is rather tedious and can be delayed until they are actually

If we do not give any causal semantics to the arrow, we may'Se€d in section 4.
consider that two Bayesian network structures (distri-
bution) equivalenif they can be used to represent the same2.1  GRAPHICAL NOTIONS

set of probability distributions. Moreover, common scor- ) )
ing metrics assign the same value to equivalent structure 9raPhG is a pairG = (
and are thus also sa&huivalent The ignorance of these

facts may degrade the performance of greedy learning a
gorithms, but taken into account, they can also improve it

(see [Chickering, 2002a] and [Anderssetral, 1999]). In

order to do so, we may assign to each equivalence class

Ve, Eg), whereVy is a finite set
of vertices andE; is a subset of Vs x Vi) \ {(a,a)|a €
Vc}. Eg defines thestructureof G in the following way :

e G contains dine betweery andb if (a,b) € Eqg and
(b,a) € Eg, whichis noted — b € G,

the score of its elements and search for the best class. Thee G contains ararrow from a to b if (a,b) € E¢ and

definition of a search space of equivalence classes is not

(b,a) € Eg, which is notedh — b € G,



e (G contains aredgebetweeru andb if a —b,a — bor  graph resulting from ignoring the orientation of the arrows
b — a € G,whichisnotedy---b € G. in G. An undirected graph ishordalif every (undirected)
cycle of length> 4 has a chord, i.e. a line between two
A graph iscompletdf there is an edge between every pair hon-consecutive vertices of the cycle. parfect ordering
of distinct vertices. In this paper, all graphs considered irof an undirected grapl/ is a total ordering ofl; such
the search space have the same set of verticeghere that the directed graph obtained by directing every line
is thus a one-to-one correspondence between graphs afid- b € U froma to b if a precedes in the ordering is
structures. The set of parentsq(z) of a vertexz in a acyclic and contains no v-structuré? is called aperfect
graphG consists of the verticegsuch thaty — « € G. directed versiorof U. The following theorem holds true

) (see e.g. [Coweltt al, 1999]).
A subgraph(’ of a graphG is a graph such thals: C Vg

andEqg C Eg N (Ve X V). Theinduced subgraphis 4,
whereA C V¢ is the subgraph ofr such thatV,, = A
andEq, = Eg N (A x A). A set of vertices izomplete
in G if the subgraph of it induces is complete. Maximum cardinality searcfMCS is an algorithm that

A pathis a sequence,, . . . , z,, of distinct vertices where checks if an undirected graph is chordal and, if so, provides
(zi,2i41) € Eg,i=0,...,n— 1. This path is undirected @ perfect ordering. A description of MCS can be found
if Ty ory L0 is also a path The relation is an equiva_ in [COWe” et al., 1999] Let us jUSt note that MCS can be
lence relation between vertices def|nedd)y:; b= aq = used to |mmed|at9|y armbnstrUCtiVEB{.)rOVE lemma 2.2.

b or there exists an undirected path betweemdb. This

relation partitions the set of vertices of a graph into equiv-Lémma 2.2 Given a chordal undirected grapti and a
alence classes. #ycleis a path with the modification that nNon-empty set of vertices C V; inducing a complete sub-
2o = x,. A cycle isdirectedif z; — z,,, € Eg fora  9raph, any permutation ofl is the beginning of a perfect
least one € {0,...,n — 1}. ordering ofU.

Theorem 2.1 An undirected graph is chordal if, and only
if, it admits at least one perfect ordering.

A v-structure(h, {t1,t2}) of G, whereh, t, andi, are dis-  For example, let: andb be a pair of adjacent vertices of
tinct vertices is a pair such that — h € G, &2 — h € G 7. We deduce from the application of the lemma 2.2 with

andt,---t; ¢ G. V(G) denotes the set of v-structures 4 — {4} that there exists a perfect directed versioof U/
of G. An arrowp — ¢ € G is protectedin G if such thatt — b € D.

pac(p) # pac(q) \ {p}. Anarrowp — ¢ € G is strongly ) _
protectedif G induces at least one of the subgraphs of fig-1he next lemma is used in theorem 2.7.

ure 1.
Lemma 2.3 The removal ofs — b from a chordal undi-

rected graphU that does not induce the subgraph of fig-
ure 9 for anyh € Vi produces a chordal undirected graph.

o o A
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(© (<) 0| & era Proof. Let us prove that it — b is a chord for a cycle of
@ (b) ©) G)

lengthm > 4, thenU induces the subgraph of figure &

— b divides that cycle into two sub-cycles. Lebe one of
them. On the one hand, the existence of a cy@élength

3 containinga — b implies thatU induces the subgraph of
Figure 1: Strongly Protected Arrop— ¢ figure 9. On the other hand, if there exists a cyelef
lengthn > 4 containinga — b then there exists a cyclé
containinga — b and of lengthn’ such thaB < n’ <n—1.
"Such a¢’ can be obtained as follows. By the chordality of
U, ¢ has (at least) one chord. That chord divideésto two

a C

According to their properties, graphs may be classified i
directed, undirected and chain graphs.di#ected graph

