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Abstract

We analyze a jump linear Markov system being stabilized
using a linear controller. We consider the case when the
Markov state is associated with the probability distribution
of a measured variable. We assume that the Markov state
is not known, but rather is being estimated based on the ob-
servations of the variable. We present conditions for the
stability of such a system and also solve the optimal LQR
control problem for the case when the state estimate update
uses only the last observation value. In particular we con-
sider a suboptimal version of the causal Viterbi estimation
algorithm and show that a separation property does not hold
between the optimal control and the Markov state estimate.
Some simple examples are also presented.

1 Introduction and Motivation

Jump linear Markov systems can be used to model a wide
variety of dynamic systems. Fault-prone dynamic systems
may experience abrupt changes in their structure and pa-
rameters, caused by phenomena such as component failures
or repairs, changing subsystem interconnections, and abrupt
environmental disturbances. Such systems can be modeled
as operating in different forms [3], where each form cor-
responds to some combinations of these events. Another
area where jump Markov systems are proving useful is in
the tracking community, where the standard problem is that
of state and mode estimation. Ideas like “controlling” the
transmitted waveforms from radars to minimize errors in
tracking [9] rely on jump Markov systems to tackle settings
in which maneuvers are allowed. Recently, these systems
have also gained attention in their ability to model effects of
communication networks and/or channels present between
remote sensors, actuators and processors. Random time-
delays and error exponents introduced by imperfect com-
munication links can be modeled as a Markov chain. The
questions of stability and optimal control of the plants uti-
lizing such links, thus arise naturally.

As an example of how jump linear Markov systems might
be useful to model systems being controlled over a network
or a communication channel, consider the system shown in

Figure 1. The figure represents a system in which the sensor
and the controller communicate over a medium which intro-
duces random delays. The medium can be a bus shared with
other devices, or a network where routing protocols intro-
duce random delays, or a wireless channel in which proto-
cols like Bluetooth introduce random latency delays before
succesful transmission. If the delays being introduced can
be modeled by a Markov chain [7], analysis techniques for
jump linear Markov systems apply immediately.

Actuator Plant Sensor

Network
Channel /Controller

Figure 1: General system in which the sensor and the controller
utilize an imperfect communication channel or a net-
work to communicate

As another example, consider the same system with the
communication channel modeled as a wireless channel in
which an Automatice Repeat Request (ARQ) protocol like
that of Bluetooth is not used. Then we can model the chan-
nel as a Markov model in which the various states corre-
spond to different SNR values [10]. Corresponding to each
SNR value, we will have a different probability of error for
any given modulation scheme. The system can again be
analyzed using the results of jump linear Markov system
analysis.

Because of their importance, jump linear Markov systems
have been studied and analyzed extensively. Discrete-time
versions of the jump-linear quadratic (JLQ) optimal control
problem were solved for finite-time horizons in Blair and
Sworder [2]. Ji and Chizeck [5] studied the problem in de-
tail for the case where system parameters were determined
by a Markov chain. Concepts like stability and controlla-
bility were defined for a Markovian jump linear system and
the JLQ problem was solved. Luck and Ray [6] consid-
ered a system in which delays were governed by a Markov
chain and presented a simple scheme to reduce the system
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to a time-invariant case by introducing buffers of the same
length as the worst case delays. Nilsson and Bernhards-
son [8] generalized the results of Ji and Chizeck to the case
where the Markov chain determines the probability density
function of the variables rather than the values of the vari-
ables themselves.

However, all the above approaches assumed the Markov
state to be known. This assumption can severely limit the
utility of the whole Markov model. In a more practical sce-
nario, a Markov state estimation algorithm would typically
be used. In this paper, we extend the above results to this
case. We have been able to prove results only for the cases
where the state estimate update depends only on the latest
observation value. In particular, we consider a suboptimal
version of causal Viterbi algorithm and show that a separa-
tion property need not hold between the control law and the
state estimation algorithm. Work is being done to extend
the results to more general state estimation algorithms.

In Section 2, we formulate the problem and state the as-
sumptions. Stability results are presented in Section 3. The
absence of the separation property is shown and a few ex-
amples are presented. Section 4 deals with the design of the
optimal LQR controller. Section 5 presents the conclusions
and outlines the future work that needs to be done.

