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ON THE CONSUMER'S LIFETIME ALIOCATION PROGESS*

by
ka3
Menahem F. Yaari

1. Introduction

Recent investigations of the allocation of a consumer's resources over
time tend, in one way or another, to neglect the consumer's bequest motive.
By the bequest motive we have in mind the hypothesis that consumer preferences
take into account not only the rates of consumption of goods and services but
also the stock of unconsumed resources at the end of the planning pericd. When
the planning period is taken to be an arbitrary time interval, the term
“aecummlation motive® may be more suitable than the term “"bequest motive”;
it signifies the consumer's concern with the future which lies beyond the
arbitrarily chosen horizon. Since Irving Fisher's analysis of consumer
allocation over time [ 3 ] it has become customary to impose on the consumer
a restraint requiring that net accumilation over the planning period be zeroc.
(In cases where an infinite horizon is assumed, the limit of net indebtednass
is required to exist and be equal to zero.) Fisher himself was not unaware
of the bequest motive, as indicated by various comments scattered in his book,
but his main emphasls wes on saving as a means to achieving a desired

consumption profile over time. Marshall, on the other hand, refers to thé

* An earlier version of this paper appears as Chapter 2 of "Iifetime
Consumer Allocation under Certainty and Uncertainty,” Stanford University
[Technical Report No. 120 under Comtract Nonr-225(50),] Stanford, Califor-
nla; 1962. T wish to express my gratitude to Kenneth J. Arrow, lorie Tarshis
and Herbert Scarf for their encouragement and wany helpful comments.

*%
Regearch undertaken by the Cowles Foundatlon for Research in
Economics under Task NR O4L7-006 with the Office of Naval Research.
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bequest motive as ¥the chief motive of saving® { 7, p. 228]. Sowe of the

more recent studies (e.g., Tobin [10]) take full account of the bequest

motive, but the studies which have received the most attention seem, as has
already been remsrked, to neglect it. Duesenberry [ 1, p. 34] refers to the
rational motives of saving as being the provision for retirement and the
provision for contingencies. Any accumulation motive, which is referred

to as "having assets merely for the sake of baving assets” is considered
irrational. Friedman [4%, p. 91, in the theoretical sketech whish precedes

the main part of his study, says: “If we suppose that the two years stand

for the whole future for which plans are being made, there is noﬁhing the
[consumer] unit ean gain by not spending all it receives.” Flnally, Modiglisni~
and Brumberg [ 8 ], while recognizing the importance of the beguesti motive (the
®astate motive™ in thelr terminology) then proceed to disregard it by assumption.
Assumption I of thelr study states that net lifetime accumulstion by the

consumer must be egual to zero.

In the present essay an attempt is made to study consumer sllocation
over time in a framework which allows explicit recognition of the bequest motive.
As will be shown, the traditional Fisher-type case, i.e., the case where net
1ifetime accumulation enters as a budget constraint rather than explicitly in the
consumer's preferences, can in some sense be thought of as a gpecial case of the
bequest-motive case. Hence, many of the rasults which will be presented are
velid under both hypotheses, and may be of some interest regardlzss of the

bequest motive issue.
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The present study is entirely under the assumption of perfect
certainty. The effects of introducing in the analysis verious elements
of uncertainty will be examined at a later time. A preliminary version of

this supplementery discussion can be found in [11].

2. HKotation and Assumptions

Iet T De the consumer unit's horizen. T 18 an arbitrary non-negative
real number. The closed interval [0, T] will be referred to as the consumer's

lifetime and alternativelyas the consumers planning-period.

The unit*'s consumptlion plan is & real valued function ¢ on [0, T].

e(t) is required to be non-negative for 811 t+ in [0, T].

The consumer unit expects with certainty that a rate of interest of

J{t) oper unit time will prevail at time +t . J 1sasbumedtc be a bounded,

continuous real funetion on [0, T].

The unit's income stream (i.e., the stream of earnings other than

interest) is a real valued function m on [0, T]. We require of the function
m that it be Riemann-integradble, and we shall assume that it is, for the most
part, positive. For convenience we assume that m(t) and e(t) are measured

in the same unlt.

Assuming that the only assets which can be held are notes bearing a
rate of interest J(t) at time t , we bhave that the consumer's assets at

time t , S(t) , are given by
t
+ I j(u)du
(1) S(t) = 8(0) +[ et {m(-r) - c(r)} dr ,
)



-k -

for t in [0, T]. For typographical convenience, we shall make two assumptions:

(1) 1Initial assets are zero; S(0) = 0 . (ii) The rate of interest is constant

on [0, T); 3(t) =3 ,05¢t5T. The definition of S(t) pow reduces to

t
(2) s(t) = J eI(t-® {('c) . e(r)}d‘r , 0%5¢%SrT,
o

The assumption concerning the constancy of the rate of interest will be raconsidered
vhen the time comes t¢ examine the effects of changes in the rate on optimal

behavior.