é). :t (XD’ E’:Fl)) IEZGg'raphd'Wltflogt anyhll?he.t Aac;ypllc sub-cycles.¢’ can be chosen as the sub-cycle containing
Irected grapror IS a directed graph that contains no -4, By an inductive reasoning starting with= 2 and

(directed) _cycle._ The set of all DAGS defined with the sameending withn = 3, we conclude that/ induces the sub-

set of verticed/ is notedD. Obviously, an arrow — b € graph of figure 9 -

D is protected ifD induces at least one of the subgraphs '

(a), (b) or (c) of figure 1. A consistent extensiaoof a graphG is a DAG D such that

D has the same skeleton @sthe same set of v-structures

and every arrow ofG is present inD. Dor and Tarsi

(see [Dor and Tarsi, 1992]) found an algorithm to check if
Throughout this papetdA ¢ B means thatd is a proper @ graph possesses a consistent extension and, if so, to find

subset ofB, while A C B meansthatl = Bor A C B. one.

An undirected grapi/ = (Vy, Ey) is a graph without any
arrow. TheskeletonS(G) of a graphG is the undirected



A chain graphC' is a graph without any directed cycle. class notedE] is defined byVy = Vp, for any D € [F]
DAGs and undirected graphs are special cases of chaandEr = Upc (g Ep. Let us make a few comments about
graphs. The set athain componentsf a chain graphC' E. E has the same skeleton as the DAGs$If. F has the

is the set of equivalence classes of vertices induced by tharrowa — b if, and only if, every DAG of{E] also has it.
relation=: in C. Each subgraph of’ induced by a chain Similarly, a — b € E if, and only if, there exist two DAGS
component is undirected, because othengisgould con-  of [E] such that one has the arraw— b and the other

tain a directed cycle. hasb — a. For example, we deduce from theorem 2.4 that
E and the DAGs of E] have the same skeleton and set of
2.2 BAYESIAN NETWORKS v-structures.

nla‘ft D* denote the essential graph of the equivalence class
containing the DAG@. The following theorem ensures that
the essential graph can be used as a representatiofjf

A Bayesian networlB for a set of random variable¥ =  (see [Anderssogt al, 1999]).

{z1,...,z,} is a pair(D,©), where D is a DAG de-

fined on a set of vertices in one-to-one correspondencéheorem 2.5 LetK,, L be two DAGsI(K) = I(L) if, and

with X and©® = {6,...,6,} is a set of parameters onlyif, K* = L.

such that eacld; defines a conditional probability distri- h f ditional) ind d d
bution P(z;|pap(z;)). Such a Bayesian network repre- The set of (conditional) independencas) represente

sents the probability distributioR(X) defined asP(X) = giig‘:aﬁ)?’fned”e“ae' r?ézlife'z 2?2”6“6 a{z ﬁhe sé{D) of (con-
[Ti2, P(zilpap(z:)). P iy .

Graphs are sometimes used to represent sets of conditio
independences between random variables.

Essential graphs are characterized by a theorem of Anders-

Let us definel (D) as the set of conditional independences
son (see [Anderssaat al., 1999]).

U L V|W? such thatV d-separatést/ andV in D. One
can show that the independences/@D) are verified in
P(X). Conversely, if a probability distributiof?(X) ver-
ifies the independences of a 9éD), then P(X) can be
decomposed in a produff;_, P(zi|pap(z;)) and is thus
representable by a Bayesian network definedon

Theorem 2.6 A graph G is an essential graph, i.&7 =
D* for some DA if, and only if,G satisfies the following
conditions :

e (Gisachain graph;
2.3 EQUIVALENCE OF DAGS e for every chain componentof G, G, is chordal ;

Two DAGsK, L € D (or their structure) arindependence ~ ® G does notinduce the subgraph— b — ¢;
(or Markov) equivalentif I1(K) = I(L). This relation in-
duces equivalence classesin

Distribution equivalence implies independence equivalet & denote the set of essential graphs defined on the set
lence, but the converse is not true in general. The subsef verticesV'.

quent developments are all based on independence equig, proved the following theorem, used in section 4.2.
alence, even if not explicitely mentioned. To use them in ’

our learning problem, we place this paper in any contextrheorem 2.7 Let E be an essential graph such that b €
where independence and distribution equivalences are l0gs and E does not induce the subgraph of figure 9 for any
ically equivalent. h € Vg. The graphG obtained by removing — b from E

is essential.

e every arrow ofG is strongly protected .

Verma and Pearl (1990) derived the following theorem.

Theorem 2.4 Two DAGs are equivalent if, and only if, they Pro0f. Obviously,G is a chain graph and does not induce

have the same skeleton and the same set of v-structures. U1 — V2 — v3. Let.S be an induced subgraph &fstrongly
protecting an arrow — q. If S is of the type of figure 1(d)

An equivalence class is thus characterized by a skeletoAnda — b € S, thenG induces a subgrap$’ of the type
and a set of v-structures. of figure 1(b). Otherwise$S is also an induced subgraph
of G. Every arrow ofG is thus strongly protected 6.
Let 7 be a chain component df. If « — b € E, then
2The notationl/ L V|W means that the sets of variables Dy lemma 2.3,G; is chordal. Otherwise(, = E:.
andV are independent given the set of varialdiés Hence, every subgraph ¢f induced by one of its chain

¥See [Cowelkt al, 1999] or [Pearl, 1988] for a definition of components is chordal. By theorem 2@ s an essential
d-separation and all the details. raph. ]
“Essential graphs are also called completed partially directec?
acyclic graphs.

