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Abstract: By constructing a series of perturbation functions through localization in the Fourier

domain and using a symmetric form of the system, we show that the data-to-solution map for the

Euler-Poincaré equations is nowhere uniformly continuous in Bs
p,r(R

d) with s > max{1 + d
2
, 3
2
} and

(p, r) ∈ (1,∞) × [1,∞). This improves our previous result which shows the data-to-solution map

for the Euler-Poincaré equations is non-uniformly continuous on a bounded subset of Bs
p,r(R

d) near

the origin.
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1 Introduction

In this paper, we consider the Cauchy problem in R
d for Euler-Poincaré equations





∂tm + u · ∇m + ∇uT ·m + (divu)m = 0, (t, x) ∈ R
+ × R

d,

m = (1 − ∆)u, (t, x) ∈ R
+ × R

d,

u(0, x) = u0, x ∈ R
d.

(1.1)

The equations (1.1) were first introduced by Holm, Marsden, and Ratiu in [17, 18] as a high

dimensional generalization of the following Camassa-Holm equation for modeling and analyzing

the nonlinear shallow water waves :

mt + umx + 2uxm = 0, m = u− uxx. (CH)

Indeed, when d = 1 the Euler-Poincaré equations are the same as the Camassa-Holm equation

(CH). Also, the Euler-Poincaré equations were investigated as the system describe geodesic motion

on the diffeomorphism group with respect to the kinetic energy norm in [16].
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For d = 1, the equation (CH) was introduced by Camassa and Holm [5] as a bi-Hamiltonian

model for shallow water waves. Most importantly, CH equation has peakon solutions of the form

Ce−|x−Ct| which aroused a lot of interest in physics, see [8, 29]. There is an extensive literature

about the strong well-posedness, weak solutions and analytic or geometric properties of the CH

equation, here we name some. Local well-posedness and ill-posedness for the Cauchy problem

of the CH equation were investigated in [9, 12, 13]. Blow-up phenomena and global existence of

strong solutions were discussed in [7,9–11]. The existence of global weak solutions and dissipative

solutions were investigated in [3, 4, 30], more results can be found in the references therein.

The first rigorous analysis of the Euler-Poincaré equations (1.1) was done by Chae and Liu [6],

they eatablished the local existence of weak solution in W 2,p(Rd), p > d and local existence of

unique classical solutions in Hs(Rd), s > d
2

+ 3. Yan and Yin [31] further discussed the local

existence and uniqueness of the solution to (1.1) in Besov spaces. On the other hand, Li, Yu and

Zhai [27] proved that the solutions to (1.1) with a large class of smooth initial data blows up in

finite time or exists globally in time, which settled an open problem raised by Chae and Liu [6].

Later, Luo and Yin have obtained a new blow-up result in the periodic case by using the rotational

invariant properties of the equation [25]. For more results of Euler-Poincaré equations, see [25,32].

Recently, starting from the research of Himonas et al. [14, 15], the continuity properties of the

data-to-solution maps of the Camassa-Holm type equations are gradually attracting interest of

many authors, see [21, 23]. Most of the non-uniform constinuity results are established only on a

bounded set near the origin. To overcome this limitation, Inci obtained a series of nowhere uniform

continuity results including many Camassa-Holm type equations [19,20]. And for the incompress-

ible Euler equation, Bourgain and Li [2] showed that the data-to-solution map is nowhere-uniform

continuity in Hs(Rd) with s ≥ 0 by using an idea of localized Galilean boost, this method will

inspire us in this article.

As part of the well-posedness theory, the continuity properties of the data-to-solution map is

indeed very important. In fact, the non-uniform continuity of data-to-solution map suggests that

the local well-posedness cannot be established by the contraction mappings principle since this

would imply Lipschitz continuity for the solution map. On the other hand, in some critical spaces

the continuity of the data-to-solution maps are first broken before the existence and uniqueness of

the solution, which leads to ill-posedness [22].

Most previous work on constinuity has focused on the spacial one-dimensional Camassa-Holm

type equations equations, for the multi-dimensional Euler-Poincaré equations (1.1), the continu-

ity problem has not been thoroughly investigated. Until recently, Li et al. [24] shown that the

corresponding solution to (1.1) is not uniformly constinuous dependence for that the initial data

in Hs(Rd), s > 1 + d
2
. Later, the non-uniformly constinuous result was extended to Besov space

Bs
p,r(R

d), s > max{1 + d
2
, 3
2
} in [26].

It is worth to mention that, the non-uniform constinuity results of (1.1) are established only

on a bounded set near the origin. In this paper, we will remove the boundedness restriction

and prove that the data-to-solution map of the Euler-Poincaré equations (1.1) is not uniformly
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continuous on any open subset U ⊂ Bs
p,r(R

d), s > max{1 + d
2
, 3
2
}. Technically, our proof based on

a symmetric form of the equation (1.1), and a translation method to construct perturbation data,

this method was introduced by Bourgain and Li [2] to proof the nowhere uniform constinuity of

the incompressible Euler equations.