The consumer's bequests are given by the quantity S(T) . It will be

convenient to express S(T) in terms of the consumer's lifetime wealth, to be

denoted M:
T s(r-t)
(3) M=/ e m(t)at
(o]
T s(z-t)
(&) S(T) =M - [ e c(t)dt .

o

Turning now to the consumer®s preferences, our first assumption ls
that they can be represented by a utility function. Clearly, this assumption
alone does not carry us very far. In models based on discrete time-parameter
& common assumption is that the utility function is homogeneous of arbiirary
degree (e.g. Friedman [4 ] and Modigliani-Brumberg [ 8 ].) In models of

continuous time-parsmeter the common assumptlon is that preferences are
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independent over time, l.e., that consumption in one period dozs nob affent
the preference-ranking of consumption alternatives in other periods. This
assumption allows one teo write the utllity functlon in the form of a simple
integral, ard since inﬁegrals are the most studied functionals on function
spaces; this procedure is very convenient. Iet ¥ denote the utility

functional. Under the independence assumption; V can be writhten ag follows:

T
(5) vie) = [ ¥lt, e(t)]at ,
o
where the function ¥ can be glven the interpretation of a utility function
for each moment of time. As a matter of convenience rather than necessity we

shall assume further that ¥ can be written as a product of two functions:

(6) ¥(x, ¥) = a(x) g (¥) 5
go that
T
(1) V(c) = [ alt) gle(t)] at -
_ _ o

The function « has the interprstation of a subjective discount function, and

we gssume that it is non-negative and once differentiable. We may also

normalize « in such & way that «f0) = 1 .

The function g is interpreted as a utllity associated with the
current rate of consumption at every moment of time. g 1is deflned on the half-

line [0,») and we assume that it is twice differentiable and striectly concave.
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Strict rather than weak concavity is by no means an Iindispensable assumption,

but it has the advantage of gueranteeing that the optimal consumption plan (if

it exists) will be unique and continuous.

The functional V , as it now stands, clearly does not reflect any
bequest motive in the consumer's preferences. When V 1s the relevant
functional, the consumer's decision problem is customarily stated to be the
maximization of V subject to a Fisher-constraint of the type S(T) 2 0.

Accordingly, we shall refer to V as the Flsher-censtraint utility functional .

To incorporate bequests in the utility functional, we add to V one more

term and thus obtalp another functional, to be denoted U :

T
(8) ule) = [ alt) glett)] it + ols(?)],
. . 0

vhere @ is a real function defined for all real values and assumed to be
twice differentiable and concave. ¢ is to be interpreted as the utility of
bequests. To distingulsh the functional U from the Fisher constraint

functional V , we shall refer to U as the bequest motive utility functional.

A word needs to be said about the monotonicity properties of the
functions g and ¢ . In Plsher-constraint problems it is common to make a
non-saturation assumption in order to convert the inequality comstraint, S(T) 20,
into an equality constraint, S(T) = 0 . Accordingly, in all Fisher-constraint
cages we shall be assuming that the function g is monotone increasing. FHowever,
in the bequest-motive cases a weaker aasuuption.will_suffiee. The assumption
which we shall make ig that at least one of the two functions g and ¢ 1is
monotone increesing. In fact, it is oftten more reasonable to assume that ¢ is

monotone than that g is.



3. Optimal Behavior

In this sectlon we shall examine both the Fisher-constraint case and the
bequest-motive case with & view towards achieving & characterization of optimal be-
haviur.‘ The Fisher-constraint, i.e., the assertion that the consumer's lifetime
accumulation is equal to zeroc, is sometimes adopted as & "simplifying assumption®
(as, for instance, in Modigliani-Brumberg [ 8].) It will become clear as we
éroceed that, at least in the present framework, the Flsher-constraint offers no
such gain in simplicity. If anything, the cese of the bequest-motive 1s the
simpler of the two. Thls observation, however, is merely a by-product of the
maln effort of this section which 1s to draw the detalls of the optimal conéumption
plan. Most of the characterlstics of the optimal plan will be cowmon to both the

Flsher-constraint and the bequest-motive cases.

3.1l The Flsher-~Constraint Case:

Consider the problem

(9) max V(c)

subject to:  c(t) 0Stse,

ny
o

s(T) c .

Y

With the definitions of the various symbols, and under the assumptlion that g 1is

monotone, (9) reduces to:
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T
(10) max [ ot) gle(t)lat
: o

subject to: c(t) 20 05¢tSe,

=

IT eJ(T_t) c(t)at = M .
o
In a problem of this sort, one's first concern is usually the gquestion
of the existence of & solution. More precisely, one has to specify exactly the
class of functions ¢ which will be admitted into competition in the maximization,
and then attempt to state conditions under which a maximum 1s attained in this
clasgs, BSuch an admisslbllity class 1s not, in general; a finite-parameter
family and for this reason the Investigation of attainment of a maximm is
a rather difficult task. This task will be underteken separately, and for
present purposes we shall limit the discusslon to stating conditioms which

8 solution must satisfy if it exists.

