
March 1987 LIDS-P- 1661

ON THE CONTROL OF DISCRETE-EVENT DYNAMICAL SYSTEMS

John N. Tsitsiklis2

ABSTRACT

We study a class of problems related to the supervisory control of a discrete-event system (DES), as

formulated by Wonham and we focus on the computational effort required for their solution. While

the problem of supervisory control of a perefetcly observed DES may be easily solved by dynamic

programming, it is shown that the problem becomes intractable (in the sense of complexity theory)

when a supervisor with a minimal number of states is sought. It is also shown that supervisory

control is an intractable problem, in general, when imperfectly observed systems are considered.

1. Research supported by the Army Research Office (grant DAAL03-86-K-0171) and by a NSF

PYI award, with matching funds from Bellcore Inc.

2. Room 35-214, Laboratory for Information and Decision Systems, Massachusetts Institute of

Technology, Cambridge, MA 02139.

1

MIT Document Services Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
ph: 617/253-5668 I fx: 617/253-1690
email: docs @ mit.edu
http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are
unavoidable flaws in this reproduction. We have made every
effort to provide you with the best copy available. If you are
dissatisfied with this product and find it unusable, please
contact Document Services as soon as possible.

Thank you.

, , , 1/, /4 "ave 77

%X~s v y Xe 4 | Ach PepZ- t1p 5 -/L'/

I. INTRODUCTION.

Discrete Event Systems (DES) have been introduced by Ramadge and Wonham [RW1J. Roughly

speaking a DES is a discrete time dynamical system such that, for each state, there is a number

of different transitions that may occur. Furthermore, it is assumed that there is a possibility

for control action through a supervisor who, at any given point in time, may prohibit certain

transitions from occuring. It is then natural to consider the problem of designing such a supervisor

satisfying certain specifications. Loosely speaking, the specifications that have been considered

in the literature amount to a requirement that the supervisor prohibits from occuring certain

(undesirable) sequences of events, while at the same time it allows some other (desirable) sequences

of events to occur. Naturally, the supervisor design problem becomes different when different

assumptions are made concerning the information available to the supervisor; for example the

supervisor may have full knowledge of the state of the DES (perfect information), or it may have

access only to some partial information on the state of the DES. Decentralized supervision by a set

of noncommunicating supervisors, each one possessing partial state information, leads to another

class of design problems.

A DES is very similar to a discrete time Markov chain, except that there are no assumptions

on the probabilities of the different transitions out of a given state. For this reason, the supervisor

design problem looks a little different from the traditional problems of Markovian decision theory,

for which dynamic programming provides a solution [B]. On the other hand Markovian decision

problems and the supervisor design problem for a DES are not completely unrelated. Consider the

supervisor design problem under a constraint that certain states must be avoided. We may assign

an infinite cost to the states to be avoided, zero cost to the remaining states, and assign arbitrarily

a positive probability to each possible transition out of given state, thus defining a Markov decision

problem. These two problems are closely related because any supervisor for the DES satisfying the

specifications corresponds to a finite cost policy for the Markovian decision problem. Other types

of specifications for the supervisor of the DES may be easily incorporated into the cost function of

a corresponding Markovian decision problem; see Section m for a more detailed exposition.

Given the above remarks, it is natural to suspect that the types of problems which can be solved

realistically within the DES framework (from a computational point of view) correspond to easily

solvable problems in Markovian decision theory. Thus, in the light of available results [PT], it

should be expected that problems with partial information are algorithmically intractable. One of

the aims of this paper is to justify and give a precise content to the above statement.

The paper is organized as follows. In Section II we introduce the definitions, notation and

terminology to be employed. In Section m we provide a brief background for the case of perfect

information. In Section IV we consider the question of the implementation of a desired supervisor

by a finite state machine with a minimal number of states. An exponential-time algorithm for this

problem is available [VW] and we show that the problem is NP-hard, which implies that it is highly

2

unlikely that a faster algorithm may be found. In Section V we consider a variety of supervisor

design problems when only partial information is available. While a special case of this problem,

studied in (CDFWI, is shown to be tractable, a number of negative results are derived for several

interesting problems.

II. PRELIMINARIES.

A DES G can be defined [RW1] as a quadruple G = (Q, E,6,q0), where Q is a finite set (state

space), qgo is an element of Q (initial state), E is a finite alphabet (used to label possible transitions

between states, also called events) and 6 is a partial function (i.e. which is defined only on a

subset of its domain) from Q x X into Q, which provides us with the dynamics of the system.t The

interpretation of 6 is the following: if 6(q,a) is defined, for some given q E Q, a E A, then it is

possible that, starting from q, a transition carrying the label a takes place and, in that case, the

next state is equal to 6(q, a).