The essential graph E = (Vg, Eg) of an equivalence



can be obtained from
algorithm and theorem

The essential graphD*
D by the following
from [Anderssoret al, 1999].

Algorithm 2.1 Let Gy be a graph. Fori > 1, convert
every arrowa — b € G,;_; that is not strongly protected
in G,_; into a line, obtaining a grapld7;. Stop as soon as
Gr = Gi41(k > 0) and returnGy.

Theorem 2.8 If Gy = D, then algorithm 2.1 return®*.

on {a,c,d}. Similarly, in case 2(fla — c is strongly
protected. By construction$’ thus induces one of the
subgraphs of figure 2, and in particular — b € 5.
Suppose now that — b ¢ Q(L). By hypothesis (i),

a — b is strongly protected it by (at least) one induced
subgraph of the type of figure 1(a), 1(b) or 1(c). Because
every arrow ofL is present inS, a — b is also strongly
protected inS and thus: — b € S". [ |

Note that other algorithms exist, but we extend this one byl "eorem 2.10 Let D be a DAG and, a graph such that
theorem 2.10. Let us first introduce a lemma and some

notation. DefineQ(G) as the set of arrows of the graph
G that are strongly protected i@ only by one or more
subgraphs of the type of figure 1(d).

Lemma 2.9 Let .S and L be graphs such that

(i) every arrow ofL is strongly protected ir,
(ii) every arrow ofL is present inS,

(iii) for eacha — b € Q(L), S induces one of the
subgraphs of figure 2.

(4) (4 (4
5
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Figure 2: Induced Subgraphs

Let S’ be the graph obtained frorfi by converting every
non strongly protected arrow into a line. The graghsat-
isfies the above hypotheses concerrfing

Proof. Leta — b be an arrow ofL. Suppose first that
a—be Q).
of figure 2. In each case, the arrows— b andd — b

Let us consider the induced subgraphs

i) Ve, = Vb,
(i) every arrow ofGy is present inD,
(iii) every arrow of D* is present inGGg,

(iv) for eacha — b € Q(D*), Gy does not induce the
subgraph of figure 3 for any, d € V¢,.

@
A
P
©

Figure 3: Forbidden Subgraph

Algorithm 2.1 applied td~, returns D*.

Proof. Let Gy,...,Gy be the sequence of graphs pro-
duced by algorithm 2.1. Obvioushf(Gx) S(D*).

Let us show that7, and D* have the same arrows and
thus G, = D*. On the one hand, let — b be an ar-
row of Q(D*). D* thus induces a subgraph of the type
of figure 1(d) to strongly proteci — b. By hypotheses
(iii) and (iv), Gy induces one of the subgraphs of figure 2.
By an inductive application of lemma 2.9 beginning with
S = Gy andL = D*, we deduce that the arrows &f*

are present ittz;. On the other hand, note that by hypoth-
esis (ii) and the description of algorithm 2.1, every arrow
of Gy is present inD. If a — b € Q(Gg), D thus in-
duces a subgraph of the type of figure 2(d), 2(e) or 2(f).
We deduce from theorem 2.8 and an inductive application
of lemma 2.9 beginning witly = D andL = G}, that the
arrows ofG, are present irD*. [ |

The first three hypotheses of this theorem are, for example,

strongly protect one another by a subgraph of the typesatisfied ifG, is obtained fromD by converting some ar-

of figure 1(b) induced orfb, c,d}. In case 2(a)a — b

rowsa — b € D such thate — b € D* into lines, or if

is strongly protected by an induced subgraph of the types is such thatVy, = Vp andEg, = Ugex Eq, where
of figure 1(d), while in the other cases, that arrow isX C [D*].

strongly protected by (at least) one induced subgraph 0&onversely

the type of figure 1(c). Moreover, in case 2(e)— d is

strongly protected by a subgraph of the type of figure 1(a)

every DA@ € [E] can be recovered froi¥
by theorem 2.11 (see [Anderssenal., 1999]).



Theorem 2.11 D € [E] if, and only if, D is obtained from  satisfy the conditions of theorem 2.6. The recent pa-
E by orienting the lines of every undirected (chordal) sub-per [Chickering, 2002a] shows that these problems can be
graph induced by a chain componentifaccording to a overcome by carefully choosing the operators so as to fi-
perfect ordering. nally get an efficient algorithm, and in particular keep an

incremental evaluation of the scoring metric.
As expected, by definition of the perfection of an ordering, ) ) )
the orientation of the lines does not introduce any new vIn these latter two cases, the neighbourhood is defined by

structure. Besides, one can see that the elemenfs] aire modifications performed on the graph, without any refer-

the consistent extensions & Dor and Tarsi's algorithm €Nce 1o the independences represented. Instead, it may
applied toF thus returns @ € [E]. be defined as its inclusion boundary. Llgthe a set of

graphs representing (conditional) independences. A graph
G’ € G belongs to thenclusion boundary with respect to
G of G € Gif G # G and one of the following mutually