It can be shown that essentially without loss of generality we can B
pick as our admissibllity class the class of all functions which are non-
negative on [0, T] and right-continuous on [0, T). 'To find a first order
condition for a maximum one proceeds as follows: Denote the solution, i.e., the
optimal consumption plan, 1if it exists, by e* , Iet R be the set on which c*
is strictly positive. By right-contlinuity, R must be the unlon of & set of
half-open intervals from [0, T], or else it coilncides with [0, T]. Now let

X be a function on [0, T] which satisfies the following conditiouns

(11) . x(t) =0 outslde R
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T
b, f od(T-t) x(t)dt = 0 ,
o

Aside from these two restrictions, x is an arbitrarily chosen right-

continuous function. Consider now the consumption plan ¢ = e® + ex s VWhere

€ is a real number. Thit ¢onsumption plan meets the Fisher-constraint 5(T) =0 ,
and for small € it is certair to be non-negative. In short, c¢ is admissible

for small € . The utility of the plan ¢, V(c) , is given by

b
(12) vic) = [ a(t) gle*(t) + ex(t)]at .
0o

For smell € , V(c) may be approximated as follows:

(13) v(c) = v(c*) + ¢ -d%gl

e=0

T
=v(e*) +e [ alt) g'[e*(t)]Ix(t)at .
(]

A necessary condition for a maximum is that E%—i—ﬂl vanish for all
€=0

admissible choices of the function =x :

T
(1%) [ a(t) g*le®*()1x(¢)dt = 0
o]
or
iy
(25) ! (e"(t'T) a(t) g'[e*(t)l)éJ(T‘*‘) x(t)) it = 0
: 0

for all cholces of x satisfying (11)., In view of comdition b in (11),
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the only way in which (15) can hold for all possible x isg for the following

condition to be gatisfied:
(16) I T) (t) g'lc*(t)] =k  forell t in R,

vhere k is e constent. Condition {16) says thet the discounted marginal
utility of consumption, at every poiﬁt where consumption i1s not zero, should
be made equal to & constant. This constant 1s usually given the interpretation of

the marginal utility of wealth.
Concerning the segments in which the consumption levels are zero, i.e.,
the segments outside the set R , one can state the following:
J(t-7) ' [k <
(17) e al(t) g'[e*(t)] < k for all t outside R .

To prove this assertion assume the contrary:

(¢, -T
(18) e © )“(to) g'lc*(t))] >k  for some t  outside R.

Clearly, there exists an interval I  about t such that (18) hold

everywhere in Io . However, another interval I

1 2 whose length is equal

to that of I , can be fournd (in the set R) such that

(19) 5 T) ((t) g le¥(£)] =k forell t in I, .

Now construct the function x as follows:

(20) x(t) = ej(t'T) for t in I

= - ej(t-T) for t in I

= 0 otherwise.
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Consider the consumption plan ¢ = c¢* + e¢x . Once again, this plan is
admissible for amall and positive e , and it satisfles the Fisher constraint.

Hence, for small € >0 we can write the approximation

(21) v(e) =v(e*) + e | [ alt) g'[c*(t)]ed(t'T)at - [ alt) g'[c*(t)]edct'm)dt ,
: I I o N
o 1
but by constructlon the expression in brackets is positive, contradictory to
the optimality of c* . Thus condition (17) is established. Conditions (16)
and (17) mway now be merged to obtain:
I (5T o(5) g le*(t)] S &
(22)

¢*(t) = 0 whenever < holds .

Next, it is important to investigate the contimulty of the optimal plan

c* (it it exists). Under the assumption that the function g is strietly

concave, we can assert that the optimel consumption plan, o* , is continucus.

Proof: BSince c* is right-continuous, & discoatimuity at some point +t
wvould mean:
(23) () # c*(%-0) .

If g has a strictly decreasing first derivative, (23) implies that
(24) g'le*(t)] # g'lc*(t-0)] .

Since c* satisfies (22) and both q(t) and eJ(t'T) are values of

continuous functions of t , +there are only two ways in which (24) could hold.



Bither
(25) eI ET) (1) gre*(t)] = k

vhite 95 T) org) g'e*(t-0)1 < X
or

(26) ICT) ey g e*(t)] < x
while o (t-T) alt) g'le*(t-0)] =k .

The case where both ej(t_T)a(t) g'[c*(t)] and ej(tdr)a(t) g'{c¥*(t-0)] are
less than k 1is ruled out because then both c¢*(t) and c¢*(t-0) are zero and

there is no discontinuity.

Consider (25)., It implies that
(27) g'[e*(t-0)] < g'[c*(¢)] ,
but on the other hand, in view of (22), it also implies that
(28) e*(t) >0 vhile c*(t-0) = ©

and (27) together with (28) contradict the strict concavity of g . The
srgument is entirely anmlogous in the case of (26). This completes the proof

that the optimal plan sust be contlnuous.