Occasionally, we will find the following notation a little more convenient: for any q E Q, we are

given a set l(q) c A, the set of possible transition labels out of state q; in that case 6 is a function

(total, rather than partial) defined on the set UqEQ({q} x I(q)). In traditional systems-theoretic

terminology, we are dealing with a dynamical system with state q, subject to uncertain disturbances

a; the system obeys the dynamical equation

q(t + 1) = (q (t),o(t)); q(O) = q0,tt (1)

and the disturbances a(t) are constrained to satisfy

o(t) e I(q(t)), Vt. (2)

A string is the concatentaion of a finite (possibly empty) sequence (a(O), ... , sigma(t)) of elements

of E. Let e denote the empty string and let E' denote the set of all strings. We extend the function

6 to a partial function from Q x E' into E by means of the following recursive definition: 8(q, e) = q

and 6(q,au) = 6(6(q, .),o), if &(q,) is defined and o E E(8(q,a)). In particular, 6(q,a) is equal to

the current state, if the initial state is equal to q and the sequence of transitions represented by

the string s has occured, assuming that this sequence of transitions is allowed by (2).

t Actually the definition usually given is somewhat more involved because it includes a special

set Q,. of marked states ('accepting states', in the language of automata theory). We chose to

omit them from the definition in order to simplify notation. Let us just mention here that the

computational complexity of the problems considered in this paper is unaffected by the exclusion

of marked states from the DES model.

tt Time here is just a discrete variable used to index events and need not be related to 'real

time".

3

Any subset of S' is called a language. We define L(G), the language generated by G, as the set

of all strings a such that 6(qo, s) is defined. Notice that L(G) always contains the empty string.

We now provide for the possibility of controlling a DES. We assume that the set E is partitioned

into two disjoint subsets Eu and E,. The set E, is interpreted as the set of events which a supervisor

may disable. We define a supervisor for G as a function 7y: E' - 2 , such that 7(s) D A ,, ¥s E I " .

The set 7(e) is the set of events that are allowed by the supervisor to occur, as a function of the

string a of past events. Accordingly, in the presence of a supervisor 7, we obtain a new dynamical

system whose state again satisfies (1), but the constraint (2) now becomes

a(t) E 7'(a(O)... (t - 1)) n E(6(qo, a(O)...o(t - 1)) = -(a(O)...a(t - 1)) n (q(t)). (3)

A DES G together with a supervisor -7, are called a supervied system. Given a supervised system

(G,7), we define the language L(G,'7) as the set of all strings in E* that can be generated by that

system. More formally, L(G,'7) is the set of all strings a(O)...o(T) E L(G), which also satisfy (3),

for each t < T, the empty string being included.t

In general, a supervisor need not have access to the entire string of past events; this may place

a restriction on the set of supervisors under consideration. Consider a function M : -- I U {e},

where Ii is another finite alphabet and where e denotes the empty string. We call such a function

a mask. We interpret M(ao(t)) as the information provided to the supervisor on the value of

a(t). However, the possibility that M(a(t)) equals the empty string allows a situation where the

supervisor does not learn that a transition has occured. We extend M to a mapping from I' into

f' by letting M(a(O)...a(t)) be the concatenation of M(or(O)),..., M(oa(t)). A supervisor 7 is called

an M-supervisor if there exists some function '7M: 'n - 2E such that .7(8) = .7M(M(s)), V¥ E 2'.

Whenever we are given a mask M as above and we are allowed to choose '7 only among the set of

M-supervisors, we say that partial information prevails; if no such constraint is imposed, we say

that perfect information prevails.

A special class of supervisors is the class of state feedback supervisors. A supervisor -7 belongs

to this class if there exists a function '7r :Q - 2: such that 7(s) = -r(6(qo,s)), Vs E L(G).

Another interesting clas of supervisors is the set of finite state supervisors. A supervisor t

belongs to this clam if there exists a DES G = (Q, 4o, E, S) and a function '7R :(2E such that

a) Q is a finite set; b) 5 is a total function; c) .7(s) = '7R($(qo,s)). Any such (, together with the

mapping .7R is called a finite state realization of 7.

Let us point out that if Q is finite then any state feedback supervisor is also a finite state

supervisor. The corresponding DES G is just a duplicate of the supervised DES G; it keeps trackl

of the state q(t) of G and at each time instance it choose its supervisory action appropriately.

t Let us point out that 7 could be a partial function defined only on the subset of SF consisting

of those strings whose occurence is possible, that is on L(G, 7). However, we assume that 7 is total

to simplify notation and the discussion.

4

We shall use certain concepts from complexity theory which we mention briefly. We only consider

'decision problems" that is problems in which a yes/no question is posed. As usual, P (respec-

tively, NP, PSPACE) stands for the class of such problems solvable by a polynomial time (resp.

non-deterministic polynomial, polynomial memory) algorithm. A problem is NP-complete (resp.

PSPACE-complete) if it belongs to NP (resp., PSPACE) and any problem in NP (resp. PSPACE)

may be reduced to via a polynomial time transformation. A problem is NP - -hard, PSPACE-

hard), if some NP-complete (resp. PSPACE-complete) may be reduced to it by a polynomial time

transformation. We have P c NP c PSPACE and it is widely conjectured that both inclusions

are proper. If this conjecture is true, then there do not exist any polynomial time algorithms for

NP-complete, NP-hard or PSPACE-complete problems. The reader is refered to [PSI for a more

detailed and precise exposition of these concepts.