For simplicity, we first transform Eq.(1.1) into a transport type system. According to Yan [31],

we can rewrite (1.1) to the following nonlocal form:

∂tu + u · ∇u = Q(u, u) + R(u, u), (1.2)

where




Q(u, v) = −(I − ∆)−1div
(
∇u∇v + ∇u∇vT −∇uT∇v −∇u(divv) + 1

2
(∇u : ∇v)I

)
,

R(u, v) = −(I − ∆)−1
(
u divv + ∇uTv

)
.

(1.3)

We now define a symmetric bilinear operator T by

T (u, v) :=
1

2

(
Q(u, v) + Q(v, u) + R(u, v) + R(v, u)

)

= −(I − ∆)−1div
(
M(∇u,∇v)

)
− (I − ∆)−1

(
N(u,∇u; v,∇v)

)
, (1.4)

here M,N are bilinear functions of (∇u,∇v) and (u,∇u; v,∇v) respectively according to (1.3),

they are symmetric on u, v. Then, the Euler-Poincaré equations becomes





∂tu + u · ∇u = T (u, u), (t, x) ∈ R
+ × R

d,

u(0, x) = u0, x ∈ R
d.

(E-P)

We first recall the non-uniform continuity results established in [26].

Theorem 1.1 (Non-uniform continuity on a bounded set). Let d ≥ 2 and s > 2 + max
{

1 +
d
p
, 3
2

}
with 1 ≤ p, r ≤ ∞. The data-to-solution map St for Euler-Poincaré equations (E-P) is

not uniformly continuous from any bounded subset ON = {u0 ∈ Bs
p,r(R

d) : ‖u0‖Bs
p,r

≤ N} into

C([0, T ];Bs
p,r). More precisely, there exists two sequences of initial data fn + gn, fn such that

‖fn‖Bs
p,r

. 1 and lim
n→∞

‖gn‖Bs
p,r

= 0,

with the solutions St(fn + gn), St(fn) satisfy

lim inf
n→∞

‖St(fn + gn) − St(fn)‖Bs
p,r

≥ c0t, ∀t ∈ [0, T0],

for some constant c0 > 0 and small time T0.

The main result of this paper is the following theorem.
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Theorem 1.2 (Nowhere uniform continuity). Assume that d ≥ 2, and

s > 2 + max
{

1 +
d

p
,
3

2

}
and (p, r) ∈ (1,∞) × [1,∞). (1.5)

Then the data-to-solution map St for Euler-Poincaré equations for the Cauchy problem (E-P)

St : Bs
p,r(R

d) → C([0, T ];Bs
p,r), u0 7→ St(u0),

is nowhere uniformly continuous from Bs
p,r into C([0, T ];Bs

p,r). More precisely, for any u0 ∈ Bs
p,r

and N > 0, there exists two sequences of functions fn(x), gn(x) such that

‖fn‖Bs
p,r

. 2−N and lim
n→∞

‖gn‖Bs
p,r

= 0,

the corresponding solutions St(fn + gn), St(fn) satisfy

lim inf
n→∞

‖St(u0 + fn + gn) − St(u0 + fn)‖Bs
p,r

≥ c0t, ∀t ∈ [0, T0],

for some constant c0 > 0 and small time T0.

Remark 1.1. As a comparison with Theorem 1.1, Theorem 1.2 avoids endpoints p = 1 and p = ∞,

this is because we need to use the boundedness of Riez transform in Lp(Rd) when doing gradient

estimate of T (see Lemma 3.2 blow), which is only available when p ∈ (1,∞).

Remark 1.2. The non-uniform constinuity in Theorem 1.1 established only on a bounded set near

the origin, in Theorem 1.2 we have removed these restrictions and showed that for any u0 and any

neighbour U(u0) ⊂ Bs
p,r, the data-to-solution map restrict on U is not uniformly continuous. In

this sense, Theorem 1.2 improves the previous results in [26].

The remainder of this paper is organized as follows. In Section 2, we list some notations and

recall basic results of the Littlewood-Paley theory. In Section 3, we present the proof of Theorem

1.2 by establishing some technical lemmas and propositions.

2 Littlewood-Paley analysis

We first present some facts about the Littlewood-Paley decomposition, the nonhomogeneous Besov

spaces and their some useful properties (see [1] for more details).

Let B := {ξ ∈ R
d : |ξ| ≤ 4/3} and C := {ξ ∈ R

d : 3/4 ≤ |ξ| ≤ 8/3}. Choose a radial, non-

negative, smooth function χ : Rd 7→ [0, 1] such that it is supported in B and χ ≡ 1 for |ξ| ≤ 3/4.