The next item in the investigation of the optimal plan is its monotonicity

properties. We shall find it easiest to determine these properties by first
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deriving a basic differential equation in c¢* . In order to do so, we must
differentiate equation (16) with respect to t , 8o our first gquestion concerns

the legitimacy of such differentistlon. Under the assumption that g has a second
derivative everywhere, the only problem is the differentiability of the optimal

plan c* 1itself. In this respect we assert that i1f the function g has a

second derivative which is everywhere negative then the optimal plan c* is

differentiable on R,

Proof: Since ej(t'T), a{t) and k are all differentisble with respect to

t , equation (16) implies that E%- '[e*(t)] exists for t in R . By

the mean value theorem, we can write

g'[c*(teh)] - g'[c*(t)] . S*(t+h) - c*(t)
h h

(29) g*le*(t) + o)

vhere w-+0 as h -+ 0 . BSince the limit as h + 0 of the left-hand-gide
of {29) exists, the limit of the right-hand-slde must also exlst. Hence, 1if

g" <0 the derivative of c* at t exists.

Upon differentiation of (16), and letting a dot above a symbol denote

differentiation with respect to time, cne obtsins

(0) 300 Toce) gric*(6)] + Ty g le*(e)] + 9 Ma(s) g leX(£)18%(1)= o

which reduces to

(31) *(t) = -| §+ aft) | g'le*(t)] , t in R.
(| g e*(e)]



- 1 -

Equation (31) is essentially the Euler differemtial equation ‘or the
problem at hand. Computing the actual optimal plan would, In most specific
cases, involve the solution of (31), followed by a reconciliation of the
constant of integration with both the paremeter M and the regquirement that

¥

¢” be non-negative,

Equation (31) provides information about the monotonieity of the optimal
plan, In view of the monotonicity and the strict concavity of g , (31)

implies that whenever ¢*(t) 1is not zero,

(32) sgn &%(t) = sgn | J *%&8"] .

- a{%)/a(t) 1is the rate of subjective discount at time t , so what (32)

says is that the optimal consumption plan is increasing; econstant or &ecreasing
according to whether the rate of interest is greater than, equal to or less
than the rate of subjective discount. In short, the optimal consumption

plen has the same monotonicity as does ‘cx.(’c:)e'jt . This fact can be showmn

to hold also under weaker assumptions than twice differentiabllity and strict
concavity of g . In other words, thls property holds also when the optimal

plan is not necessarily continuous.

Before making further comments, we turn to the case where the

consumer's preferences contain a bequest-uotive.
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5.2 The Bequest-Motive Casze:

HBere the problem is to maximize U(c), as defimed in (8), subject

only to the requirement that ¢ be non-negative.

.
m{of a{t) gle(t)lat +¢[S('I')]}
(33)

WA
H

subject to e(t) 2 0, 0%t

Once again, we take ag admissible any non-negative plan which is right-
continuous on [0, T). Suppose that an optimal plan c* exists in this
admiseibility class. ILet the region on which this optimal plan is positive
be denoted R . Further, let x be an admissible function which vanishes
cutside R and is arbitrary otherwise, and form the consumption plan ¢ ,

vhere c¢(t) = c¢*(t) + ex(t) forall t in [0, ] . For small e, ¢ is

i

an admissible plan. The utility of ¢ is given by

T T
(34) ule) = [ aft) glc®(t) + ex(t)lat + qa[M— f eJ(T't) {c*(t) + ex(t)}dt]
Q (=}

and a first-order condition for & maximum is obtalned by requiring that

au(e)

de

vanish for all choices of the function x .
¢=0

(35) (e)
) de

T T
= [ oa(t) ele*®)iat - orls¥(m] [ &I x(v)ar
0 ]

€=0

vhere S*(T) is the bequest level resulting from the adoption of the consumption

plan c*._
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The deslred necessary condition for a maximum is now obtained directly

from (35), and one gets

(36) a(t) g'le*(t)] = cp'[s*('r)]ej(T't) , t in R.

This last condition is the same as (16), the analogue in the Fisher-constraint
case, with @'[8*(T)] taking the place of the constant k . From here on,
theorems andproofs follow exactly the lines of their analogues in the Fisher-

conetralnt case.

The complete first-order condition for a maximum is given by

(37) T () grle*(e)] S ot [s¥(m)]

c*(¢) = 0 whenever < holds ,

for all t in [0, T] . 1In the event that g 1is strictly concave, the
optimal plan c¥* 1s continuous everywhere and differentiable wherever it is
positive. The differential equation (31) holds without modification, and

the optimal plan once again has the same monotonlelty asg a(t)ejt .

3.3 A comparlson of the Two Approaches;

The bequest-motive approach is more general than the Fisher-constraint
approach simply because it does not assume a Fisher constraint. This fact is
iwportant in itself if we are to explain, say, the existence of positive personal

savings in an economy where such s pkenowmenon cannot be attributable to a shift
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in population structure or to a shift in tastes. Also from the theoretical
point of view, the Fisher constraint bas some rather restrictive implications
(in the area of the wealth-elasticity of consumption) which do not go over

into the bequest-motive case.