III. SUPERVISOR DESIGN: PERFECT INFORMATION.

A representative supervisor design problem introduced in [RW1] is the following: given three

DES's G, C 1 , G2, employing the same alphabet Z, we are asked to determine whether there exists

a supervisor 7 such that

L(G1) C L(G,'7) C L(G2).

We outline a solution to this problem.

Any DES may be modified so that the corresponding transition function is total. In particular,

given a DES G = (Q,q0,E,6), we define a new DES G' = (Q u {*},qo, E,'), where * is a new

(trap) state. We let 6'(q,o) = 6(q,oa), whenever 6(q,oa) is defined and 6'(q,o) = *, otherwise.

Notice that 6'(q, a) = · if and only if a 0 L(G). We assume that all three DES's introduced above

(G, G 1 , G2) have been so augmented.

Consider a new DES consisting of the augmented versions of G, GC, G 2 , running simultaneously,

under the influence of the same input sequence (a(0),n(1),...) and starting from their respective

initial states. Let q'(t), qg(t), q(t) denote their respective states at time t. We now interpret

our supervisor specifications as state constraints. The inclusion L(G 1) c L(G) requires that if

(a(O), .. ,o(t - 1)) E L(G1) (that is, if q(t) # *), then (o(O.), .,(t - 1)) E L(G) (that is, q'(t) #

*). Therefore, this constraint is captured by assigning infinite cost to any state (q', q', q') of the

composite DES such that q' l6 * and q' = *. Similarly, the constraint L(G) c L(G 2) is equivalent

to assigning infinite cost to any state (q', q,q') such that q' # * and q' = *. Clearly, the original

supervisor design problem has a solution if and only if there exists a control law for the above defined

composite system under which the cost (starting from the appropriate initial state) is finite, for any

possible sequence of events. This would be a standard dynamic programming problem: the only

difference is that we are dealing with a worst case (minimax) criterion instead of an expected cost

criterion. However, it is well known that the dynamic programming algorithm is equally applicable

to such minimax problems and has polynomial computational requirements [B]. As this is a well-

5

known algorithm, we omit its detailed description. In fact the structure of this problem is so simple

that the dynamic programming algorithm simplifies to a connectivity test; still, it is important to

realize that the computational requirements of this problem are polynomial because it is a special

case of a control problem solvable by dynamic programming.

An alternative design criterion that has been proposed is as follows: the objective is now to

find a supervisor r- such that L(G,7) is maximal, subject to the constraint L(G,7) C L(G 2).

This problem can be also formulateA ,-o aproblem amenable to dynamic programming. We do

not provide the details which are rather trivial, but the key idea is the following: we express

the requirement L(G, 7) c L(G 2) as a state constraint (similarly with the previous problem) and

we enforce maximality of the supervisor by introducing a penalty term which increases with the

number of disabled transitions at each stage.

Notice that we are not suggesting that a reformulation to a traditional control problem be used

in order to construct an algorithm for supervisor design problems such as the above. The value of

the above arguments is that they prove with minimal effort that these problems are polynomially

solvable.

IV. SUPERVISOR REDUCTION.

Let there be given a DES G and suppose that by means of some design Aure we have

chosen a supervisor 7. Suppose, furthermore, that 7 is a finite state -uDervisoz an

infinite number of alternative finite state realizations of such a supervisor, we may be iL. . .

a realization with a minimal number of states. This is the problem of optimal supervisor reduction

and has been studied in [VW]. This reference provides an algorithm for constructing such a minimal

supervisor. However, this algorithm requires, in general, a computational effort which is exponential

in the number of states of G. While a polynomial algorithm would be desirable, it is shown below

that this is very unlikely, because the problem under consideration is NP-complete.

In fact, we prove NP-completeness for a special case of the supervisor reduction problem: that

is, we restrict to the case where the supervisor 7 to be reduced is a state feedback supervisor. We

can now formulate precisely the problem of interest:

Supervisor Reduction: We are given an integer L, a finite state DES G and a state feedback

supervisor '7 (in the form of a state feedback function ry : Q i- 2C). Does there exist a finite

state supervisor '7 which has a finite state realization with no more than L states and such that

L(G,-) = L(G,=7,)?

Theorem 3.1: 'Supervisor Reduction" is NP-complete.

Proof: Notice that if L is larger than the cardinality IQj of the state space of C then the answer

is always 'yes". Thus, we assume, without low of generality tha L < IQI.

We first show that "Supervisor Reduction' belongs to NP. If we are dealing with a 'yes' instance

a certificate testifying to this effect is a provided by a realisation of a finite state supervisor 7I having

8

the desired properties. We only need to show that these properties may be tested in polynomial

time. What is needed is a polynomial time test for deciding whether L(G,#7) = L(G,'7 1). Since

we are given a feedback map ?F, which determines '7, we have available a DES generating L(G, '7).