2 Problem Formulation

For the sake of notational convenience, we shall use the no-
tations x � k � and xk interchangeably. Consider the system de-
scribed by

z � k � 1 ��� φrk z � k ��� γrk u � k ��� Γ � rk � r̂k � v � k �
y � k �	� Crk z � k �
u � k �
� Fr̂ky � k � �

where z � k ��� Rn is assumed to be the process state, u � k ��� Rm

is the controlled input which is a linear function of the state
observation variable y � k � , v � k �� Rn is white noise with zero
mean and covariance Rv. Let Q denote the transition prob-
ability matrix of the Markov chain whose states are repre-
sented by ri ��� 1 � 2 ��������� s � . The states of the Markov chain
define the probability distribution of the various variables in
the system equation. For simplicity of presentation, in this
paper we assume that there is only one variable being af-
fected by the Markov chain. We denote the observed value
of this variable at time step k by ok and its probability den-
sity function given that the Markov state at time k is j by
fok � rk � j � t � rk � j � . Also we denote the expectation of a ran-
dom variable X taken over another random variable Y by
EY �X � . Such a system might arise, e.g., from discretiza-
tion of an underlying continuous-time system, which can
possibly have time-delays less than the sampling time pe-
riod present in it. If the controller has the knowledge of the
Markov state, it can vary the control law matrix F according
to the Markov state rk. However, if the Markov state is not

known, it has to depend on the estimate of the Markov state
r̂k. Thus F becomes a function of r̂k.

Thus we see that the system can be written as

z � k � 1 ��� Φ � rk � r̂k � z � k ��� Γ � rk � r̂k � v � k � (1)

where
Φ � rk � r̂k � � φrk � γrkFr̂kCrk �

One central assumption we make is that the variable value
being affected by the Markov chain is measurable and the
value taken by the variable in every time step is available
accurately to the controller. Thus, if the variable is time
delay, we use measures such as timestamping of the packets;
if it is the system matrix γ — which can be used to model,
say, the effect of varying SNR in a communication channel
over which z � k � is passed to the controller — then pilot tone
measurements are used, and so on.

We are interested in deriving the conditions under which
the system in equation (1) is stable. Results exist in the lit-
erature about the stability conditions for the case of known
Markov state. We extend these results to the case when an
estimation algorithm is being used to estimate the Markov
state. In this paper, we treat only the case where the state
estimation update is based only on the latest measurement
and not on the previous measurements as well. In particular,
a causal version of the Viterbi algorithm is used as an exam-
ple. Results also exist for the design of an optimal control
law when the Markov state is known at the controller. We
present a design incorporating the fact that the state is being
estimated.

2.1 Hidden Markov Models and the Viterbi Algorithm
Consider a Markov chain with a finite number of states and
given transition probability matrix Q ��� qi j � . Suppose that
when a transition occurs, we cannot observe the states cor-
responding to the transition directly. Rather we obtain an
observation related to the transition. We are given the prob-
ability p � o � i � of the observed value of the variable being
affected by the Markov state being o when the Markov state
is i. Such Markov chains are called hidden Markov models
and the problem of estimating the state from the observation
sequence is called the state estimation problem.

Consider the observation sequence ON ��� o1 � o2 ��������� oN � .
We wish to estimate the state transition sequence R̂N �
� r̂1 � r̂2 ��������� r̂N � that maximizes the conditional probabil-
ity p � RN �ON � over all RN ��� r1 � r2 ��������� rN � . It is well-
established, see e.g. [1], that the optimal estimate is given
by the Viterbi algorithm, which is a solution to the prob-
lem of minimizing � ln � πr0 � � ∑N

k � 1 ln � p � ok � rk � rk � 1 ��� over
all possible sequences � r1 � r2 ��������� rN � . The probability dis-
tribution of the original states is denoted by πr0 .