From the point of view of simpliclity, both approaches are not very
intricate, and much of the analysis in both 1s identical. The only difference
1s that in the bequest-motive case we have an unconstrained maximization |
(except for the non-negativity requirewent) and unconstrained maximizations

are usually considered simpler than constrained maximizations.

Finaslly, it may be of some interest to mention how the consumption plan
of the Figher-constraint case can actually be derived as a limiting case of the
plan in the bequest-motive case. Iet the utility-of-bequests function ¢ be

given by
(38) o(x) =v.¥(x), =x2 0

where y is a positive real number and ¥ iz such that

(39} Lim ¢'(x) = 4+ o .
x+0

The optimal plan ¢* under this definition of ¢ is a function of the
parameter v . Iat us denote this optimal plan c: o If we now let v

approach O , the optimal plan c: will approach some plen c; wniformly,

and c: will be the optimal plan for the Fisher-constraint problem. At the
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present moment I can only siate this as a conjecture, because the existence

of regions of zero consumption makes this proposition somewhat difficult to
frove. In any case, note that as ‘v 'vanieé, the optimal plan 'c: constantly
satisfies the differential equation (31), and the chamges in v affect only
the constant of integration. Under conditions which are necessary to ensure
the exisﬁenge'and—uniqueneas of the optimel plan it can be shown that the

plan is continuous, in a properly defined sense, in any paraweter which affects

only the constant of integration.

‘As v approaches O , s*(r) approaches O also (if g is monotone)
and the product vv'[s*(T)] approaches the value of the Iagranglan constant k.
This shows once again that the bequest-motive appreach is more general than

the Fisher-constraint approach.

To sum up we have reached a fairly detalled description of the
optimal pl#n under both the Fisher-constraint and the bequest motive cases.
For example, if o(.(‘t'.)e'jt is monotone incremsing inm [0, T] , then the
optimal plan is also monotone increasing and mey have at most one interval of
zero consumption which is necessarily connected to the origin t =0 ; 1f
o(t,e’® 1s monoteme decressing in [0, T] , them the optimal plan is like-
wise decreasing and way have at most one interval of zero consumption,
necessarily connected to the extreme t =T . In thle wanner we &re able to
descriﬁe the general characteristics of the optimal plan for any {t1ime-shape
of u.(t)eJt - even without being given exact specifications of the functions

g end @ .
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Finally, intervals of zero consumption-rate are not only analytically
bothersome, ut also economically rather untenable. For this reason one may
choose in many examples to assume that the function g is such that g'(x)+ 4=
as x + 0 . This would prevent the optimal consumption level from dropping to

zero so long a&s the subjective discount function a 1is positive.

k. Wealth Effects and Income Effects

It 1s common to investigate the effects of changes in the parameters
of a system by differentiating the optimal decision rule with respect to the
parameter. In the present case, however, the optimal decision rule is an
elemant in & function space, and it is not clear vwhat is meant by differentia-
tion of it with respect to, say, M -- the wealth parameter. To define the
derivative of the optimal plan c*(t) with respect to M we proceed as follows:
Let ¢*(t, h) be the optimal plan corresponding to a wealth-level of M+h .
Thus, c*(t, 0) 1is what we have been referring to as c*(t) . A function

cM(t) will be called the derivative of ¢* with respect to M if for every

€ >0 there is an h such that

10 e*(t,h) - *(t,0) , N ] <e,
(40) p[_ . cy(t) | <e

where the distance function p is defined in such a way that if x and ¥y

are functions on [0, T] , ‘then

(k1) p(x, y) = sup | x(t) - y(t) | .
| 0<t<T

= o
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The exlstence and the properties of limits of this type is a matier w s
investigation would teke us far afield. Suffice 1t to say that under
conditions where an optimal plan c*(t) exists and is unique, continuous and
differentiable (wherever positive) a dérivative cu(t) exists and is
obtainable as an ordinary derivative of c*(t) , for fixed t , with

respect to M , taken for each t sgeparately.

A second conceptual problem arises in connection with the definition
of "income effects" in a world where what we have called the income stream
does not in itself play any role whetever. Under perfect certainty, income
effects consumption only through its effects on wealth. However, in this
kind of & world income is also defined in terms of wealth. The function
w(t) , vhich Friedman calls "measured income" ie, theoretically speaking,

not income. As a definition of income consider first Hickslan lincome

{6, Chapter XIV] to be demoted n(t):

(42) n(t) = 3e3(&Thy | 0stS T.