A scoring metricscore for DAGs isdecomposabliitcan ~ €Xclusive conditions is satisfied:
be written as a sum (or product) of functidraf only one

2.4 SCORING METRICS

vertex and its parents, i.e. (i) 1(G") = I(G),
D) — (i) I(G) c I(G') and there is na@y’ € G verifying
SCO’I’G( ) w;/f(xvpaD(x)) I(G) c I(G”) C I(G/),
(i) I(G") c I(G) and there is naG"” € G verifying
A scoring metric for DAGs isquivalentif it assigns the (@) c I(G") C I(G).

same value to equivalent DAGSs. In this paper, this property
is supposed to hold, as for example with the well-known-l-hiS idea has already been used
BDe score. In such a case, the score of an equivalence clags [Kogka and Castelo, 2001] witl§ = D, ie. with

(or its essential graph) is defined as the score of (any of) itgayesian network structures. The DAGs of figure 4 are

elements. then no longer neighbours. We transpose this idea to
define a space based on equivalence classes represented
3 DEFINITION OF THE INCLUSION by essential graphs, i.€¢ = £. In this case, the first
BOUNDARY NEIGHBOURHOOD condition is never satisfied. For a particufare £ the set

of essential graphs defined by (ii) and (iii) are respectively

The neighbourhood of a Bayesian network structure is of10tedN ™ (E) and N~ (E). By defTition, these sets never

ten defined in terms of operations performed on that struc!Ntersect. Note that if\/ € NT(N), then obviously

ture, such as the addition, removal or reversal of an arrowY € N~ (M), and conversely.

For example, the graphs of figure 4 are typically neigh-our search space isonnectedf, between anyM, N e

bours. This kind of neighbourhood is constructed very sim-g there exists a finite sequence of essential graphs
Ei,...,E;, suchthatFy, = M, B, = N andE;,; is a
neighbour ofE; for i = 1,...,1 — 1. This property is im-

S S portant for local search.
© ©

Theorem 3.1 The search space is connected.
(@) (b)
Proof. There exists an essential graphdefined on the
finite set of verticed” = {vy,...,v,} (i.e.U € &) and
such that/(U) = 0. Indeed, letD be the DAG such

ply and efficiently. Furthermore, if a decomposable scoringt':hat pap(vi) = {vy,...,via}. We havelUl = D~
. . or eachE € €&, the following facts hold. IfE # U,
metric is used, the score of the neighbours of a structure cap _ z
be calculated incrementally, i.e. with just a few evaluations (U) < I(E) and thusN'™(E) # 0. For allG € N=(E),
Y. 1.€. J |I(G)| < |I(E)|®. The setI(E) is finite. Hence, there
of f. y ! X
exists a finite sequence of essential graghs.. ., £,
The same idea is applicable to search spaces of essentmlch thatt;, = E, E;, = U andE;; € N~ (E;). By the
graphs, with operators such as the addition of an arrow, aymmetry of the neighbourhood, the sequehge .., E;
line or a v-structure, the reversal of an arrow,. .. Howeverjs such thatt; € N*(E;,,). For all M, N € &, there
the situation is complicated by the constraints on esserthus exists a sequendd, ..., U, ..., N with the required
tial graphs: the graph modified by an operator mustproperties. |

Figure 4: Adjacent DAGs

The dependence of the metric on the data is not made explicit. ©|X | denotes the cardinality of the s&t



neighbourhood tractable? Can the elements of the neigh-
bourhood be generated efficiently and/or scored incremen-
tally? The next section addresses them by explicitely build-

ing N*t(E) andN~(E).

.'. O) .'. (®) Q'. o @ O

Some questions still need an answer. Is the size of this ' ' ' .\./.

© © © ©
(@ (b) ) (d)

a (c

Figure 5: Removal Producing Equivalent DAGs

4 CONSTRUCTION OF THE INCLUSION

BOUNDARY NEIGHBOURHOOD To circumvent this pitfall, we divide our task in two parts:
the identification of the neighbours and, if necessary, their
The construction ofV(E) = N*(E) U N~ (E) fromthe  construction. Let : N(E) — X be an injective function,
conditions (ii) and (iii) is not immediate. Moreover, given i.e. such thatG; # G5 implies ¢(G1) # ¢(G2). In this
G € &, itis not trivial to check whethe € N(E) or  paper,c is called acharacterization functiorand ¢(G) a
not. These difficulties stem from the fact that the condi-characterization ofz. A givenz € X is valid if it char-
tions are expressed throudhF) instead ofE’s graphical — acterizes & € N(E), i.e. there exists & € N(FE) such