Similarly, having selected a finite state realization of 'y7, we have available a DES generating

L(G,'7 1). Furthermore, each one of the above two DES's has at most IQI2 states. We now use

the fact that equality of the languages generated by two DES's may be tested in time polynomial

in the cardinality of their state spaces. (A direct demonstration of this fact may be based on the

argument provided in Section III, where we have shown that dynamic programming may be used

for deciding whether one language contains another.)

We now proceed to show that the problem is NP-complete by reducing to it the graph coloring

problem, which is known to be NP-complete [PS]. The latter problem is as follows:

Graph Coloring: Given an undirected graph (V, E) and a nonnegative integer K, does there exist

a function f: V - {1,...,K} such that f(u) # f(v) whenever (u,v} E E?

Let there be given a graph (V, E) and an integer K, corresponding to an instance of the graph

coloring problem. Without any loss of generality we assume that there exists at least one arc

adjacent to each node. We now define a corresponding instance of 'Supervisor Reduction'. We fist

define the state space Q. There will be two states vi, vi, corresponding to the i-th node of the graph

V. We let qo, the initial state, be equal to vl. The alphabet I is equal to {o, ... ,u,,}U{a,: e E E},

where n is the cardinality of V. The transitions of the unsupervised DES are as follows: for any

state q E Q, we have 6(q, a,) = v,; also, if e = {v,v}i), then 6(q,e) is defined if and only if q = v;

or q = vj, and 5(vi,a,) = v', 6(v, a,) = v. The state feedback supervisor '7 is described by the

state feedback map 'F: Q -" 2 E, defined by '7F(vi) = E, Vi, and '7F(v) = E - {oi}, Vi. In other

words, whenever a transition a, occurs, with e = {vi, vi}, the supervisor must be able to tell apart

the states v' and v' so as accordingly to disable as or ay. We also let L = K + IVI.

Suppose that the graph (V, E) is K-colorable and that f is a coloring function. We construct a

supervisor with IVI + K states by partitioning Q into IVI + K disjoint subsets. For each color k, we

have one subset Sk containing all states vi such that f (v) = k; also, for each i, we have one subset

consisting of the single element v'. Each state of the supervisor corresponds to one of the above

subsets in the partition of Q and the feedback law used by the supervisor is the appropriate one:

it disables ai if and only if the state of the supervisor corresponds to the subset {vf}. It remains to

be shown that the supervisor is always able to generate its next state appropriately. Whenever a

transition ai occurs, we know that the next state is equal to vi; accordingly, the supervisor moves to

the state Sf(,,). If a transition of the form a, occurs, with e = {i, j}, then the supervisor infers that

the previous state of the system was either vi or vi. Since e E E, it follows that f (vi) 9 f(vi) and

therefore the previous state of the supervisor is sufficient for these two states to be distinguished.

Therefore, there exists a supervisor with K + IVI states.

Suppose now that there exists a supervisor with K + IVI states. For each i there must exist at

7

least one supervisor state at which ai is disabled. Therefore, there exist at most K supervisor states

at which no ai, is disabled. We number these states from 1 to K', where K' < K. Suppose that the

first transition of the DES (starting from the initial state) is ai. Then, the first state of the DES is

equal to v;. Since no aj should be disabled at v,, it follows that the state visited by the supervisor is

one of those states at which no aj is disabled. Accordingly, we define a function f : V - (1, ... , K}

by letting f(v,) = k if and only if S(0o, a) = k, where 6 and 4o are the state transition function

and the initial state, respectively, of the supervisor. We will show that f(v,) # f(vy), whenever

{i,j) E E. Suppose the contrary. Then, there exist two nodes v,, vu, such that f(vi) = f(vy) and

{i,j} E E. Consider the two scenarios whereby the first two transitions of the DES are (as, a,) and

(ua, o,), respectively. Since f(v,) = f(vy), the supervisor moves to the same state after the first

transition; since the second transition carries the same symbol, the supervisor state is the same

under either scenario after the second transition occurs. However, after the second transition, the

state of the DES is v' for one 'io and vj for the other and the supervisor must disable different

a transition in each ca contradiction which shows that f(v,) i- f(vy), V{i,} j)E E and

shows that (V, E) is XI

V. SUPERVISOR DESIGN: PARTIAL INFORMATION.

Let M be a mask, as defined in Section II. We consider here certain supervisor design problems.

similar to those considered in Section III, except for the additional requirement that the supervisor

designed is an M-supervisor. The simplest such problem addresses the question whether there

exists some M-supervisor '7 such that L(G,'x) = L(G 1), where G1 is a known DES. This problem

has been studied in [CFDV] where the following result is proved:

Proposition 5.1: Given two DES's G, G1 such that L(G 1) c L(G) and a mask M : E f- u {*}

there exists an M-supervisor '7 such that L(G, '7) = L(G 1) if and only if the following two properties

hold:

(a) There exists a supervisor -7 such that L(G,7) = L(G1);

(b) If 8,, ' L(G 1), a E E., a E L(G 1), ,'a E L(G) and M(8) = M(a'), then a'a¢ E L(G 1).

