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Abstract

This paper deals with control strategies for the Hegselmann–Krause opinion formation model with lead-
ership. In this system, the control mechanism is included in the leader dynamics and the feedback control
functions are determined via a stabilization procedure and with a model predictive optimal control process.
Correspondingly, the issues of global stabilization, controllability, and tracking are investigated. The model
predictive control scheme requires to solve a sequence of open-loop optimality systems discretized by an ap-
propriate Runge–Kutta scheme and solved by a nonlinear conjugate gradient method. Results of numerical
experiments demonstrate the validity of the proposed control strategies and their ability to drive the system
to attain consensus.

1 Introduction

Social networks have significant effect on people behaviour and on their opinion. For this reason, in order to
investigate the role of these networks in social behaviour, several mathematical models of social networks have
been developed in the past few years. In general, systems describing a great variety of network-structured
phenomena stem from agent-based models as seen in Refs. [1, 8, 6, 5, 10, 11, 12, 13, 15, 19], see also Ref. [26]
for a survey. In particular, one of the most representative class of agent-based models explaining phenomena
in social sciences are the opinion formation models; see the seminal papers [4, 16, 22, 32] and, for further
developments on these models, see Refs. [2, 7, 17, 24, 25].
We focus on the Hegselmann–Krause (HK) model [22] where the evolution of the opinion depends on interactions
among the agents taking place in the bounded domain of confidence (see, for instance, Ref. [7]). Our purpose
is to investigate control strategies for variants of this model that are “non-invasive”, in the sense that the
control function does not apply directly to the agent’s opinion but indirectly through the interaction of a
controlling leader. The motivation for our approach is twofold. First, it is closer to real social behaviours as,
for example, in politics. Second, it can be easily implemented as soon as a leadership is available. We refer to
Refs. [3, 6, 14, 17, 30, 33] for results on multi-agent systems with leadership.
Our contribution to the mathematical investigation of opinion formation systems focuses on a HK model with
leadership where the control function is implemented on the leader dynamics. We develop a feedback control to
globally achieve the consensus and then discuss the local controllability. Furthermore, we investigate optimal
control problems governed by the HK model with leadership. In the latter case, we extend results of previous
work on model predictive control through leadership of a flocking system [33]. In the present paper the analysis
is completed by comparing the effectiveness of the control obtained with a feedback L∞ approach and with the
model predictive procedure.
Our work is organized as follows. In Sec. 2, we discuss a variant of the HK model with leadership where
the control is implemented on the leader. In Sec. 3, we investigate the global stabilization of the system
through leadership. Further, in Sec. 4, we discuss the local controllability problem. In Sec. 5, we formulate
an optimal control problem governed by the HK model with an objective function related to the energy of the
system. Correspondingly, we introduce the optimality system representing the first-order optimality conditions.
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Moreover, we illustrate a Runge–Kutta discretization scheme guarantees a high-order convergence rate of the
numerical solution of the optimal control problem. Results of numerical experiments, presented in Sec. 6,
demonstrate the validity of the proposed control strategies. A section of conclusions completes this work.

2 A Hegselmann–Krause model with leadership

We consider the control of the HK opinion formation model with leadership. The system of N interacting agents
with one leader with opinions in Rd is given by

ẋ0(t) = u(t),

ẋi(t) =

N∑
j=1

aij(xj(t)− xi(t)) + ci(x0(t)− xi(t)), for i = 1, ..., N,
(1)

with given initial positions xj(0) ∈ Rd, for j = 0, 1, . . . , N . The state of the system, representing the agents’
and the leader’s opinions is x = (x0, x1, ..., xN ) ∈ R(N+1)d. We denote the leader by the index 0 and with the
index i = 1, . . . , N we denote the N agents. The control function, which is a measurable function t 7→ u(t) ∈ Rd
satisfying the constraint ‖u‖ ≤M, acts only on the leader.

