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Considering the Julia sets of a family of rational maps concerning two-dimensional diamond hierarchical Potts models in statistical
mechanics, we show the continuity of their Hausdor� dimension.

1. Introduction

�e continuity of Hausdor� dimension of Julia sets is an
important and interesting problem for rational maps with
degree � ≥ 2. In general, this problem adheres to the
continuity of Julia sets which is response to the stability of
system. It is well known that both the Julia set �(�) and its
Hausdor� dimension of a rational map � vary continuously
in the parameter space Rat� if � is hyperbolic [1, 2]. However,
as we know, there are no direct relationship between them
when � is not hyperbolic though there are many works
devoted to the two problems [1, 3, 4].

In this paper, we discuss a family of rational maps ��� :
C → C for � = 3; here

��� (	) = ( 	2 + � − 1
2	 + � − 2)

�
(1)

with two parameters � ∈ N and � ∈ R. ��� is a
renormalization transformation of �-state Potts models on
the two-dimensional diamond-like hierarchical lattice with
bifurcation number � in statistical mechanics [5]. In turn, the
zeros of the partition function for the model with bifurcation
number � condense to the Julia sets of ��� [6]. It has been
shown that there exists some relationship between the critical
temperatures, the critical amplitudes, and the structures of
the Julia sets [7]. �erefore, much interest has been devoted
to these physical models, since they exhibit a connection
between statistical mechanics and complex dynamics [6, 8–
15].

We have known that, for any given � ∈ N, the Julia
set �(���) of ��� is continuous in the Hausdor� distance for
any � ∈ R except two points [11]. Whether the Hausdor�
dimension of �(���) is also continuous for any � ∈ � except
two points? From the proof of the main result in [10, 11],
for even integer �, it is easy to see that ��� is hyperbolic in
the real axis R except countable points. Except at most three
points from those countable points, ��� is subhyperbolic
but not hyperbolic; though the dynamical property of ���
is simple, it is di�cult to compute all the iteration number
of critical points which are eventually equal to the repelling
�xed points in the iteration of ���. �erefore, we cannot give
a quantitative analysis for the corresponding critical points
when the parameter is close to the above points. For any odd
integer � ≥ 5, there exist at least two real numbers �1, � ∈(1, 2) such that ���1 and ���2 are Feigenbaum-like maps [15].
As we have seen, for the simplest Feigenbaum quadratic
polynomials, the continuity of Hausdor� dimension of its
Julia sets is unknown. Based on the above reason, we just
consider the case for � = 3.

We de�ne the following constants:

� = 2 + min
0≤�≤1

�6 − 2�4 + 1
� − 1 ,

� = 2 + max
−2≤�≤0

�6 − 2�4 + 1
� − 1 .

(2)

We have the following result.
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�eorem 1. �3� is de�ned in (1) and � ∈ R. Let HD(�(�3�))
be the Hausdor	 dimension of �(�3�). 
en HD(�(�3�)) is
continuous at � ∈ R \ {�, 0, �}.
2. Some Notations and Preliminary Results

Let� : C → C be a rationalmapwith degree deg(�) ≥ 2.We
denote by �� the �th iteration of �. A point 	 is called critical
point if ��(	) = 0. A point 	 is called periodic point if ��(	) =	 for some � ≥ 1; the minimal of such � is called the period
of 	. For a periodic point 	0, denote the multiplier of 	0 by(��)�(	0); the periodic point 	0 is either attracting, indi	erent,
or repelling according to |(��)�(	0)| < 1, |(��)�(	0)| = 1 or

|(��)�(	0)| > 1. In the indi�erent case, we say 	0 is parabolic
if (��)�(	0) is a root of unity.

�e Julia set, denoted by �(�), is the closure of repelling
periodic points. Its complement is called Fatou set, denoted
by �(�); a connected component of �(�) is called a Fatou
component. A rational map � is called hyperbolic, if �(�) ∩�(�) = 0, and geometrically �nite, if the set �(�) ∩ �(�)
is �nite; here the postcritical set �(�) of � is the closure of
the forward orbits of critical points. A geometrically �nite
map is subhyperbolic (resp. parabolic) if it has no (resp. some)
parabolic periodic points. It is called critically nonrecurrent if� ∉ �(�) for each critical point � ∈ �(�), where �(�) is the �-
limit set of �. A critically nonrecurrent map is semihyperbolic
if it has no parabolic periodic points. For the classical results
in complex dynamics, see [12, 16, 17].