Setting ϕ(ξ) := χ(ξ/2) − χ(ξ), then we deduce that ϕ is supported in C. Moreover,

χ(ξ) +
∑

j≥0

ϕ(2−jξ) = 1 for any ξ ∈ R
d.

We should emphasize that the fact ϕ(ξ) ≡ 1 for 4/3 ≤ |ξ| ≤ 3/2 will be used in the sequel.
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For every u ∈ S ′(Rd), the inhomogeneous dyadic blocks ∆j are defined as follows

∆ju =





0, if j ≤ −2;

χ(D)u = F−1(χFu), if j = −1;

ϕ(2−jD)u = F−1
(
ϕ(2−j·)Fu

)
, if j ≥ 0.

In the inhomogeneous case, the following Littlewood-Paley decomposition makes sense

u =
∑

j≥−1

∆ju for any u ∈ S ′(Rd).

Definition 2.1. labelbesov Let s ∈ R and (p, r) ∈ [1,∞]2. The nonhomogeneous Besov space

Bs
p,r(R

d) is defined by

Bs
p,r(R

d) :=
{
f ∈ S ′(Rd) : ‖f‖Bs

p,r(R
d) < ∞

}
,

where

‖f‖Bs
p,r(R

d) =





(∑

j≥−1

2sjr‖∆jf‖
r
Lp(Rd)

) 1
r

, if 1 ≤ r < ∞,

sup
j≥−1

2sj‖∆jf‖Lp(Rd), if r = ∞.

The following Bernstein’s inequalities will be used in the sequel.

Lemma 2.1. Let B be a Ball and C be an annulus. There exist constants C > 0 such that for all

k ∈ N ∪ {0}, any positive real number λ and any function f ∈ Lp(Rd) with 1 ≤ p ≤ q ≤ ∞, we

have

suppf̂ ⊂ λB ⇒ ‖Dkf‖Lq := sup
|α|=k

‖∂αf‖Lq ≤ Ck+1λk+(d
p
− d

q
)‖f‖Lp,

suppf̂ ⊂ λC ⇒ C−k−1λk‖f‖Lp ≤ ‖∆kf‖Lp ≤ Ck+1λk‖f‖Lp.

Lemma 2.2 (See [1]). Let (s1, s2, p, r) ∈ R
2 × [1,∞]2, and s1 < s2, 0 < θ < 1, then we have

‖u‖
B

θs1+(1−θ)s2
p,r

≤‖u‖θ
B

s1
p,r
‖u‖1−θ

B
s2
p,r
,

‖u‖
B

θs1+(1−θ)s2
p,1

≤
C

s2 − s1

(1

θ
+

1

1 − θ

)
‖u‖θ

B
s1
p,∞

‖u‖1−θ

B
s2
p,∞

.

Then, we give some important product estimates which will be used throughout the paper.

Lemma 2.3 (See [1]). For (p, r) ∈ [1,∞]2 and s > 0, Bs
p,r(R

d)∩L∞(Rd) is an algebra. Moreover,

for any u, v ∈ Bs
p,r(R

d) ∩ L∞(Rd), we have

‖uv‖Bs
p,r

≤ C(‖u‖Bs
p,r
‖v‖L∞ + ‖v‖Bs

p,r
‖u‖L∞).

In addition, if s > max
{

1 + d
p
, 3
2

}
, then

‖uv‖Bs−2
p,r (Rd) ≤ C‖u‖Bs−2

p,r (Rd)‖v‖Bs−1
p,r (Rd).
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Lemma 2.4 (See [1,28]). Let (p, r) ∈ [1,∞]2 and σ ≥ −min
{

d
p
, 1− d

p

}
. Assume that f0 ∈ Bσ

p,r(R
d),

g ∈ L1([0, T ];Bσ
p,r(R

d)) and ∇u ∈ L1([0, T ];Bσ−1
p,r (Rd)) if σ > 1 + d

p
or σ = 1 + d

p
, r = 1. If

f ∈ L∞([0, T ];Bσ
p,r(R

d)) ∩ C([0, T ];S ′(Rd)) solves the following linear transport equation:

∂tf + u · ∇f = g, f |t=0 = f0.

1. There exists a constant C = C(σ, p, r) such that the following statement holds

‖f(t)‖Bσ
p,r

≤ eCV (t)
(
‖f0‖Bσ

p,r
+
w t

0
e−CV (τ)‖g(τ)‖Bσ

p,r
dτ
)
,

where

V (t) =
w t

0
‖∇u(τ)‖Bσ−1

p,r
dτ if σ > 1 +

d

p
or {σ = 1 +

d

p
, r = 1}.

2. If σ > 0, then there exists a constant C = C(σ, p, r) such that the following holds

‖f(t)‖Bσ
p,r

≤‖f0‖Bσ
p,r

+
w t

0
‖g(τ)‖Bσ

p,r
dτ

+
w t

0

(
‖f(τ)‖Bσ

p,r
‖∇u‖L∞ + ‖∇u‖Bσ−1

p,r
‖∇f(τ)‖L∞

)
dτ.