We now show that the conditions in Proposition 5.1 may be tested in a computationally efficient

way:

Proposition 5.2: There exists a polynomial time algorithm (polynomial in the cardinalities of the

state spaces of G and G 1) for deciding whether the conditions in Proposition 5.1 are valid.

Proof: (a) Testing this condition is equivalent to solving the first problem of Section m, for

the special case where G1 = G2, and can be therefore done in polynomial time. (b) Let G =

(Q,qo,E,6), GI = (Ql,qO,E,6I) and let E(q), E1 (ql) be the allowed transitions under C, G 1

respectively, when the current state is q, q1 , respectively. Consider the following game: we start as

the 'state" (qd, qo, qo). In general, at each point in time our state is a triple (q, q2, qs) e Q I x Q x Q

and we have the following options: choose some a E 1 (q 1), choose some a' E E(q 3), or choose both

a oa and a a' as above. The rules of the game are as follows: if we have chosen some a E E (q 1) such

8

that M(a) # (, then we must simultaneously choose some a' E E(q3) such that M(o) = M(a').

Similarly, if we have chosen some a' E E(qS) such that M(oa') -# , then we must simultaneously

choose some a E E(ql) such that M(a) = M(a'). After we make our choices, the states move as

follows: q' does not change if no a is chosen; otherwise it moves to 61(ql,a). The states q2 , qg3, do

not change if no a' is chosen; otherwise, q3 moves to 6(q3,',) and q2 moves to 61(q 2 ,a'), except if

a' 0 Z1 (q 2), in which case the game terminates. We win if and only if the game terminates and

the a' causing the termination is equal to the last a chosen and belongs to s,.

Suppose that there exists a winning strategy in this game. Let i = (a(O),...,a(m)) and

9' = (a'(O),...,'(n)) be the sequences of a's and a' 's used in our winning strategy. Let 8 =

(a(O),...,a(m- 1)) and a' = (a'(O),...,a'(n - 1)). Since we win, we have a(m) = a'(n) = a,

for some a E EC. Theref-'- - = sa and I' = a'o'. Because of the rules of the game, we have

M(s) = M(s'). Furtbh L(GC), because at each time we choose a a belonging to I:(q1).

Similarly, since the i :rminated before a'(n) was chosen, it follows that in each choice

except for the last one we na1 c - Il(q 2) and therefore s' E L(C,). Sr -

also have 8' E L(G) and since a'(nj) E (qS), it follows that s'a E LiJ). On

we have won the game, we must have a 0 IE1 (q 2). Therefore, s'a' L(G1) and c_._i-"on ik A

violated.

The above argument can be reversed: if there exist s, s', a for which condition (b) is violated

then we use them to define a winning strategy in the above game. Thus (b) holds if and only i

there exists no winning strategy in our game.

It follows that it is sufficient to devise an algorithm which determines if there exists a winning

strategy for the above game. This is just a deterministic optimal control problem on a finite state

space, with state-dependent control constraints. Dynamic programming applies and provides t

polynomial time algorithm for solving it, which concludes the proof. ·

Proposition 5.2 is a positive result, especially given the fact that control problems with partia

information are often intractable. Notice, however, that we have only found a way for decidin[

whether a M-supervisor exists, but we do not have yet an efficient method for constructing it. It

is shown in [CDFV] that if there exists a M-supervisor 7 such that L(G,'y) = L(G1) and if G

GC have finite state space, then the supervisor 7 may be chosen to be a finite state supervisor. P
reasonable choice for the state space of '7 is to let it be equal to the power set of Q x Q1, where Q

Q1 are the state spaces of C, G1 , respectively. With this choice, a state of the supervisor indicate!

the set of all states of G,G 1 , which are possible, given the available information. However, sucht

state space has cardinality which is exponential in the size of the state space of G and therefor(

an exponential amount of computational resources is required to construct it. Given the positiv,

result in Proposition 5.2, one might hope that a supervisor with a polynomial state space may b,

always found. The family of examples provided below shows that this is not so.

Example: Let us fix some positive integer n. The DES G to be supervised has an asociatec

alphabet E = {(u,...,u,)} U {dl,...,d,,} u {0,1) u ,...,a,). The language L(G) generated by

G consists of all prefixes of strings of the form (a(O),...o(n + 2)) with the following properties:

o(0) E {ul,...,un}u{dl,..., dn}; f(i) e {0, 1}, for i = 1,...,n and i = n+2; a(n+ 1) E {a,, ... , ca,}).
Furthermore, if o(O) = u,,, then (k) 1 and o(n + 1) = a,,; also, if o(O) = d;,, then a(k) = 0 and

o(n +f) = oa.

Notice that L(G) is a finite language and therefore may be generated by a finite state DES. In

fact, we may choose the state space of G to be as small as O(n2). This is done as follows: except

for an initial state qo, we let the other states be pairs (z, t) where t counts the number of transitions

made so far and where z is equal to a(O). Figure 1 presents a state transition diagram for the case

n =3.