De�nition 2. Adomain� ⊂ C is called a John domain if there
exists � > 0 such that, for any 	0 ∈ �, there is an arc � joining	0 to some �xed reference point �0 ∈ � satisfying

dist (	, ��) ≥ � ����	 − 	0���� , 	 ∈ �. (3)

If ∞ ∈ ��, we use the spherical metric to measure the
distance.

Lemma 3 (see [18]). Suppose � is semihyperbolic rational
map, then every Fatou component of �(�) is a John domain.

De�nition 4. A probability measure  on the Julia set �(�) is
called �-conformal measure for a rational map � : C → C if (�(!)) = ∫	 |��|�� for every Borel set ! ⊂ �(�) such that�|	 is injective; � is called the conformal exponent about  .
Lemma 5 (see [19]). Let ℎ denote the Hausdor	 dimension
of �(�) of a subhyperbolic rational map �, then there exists
a unique invariant probability measure  equivalent to theℎ-conformal measure; moreover, the normalized ℎ-dimension
Hausdor	measure is the only ℎ-dimension conformal measure
for �.
Lemma6 (see [1]). Anynormalized invariant conformal prob-
ability measure  supported on the Julia set of a geometrically
�nite rational map � is either the conformal measure of
Hausdor	 dimension of �(�), or an atomic measure supported
on the inverse orbits of parabolic points and critical points.

For simplicity, �� = �3�, and ! ∼ % (!, % ∈ R) means

that &−1% < ! < &% for some implicit constant &. By (1), for� ̸= 0, we have

��� (	) = 6 (	 − 1) (	 + � − 1) (	2 + � − 1)2
(2	 + � − 2)4 . (4)

So, �� has ten critical points: 1, 1 − �, ±√� − 14 (with the
multiplicity 2), (1−�)/2 (with themultiplicity 3),∞. It is easy
to see that 	 = 1 and∞ are two superattracting �xed points.

Lemma 7 (see [6]). � ∈ (−2, 0), � ∈ (2, 3), and
(1) �� has only two real �xed points 8, 1 (8 < −1) for � ∈(−∞, �);
(2) �� has only two real �xed points 1, 8 (8 > 1) for � ∈(�, +∞);
(3) �� has only three real �xed points 81, 82, 1 (81 < −1,0 < 82 < 1) for � = � or � = 0;
(4) �� has only three real �xed points 81, 1, 82 (81 < −1,82 > 1) for � = �;
(5) �� has only four real �xed points 81, 0, 1, 82 (81 <−1, 82 > 1) for � = 1;
(6) �� has only four real �xed points 81, 82, 1, 83 (81 < 82 <0, 83 > 1) for � ∈ (1, �);
(7) �� has only four real �xed points 81, 82, 1, 83 (81 <−1, 82 ∈ (0, 1), 83 > 1) for � ∈ (0, 1);
(8) �� has only four real �xed points 81, 0, 1, 83 (81 <−1, 82, 83 ∈ (0, 1)) for � ∈ (�, 0).

Lemma 8 (see [10]). �� is hyperbolic for � ∈ R\{�, �, 3±√2},�3±√2 is subhyperbolic, and �� and �� are parabolic.
3. The Proof of Theorem 1

In the following, we denote �2�(±√� − 14) = ��(0) = V�, 8� =81 is the repelling �xed point for � close but not equal to 3 −√2, and 8� = 8 is also the repelling �xed point for � close but
not equal to 3+√2. It is easy to see that V�−8� → V�0−8�0 = 0
when � → �0, �0 ∈ {3 − √2, 3 + √2}.
Proposition 9. Consider

8� = (�0 − 1�0 − 2)
3 + � (� − �0) + A ((� − �0)2) (5)

as � → �0; here � = (78 + 36√2)/97 for �0 = 3 − √2 and� = (78 − 36√2)/97 for �0 = 3 + √2.
Proof. Considering the real �xed points of �� and taking � =
3√E, from the equation ��(E) = E, it follows that