3 Proof of the main theorem

We first recall the local existence and uniqueness theory of solutions for the Cauchy problem (1.1)

in Besov spaces [31], then provide some technical lemmas and propositions.

3.1 Preparation and technical lemmas

Lemma 3.1 (See [31]). Assume that

d ∈ N+, 1 ≤ p, r ≤ ∞ and s > max{1 +
d

p
,
3

2
}. (3.1)

Let u0 ∈ Bs
p,r(R

d), then there exists a time T = T (‖u0‖Bs
p,r(R

d)) > 0 such that (1.1) has a unique

solution in 



C([0, T ];Bs
p,r(R

d)) ∩ C1([0, T ];Bs−1
p,r (Rd)), if r < ∞,

L∞([0, T ];Bs
p,∞(Rd)) ∩ Lip([0, T ];Bs−1

p,∞(Rd)), if r = ∞.

And the mapping u0 7→ u is continuous from Bs
p,r(R

d) into C([0, T ];Bs′

p,r(R
d))∩C1([0, T ];Bs′−1

p,r (Rd))

for all s′ < s if r = ∞, and s′ = s otherwise. Moreover, for all t ∈ [0, T ], there holds

‖u(t)‖Bs
p,r(R

d) ≤ C‖u0‖Bs
p,r(R

d).

Lemma 3.2. Let (s, p, r) satisfy (1.5), then for the symmetric bilinear operator T (f, g) defined by

(1.3) and (1.4), we have

‖T (f, g)‖Bs
p,r

≤ C‖f‖Bs
p,r
‖g‖Bs

p,r
(3.2)
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If 0 < p < ∞, there holds

‖T (f, g)‖Lp ≤ ‖∇f‖Lp‖g,∇g‖L∞ (3.3)

‖T (f, g)‖Lp ≤
∑

0≤|a|,|b|≤1

‖∂af∂bg‖Lp = W1,p(f, g) (3.4)

And, for the gradient ∇T , we have

‖∇T (f, g)‖Lp ≤ ‖∇f‖Lp‖g,∇g‖L∞ (3.5)

‖∇T (f, g)‖Lp ≤
∑

0≤|a|,|b|≤2

‖∂af∂bg‖Lp = W2,p(f, g) (3.6)

Where we denote Wm,p(f, g) =
∑

0≤|a|,|b|≤m

‖∂af∂bg‖Lp with the multiindex a = (a1, a2, · · · , ad), |a| =

a1 + · · · + ad and ∂a = ∂|a|

∂x
a1
1 ···∂x

ad
d

.

Proof. As the operator (I − ∆)−1 is a Fourier S−2-multiplier, it’s easy to see that

‖T (f, g)‖Bs
p,r

≤ C‖M(∇f,∇g)‖Bs−1
p,r

+ C‖N(f,∇f, g,∇g)‖Bs−2
p,r

≤ C‖f‖Bs
p,r
‖g‖Bs

p,r
,

here we have use the Lemma 2.3. Then in Lp spaces,

‖T (f, g)‖Lp = ‖(I − ∆)−1div
(
M(∇f,∇g)

)
+ (I − ∆)−1

(
N(f,∇f, g,∇g)

)
‖Lp

≤ ‖M(∇f,∇g)‖Lp + ‖N(f,∇f, g,∇g)‖Lp

≤ ‖∇f‖Lp‖∇g‖L∞ + ‖∇f‖Lp‖g‖L∞

≤ ‖∇f‖Lp‖g,∇g‖L∞

we also have

‖T (f, g)‖Lp ≤ ‖M(∇f,∇g)‖Lp + ‖N(f,∇f, g,∇g)‖Lp

≤
∑

0≤|a|,|b|≤1

‖∂af∂bg‖Lp = W1,p(f, g)

For the gradient ∇T , noting that (I−∆)−1∂i∂j = −∆(I−∆)−1
(
(−∆)−1∂i∂j

)
=
(
(1−∆)−1+1

)
RiRj

and the Riesz transform Ri is bounded in Lp → Lp, p ∈ (1,∞), then we have

‖∇T (f, g)‖Lp = ‖∇(I − ∆)−1div
(
M(∇f,∇g)

)
+ ∇(I − ∆)−1

(
N(f,∇f, g,∇g)

)
‖Lp

≤ ‖M(∇f,∇g)‖Lp + ‖N(f,∇f, g,∇g)‖Lp

≤ ‖∇f‖Lp‖∇g‖L∞ + ‖∇f‖Lp‖g‖L∞

≤ ‖∇f‖Lp‖g,∇g‖L∞

and

‖∇T (f, g)‖Lp ≤ ‖divM(∇f,∇g)‖Lp + ‖N(f,∇f, g,∇g)‖Lp

≤
∑

0≤|a|,|b|≤2

‖∂af∂bg‖Lp = W2,p(f, g)

7



We’ll need the following estimates of the difference u(t) − v(t) in Besov spaces.