components. thate(G) = =.
The following lemma simplifies the expression of the With a characterization function we may buildN (E) by
neighbourhood. first identifying the valid elements of and then, for each
such element, obtaining the corresponding N (E). We
Lemma 4.1 will use two such functions ; to build N~ (E) and c,
Nt(E) = {Ge&3K,LeD:K*=G,L*=F for N*(E). They are defined as follows. We deduce from
and K is obtained froml by the theorem 2.4 that eacl € N(FE) is characterized by its
removal of one arrow, skeletonS(G) and set of v-structureg (G). LetT be the
N-(E) = {Ge€&BK,LeD:K*=G,L*=E set of skeletons that are obtained fréii) by removing
and K is obtained fronl by the or adding a line. There is a one-to-one correspondence be-
addition of one arrow. tweenT and the set of unordered pairs of vertices such that

eacht € T is associated to the pajr, b} of vertices that
If a decomposab|e Scoring metric is used, an importanﬂre the endeintS of the line removed or added to oltain
corollary is the possibility to evaluate incrementally the from E. We see from lemma 4.1 that, for eaGhe N (E),
score of E’s neighbours from the score df. Using the S(G) €T,
notations of the last lemma, for eaGhe N (E) we have Besides, the seV(G) for G € N(E) can be decom-
posed agV (G) \ V(E)) U (V(E) \ (V(E) \ V(G))). By
lemma 4.1V (G)\ V(E) andV(E)\ V(G) are the sets of
v-structures respectively created and destroyed by the addi-
= [flz,pax(z)) — f(z,par(z)), (1)  tion or removal of an arrow in aD € [E]. We deduce from
gthe following obvious lemma that' (£) \ V(G) depends
only onS(G) (or the pair of vertices corresponding to it).

Agscore = score(G) — score(E),

= score(K) — score(L),

wherez is the destination of the arrow added or remove
in L. We see that very little is sufficient to estimate the
increment in score, in particular the complete knowledg

& emma 4.2 If the execution of the operation correspond-
of G is not needed. p P

ing to a given pair{a,b} destroys a v-structure from

The expressions of lemma 4.1 suggest a practical way o D € [E] then that operation destroys from every
building N(E). Given a DAGD, let R(D) be the setof G € [E].

DAGs that can be constructed by removing or adding an ar- . _ . _
row to D. Obviously, we haveV(E) = Upe (g Uner(n) Ga_thenng these observations, we have a first characteri-
{M*}. However, this approach is redundant in the sens@ation functionc, : N(E) — X; : G — «(G) =

that the sets of the unions are not necessarily disjoint. Fotg1(G),92(G)) = ({a,b},0), where{a, b} are the ver-
example, the DAGs of figures 5(a) and 5(b) belong to thelices associated t§(G) andO = V(G) \ V(E). The
equivalence class represented by the essential graph of fi§I€Vious discussion also leads to the validity condition of
ure 5(c). The removal of — b from both of these pro- emma4.3.

duces DAGs of the same class, represented by figure S(dl)_'emma4 3 A pair ({a,b},0) € X, characterizes €
. 5 5 1

S N(E)if,andonlyif3K,LeD: K*=G,L*=E, K is

"Our proof of this lemma useMeek’s conjecturerecently —_ ~
proved in [Chickering, 2002b], and can be obtained upon request ®This operation on DAGs mirrors the operation performed on
to the first author. S(FE) to obtainS(G).



obtained fromL by performing the operation associated to 4.1 REMOVAL OF AN ARROW ¢ — b€ E

{a,b} andO = V(K)\ V(L).

In the context of application of this pseudo-operafar,b}

Let A(v, {a,b}) C [E] denote the set of DAGs where the s fixed and the associated operation is the removal-ef

operation associated {a, b} creates the v-structureand
let R({a,b}) denote the sefv|A(v, {a,b}) # 0}. Obvi-
ously, if ({a, b}, O) is valid thenO C R({a,b}).

We also use a slightly modified version of, defined as
follows. Given{a, b}, letY be the sehpczO whereZ =
{0|({a,b},0) € X; isvalid}. In other words} consists
of the v-structures that are created in every DAGHf by
the operation. The function, : N(E) — X5 : G —
c2(G) = (91(G), 92(G) \ Y) is injective. LetW ({a,b})
denote the se{v|A(v,{a,b}) # 0andA(v,{a,b}) #
[E]}. The validity condition fore, is given by the next
lemma.

Lemma 4.4 A pair ({a,b},0) € X, characterizes7 €
N(E) if, and only if, O C W({a,b}) and3K,L € D :
K* = G,L* = E, K is obtained fromL by performing
the operation associated @, b}, O C V(K) \ V(L) and
W({a,b})\ O € V(K)\ V(L).

b. We use the characterization function

The lemma 4.6 obviously holds true.
Lemma 4.6 The removal of an arrone — b from a
DAG creates the v-structuréh, {¢;,t2}) if, and only if,

{t1,t2} = {a,b} and the DAG induces the subgraph of
figure 6.

RWe
®
Figure 6: Creation of a V-Structure
The setW ({a,b}) is easily identified graphically froni’
with the following theorem.

Theorem 4.7 (h, {t1,t2}) € W1 if, and only if,
{t1,t2} = {a,b} and E induces the subgraph of figure 7.