� = 2 + �6 − 2�4 + 1
� − 1 . (6)
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When � is close but not equal to �0, denote that
8� = (�0 − 1�0 − 2)

3 + � (� − �0) + A ((� − �0)2) . (7)

(1) If �0 = 3−√2, 8�0 = −2√2. By the continuity, 8� < 0.
By (6) and � ∈ R, it satis�es

(� − �0 + �0 − 2) ( 3√8� − 1) = 82� − 28� 3√8� + 1. (8)

Substituting (8) with (7), by a calculation, we can
deduce that

(� − �0 + 1 − √2)(−√2 − 1 + � (� − �0)6 )
+ A ((� − �0)2)

= (−2√2 + � (� − �0))2 − 2 (−2√2 + � (� − �0))
× (−√2 + � (� − �0)6 ) + 1 + A ((� − �0)2) ,

(9)

then � = (78 + 36√2)/97.
(2) If �0 = 3+√2, 8�0 = 2√2. By the similarmethod used

in Case (1), we can deduce that � = (78 − 36√2)/97.

Proposition 10. HD(�(��)) is continuous for � ∈ {3 +√2, 3 −√2}.
Proof. By Lemma 8, �� is hyperbolic for � close but not
equal to �0. �en there exists a unique conformal probability
measure  � for �� supported in �(��);  � has exponent �� =
HD(�(��)). �is means that, for every measurable set F ⊂
�(��) where �� is injective,  �(��(F)) = ∫ |(��)�|��� �.
Furthermore the measure of a point is zero for  �; that is,  �
is not atomic.

Since ��0 is subhyperbolic, by Lemma 5, there exists a
unique conformal probability measure for ��0 supported in�(��0). By cases (6) and (10) in the proof of �eorem 1 of
the paper [10], we know that 1 − �0 ∈ �(��0) for �0 = 3 ±
√2. By Lemma 6, the unique conformal probability measure
has exponent ��0 = HD(�(��0)) or is atomic, supported in

{�−��0 (±√�0 − 14)}�≥0. By a similar discussion used in [4], in

order to prove that

lim
�→�0

HD (� (��)) = HD (� (��0)) , (10)

it is enough to prove that

lim
�→0

lim
�→�0

 � (%� (±√�0 − 14)) = 0; (11)

here %�(E) = {	 | |	 − E| < L}. Noting that �(��) and�(��) (� ∈ R) are symmetry with the real axis, it su�ces to
prove that

lim
�→0

lim
�→�0

 � (%� (√�0 − 14)) = 0. (12)

In fact, if  �0 is any weak limit of { �}, then  �0 is a
conformal probability measure for ��0 supported in �(��0).
�e previous limit implies that the measure  �0 is not atomic

at √�0 − 14, so, it has exponent ��0 = HD(�(��0)). Noting
that  �0(��0(F)) = ∫ |(��0)�|��0� �0 and  �(��(F)) → �0(��0(F)) as � → �0 for any measurable set F, it follows
that �� → ��0 . Next we set that � is close but not equal to�0.

Since 8�0 and 8� are the real repelling �xed points of ��0
and ��, respectively, by the continuity, 8� → 8�0 as � → �0.
By the Koenig’s �eorem [16], there exist a neighborhood M0
of 8�0 with diameter not more than a N > 0 and a conformal
map O�0 : M0 → %�1(0) for some N1 > 0 such that O�0
conjugates ��0 on M0 to the scaling function 	 → ���0(8�0)	
on %�1(0). Similarly, there exists a conformal map O� : M�0 →%��1(0) which conjugates �� to the scaling function 	 →
���(8�)	. It is easy to construct a quasiconformal map O :
!�1 = {	 | N1 < |	| < N2} → !�2 = {	 | N�1 < |	| <
N�2}; here N2 = |���0(8�0)|N1 and N�2 = |���(8�)|N�1, such that

O(���0(8�0)	) = ���(8�)O(	) for |	| = N1. Pull back by the

scaling function; we can extend O to a quasiconformal mapO : %�2(0) → %��2(0) which conjugates 	 → ���0(8�0)	 to

	 → ���(8�)	. For every � ∈ (�0 − P, �0 + P), de�ne
Q� = O−1� ∘ O ∘ O�0 : M0 → M�0 . (13)

Hence, Q� is a conjugation between ��0 on M0 and �� on M�0 .
Let 	(�) = Q�(8�0), by de�nition, 	(�0) = 8�0 and 	(�) = 8�.