Proposition 3.1. Let 1 ≤ p, r ≤ ∞ and s > max{1 + d
p
, 3
2
}. Assume that u(t), v(t) are solutions

of (E-P) with initial data (u0, v0) ∈ Bs
p,r(R

d), then δ(t) := u(t) − v(t) satisfies

‖δ(t)‖Bs−1
p,r

≤ ‖δ0‖Bs−1
p,r

exp
(
C
w t

0
‖u(τ), v(τ)‖Bs

p,r
dτ
)

and

‖δ(t)‖Bs
p,r

≤
(
‖δ0‖Bs

p,r
+ C

w t

0
‖δ‖Bs−1

p,r
‖∇v‖Bs

p,r
dτ
)

exp
(
C
w t

0
‖u(τ), v(τ)‖Bs

p,r
dτ
)

(3.7)

Proof. The first inequality has been proved in [31], it remains to prove (3.7). As T is a symmetric

bilinear operator, it’s easy to deduce that δ = u− v solves the transport equation

∂tδ + u · ∇δ = −δ · ∇v + T (δ, u + v). (3.8)

Then, by Lemma 2.4 and 3.2

‖δ(t)‖Bs
p,r

≤‖δ0‖Bs
p,r

+ C
w t

0

(
‖u‖Bs

p,r
‖δ‖Bs

p,r
+ ‖δ · ∇v‖Bs

p,r
+ ‖T (δ, u + v)‖Bs

p,r

)
dτ

≤‖δ0‖Bs
p,r

+ C
w t

0

(
‖u(τ), v(τ)‖Bs

p,r
‖δ‖Bs

p,r
+ ‖δ‖Bs−1

p,r
‖∇v‖Bs

p,r

)
dτ.

now (3.7) is direct result from Gronwall’s inequality.

Proposition 3.2. Suppose ũ(t), u(t), v(t) are the solutions of (E-P) of initial data u0 + v0, u0, v0

respectively. Then, under the assumptions of (1.5), we have

‖ũ− u− v‖Bs
p,r

≤ C‖u0, v0‖
1−θ

Bs+1
p,∞

exp
(
‖u0, v0‖Bs+1

p,r
θ
)( w t

0
W2,p(u, v)dτ

)θ
,

where θ = 1
s+1

and use the notation W2,p(u, v) =
∑

0≤|a|,|b|≤2

‖∂au∂bv‖Lp.

Proof. Since ũ(t), u(t), v(t) are solutions of





∂tũ + ũ · ∇ũ = T (ũ, ũ), ũ(0) = u0 + v0,

∂tu + u · ∇u = T (u, u), u(0) = u0,

∂tv + v · ∇v = T (v, v), v(0) = v0.

by the symmetry and linearity of T , we can deduce that w(t) = ũ(t) − u(t) − v(t) satisfies





∂tw + ũ · ∇w = −w · ∇(u + v) + T (w, ũ + u + v)

−u · ∇v − v · ∇u− 2T (u, v),

w(0) = 0.

(3.9)
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By the interpolation inequality (see Lemma 2.2 ), we obtain

‖w‖Bs
p,r

≤ C‖w‖θB0
p,∞

‖w‖1−θ

Bs+1
p,∞

≤ ‖u0, v0‖
1−θ

Bs+1
p,∞

‖w‖θLp (3.10)

The rest of the proof is to bound the Lp norm of w, taking the inner product of (3.9) with

w̃p−1 := (|w1|
p−2w1, |w2|

p−2w2, · · · , |wd|
p−2wd), we obtain

1

p

d

dt
‖w‖pLp =

d∑

i=1

w
p−1|wi|

p(divũ)dx−
∑

i,j

w
w̃p−1

i wj∂j(ui + vi)dx

+
d∑

i=1

w
w̃p−1

i Ti(w, ũ + u + v)dx−
d∑

i=1

w
w̃p−1

i (u · ∇vi + v · ∇ui + Ti(u, v)dx

≤
1

p
‖divũ‖L∞‖w‖pLp + Cd(‖∇u‖L∞ + ‖∇v‖L∞)‖w‖pLp

+ ‖w‖p−1
Lp ‖T (w, ũ + u + v)‖Lp + ‖w‖p−1

Lp ‖u · ∇v + v · ∇u + T (u, v)‖Lp (3.11)

Thanks to the estimates of T in Lemma 3.2, in particular take (3.3), (3.4), into (3.11) we have

d

dt
‖w‖Lp ≤ C(‖divũ‖L∞ + ‖∇u‖L∞ + ‖∇v‖L∞)‖w‖Lp

+ C(‖ũ,∇ũ‖L∞ + ‖u,∇u‖L∞ + ‖v,∇v‖L∞)‖∇w‖Lp + W2,p(u, v)