However, the Viterbi algorithm is non-causal in that it re-
quires all the observations before estimating the state se-
quence. In practice, a causal version of the algorithm is



used which is based on forward dynamic programming. If
we know the smallest costs Dk � rk � from the beginning to all
the states rk on the basis of the observation sequence Ok, we
compute the smallest costs Dk � 1 � rk � 1 � by using the recur-
sion

Dk � 1 � rk � 1 � � min �Dk � rk � � ln � p � ok � 1 � rk � 1 � rk ��� � � (2)

where the minimization is taken over all rk such that qrkrk � 1

is non-zero. An advantage of this procedure is that it can
be executed in real time, as soon as each new observation is
obtained. Another simplification can be made if the state
estimate update is made only on the basis of the current
measurement. This amounts to ignoring the first term on
the right hand side of equation (2) and minimizing the sec-
ond term over all transitions from the current state estimate
r̂k. This algorithm is refered to as the one-step Viterbi algo-
rithm.

3 Stability Results for Unknown Markov State

3.1 Definition of Stability
Following [8], we consider the stability of the covariance
of the system in equation (1). We define the conditional
covariance as

Pjn � k � 1 ��� EYk � zk � 1zT
k � 1 � rk � 1 � j � r̂k � 1 � n � (3)

� EYk �Φ � rk � r̂k � zkzT
k ΦT � rk � r̂k � � rk � 1 � j � r̂k � 1 � n � �

Yk denotes all the uncertainity in the system at time step k,
which is due to the initial state, noise and the Markov states
at previous times. At time step t, the Markov state is denoted
by rk while the estimate of the Markov state by r̂k. We also
define

P̃jn � k � 1 ��� Pjn � k � 1 ��� Prob � rk � 1 � j � r̂k � 1 � n � � (4)

The state covariance P � k � is then given by

P � k � �
s

∑
i � 1

s

∑
j � 1

P̃i j � k � � (5)

Let Q � � qi j � denote the transition probability matrix of the
Markov chain. Also, let Ri j denote the matrix � rmn � i j � where
rmn � i j refers to the probability that � r̂k � 1 � n � r̂k � m � rk �
i � rk � 1 � j � . Finally let Ai � m � E �Φ � rk � r̂k � � Φ � rk � r̂k � � rk �
i � r̂k � m � where

�
denotes the Kronecker product. Define

the matrix diag � Ai � m � as a block diagonal matrix with the
blocks A1 � 1, A1 � 2, ����� , A1 � s, A2 � 1, A2 � 2, ����� , A2 � s, ����� , As � 1, ����� ,
As � s along the diagonal and zeros elsewhere. Denote by Σ
the matrix having the following structure

Σ �

	



�

q11R11 q21R21 ����� qs1Rs1

q12R12 q22R22 ����� qs2Rs2
...

...
...

...
q1sR1s q2sR2s ����� qssRss

��
� �

We have the following theorem.

Theorem 1 Consider the system given in equation(1) and
the one-step Viterbi Markov state estimation algorithm. The
system is stable, in the sense that its covariance is bounded,
iff the matrix � Σ �

I � diag � Aim � has all its eigenvalues in the
unit circle.

Proof: We assume that the additive noise term in system
of equation (1) is bounded in the mean square sense. Thus
it would have no effect on stability and we only need to
consider an equation of the form

z � k � 1 ��� Φ � rk � r̂k � z � k � � (6)

We have by the definition of the conditional state variance

P̃jn � k � 1 ��� EYk � zk � 1zT
k � 1 � rk � 1 � j � r̂k � 1 � n �� Prob � rk � 1 � j � r̂k � 1 � n �

� EYk �Φ � rk � r̂k � zkzT
k ΦT � rk � r̂k � � rk � 1 � j � r̂k � 1 � n �� Prob � rk � 1 � j � r̂k � 1 � n � �

Because of the definition of Markov chain and the assump-
tion that the state estimate update would involve only the
observations obtained in time step � k � 1 � , we have that

Prob � rk � 1 � j � r̂k � 1 � n � f � zk � rk � r̂k � � rk � i � r̂k � m � �
P � rk � 1 � j � r̂k � 1 � n � rk � i � r̂k � m � �

where f � � � is any deterministic function of its arguments.
Thus any function involving zk, r̂k and rk only is indepen-
dent of the event � rk � 1 � j � r̂k � 1 � n � . Now we use the fact
that if C and A are independent given B,

E �C �A � � ∑
B

P � A �B � P � B � E �C �B �
P � A � � (7)