Reducing P > 0 if necessary, there are constants &0 > 0
and S0 ∈ (0, 1) such that, for allT ≥ 1, all � ∈ (�0 − P, �0 + P),
and all 8�,

�����(��� )� (8�)�����−1 ≤ &0S�0 . (14)

On the other hand, for every � ≥ 1, let M� be the preimage of

%�(8�0)under���0 containing 8�0 , and letF� be the pullback ofM� by �2�0 containing √�0 − 14. Moreover, we denote Q�(M�)
by M�� containing 8�0 and let F�� be the pullback of M�� by �2�
containing√�0 − 14. ByKoebeDistortion�eorem, reducingN > 0 if necessary, there is an implicit constant V > 1 such
that, for all � ∈ M�� ⊂ %�(8�0) and all � ∈ (�0 − P, �0 + P),

1
V ≤

������������
(���)� (8�)
(���)� (�)

������������
≤ V. (15)

So, |(��� )�(�)|−1 ≤ V&0S�0 ; that is, the distortion of��� inM� is
bounded byV; denote this property as the uniform Bounded
Distortion Property.

We also denote the largest � = W such that%�(√�0 − 14) ⊂F�� for L > 0 small enough and all � su�ciently close to �0.
It follows that, for L → 0, W = W(L) → ∞. �e following
su�ces to prove that

lim
�→∞

lim
�→�0

 � (F�� ) = 0. (16)
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Step 1. Let � be a disc containing √�0 − 14, small enough

such that deg��|� = 3, since√�0 − 14 is a critical point with
the multiplicity 2. Reducing P > 0 if necessary, such that

M�1 ⊂ �2�(�). �� is hyperbolic when � is close to �0, then the
probability measure  � is not atomic; we have

 � (F�� ) = ∑
�≥�

 � (F�� − F��+1) (17)

for all W ≥ 1. By the construction of the �-conformal
measure  of a rational map � ([2]), we know that  (!−1) =∫	−1 |(�−1)�|�� for every Borel set ! ⊂ �(�) such that � :
!−1 → ! is conformal. For � ∈ (�0 − P, �0 + P), we have

 � (F�� − F��+1) ≤ 3 � (M�� − M��+1)
× inf
�∈(��−��+1)∩�(��)

������(�2�)
� (	)������
−�� . (18)

By the uniform Bounded Distortion Property, note that	(�) = 8� and  � is a probability measure, then

 � (M�� − M��+1) ≤ V�� �����(��� )� (	 (�))�����−�� . (19)

Furthermore, we claim that there exists &1 > 0 such that, for

all � ∈ (�0 − P, �0 + P) and 	 ∈ F�1 ,
������(�2�)
� (	)������ ≥ &1������2� (	) − V�

�����2/3. (20)

In fact, (20) is obvious for 	 = √� − 14, since ���(√� − 14) =0 and V� = �2�(√� − 14). Suppose 	 ̸=√� − 14; by the
uniform Bounded Distortion Property and Koebe Distortion
�eorem, it follows that

dist (V�, �M�1 ) ∼ diam (M�1 ) ,
dist (√� − 14, �F�1 ) ∼ diam (F�1 ) ∼ (diam (�� (F�1 )))1/3

∼ (diam (M�1 ))1/3,
(21)

since deg��|�1 = 3 and deg��|��(�1 ) = 1. �en

������(�2�)
� (	)������ ∼ (diam (M�1 ))2/3 ∼ (dist (V�, �M�1 ))2/3, (22)

so, we get (20).

Step 2. Let � = �(�) be the largest integer such that V� ∈ M��
and letT ≥ 1. �en there are three cases.