≤ ‖u0, v0‖Bs
p,r

(‖w‖Lp + ‖∇w‖Lp) + W2,p(u, v)

Now, we should bound the gradient matrix ∇w, take the gradient to (3.9), then in components

∂t∂jwi = − ũk∂k∂jwi − ∂j ũk∂kwi + ∂jTi(w, ũ + u + v)

− wk∂k(∂jui + ∂jvi) − ∂jwk∂k(ui + vi) − ∂j
(
uk∂kvi − vk∂kui − 2Ti(u, v)

)

Taking the L2 inner product with w̃p−1
i,j := |∂jwi|

p−2∂jwi and sum the indices i, j, we get

1

p

d

dt
‖∇w‖pLp =

∑

1≤i,j≤d

w
p−1|∂jwi|

p(divũ)dx−
w
∇w̃p−1 : (∇w∇ũ)dx +

w
∇w̃p−1 : ∇T (w, ũ + u + v)dx

−
w
∇w̃p−1 :

(
w · ∇(∇u + ∇v)

)
dx−

w
∇w̃p−1 :

(
(∇u + ∇v)∇w

)
dx

−
w
∇w̃p−1 : ∇(u · ∇v + v · ∇u + 2T (u, v))dx

≤
1

p
‖divũ‖L∞‖∇w‖pLp + Cd‖∇ũ‖L∞‖∇w‖pLp + ‖∇w‖p−1

Lp ‖∇T (w, ũ + u + v)‖Lp

+ ‖∇w‖p−1
Lp ‖w‖Lp

(
‖∇2u‖L∞ + ‖∇2v‖L∞

)
+ ‖∇w‖pLp

(
‖∇u‖L∞ + ‖∇v‖L∞

)

+ |∇w‖p−1
Lp ‖∇

(
u · ∇v + v · ∇u + 2T (u, v)

)
‖Lp (3.12)

where we denote ∇w̃p−1 = (w̃p−1
i,j )d×d and A : B :=

∑
i,j ai,jbi,j . Again using Proposition 3.2 for
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the matrix operator ∇T , by plug (3.5),(3.6) into (3.12), we obtain

d

dt
‖∇w‖Lp ≤ C(‖∇ũ‖L∞ + ‖∇u‖L∞ + ‖∇v‖L∞)‖∇w‖Lp + ‖w‖Lp

(
‖∇2u‖L∞ + ‖∇2v‖L∞

)

+ ‖∇T (w, ũ + u + v)‖Lp + ‖∇
(
u · ∇v + v · ∇u + 2T (u, v)

)
‖Lp

≤ C(‖ũ,∇ũ‖L∞ + ‖u,∇u‖L∞ + ‖v,∇v‖L∞)‖∇w‖Lp

+
(
‖∇2u‖L∞ + ‖∇2v‖L∞

)
‖w‖Lp + W2,p(u, v)

≤ C‖u0, v0‖Bs+1
p,r

(‖w‖Lp + ‖∇w‖Lp) + W2,p(u, v)

Combining (3.14) and (3.17) yields that

d

dt
‖w,∇w‖Lp ≤ C‖u0, v0‖Bs+1

p,r
(‖w‖Lp + ‖∇w‖Lp) + 2W2,p(u, v)

By Gronwall’s inequality and (3.10) we complete the proof.

Remark 3.1. The proofs of Proposition 3.1 and 3.2 rely on the symmetry of T , especially when it

comes to getting simplified equations (3.8) and (3.9). Most previous studies on the well-posedness of

Euler-Poincaré equations use the bilinear form (1.2), the lack of symmetry makes the calculation

complicated. Infact, when d = 1 namely the Camassa-Holm equation has the transport form

∂tu + u∂xu = P (u, u) with P (u, v) = −∂x(1 − ∂2
x)−1

(
uv + 1

2
(∂xu∂xv)

)
is symmetric by default.

In this respect, our new form (E-P) is a more natural high-dimensional generalization of the CH

equation.

3.2 Construction of Perturbation Data

For localization in the Fourier domain, we introduce the following bump function in the frequency

space. Let φ̂ ∈ C∞
0 (R) be a non-negative and even function satisfy

φ̂(ξ) =

{
1, if |ξ| ≤ 1

4
,

0, if |ξ| ≥ 1
2
.

and let 



fn = 2−ns−N
(

cos(17
12

2nx1)φ(x1)φ(x2) · · ·φ(xd), 0, · · · , 0
)

gn =
(
2−nφ(x1)φ(x2) · · ·φ(xd), 0, · · · , 0

)
.