In sections 4.1 to 4.3 we present our method to identify

the valid characterizations and determine the correspond-

@'@

ing neighbours and increments in score. As we will see, (h)

the method differs if there is an arrow betwaeandb in
E,a—be Fora---b ¢ E. Let Ny(E) be the sub-

Figure 7: Induced Subgraph &f

set of N(FE) such that its elements have the same skeleton,
characterized bya, b}. By analogy with the other type of
neighbourhood cited in section 3, we define three pseudd?roof. If we remind the meaning of a line of an essential

operatord: removal ofe — b € E, removal ofa — b € E
andaddition of an edge betweenandb to F used in the
corresponding situations and returning,(E). The con-

graph, the sufficient part is trividl. By lemma 4.6 and
the definition of W, {¢1,t2} = {a,b} and there exists a
D € [E] inducing the subgraph of figure 6. There also

struction of N(E) can then proceed by enumerating theexists ak* € [E] where the removal off — b does not
unordered pairs of vertices and, for each, calling the correcreate(h, {a, b}). Such ak’ must have: — b and the same

sponding pseudo-operator.

We have the following theorem.
Theorem 4.5 For each{a, b}, N, (E) is non-empty.

Proof. Let D be a DAG of[E]. If a---b € D, then
the graphD’ obtained by removing that edge from is

obviously a DAG. Ifa---b ¢ D then there exists a DAG

D’ obtained fromD by adding an arrow between and
b. Indeed, suppose that the additionaof— b creates the
cyclea, b, v;,, ..., v, ,a and the addition ob — « creates
the cycleb,a,v;,_,, ..
cycle b,v;,, ..., Vi, 0,0, .,;,,,b and would not
be a DAG. By lemma 4.1D"" € Ny, (E). [ |

) Uik+z 5

skeleton asD. It thus induces the acyclic subgraph 8(a)
or 8(b). By the acyclicity ofF/, K must induce 8(b) and

E—® EQ—®
Woooow
(@) (b)

Figure 8: Induced Subgraphs &f

b. D would possess the a — h € E. E thus induces the subgraph of figure 71

The valid characterizationS are obviously subsets &
and can be obtained with the following theorem.

These are not operators in the usual sense because they return‘°The dependence ofu, b} is made implicit for brevity.

a set of states instead of a single one.

"The sufficient part is not used in theorem 4.8.



Theorem 4.8 O is valid if, and only if O C W and the set to one ofC. |
C = {hl(h, {a, b}) € W'\ O} is complete ink. In a sensef’ can thus be constructed incrementally from

Proof. By lemma 4.4,0 C W is valid if, and only if, E.

there exists &) € [E] such thath — h € D for h €  Theincrementin score is easily evaluated with formula (1),
{n[(h,{a,b}) € Ot andh — b € Dforh € C. The yjelding:

existence of such & is checked with theorem 2.11. Let

be the chain component @ containing{%|(h, {a,b}) €  Agscore = f(b, (pag(b)\ {a})UC) — f(b, pap(b) UC)
W}. The constraints on the orientation of the lineskof

to obtain D are only related ta?,. Each subgraph of/ 42 REMOVALOFALINE a—bcE

induced by another chain component can thus be directed

according to a perfect orderifigindependently. Hence, The operation associated fo, b} is the removal of the ar-
there exists such & if, and only if, there exists a perfect oy petweern: andb. We user,. The setV ({a,b}) can be

ordering of ;. leading to the required arrows. On the one jgentified graphically by the following theorem, the proof
hand, leto be such a perfect ordering. The perfect directedyt \which is very similar to that of theorem 4.7.

versionH of E, has no v-structure and the arrows— b

for h € C. Any verticesh;,h; € C must be adjacent Theorem 4.11 (h, {t1,t2}) € W if,and only if,{t1, o} =
in H, because otherwisH would possess the v-structure {a,b} and E induces the subgraph of figure 9.

(b,{hi, h;}). We thus havéy; — h; € E. On the other

hand, suppose that is complete. C U {b} is then also Q'G

complete. By lemma 2.2, for any permutatiby, . .., hy 0|

of C, hy, ..., hg, bis the beginning of a perfect ordering

Such an ordering leads to the required arrows. | Figure 9: Induced Subgraphs Bf

This theorem has an immediate corollary.

Corollary 4.9 There is a one-to-one mapping betweenThe valid characterization® are subsets ofV’ and are

N (E) and the complete subsets{df(h, {a,b}) € W}. found with theorem 4.12, whose terms are identical to those
of theorem 4.8.