Case 1. (�−1 ≤ T ≤ �+1). By the uniformBoundedDistortion

Property, it follows that |(��� )�(	(�))|−1 ∼ |	(�) − V�|, since� → ∞ as � → �0. By Proposition 9, it follows that

����	 (�) − V�
���� ∼

���������(
� − 1
� − 2)

3 − (�0 − 1�0 − 2)
3���������

∼ ��������
� − 1
� − 2 −

�0 − 1�0 − 2
�������� ∼

����� − �0���� ,
(23)

since �0 ̸= 1+ (�/2). So, we get |(��� )�(	(�))|−1 ∼ |�−�0|with
constant independent of �; hence, |(��� )�(	(�))|−1 ≤ &2|� −�0| for some constant &2 > 0 independent of �, but on the
other hand,

dist (V�, (M�� − M��+1) ∩ � (��)) ≥ dist (V�, � (��)) . (24)

�en for all 	 ∈ (F�� − F��+1) ∩ �(��), by (20), it follows that
������(�2�)
� (	)������ > &1 dist (V�, � (��))2/3, (25)

so,

 � (F�� − F��+1) ≤ &3����� − �0������ dist (V�, � (��))−(2/3)�� ,
(26)

where &3 = 3(V&2(&1)−1)�� .
Case 2. (T < � − 1). Noting that

dist (V�, (M�� − M��+1)) ≥ dist (�M��+1, M��+2) , (27)

then by the uniform Bounded Distortion Property, we have

dist (V�, (M�� − M��+1)) > &4�����(��� )� (	 (�))�����−1. (28)

As in Case 1, we have

������(�2�)
� (	)������ > &1(dist (V�, M�� − M��+1))2/3

≥ &1&2/34 �����(��� )� (	 (�))�����−2/3.
(29)

It follows that

 � (F�� − F��+1) ≤ 3V�� �����(��� )� (	 (�))�����−��

× (&1&2/34 )−�� �����(��� )� (	 (�))�����(2/3)��

= &5�����(��� )� (	 (�))�����−��/3.
(30)

By (14),  �(F�� − F��+1) ≤ &5S���/30 , where &5 =
3V��(&1&2/34 )−��&��/30 .

Case 3. (T > � + 1). We have

dist (V�, (M�� − M��+1)) ≥ dist (�M��−1, M��) . (31)

By a similar discussion as used in Case 2,

dist (V�, (M�� − M��+1)) ≥ &4�����(��� )� (	 (�))�����−1, (32)

then  �(F�� − F��+1) ≤ &5S���/30 .
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Step 3. Since �� is hyperbolic when � is close but not equal to�0, by Lemma 3, every Fatou component of �(��) is a John
domain. Noting that �(��) is symmetry with the real axis R
and 8� ∈ �(��), then the angle at 8� of two curves �1 and �2 of�!�(∞) (or �!�(1)) is positive. Since V� → 8� as � → �0,
it follows that dist(V�, �(��)) ∼ dist(V�, 8�) as � → �0. On
the other hand, by Proposition 9, it follows that dist(V�, 8�) ∼|	(�) − V�| ∼ |� − �0|. �us, dist(V�, �(��)) ∼ |� − �0| as� → �0.

By Steps 1 and 2, for W ≥ 1, we have
 � (F�� ) ≤ 3&3����� − �0������ dist (V�, � (��))−(2/3)��

+ &5 ∑
�≥�,� ̸= �−1,�,�+1

S���/30 . (33)

Since

∑
�≥�,

S���/30 = (S��/30 )�
1 − S��/30 , (34)

we conclude that

lim
�→∞

lim
�→�0

 � (F�� ) = 0. (35)

So, HD(�(��)) is continuous at � ∈ {3 − √2, 3 + √2}.

e Proof of 
eorem 1. Since the Hausdor� dimension
HD(�(��)) varies continuously in Rat� if �� is hyperbolic
[1, �eorem 11.1] and deg(�0) ̸= deg(��) = 6 for � ̸= 0, by
Lemma 8 and Proposition 10, HD(�(��)) is continuous for� ∈ R \ {�, 0, �}.
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