Thus, in particular, if we define

C � zk � 1zT
k � 1

A � � rk � 1 � j � r̂k � 1 � n �
B � � rk � i � r̂k � m � �

we obtain

P̃jn � k � 1 ���
s

∑
i � 1

s

∑
m � 1

pi � j � m � n � Prob � rk � i � r̂k � m �
� EYk � φ � rk � r̂k � zkzT

k φT � rk � r̂k � � rk � i � r̂k � m � �
(8)

In the above, pi � j � m � n represents the probability that the
true Markov state goes from i in step k to j in step � k � 1 �
and the estimated state goes from m to n at the same time.
Now we observe that

EYk � f � rk � r̂k � g � zk � � rk � i � r̂k � m � �
EYk � f � rk � r̂k � � rk � i � r̂k � m ���

EYk � g � zk � � rk � i � r̂k � m � �



for any functions f � � � and g � � � . This can be proved by con-
sidering the fact that the variable distribution depends only
on the Markov state and from the equivalent condition

P � rk � r̂k � zk � rk � i � r̂k � m � � P � rk � r̂k � rk � i � r̂k � m � �
Thus we can vectorize equation(8) to obtain

vec � P̃j � k � 1 � � � ∑
i � m pi � j � m � nAi � mvec � P̃i � k � � �

where Ai �m has been defined above. This in turn yields

P̃ � k � 1 ��� � Σ �
I � diag � Ai � m � P̃ � k � � (9)

with Σ and diag � Ai � m � already defined. It is apparent from
the above equation that the stability of the system is given
by the stability of the matrix � Σ �

I � diag � Ai � m � .
To compute rmn � i j, we condition it on the value of the under-
lying variable varying according to the Markov chain:

rmn � i j �
�

P � r̂k � 1 � n � rk � 1 � j � r̂k � m � ok � 1 � t �
� fok � 1 � rk � 1 � j � t � rk � 1 � j � dt � (10)

Both the terms in the above expression are computable. The
second term is known since we know the distributions of the
variable in each Markov state. The first term is computable
for any particular estimation algorithm satisfying the as-
sumption stated in the theorem. For the one-step Viterbi
algorithm, it computes to the probability that the cost func-
tion for state n is least among all possible states. The cost
function is given by

Dk � 1 � r̂k � 1 � n � r̂k � m � ok � 1 � t �
� � ln � qmn � � ln � fok � 1 � rk � 1 � n � t � rk � 1 � n ��� �

3.2 Examples
We consider a few examples in this subsection to clarify the
result.

1. Consider the case when the estimation algorithm al-
ways gives correct results, i.e., the measurement of
the variable tells us the state of the Markov chain.
Then, the matrix Σ has the form�

σ1 σ2 ����� σs � �
where the block σi has dimensions s2 � s and has the
structure

σi �

	













�

qi1 qi1 �����
0 0 �����
... s rows of zeroes

qi2 qi2 �����
0 0 �����
... s rows of zeroes
...

qis qis �����

��
�
�

Thus, the final matrix � Σ �
I � diag � Ai � m � has the same

structure, with each element in the above matrix re-
placed by a n2 � n2 block. We note that there are
a total of s2 row blocks in the matrix, each consist-
ing of n2 rows. However, only the blocks 1, s � 2,
2s � 3, ����� , s2 are non-zero. Now a m � m matrix
with ith row zero has the same eigenvalues as the
� m � 1 � � � m � 1 � matrix formed by removing the
ith row and ith coloumn from the original matrix, ex-
cept for an additional zero eigenvalue. Also the ma-
trix Ai � m is the same as Ai defined in [8], when i and
m are the same. Thus the eigenvalues of the matrix
� Σ �

I � diag � Ai � m � are the same as the eigenvalues of
the matrix � QT �

I � diag � Ai � except for some addi-
tional zero eigenvalues. Thus our results reduce to
the the results of [8] in this case, as they should.