Hickslan income is defined as the rate at which the comsumer could consume

while keeping his weelth intact. Secondly, consider normal income {following

Farrell [2]) to be denoted n :
(}4.3) D = _._JM__

Normal income 1s that constant stream which, if accumulated and compounded at the
mparket rate of interest Jj , would accumulate to become equal to M . In some

gense, Hicksian income is "net” while normal income is "aross.”
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These definitions of income, while by no means the only ones possible,
serve to show that income would most likely be defined as some fraction of M ,
whether a constant fraction or one which varies with time. The analysis of how
changes in M affect the optimel plan, i.e., the analysis of wealth effects, is

therefore an analysis of income effects as well.

We shall anmelyze the wealth and income effects in the framework of the
bequest-motive case. The analogous results for the Fisher-comnstraint case are,
in most instances, immedlately obtainable. To start off, let f denote total
attainable utility, which in the present section is taken as a function of

wealth, Thus, f(M) 1is given by

T :
(b4) £(M) = [ aft) jglc*(t)]lat + ols*(T)] .
. (=] .

let cM(t) be the derivative (in the above sense) of ¢* with respect to M
(teker at the point M). We note that cu(t) =0 if c¢¥(t) is a correr,

be the derivative of 8*(T)} with respect to M :

e*(t) =0, at t . Let Sy

T
(1&5? Sy =1 - of e (T-t) cm(t)dt .

Differentiating f with respect te M ylelds

P
(46) (M) = [ alt) g'le¥(t)ley(t)at + 5, o' [s*(T)] .
. [ :
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Using (22) and (45), we obtain:

(47) £t (M)= o' [s*(T)]

= (P T) 4(4) gle®(t)], forall t in R.

Hence, f£'(M) 1is positive.

By differentisting (46) agsir with respect to M and simplifying, we

obtain an expression for £(M) :

T
() 0 = [ alt) le*(t)lef(t)a + 85 g ISH(T)]
‘ o

vhich 1s negative. Maxioum attainable utility, as expected, is an increasing

and strietly concave function of wealth.

To get the analogues of the above relationships for the Figher-

constraint case, simply substitute 0 for S, end k for ¢’ [s*(T)] .

If we evaluate f"(M) from (47) rather than from (48) and use the

knowledge that f"(M) <0 , we get

(49) cn(t) 2 0 forall t in [0, T]

> 0 for ¢+ in R,

and also

(50) Sy > 0,

vith 8, = O for the Fisher-constraint case. Equations (45) and (50) together

ilmply
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T
(51) o < eJ(T-t)cM(t)dt < 1
[+]

where the right-hand inequality becomes an equality in the Filgher-constraint case.

The quantity S, 1is in a sense a weasure of what we ordinarily refer

M
to as the marginal propensity to save. More precisely, 1 - SM is some
average of the consumer's marginal propensities to consume over his lifetinme.

To show this, let income be defined as normal income n of equation (43).

Iet cn(t) be the derivative of c* with respect to n . By deﬁnition,

(52) (t) )
o M IT L(T-8) 4, )
[ +]
Hence, by (45)
i
Jarital) e (b)as
(53) 1-8 === )
T
J eI (Tt g
o.

which expresses 1 - 5, as a weighted arithmetic average of cn(t) « For

small Jj , the following spproximation holds:

1 T
(54) 1-8, == [ c(t)at.

[+]
If we could estimete the gquantity 1 - SH from actuval samples, we

would bave an estimate of the marginal propensity to consume which would be

free of blas due to transltory effects con Income. Unfortunately, the data
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needed for meking such en estimate are not readily avallable. Efforts in this

direction are currently belng undertaken.

It is of course quite logical to require that 1 - Sl( be, in some

sense, an average of the marginal propensities to consume, since 1 - SM is

the rate of change of accumulated lifetime spending with accumuleted lifetime
earnings. Iet us therefore consider the marginal propensities to consume

when income is defined to be Hicksism income of (42) and then ask what happens

if we require that 1 - 8

M be an average of these., Ieat ch(t) be the

derivative at time t of the optimal consumption level with respect to

Hickslan income. ch(t) is related to °M(t) by

(55) (6) = —u)
®n Je,jtt—'rj .
Hence, by (45)
iy
(56) 1-8, =3 [ ct)at.
0

If we now require 1 -5, to be & simple arithmetic mean of ch(t) , We

get the awktwvard requirement

(57) d=F -

In my opinion, this shows the inadequacy of Hicksian income. This, however,
1s far from being an acceptad opinion. Friedman, for instance, defines income

both in [k ] and in [5 ] as Hicksian income, and indeed, he requires in [5 ]
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that the horizon and the rate of interest be reciprocals of each other. This
causes at least one of these two to become rather artificial. In this case,
since Friedman has evidence to support the hypothesis that T = 3 , he hag to
construct e personal rate of interest (not to be confused with a subjective
discount rate) which is defined as the own-rate of the consumer's human end
non-hupan wealth, which for some mysterious reason is approximately equal to
1/3. Friedmwen arrives at thls reciprocal relationship in a menner which is
quite different from ours. In fact, he defines the "personal rate of interest"
ag l/T . However, the argument that this rate represents the intrinsie rate
of interest of the consumer's wealth derlves, in my opinlon, from thinking

in terms of Hickelan income.