We observe G through a mask M defined as follows: M(uk) = M(dk) = c, Vk, and M(a) = a if

a = ak or a E {0, 1}. Let our target language L(G 1) be the same as L(G) except that if a(0) = uk,

we then require that a(n + 2) = 1 and if o(O) = dk, we require a(n + 2) = 0. Notice that G1 is a

finite state DES: it coincides with G except that we delete one of the two possible transitions out of

any state that can be reached after exactly n + 2 transitions. (The deleted transitions correspond

to the heavy lines in Figure 1.)

It is easy to see that there exists an M-supervisor such that L(G,7).= L(G1): the supervisor

remembers o(l),...,o(n). When o(n + 1) occurs, the supervisor observes ak, for some k, and

retrieves the value of a(k). If a(k) = 1, (respectively, 0) it decides that the unobserved transition

a(0) was equal to uk (respectively, dk), and decides accordingly which transition to suppress. This

supervisor uses 0(2 ") states, since at time n + 1 it remembers n bits of information and intuition

suggests that no reduction of its state space is possible. We prove this formally. For any string

* = (a(l),...,a(n)), let 9(s) denote the state of the supervisor before a(n + 1) is observed. The

transition which is not disabled after a(n + 1) is observed is therefore a function of a(n + 1) and

g(s). Therefore, there exists some function f such that:

(i) f(g(s), a) = 1, if a(k) = 1;

(ii) f(g9(),at) = 0, if a(k) = 0;

Let a, a', be such that s # a ' and g(a) = g(a'). Assume that a and a' differ in their k-th symbol

Then, we must have f(g(s),t,) # f(g(a'), aj), which implies that g(a) g (e'). This shows that

g is a one-to-one mapping and therefore its range has cardinality 2". Hence, the state space of

the supervisor must have cardinality at least 2". We have thus constructed a family of partially

observed supervision problems (parameterized by n) for which a M-supervisor exists (for each n)

the state space of the DES being supervised has cardinality polynomial in n, but the state space of

any M-supervisor must have cardinality exponential in n. Furthermore, this happens even though

there exists a supervisor (which is not a M-supervisor) with small (polynomial in n) state space

The supervisor design problem of Propostion 5.1 seems to be about the only partial informatioi

10

problem for which something can be done in polynomial time. We justify this claim by studying

three variants of the imperfect information problem, all of which are found to be algorithmically

intractable.

Problem A: This problem is very similar to the one considered in Section III. Given three finite-

state DES's G, GC, C 2 , and a mask M, does there a M-supervisor '7 such that L(G1) c L(G,'7) c

L(G 2)?

Proposition 5.3: Unless P=NP, there is no polynomial time algorithm for Problem A. (In par-

ticular, the complement of

Proof: We reduce the complement of the 3SAT ('three-satisfiability") problem of propositional

calculus to Problem A. In this problem we are given n literals (Boolean variables) vu,...,v, and K

clauses C 1 ,...,CK, and we are asked whether there exists an assignment of truth values to the literals

so that all clauses are true. We now assume that an instance of 3SAT is given and we construct

an equivalent instance of Problem A. We start by describing the DES G. It has a starting state

q0, out of which K transitions may happen, associated with the symbols ul,...,uK, and leading

to different states. Suppose that uk was the first transition. Then, the next n transitions carry

labels 0 or 1. (The label of the i-th such transition will be associated with a truth value of the

literal vi.) After these n transitions are completed, the next state is one of two possible states zX

or x'. In particular, it is equal to zk if and only if the sequence of zeroes and ones associated with

the previous n transitions are such that the k-th clause is true. Although we have not

transition diagram for G, it is easy to see that there exists a DES with the above describ

and with a number of states polynomial in K and n. Figure 2 displays such a realizatloL, tor an

example in which K = 1, n = 4.

Let the mask M be such that M(uk) = c, Vk, and M(O) = 0, M(1) = 1. Although we have not

completed the definition of G, we pause to point out a property of that part of G that we have

constructed.

Lemma 5.4: If the instance of 3SAT is satisfiable, then there exist strings s1, ... , OK of length n + 1

such that 5(qo,ak) = Zk and M(ak) = M(ai), Vj, k. The converse is also true.

Proof of Lemma 5.4: Suppose that the instance of 3SAT is satisfiable and let a be a string (of

length n) of seroes and ones (corresponding to an assignment of truth values to v1, ... v,) such that

all clauses are satisfied. Let sk = uka. It is easy to see that these strings have the desired property.

For the converse, suppose that such strings 1I,...,s exist. Since M(as) = M(S.) it follows that *s

and si agree on all except for their first symbol. Furthermore, since 6(go,s h) = zk, it follows that

the first symbol of s* is uk. Now, since 6(qo0 ,s) = Zk (rather than z'), for each k, it follows that

the last n symbols of any a8 correspond to an assignment of truth values which satisfies all clauses.

We now complete the description of G and of the supervisor specifications. Let there be no

transitions possible out of 4z. The transition diagram starting from the z,'s is depicted in Figure

3. We assume that M(rk) = rk and M(0o) = or, M(wk) = we. This completes the description of

G and M.