2. It is not necessary that if a process is stable when a
controller based on known Markov state is used, it
will be stable when the same controller is instead fed
the states estimated by the one-step Viterbi algorithm.
Consider the discrete time version of the system

ẍ � t � � u � t �
u � t � � Fx � t � τ � �

Let the time step be h=0.1. Let the Markov states
be characterized by different time delays τ in pass-
ing of the sensor signal to the controller, the state 1
having a time delay uniformly distributed between 0
and 0.7h, while the state 2 having a time delay uni-
formly distributed between 0.69h and 0.71h. Thus
the equivalent discrete-time system is characterized
by the equations

x � k � 1 ��� φx � k ��� γ0u � k ��� γ1u � k � 1 �
u � k � � Fx � k � �

where

φ � eAh A ��� 0 1
0 0 � B ��� 0

1 �
γ0 �

h � τ�
0

eAsdsB γ1 �
h�

h � τ

eAsdsB �

Let the control laws in the two Markov states be given
by F � ��� 0 � 2 � 0 � 1 � in the state 1 and by F � � 0 � 5 �
0 � 2 � in state 2. Let the transition probability matrix be

Q � � 0 � 6 0 � 4
0 � 8 0 � 2 � �

Then, the matrix Σ is given by

Σ �

	


�

0 � 5914 0 � 5914 0 � 7886 0 � 7886
0 � 0086 0 � 0086 0 � 0114 0 � 0114

0 0 0 0
0 � 4 0 � 4 0 � 2 0 � 2

��
� �



When we obtain the eigenvalues of the 36 � 36 matrix
� Σ �

I � diag � Ai � m � , we obtain an eigenvalue outside the
unit circle. On the other hand, the eigenvalues of the
18 � 18 matrix � QT �

I � diag � Ai � are all inside the unit
circle, with the highest absolute value being 0.9971.
If we simulate the systems, we indeed find that the
system is stable if Markov state is known. How-
ever it goes unstable if the same controller is used but
the one-step Viterbi algorithm is used to estimate the
state. Thus, a separation property does not hold be-
tween the Markov state estimate and stability of the
system.

3.3 Comment
We have given necessary and sufficient conditions for sta-
bility of a jump linear Markov state when Markov state is
being estimated. Stability considered is the asymptotic sta-
bility of the conditional covariances. However this might
be too strong a condition. “Almost Sure stability” might
provide a better estimate of stability; however the transient
performance of the process might be unacceptable in this
case. The relation between the various forms of stability
is discussed in [4]. Also note that the result can easily be
extended to the case of two or more independent Markov
chains modeling many separate communication links.

4 Optimal Controller

We consider the cost function

JN � zT
NΠNzN � E � N � 1

∑
k � 0

� zk

uk � T Π � zk

uk ��� � (11)

where Π is a symmetric, positive semidefinite matrix of the
form

Π ��� Π11 Π12

ΠT
12 Π22 � �

Further, Π22 is positive definite.

4.1 Optimal State Feedback
We assume that the full state information about z � k � is avail-
able to the controller. Then similar to [8], we have the fol-
lowing theorem.

Theorem 2 Consider the problem of minimizing the cost
function given by equation (11) for the system given by
equation (1) with full state information about z � k � available
to the controller and when the one-step Viterbi algorithm is
used. Assume that the Markov chain reaches a stationary
state. Provided we have noise-free full state vector informa-
tion, the control law that minimizes the cost function (11) is
given by

u �k � � Lk � ok � r̂k � � zk

u �k � 1 �

where for r̂k � i � i � 1 ��������� s � , we have

Lk � ok � i � � � Π22 � S̃22
i � k � 1 ��� � 1 �

�ΠT
12 � S̃21

i � k � 1 � S̃23
i � k � 1 � �

S̃i � k � 1 � � GT
s

∑
j � 1

ri jS j � k � 1 � G

G � � Φ � ok � rk � r̂k � Γ � ok � rk � r̂k �
0 I �

Si � k � � Eok � FT
2 � r̂k � S̃i � k � 1 � F2 � r̂k �
� FT

1 � r̂k � ΠF1 � r̂k � � r̂k � i �
F1 � r̂k � � � I 0

� Lk � ok � r̂k � �
F2 � r̂k � � � I 0

� Lk � ok � r̂k � �
Si � N � � � ΠN 0

0 0 � �
The elements ri j refer to the probability of the state estimate
changing from i in time step k to j in the time step k � 1.
Note that the elements ri j are in general a function of ok.
S̃ab

i � k � is the block (a,b) of the symmetric matrix S̃i � k � and
Πab is block (a,b) of Π.