Let us turn now to a brief investigation of the elasticities of ¥
and S*{T) with respect to the parameter M . These elasticities, denoted

ch(t) and  ng, , are defined as follows:

Men(t)
(58) q@M(t) = —;;Z;;-“ ’ t in R
n"MSM-
SM S*(T)

Note that qcn(t) is at the same time the wealth-elasticity of consumption

and the income-elasticity of consumption, provided income is defined &s some

constant or variable fraction of M.
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Consider first the Fisher-constraint csse. What fhe Fisher constraint

requires ig that

(59) Ie“%“eﬁma=no
R
Differentiating with respect to M and expreesing the result in terms of

elasticlties, we get

(60) J H(T-t) *(t) ny,(t)at = M .
R

Comparing (59) and (60) we see immediately that either qcm(t) is equal to

one for all t or else “eu(t) is greater than one for some t and less
than one for some t . This is a somewhat disturbing result if one believes

that there should be a possibility for all qan(t) t0 be less than unity.
The Fisher constraint precludes this possibility.

A somewhst similar result is obtained by Herbert Scarf in [9 1, where
he proves that wealth-elasticity of consumption cannot be less than one for all
rates of interest. However, Scarf's definition of wealth is different from
ours, and it corresponds more to a dynamic programming view of the allocation
process than to our variational view of it. In contrast with our definition
of wealth at time t , which is simply eJ(t-T)M , Scarf defines wealth

at time t, W(t) , ae the solution of the following differential equation

(61) W(t) = Jw(t) - e(t)

W(0) = e 9Ty .
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This is the consumer's wealth, in the ex-post semse, at time t . It is net
of consumption outlays which will have taken place up to time < . When
taking elasticities of the consumption levels with respect to W , Scarf
finds that they cannot always be less than unlty under the Fisher constraint.
There is no immediate relationship between his result and ours, since the

elasticities are defired with respect to different parameters.

In the bequest-motive case, however, there is no reason to reject

a-priori the hypothesis that ncM(t) ie lese then unity for all t . The

analogue of {59) in this case is

(62) ! eJ<T"t)c*(t)dt =M - 8%(T) ,
o R

and differentiation withk respect to M followed by conversion to elasticities

ylelds

J(T-t) o M - ok
(63) | e e*(t) ny(t)at = M - s¥(T)ng, .
R
It 1s now possible for ng, to be greater than unity and for qcu(t) to be

legs than unity for all t .

Finally, we can obtain one more result by differentiating the marginal

utility condition (36) with respect to M and then convert to elasticities:

(64) a(6)e*(t) § [ex(8)Iny(t) = /T gD ¥ (DIng, , ¢ 1 R.
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Dividing each side of (64) by the corresponding side of (36), one obtains

s*(r)¢" [8*(T)]

(65) X(t)g"[(t)]
o' [s*(T)] Tem

g'lc*(t)]

ch(t) = for all t+ in R .

Now consider a Friedmanian consumption funetion:
(66) e*{t) = y{t) . M t in {0, 7] .

If this relationship holds, ch(t) =1 for all t , and by (63) we have

thet Moy = 1l as well. This means that

(67) S*(T) = aM
for some constant A . Equation (65) now reduces to

(68) M?(t)gf[li'r(ﬁ)] = AMp® [M] for all t in [0, T] .
g' [My(t)] o' [aM]

We know, however, that y(t} 1is not, in general, constant since it depends
among other things on o and on J . Hence it must be that xg"{x)/g'(x)
i3 constant for all x in the range of ¢* ., This means that g(x). must
be some lipear transferwation of either log x or x‘ for some 0<2<1.
Given that g 1is & member of this family, we may now vary M and obtain
that x@"(x)/@*(x) must also be constant. Hence @ must also be of the
family of log x or xz . Thus, taking the consumption functicn to be of

the type in {A6) constitutes a severe restriction on the utility function.
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5. Rate of Interest Effects

Until now, the assumption that the rate of interest is constant in [0, T]
has not caused any loss of generallty. All the foregolng results remain
virtually unchanged if we introduce a variable rate of interest Jj(t) . The only
changes which have tn be made to accommodate this variable rate of interest are

T

] i(x)ax
substitutions of e’ and j(t) for eJ(T't) and J respectively,
wherever the latter two appear. However, when changes in the rate of interest
ere to be considered, having a single rate J which varies uniformly for all
t in [0, 7] does indeed reduce the generslity of the analysis. For instance,
this aséumption rules out cases in which the rate of interest increases for
gome t and simultaneously decreases for other +t . The constancy assumption
in effect ignores all comsiderations which have to do with the timing of
changes in the rate of interest. However, in the present model, information
about the timing of chenges 1n the rate of interest turns out to be of no use
whatever unless we know the time-profile of the earnmings function m(t) .
In the absence of such information, all we can get in the variable iﬁterest case
is exactly what we can also get in the constant rate case. For this reasom, we
shall retain the assumption that the rate of interest is a constant, Jj , for

all t .