(3.13)

We define the perturbation data by adding a translation transform




fm
n = fn(x1 −m, x2, · · · , xd)

gmn = gn(x1 −m, x2, · · · , xd)
(3.14)

Noting that f̂m
n is supported in [−1

2
, 1
2
]d ± (17

12
2n, 0, · · · , 0), this support set is completely covered

by the ring Cn = {ξ ∈ R
d : 4

3
2n ≤ |ξ| ≤ 3

2
2n}. Thus, by the definition of ∆j , we know

∆j(fn) =

{
fm
n , if j = n,

0, if j 6= n. (3.15)
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On account of above and the definition of Besov space, we can show that for k ∈ R

‖fm
n ‖Bs+k

p,r
≤ C2kn−N and ‖gmn ‖Bs+k

p,r
→ 0 for n → ∞ (3.16)

By the previous work [26] and translation invariance of the system (E-P), we know that, for the

corresponding solutions St(f
m
n + gmn ) and St(f

m
n ) there is a positive constant c0 and a small time

T0, such that for any t ∈ [0, T0],

lim inf
n→∞

‖St(f
m
n + gmn ) − St(f

m
n )‖Bs

p,r
≥ c0t. (3.17)

3.3 Proof of Theorem 1.2

Roughly speaking, our proof of Theorem 1.2 based on the following approximation

St(u0 + fm
n + gmn ) − St(u0 + fm

n ) (I)

= St(Snu0 + fm
n + gmn ) − St(Snu0 + fm

n ) + Em
n (II)

=
(
St(Snu0) + St(f

m
n + gmn )

)
−
(
St(Snu0) + St(f

m
n )
)

+ En,m

= St(f
m
n + gmn ) − St(f

m
n ) + En,m, (III)

with some small error terms Em
n , En,m. More precisely, we devide (I) into three parts

St(u0 + fm
n + gmn ) − St(u0 + fm

n ) =
(
St(u0 + fm

n + gmn ) − St(Snu0 + fm
n + gmn )

)
−
(
St(u0 + fm

n ) − St(Snu0 + fm
n )
)

︸ ︷︷ ︸
Em
n

+

(
St(Snu0 + fm

n + gmn ) − St(Snu0) − St(f
m
n + gmn )

)
−
(
St(Snu0 + fm

n ) − St(Snu0) − St(f
m
n )
)

︸ ︷︷ ︸
En,m

+ St(f
m
n + gmn ) − St(f

m
n ).

(3.18)

We proof the approximation (III) → (II) → (I) in the following sense.

Proposition 3.3. Let fm
n , gmn be the perturbation data defined by (3.13) and (3.14), then for any

initial data u0 ∈ Bs
p,r with ‖u0‖Bs

p,r
= ρ, the error terms Em

n , En,m in (3.18) satisfy

sup
m,t

‖Em
n ‖Bs

p,r
≤ Cρ‖(I − Sn)u0‖Bs

p,r
, (3.19)

lim
m→∞

(
sup

0≤t≤T

‖En,m‖Bs
p,r

)
= 0 for any fixed n. (3.20)

.

Proof. We first to handle (3.19). Using proposition 3.1 with δ(t) = St(u0 + fm
n ) − St(Snu0 + fm

n ),

as ‖u0 + fm
n ‖Bs

p,r
≈ ‖Snu0 + fm

n ‖Bs
p,r

for m ∈ R and n ≫ 1, the solution sequences have a common

11



lifespan T ≈ T ∗(‖u0‖Bs
p,r

), then for any t ∈ [0, T ) we have

‖δ(t)‖Bs
p,r

≤
(
‖(I − Sn)u0‖Bs

p,r
+
w t

0
‖δ(τ)‖Bs−1

p,r
‖∇St(Snu0 + fm

n )‖Bs
p,r
dτ
)

· exp
(w t

0
‖St(u0 + fm

n ), St(Snu0 + fm
n )‖Bs

p,r
dτ
)

≤
(
‖(I − Sn)u0‖Bs

p,r
+
w t

0
‖δ(τ)‖Bs−1

p,r
‖Snu0 + fm

n ‖Bs+1
p,r

dτ
)

· exp
(w t

0
‖u0 + fm

n , Snu0 + fm
n ‖Bs

p,r
dτ
)

≤Cρ

(
‖(I − Sn)u0‖Bs

p,r
+
w t

0
‖δ(τ)‖Bs−1

p,r
· 2ndτ

)
(3.21)

and

‖δ(t)‖Bs−1
p,r

≤‖(I − Sn)u0‖Bs−1
p,r

exp
( w t

0
‖St(u0 + fm

n ), St(Snu0 + fm
n )‖Bs

p,r
dτ
)

≤Cρ2
−n‖(I − Sn)u0‖Bs

p,r
(3.22)

take (3.22) into (3.21) we get

‖δ(t)‖Bs
p,r

≤ Cρ‖(I − Sn)u0‖Bs
p,r
. (3.23)

As in (3.23) the Cρ not depend on the translation parameter m and t ∈ [0, T ], then we have

sup
m,t

‖St(u0 + fm
n ) − St(Snu0 + fm

n )‖Bs
p,r

= sup
m,t

‖δ(t)‖Bs
p,r

≤ Cρ‖(I − Sn)u0‖Bs
p,r
. (3.24)

With exactly the same argument, we can deduce that

sup
m,t

‖St(u0 + fm
n + gmn ) − St(Snu0 + fm

n + gmn )‖Bs
p,r

≤ Cρ‖(I − Sn)u0‖Bs
p,r
,

along with (3.24), we complete the proof of (3.19).