Proof: The proof is similar to that of the problem treated
in [8] and is omitted for the sake of brevity.

We now give a method to calculate the probability term ri j

for the case when one-step causal Viterbi algorithm is being
used. We need to compute

P � r̂k � 1 � j � r̂k � i � ok � t � � (12)

Note that the information vector available at the time of
making the decision includes the estimated states until that
time step as well as all the time delays. Let us condition on
the probability of the actual Markov state at time k being l.
Thus we obtain

P � r̂k � 1 � j � r̂k � i � ok � t � �
s

∑
l � 1

P � r̂k � 1 � j � r̂k � i � ok � t � rk � l �
� P � rk � l � r̂k � i � ok � t � �

To calculate the first term on the right hand side, let us con-
dition it on the probability of the next Markov state being
m.

P � r̂k � 1 � j � r̂k � i � ok � t � rk � l � �
s

∑
m � 1

P � r̂k � 1 � j � r̂k � i � ok � t � rk � l � rk � 1 � m �
� P � rk � 1 � m � r̂k � i � ok � t � rk � l � �

Now we can evaluate all the terms. The term P � r̂k � 1 �
j � r̂k � i � ok � t � rk � l � rk � 1 � m � is simply P � r̂k � 1 � j � r̂k �



i � rk � l � rk � 1 � m � which was evaluated in the stability
proof. The term P � rk � 1 � m � r̂k � i � ok � t � rk � l � is sim-
ply P � rk � 1 � m � rk � l � by the Markov property. To evaluate
the term P � rk � l � r̂k � i � ok � t � , note that this is the same
as P � rk � l � ok � t � . To prove this, consider the equivalent
condition

f � ok � t � rk � l � r̂k � i � � f � ok � t � rk � l � �
In the above equation, f refers to the probability distribution
function of ok. Now P � rk � l � ok � t � can be evaluated by
Baye’s rule

P � rk � l � ok � t � � f � ok � t � rk � l � P � rk � l �
∑u f � ok � t � rk � u � P � rk � u � �

P � rk � u � can be evaluated from the stationary probabilities
of the Markov chain. Thus we can evaluate the terms ri j .
From equation (12) and the probability distribution of ok,
the term ri j can easily be calculated.

It is obvious from the form of the optimal control law that no
separation property holds between a controller implement-
ing the optimal control law based on known Markov state
and a Markov state estimation algorithm. In particular, even
if we use a causal one-step Viterbi algorithm and feed the
state derived from it into the controller which implements
the optimal control law based on known Markov state, we
would not obtain the lowest cost achievable with the one-
step Viterbi state estimation algorithm.

4.2 Extensions
Note that the form of the optimal controller derived above is
similar to the controller for the case of Markov state known,
as derived in [8], except for the variables on which to con-
dition while taking the expectation. Thus, we can go ahead
and derive the optimal process state estimate and show that
a separation property holds between the optimal controller
and the optimal process state estimate in a manner similar
to that given in the above reference.

5 Conclusions and Future Work

In this paper, we have analyzed jump linear Markov sys-
tems in which the Markov state is not known and is be-
ing estimated. We have presented stability conditions for
such systems. We made the assumption that the state es-
timation algorithm takes only the latest measurements into
account. We showed that even under the one-step Viterbi
algorithm, a control law depending on the knowledge of the
exact Markov state may no longer stabilize the system when
we feed in the state estimate instead of the state itself. We
have also presented an optimal control law by solving the
LQR problem for the case when the Markov state is being
estimated.

Work is being currently done to extend the results to the es-
timation algorithms which take the full history into account

while updating the state estimate. Such algorithms, e.g, the
causal Viterbi algorithm are optimal Markov state estima-
tors but are more complicated to analyze. Initial results are
promising and point to similar theorems as given in the pa-
per.

Another possible direction for future work might be to
jointly optimize the LQR problem with the estimation al-
gorithm to see whether the Viterbi algorithm is indeed the
best state estimation algorithm in this case. It would also
be interesting to consider the possibility of sending data at
variable rates over the network to cut down on the amount
of communication costs, which will typically be high when
the channel is in a Markov state corresponding to low SNR.
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