Suppose tha® characterized?’ € N,,(F). Let us dis-

cuss the construction df’. We use the notations of the Theorem 4.12 O is valid if, and only if, O C W and the

previous theorem. Leb be a DAG obtained from E by (i) setC = {h|(h,{a,b}) € W\ O} is complete inE.

removinga — b, (ii) directing the lines ofF’. according to

o and (iii), for each subgraph,, of E induced by another Proof. Let = be the chain component df’ containing

chain component, directing its lines according to a perfecf”/(?, {a,b}) € W}. Once againO € W is valid if,

ordering. From the proof of theorem 4.8, we see that thétnd only if, there exists a perfect orderingf £, such

setB of these DAGs is a subset f’]. The graphG such that the removal from the perfect directed versiinof

thatE¢ = UpegEp can clearly be constructed frofiby ~ E- creates the v-structures 6f but not those of? \ O.

performing the steps (i) and (i)). Moreover, by symmetry One the one hand, i€’ is complete, therC' U {a, b} is

of 0, we know thatE, is undirected. Let us undirect the complete. By lemma 2.2, iky, ..., hy is a permutation
arrows ofG that are present iti. We have the following  ©f C' then there exists a perfect orderingpeginning with
result. hi,...,hg,a,b. Thato has the required properties. On the
other hand, leb be such a perfect ordering. Suppose that
Theorem 4.10 Algorithm 2.1 applied td~ returnsE’. a — b € H. Foreachh € C, Hy, 0y Is the subgraph

of figure 10(a) or 10(b). As can be seen, by combining
Proof. Let us show tha€F satisfies the hypotheses of theo-

rem 2.10. Obviously(7 satisfies the first three conditions.

Let us show thaf? does not induce — ¢ —r and thus sat- @'G 9'0
isfies the last hypothesis. Suppose thanducesp — ¢- h 0
—r. If p — ¢ € FE, then by construction of7, E also

inducesp — ¢—r, which is impossible sincg€ is an essen- (@) (b)

tial graph. Otherwise, using the notations of theorem 4.8,
g,r € C andp € 7\ C. But the arrows of~ are directed
according to an ordering beginning with a permutation of
C'. Thus, there can not be an arrow from a vertex afC

Figure 10: Induced Subgraphs bf

- those subgraphs, evehty, h; € C must be adjacent if/.
12The existence of such an ordering is guaranteed by thea-
rems 2.6 and 2.1. BThis is a matter of notation.



OtherwiseH would possess the v-structufg {h;,h;}). Lemma4.14If O is valid, thenO C P and (at least) one
C'is thus complete irk. B  of the two following conditions is satisfied.

(l) Oy = P, 03 =04 = 0 andF; = {t|(b, {t,a}) €
Given aO characterizingt’ € N,,(F), E’ can be con- 0.} is complete inF;
structed with a procedure analogous to the one givenin sec- .. _ o _
tion 4.1. LetG be the graph obtained frofi by removing ("()) O;‘S;O];‘]" g%e_ingg =0 andF; = {t|(a, {t,0}) €
a — b and directing the lines of’, according to a perfect s} P ’
ordering ofE; beginning with a permutation @f followed

by a,b. The arrows of~ present inG¢ are then undirected. . .
’ o obtained by adding td. an arrow betweem andb, and
One can see from the proof of theorem 4.12 tHaiatisfies — V(K)\ V(L). Letr be the chain component of

the hypothgses of theprem 2.10 anq can thus be us_ed a%ac?)ntaining the set of vertice|(b, {t,a}) € P1}. By
starting point for algorithm 2.1. Besides,Af does not in- theorem 2.11, the arrows df. aré o7riented according

duce a subgraph of the type .Of figure 9, il&. = @, then to a perfect ordering of?,. Moreover,t — b € L, for
E’ can be constructed by a_S|mpIer procedure. Indeed, b}/ € Fy. Everyt,,t; are adjacent irl,, because otherwise
thgorem 2.1, the grap( obtained by removing — b from L, would possess the v-structut® {¢,,t,}). Fi is thus
E is essential. Moreovet; has the same skeleton and setComplete in. Similarly, we deduce thak is complete

. f 3

- / !/ __
of v-structures ag’. Hence B’ = G. in £. If a — b € K, then, by lemma 4.60, = P,
The increment in score is given by the next formula, whereandO; = Oy = 0. If b — a € K, thenO, = P, and
a andb can be permuted by symmetry. 01 =05=0. |

Proof. By lemma 4.3,3K,L € D : L* = E,K is

Agscore = f(b,pag(b)UC) — f(b,par(b) UC U{a})

Suppose that a gived satisfies these conditions. L&O)
4.3 ADDITION OF AN EDGE TO E be the graph obtained froifi as follows. IfO = (§, simply

adda — b. Otherwisé?, if (i) is satisfied, addi — b and
The operation associated fa, b} is the addition of an ar-  direct every linet — b such that € F; towardsb, while if
row betweer: andb. We usec;. We have the following (i) is satisfied, add — « and direct every lin¢ — a such
lemma. thatt € F5 towardsa. We can check the validity ap with

the next theorem and Dor and Tarsi’s algorithm.
Lemma4.131If (h,{t1,t2}) € R({a,b}), then (i) _ o _ o
{t1,t2} = {a,t}, h = b and E induces the subgraph of Theorem 4.150 is valid if, and only if,O satisfies the
figure 11(a) or 11(b), or (i){t1,t2} = {b,¢}, h = aand  conditions of lemma 4.14 and(O) has a consistent ex-

E induces the subgraph of figure 11(c) or 11(d). tension.
Proof. Suppose&7(0O) has a consistent extensidd. The
@ ® @ ® @ ® @ 6 essential grapf/* is characterized b{{a, b}, O). Indeed,
o 0 o S(M*) = S8(G)andV(M*)\ V(E)=V(M)\V(E) =
V(G) \ V(E). By construction,S(G) is characterized by
,b}andV(G) \ V(E) = O. Suppose thab character-

izesE’' € N, (F). Let K be one DAG whose existence
is mentioned in lemma 4.3K is a consistent extension of
Figure 11: Induced Subgraphs bf G(O). |

As this proof shows, given @ characterizingE’ €
y : i )
Let P be the set of v-structures verifying the thesis of N‘“’(E)’ L7 can be_ obtained bylsapplylng algorithm 2.1 to a
lemma 4.13. For each valit{a, b}, 0), we haveO C consistent extensiof/ of G(O)*°. M can also be used to
R({a,b}) C P e ~  evaluate the increment in score.