The supervisor specifications are as follows. The transitions that are allowed to be disabled are

all transitions labeled by ak and the transition wk out of state Zk,K. However, we require that

the particular transition vk; leading into state zk,, is not disabled. These specifications are of the

form L(G,7) v L(G 1), for a DES G 1 with the same transition diagram as G, except that certain

arcs are deleted. Finally, we require that the transition wk out of state xk,K be disabled. This

requirement is of the form L(G, y) c r t'2). Notice that our specifications for the wuk's amount to

a requirement that the supervisor be able to tell apart the states z1,K, , zK,K.

We claim that a M-supervisor sat'Qfving the above specifications exists if and only if we have

started from a 'no" instance of the 3SAT problem. Indeed suppose that we started with a 'no"

instance. Using Lemma 5.4, after the first n + 1 transitions there is sufficient information available

to exclude at least one state. Say that zk is excluded. Then, the supervisor does the following:

at each time n + j, j = 1, ... ,K, it disables no transition, except that at time n + k it disables

ak. This is legal (conforms to the specification L(G 1) c L(G, '7)): since z, has been excluded, the

state at time n + k is known to be different than zk,,-l. With ok disabled, the transition that

occurs at time n + k reveals the identity of the current state: if rt is observed, the supervisor infers

that the next state is xz,k and when eventually state zi,K is reached the supervisor knows that

this is the case. Then, the supervisor is able to disable wi, thus conforming to the specification

L(G,-) c L(G 2).

For the converse, suppose that we were dealing with a 'yes" instance of 3SAT. Then, if a string

8 k of transitions occurs, where 8k is as in Lemma 5.4, then the supervisor has no information that

could be used to discriminate between the z,'s. Since l1 cannot be disabled when the state is zi

and since xz is a possible state given the available information, the supervisor cannot disable al.

(This is to conform to the specification L(G 1) c L(G,7).) Assuming that l1 actually occurs, then,

at the next stage, the supervisor does not know whether the state is equal to z 2, 1 and therefore

cannot disable o2. By repeating this argument we see that there exists a scenario under which none

of the ak's is disabled by the supervisor. Thus, at time n+ 1+ K, the supervisor has no information

useful in distinguishing between the states zk,K and therefore cannot disable the appropriate wur,

thus violating the specifications. This concludes the proof of Proposition 5.3. ·

It is quite likely that a stronger result can be proved, although we have not been able to do so:

that Problem A is actually PSPACE complete.

Problem B: Given two state DES's G and GC, and a mask M, does there exist an M-supervisor

7 such that L(G, '7) c L(G2) and such that 'deadlock is impossible', meaning that we never come

to a situation where all transitions out of the current state are disabled.

The 'no deadlock' specification is equivalent to requiring that for every a E L(G, 7) there exists

some a E M such that sr E L(G,"7). Such a specification cannot be expressed, in general, in the

form L(G 1) c L(G, 7). We will show that Problem B is intractable even for the special case where

12

GC = G. In this case, the equality L(G,'7) c L(G 2) is trivially true and we are dealing with the

following problem.

Problem B': Given a DES G does there exist an M-supervisor '7 such that deadlock is impossible?

Proposition 5.5: Problem B' (and, a fortiori, Problem B) is PSPACE-hard.

Proof: The proof is patterned after the proof that the partial information Markov decision problem

is PSPACE-complete [PT], with a few differences. It consists of reducing the QSAT problem

(quantified satisfiability) of propositional calculus to Problem B. An instance of QSAT consists of

2n Boolean variables vl,..., v,, and K disjunctive clauses C 1,...,CK, with three literals per clause

and the problem consists of deciding whether 3uvlv 2v...93v1,_l1Vv2,[C 1 A C 2 A ... A CK], where A

denotes conjunction. (The existential quantifiers 3 are alternating with the universal quantifiers V

in the above formula.) We think of this problem as a game: an opponent assigns values to the even

variables v2 , V4, ... , v2n and we are to assign values the odd variables vl, Vs, ..., V2,,-l, as functions

of the past choices by the opponent; our objective is to have all the clauses satisfied.

Given an instance of QSAT we now construct an instance of Problem B'. The alphabet E is

{uo, U1, ... , uK}U {rO, , rol, Ir}. We let E. = {ro,rl}. The mask M is such that M(u,) = c, Vk
each ri, r' is perfectly observed. We introduce an auxiliary function f defined by f(rc 0

and f(ri) = f(r') = 1. Accordingly, a sequence of 2n transitions not involving tht zy be

associated with a unique assignment of the variables l,, ,.