The discussion of rate-of-interest effects will be entirely in terms

of the bequest-motive case,
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Iet cj(t) denote the derivaetive of ¢* , at time t , with respect

to j . Once again, cj(t) , taken for all t in [0, T] , can be shown to
e & meaningful funetion for which the various cperations which are performed

below (e.g., integratior) are well defined. Similarly,let S, bs the

J
derivative of 8¥(T) with respect to J .

Differentiating the marginal utility condition (36) with respect to J ,

one obtains

(69) alt) & [c*(t)]e,(t) = (T-t)a(t) &' [e*(£)] + eJ(T-t)Q“[S*(T)]SJ for t in R,

' J(T-t)  nriw _
70 () = (r-v) L@ o7 7 G 5 g ynr.
o E g [c*(t)] a(t)  g'le*(v)] Y

For t outside R, cj(t) vanishes. We shall assume that at the point T the

optimal consumption level is interior, i.e., that T dis in R . Evaluating (70)

at t =T
0oy
(72) ¢ (1) = -2LE(D)] 8, ,
7 ametle(m] 9
and henca -~

(o) BLSFB] L 3(T-t) oD @IeM(D)] oy gor t in R .
(72) cj(t) (7-t) e (5)] +e S o] ey or n
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From (71) and (72) we may derive two preliminpary conclusions:

(73) sgn 5, = sgn cJ(T) s

(74) 1z c,(T) < o

Then cj(t) <0 forell t imn R.

Conslder next the change in S*(T) due to & change in J in and of
1tself, before revigsion of the optimal plan. We shall refer to the rate of
this change as the partial derivative of S*(T) with respect to j and denote

it by SJ:
T \
(75) gd = [ (1-%) eJ(T't{é(t) - c*(ti} at .
0

The sign of SJ depends upon the time-profile of the saving stream m(t) - ¢*(t)
which in turn depends on the time-profile of the earnings stream m(t) . For
any optimal consumption plan there exist earnings streams which will make “5'j

either positive or negative. The relationship between 3., and SJ is given

J
by

7
(76) s, =g’ - f eJ(T't)c {t)at .
J o J
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Consider Pirst the case SY 2 0 . We wish to show that under this

assumption it is true that

(17) cj(t) > 0 for some t .

Assume the contrary:
(78) cj(t) <0 for all t in [0, T] .
By {76) apd by the fact that 87 > 0 we have --

{79) 8, >0,

and bence, by (73) --

(80) cJ(T) >0

contradicting (78). Thus, (77) is established which, by (73) and (7h) also
establish (79) and (80). In other words, in the case where S'j 2 0 we have

that

{81} GJ(T) >0

Indsr the asswmption that SJ 2 0, arise in the rate of interest stimulates

both saving (beguests) and comsumption, at least in periods near the horizon T .
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The statement that a rise in the rate of interest “depresses consumption"
ig therefore not gulte true. Such a rise stimuistes lifetime saving but

&t the same time it stimuiates consumption, poesibly in all periods.

Fow conelder the case where SJ <0 . Ina manner similar to the fore-

going eargument 1t can be shown that

(82) cd(t) <0 for some t in [0, T].

Hence, if S’j

< 0 a rige in the rate of interest does depress consumption in
some periods, but there iz nothing to say that it does not also depress saving

(f.2., that Sj < 0) or, for that matter, that it does not etimulate consumption

in other periods.

Should the consumer hope for a rise or for a decline of the rate of
interest? To answer this question we have to write total attainable utility £

&8s & function of the rate of interests

T
(8%) £{3) = [ alt) glc*(t)lat + o[s*(T)] .

C.

Differsntiste with respect to J :
T
(84) 3 = | afts grict(t)le,(t)at + @' [s*(1)] 8y -
o

By (36), this equation reduces to

(85) £1(4) = 8 @' Is¥(T)] .



- 34 -

Hence --

(86) sgn £'{)) = sgn SJ .

If a rise of the rate of interest, in and of itself, causes the consumer's
lifetime savings to become greater (which depends on the time-profile of his
earnings stream) then he ghould hope for such a rise. If, on the other hand,
such & rise causes lifetime savings to decline, then he should hope for a

decline of the rate.

Finally, & point for which T am indebted to Arthur M. Okun: In
considering the effects of changes in the rate of interest one should take
into account the fact that at time T 1t may be the value of the conaumer's
stock of savings, rather than ite earning power, which is of importance. A
rise of the rate of interest allows the consumer to earn higher interest-income
but on the other hand it lowers the value of his assets if he is to sell them at
time T . Certainly, if this rise of the rate of interest comes at a time close
enough to T , the increase in income will not be sufficient te cutweigh the
decline in asset value., Unfortunately, the framework of the foregoing discussion
is one of instantanecus recontracting, an ldealization which is hardly capable
of capturing capital gains and capital losses, since the consumer's assets are

always evaluated at current prices.
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