We didn't find simple graphical necessary and sufficient 5 APPLICATION TO LEARNING
constraints ory to determine the validity of a given char-

acterizationO, but we have lemma 4.14 and theorem 4.15.
Let us introduce some notation. LB, i = 1,...,4 be the
partition of P such that, for each element 6%, P>, P; or
P,, E induces a subgraph of the type of, respectively, fig- *The conditions (i) and (ii) of theorem 4.14 are now exclusive.

ure 11(a), 11(b), 11(c) or 11(d). Each vatidC P can be *The global nature of the acyclicity constraint prevents the in-
decomposed into the sets = O N Py, i = 1 4 cremental construction of the essential graphs with the previous
v I procedure.

In this section, the hypothetical use of our search space with
greedy hill-climbing is discussed. This space has valuable



properties. First, it is connected. Moreover, the score of Technical report, Department of Statistics, University
each neighbou’ of E can be evaluated incrementally  of Washington, 1999.
from E’s score and without constructirfg'. If we do need ) ) ) ) . )
E' andE' € N*(E), then it can be built from# incre- [Chickering, 1996] David Maxwell Chickering. Learning
mentally by retaining,a priori some of its lines. equivalence classes of Bayesian network structures. In
_ . _ . E. Horvitz and F. Jensen, editoRrpceedings of Twelfth
The main drawback of this search space is that the size of Conference on Uncertainty in Artificial Intelligence
the neighbourhood can be intractable for structurally com-  pages 150-157. Morgan Kaufmann, August 1996.
plex essential graphs. Indeed, tebe the number of ver- _ . . . _
tices of the largest complete undirected induced subgraplhickering, 2002a] David Maxwell Chickering. Learn-
of E. Sections 4.1 to 4.3 tell us that, in the worst case, Ing equivalence classes of Bayesian-network structures.
the number of elements df (E) is exponential in:. Let Journal of Machine Learning Researcl2:445-498,
us make some early comments on the impact of this size February 2002.
on two opposite ways of starting a greed_y h'"'C“mbmgegChickering, 2002b] David Maxwell Chickering. Optimal
search. Suppose that the search starts with the empty es- ; e . .
. structure identification with greedy search. Technical
sential graph and then adds edges. We expect that the mean .
) i . Report MSR-TR-2002-10, Microsoft Research, 2002.
size of N(E) and thus the computational cost will augment .
. : : : . Submitted taJMLR
as we progress in the space. This behaviour is certainly

problematic, but probably comes with a growing need for[Cowell et al, 1999] Robert Cowell, A. Philip Dawid,
more data to support the successive removal of the inde- Steffen L. Lauritzen, and David J. SpiegelhaltBrob-

pendences. Suppose now that the search starts with the abilistic Networks and Expert Sys’[e_rnSpringer7 New
complete essential graph and then prunes it. In that case, York, 19909.

our neighbourhood is clearly inappropriate. This can be in- _ _ _ _
terpreted as the fact that it is too fine-grained for pruning, atDor and Tarsi, 1992] Dorit Dor and Michael Tarsi. = A
least in the ear|y steps, and that a more aggressive strategy simple algorithm to construct a consistent extension of

should be used. a partially oriented graph. Technical Report R-185,
UCLA Cognitive Systems Laboratory, 1992.
6 CONCLUSION [Kotka and Castelo, 2001] Ta#® Kocka and Robert

Castelo. Improved learning of Bayesian networks. In

The topic of this paper is the construction and analysis of Proceedings of Seventeenth Conference on Uncertainty
a search space of Markov equivalence classes of Bayesian in Artificial Intelligence Morgan Kaufmann, 2001.

networks represented by essential graphs and with the 'J;Pearl, 1988] Judea PearRrobabilistic Reasoning in In-

clgsmn bou_ndary neighbourhood. Our analysis shows th telligent SystemdMorgan Kaufmann, San Mateo, 1988.
this space is connected and the score of each neighbour of

an equivalence class can be evaluated incrementally from
the score of that class. Another important contribution is

the suggestion of a procedure to actually build the neigh-
bourhood of a class. As a byproduct, a bound on the size
of the neighbourhood that can be calculated very simply a
priori is determined.

This work can be extended by a careful estimation of the
impact of that size on the learning algorithms to possibly
propose approximations. In a next step, this space can be
compared to others, based on Bayesian networks or equiv-
alence classes, for example on the basis of the performance
of the algorithms using them.
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