There is an initial state qo out of which any one of the transitions ul, ..., uK may occur, leading

to states zo0,..., zK, respectively. However, M(uk) = c, Vk, so that the state q(1) after the first

transition is unknown. (We may think of this as having the opponent choose a clause, but without

revealing her choice.) The state transition diagram starting from any zk, k = 1, ... ,K does not

involve any ui's and is such that the state q(2n+ 1) is a 'bad' state bk (respectively, a 'good' state

g9) if-the assignments v- = f-(a(k)) make the k-th clause true (respectively, false). (This is similar

to the construction in Proposition 5.3 and is illustrated in Figure 4, for the case n = 2.) There

are no transitions possible out of the bad states bk, thus guaranteeing deadlock, whereas there is a

transition w from every Og to itself. Thus, deadlock avoidance is equivalent to guara

the state eventually reaches one of the states gb, or, equivalently that the clause sel

opponent is satisfied. Since the clause selected is not known (because M(uk) = e, Vk), we shout..

satisfy all clauses. Notice that at odd times t the supervisor may disable ro or rl, which corresponds

to an assignment to the variable v,, whereas at even times t the supervisor has no control, which

corresponds to letting the opponent fix the value of v,.

The proof will be completed by showing that such a supervisor exists if and only if we are dealing

we a 'yes' instance of QSAT. Suppose that we have a 'yes' instance of QSAT. Thus, there exists

a strategy through which at any odd time t = 1,3,...,2n - 1, we assign a value to vt (equivalently,

the supervisor enables exactly one of r0o or rl), a a function of past assignments, so that every

clause is satisfied. This guarantees that the bad states bi are avoided, for each k.

13

For the converse, suppose that we have a 'yes' instance of Problem B; that is, there exists a

supervisor conforming to the specifications. Since deadlock is prohibited, the supervisor enables

at least one of ro, rl, at any odd time. Furthermore, if a supervisor exists, then there exists a
supervisor which never enables both r0 , ri. (Enabling both simultaneously amounts to leaving one

more variable to the control of the "opponent" and this cannot be beneficial.) The strategy of
this supervisor for deciding which r, to enable at each odd time t then determines a strategy for
assigning a value to the variable vt so as to satisfy all clauses, which proves that we have a "yes"

instance of QSAT and completes the proof. -

Problem C: Given a finite state DES G, two masks Mi: -. II U ({), i = 1, 2, and a finite state

DES G, whose symbol alphabet is II, does there exist an Ml-supervisor y such that M 2(L(G,<)) =

L(Gi)?

Here M 2(L(G, ')) stands for the language consisting of the images of all strings in L(G, 7), under

the mapping M 2 . This is a reasonable design criterion if our performance specifications depend on

the string of transitions s through some function M 2 . That is, instead of constraining $ directly, we

only constrain M2 (s). Such a specification may be used, for example, if want to impose a condition

that the state of G eventually reaches a special state q', but we do not care about how it gets

there.

Proposition 5.6: Problem C is PSPACE-hard.

Proof: We use exactly the same reduction as in the proof of Proposition 5.5. We

by M 2(w) = w and M 2(a) = c, VoA uw. We impose the specification M 2(L(G
is easy to see that this specification is equivalent to the no-deadlock specification we nad in the

context of Proposition 5.5. Therefore Problem C is also PSPACE-hard, for the same reasons..

REFERENCES

[B] Bertsekas, D.P., Dynamic Programming and Stochastic Control, Academic Press, 1976.

[CDFV] Cieslak, R., Desclaux, C., Fawaz, A., Varaiya, P., 'Supervisory Control of Discrete-Event Pro-

cesses with Partial Observations", Memorandum M86/63, Electronics Research Laboratory, Uni-

versity of California at Berkeley, 1986.

[PSI Papadimitriou, C.H., Steiglitz, K., Combinatorial Opimization: Algorithma and Complezity,

Prentice Hall, 1982.

IPT] Papadimitriou, C.H., Tsitaiklis, J.N., 'On the Complexity of Markovian Decision Processed, to

appear in Mathematica of Operations Research.

[RW11 Ramadge, P.J., Wonham, W.M., 'Supervisory Control of a Clas of Discrete Event Processes",
Systems Control Group Report No. 8515, University of Toronto, 1985.

[RW2] Ramadge, P.J., Wonham, W.M., 'On the Supremal Controllable Sublanguage of a Given Lan-

guage", Systems Control Group Report 8312, University of Toronto, 1984.

[VW] Vaz, A.F., Wonham, W.M., 'On Supervisor Reduction in Discrete-Event Systems', Interna-

14

tional Journal of Control, 44, 2, 1986, pp. 475-491.

15

0 0 0

U ,-, ,,2

16 t
0 0

~-(O) c(M) or(2) cr(3) cr(4) or(5)

o-(n) o'(n+i.) or(n+2)

Figure 1

1 6

O 0 0 0

qO 0

An example with n = 4, K = 1. The clause is (vI v 02 v v4). Notice that the state moves to the

upper row once the clause is satisfied.

Figure 2

17

Fgwe 3 r

'I~~C =~'Cf . A

*~ - * ~m * 6

0 0

"
j

m 0

T .r

Figure 3

18

To ' t r,

~'09o ~ ~ ~'o

An example of the reduction in Proposition 5.5. Here n = 2 and there is a single clause (vl v 02v v4).

Figure 4

19