In order to deduce (3.20), we should use Proposition 3.2 with the setting ũ(t) = St(Snu0 +

fm
n ), u(t) = St(Snu0) and v(t) = St(f

m
n ), and denote

w = ũ− u− v = St(Snu0 + fm
n ) − St(Snu0) − St(f

m
n ).

Since u0 ∈ Bs
p,r and ‖fm

n ‖Bs
p,r

≈ 1, it’s easy to see that

‖Snu0, f
m
n ‖Bs+1

p,r
≤ Cρ2

n, (3.25)

with Cρ only depend on ρ := ‖u0‖Bs
p,r

, Then from Proposition 3.2 we know that

‖w(t)‖Bs
p,r

≤ Cρ2
neCρ2nθ

( ∑

0≤|a|,|b|≤2

w t

0
‖∂aSt(Snu0)∂

bSt(f
m
n )‖Lpdτ

)θ
. (3.26)

Notice that, by definition ∂bSt(f
m
n ) = ∂bSt(fn(x1 − m, · · · , xd)) = ∂bSt(fn)(x1 − m, · · · , xd), for

fixed n and any (t, x), considering that St(fn) is a smooth function decay at infinity, we have

lim
m→∞

∂aSt(Snu0)(x)∂bSt(fn)(x1 −m, · · · , xd) = 0,

|∂aSt(Snu0)(x)∂bSt(fn)(x1 −m, · · · , xd)| ≤ M |∂aSt(Snu0)|(τ, x) ∈ L1
(
[0, T ], Lp(R)

)
.
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By the Lebesgue Dominated Convergence Theorem, we have

lim
m→∞

w T

0
‖∂aSt(Snu0)∂

bSt(f
m
n )‖Lpdτ = 0 (3.27)

Then from (3.26),(3.27) we know that, for the fixed n and any t ∈ [0, T ]

lim
m→∞

sup
0≤t≤T

‖w(t)‖Bs
p,r

= lim
m→∞

sup
0≤t≤T

‖St(Snu0 + fm
n ) − St(Snu0) − St(f

m
n )‖Bs

p,r
= 0, (3.28)

with the same argument, we can also get that, for any fixed n and t ∈ [0, T ]

lim
m→∞

sup
0≤t≤T

‖St(Snu0 + fm
n + gmn ) − St(Snu0) − St(f

m
n + gmn )‖Bs

p,r
= 0. (3.29)

Combining (3.28) and (3.29), this yields (3.20).

With (3.17), (3.18) and Propositions 3.3 in hand, we can complete our proof of Theorem 1.2.

First of all, from the identity (3.18) we know that for any time t ∈ [0, T ]

‖St(u0 + fm
n + gmn ) − St(u0 + fm

n )‖Bs
p,r

≥ ‖St(f
m
n + gmn ) − St(f

m
n )‖Bs

p,r
− sup

m,t

‖Em
n ‖Bs

p,r
− sup

0≤t≤T

‖En,m‖Bs
p,r

(3.30)

Then, by (3.20) in Proposition 3.3, for the fixed n, we can find a sufficiently large mn such that

sup
0≤t≤T

‖En,mn
‖Bs

p,r
≤ 2−n.

combining this and (3.19) in Proposition 3.3, by (3.30) we get

‖St(u0 + fmn
n + gmn

n ) − St(u0 + fmn
n )‖Bs

p,r

≥ ‖St(f
mn

n + gmn

n ) − St(f
mn

n )‖Bs
p,r

− Cρ‖(I − Sn)u0‖Bs
p,r

− 2−n. (3.31)

As u0 ∈ Bs
p,r, that means ‖(I − Sn)u0‖Bs

p,r
→ 0 when n → ∞. For the small t ∈ [0, T0], we already

have (3.17), it follows from (3.31) that

lim inf
n→∞

‖St(u0 + fmn
n + gmn

n ) − St(u0 + fmn
n )‖Bs

p,r
≥ c0t, ∀t ∈ [0, T0]. (3.32)

And the sequences of initial data satisfy

lim
n→∞

‖(u0 + fmn

n + gmn

n ) − (u0 + fmn

n )‖Bs
p,r

= lim
n→∞

‖gmn

n ‖Bs
p,r

= 0. (3.33)

This complete the proof Theorem 1.2.
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dispersion, Phys. Rev. Lett., 80 (2007), 4173–4177.

[18] D. D. Holm, J.E. Marsden and T.S. Ratiu, Euler-Poincaré equations and semidirect products
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