The first term in the dynamics (1),
∑N
j=1 aij(xj − xi), comes from the original HK model. The key idea of the

HK model is that each agent updates his opinion by averaging the opinions of the neighbors with a rescaling
factor

aij = a(‖xi(t)− xj(t)‖),

given by a function a(r) : [0,∞)→ [0, 1] of the distance r between the opinions and representing the interaction
rate dependence on the limited confidence domain. The function a = a(r) is the following smooth cut-off
function

a(r) = a(r; δ, ε) :=

 1, 0 ≤ r ≤ δ,
ϕ(r), δ < r < (δ + ε),
0, (δ + ε) ≤ r,

(2)

where δ is the bounded confidence, ϕ(r) is a decreasing smooth function on (δ, δ + ε], and ε > 0 is a parameter
of the HK model defining the width of the region where the cut-off function decays to zero.
The second term in the dynamics (1) models the action of the leader on the ith agent. A leader can be defined
as one agent with a high level of confidence and self-esteem, that has the ability to withstand criticism, so that
its dynamics is not influenced by the other agents’ opinions. The influence of the opinion of the leader on the
group opinion in decision making is given by the term ci(x0(t)− xi(t)). The parameter

ci = γφ(‖xi − x0‖),

represents the rate of relationship between the leader and the other agents, where φ : [0,∞)→ (0, 1] is a smooth
non-increasing positive function such that φ(0) = 1 and limr→∞ φ(r) = 0, and where the strength of the opinion
leader is represented by the parameter γ > 0. In other words the leader has the ability to influence every agent
with a factor that is inversely proportional to its distance from the agent.
In Sec. 6 we present results of numerical simulations in the uncontrolled case, i.e. when the control u(t) is taken
to be constantly zero. In those cases we show the formation of clusters due to the limitation of confidence. In
the next section, we present a strategy to create a stabilizing control in order to drive all agents’ opinions to a
common one exploiting the leader’s dynamics.

3 Global Stabilization

The uncontrolled dynamics of system (1) is governed by local interactions and, in large time, leads to the
formation of clusters. Although, from the mathematical point of view, clusters are a stable configuration for
the system, we focus on the possibility to steer, using the leader’s action on the group, all agents to a same
unique opinion, that is, to have emergence of “consensus”.
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Definition 1 (Consensus). We call consensus a configuration in which the states of all agents are equal, i.e,

x∗ = (x0, x1, ..., xN ) ∈ R(N+1)d such that x0 = x1 = · · · = xN . (3)

We say that a solution x(t) of system (1) tends to consensus if there exists a consensus configuration x∗ ∈
R(N+1)d such that limt→+∞ x(t) = x∗.

Being consensus an equilibrium for system (1) the problem of steering asymptotically the system to consensus
is, in fact, a stabilization problem.

Theorem 1. For every initial condition x(0) ∈ R(N+1)d and every M there exists a control t 7→ u(t) ∈ Rd
satisfying ‖u‖ ≤M such that the associated solution x(t) with initial data x(0) tends to consensus.

Proof. For every t let ı̄ = ı̄(t) be the smallest index in {1, . . . , N} such that

‖x̄ı(t)− x0(t)‖ ≥ ‖xj(t)− x0(t)‖, for every j = 1, . . . , N.

Let

α(t) =
1

2
min

{
φ(‖x̄ı(t)− x0(t)‖)

N − φ(‖x̄ı(t)− x0(t)‖)
,

2M

γ
∑
i ‖xi(t)− x0(t)‖

}
.

Note that α(t) > 0 for every t ≥ 0. Consider the control law

u(t) = α(t)γ

N∑
j=1

φ(‖xj(t)− x0(t)‖)(xj(t)− x0(t)).

The control u is admissible since

‖u‖ ≤ αγ
N∑
j=1

φ(‖xj − x0‖)‖xj − x0‖ ≤ αγ
N∑
j=1

‖xj(t)− x0(t)‖ ≤M.

Consider t ≥ 0 and assume, for simplicity of notation, that ı̄ = 1, ci = γφ(‖xi(t) − x0(t)‖), and aij =
a(‖xi(t)− xj(t)‖). Then

1

2

d

dt
‖x1 − x0‖2 = 〈ẋ1 − ẋ0, x1 − x0〉

= 〈ẋ1, x1 − x0〉 − 〈ẋ0, x1 − x0〉

=

N∑
j=2

a1j〈xj − x1, x1 − x0〉 − c1‖x1 − x0‖2

− α
N∑
j=2

cj〈xj − x0, x1 − x0〉 − αc1‖x1 − x0‖2

=

N∑
j=2

a1j〈xj − x0, x1 − x0〉 −
N∑
j=2

a1j‖x1 − x0‖2 − c1‖x1 − x0‖2

− α
N∑
j=2

cj〈xj − x0, x1 − x0〉 − αc1‖x1 − x0‖2

≤
N∑
j=2

|a1j − αcj |‖xj − x0‖‖x1 − x0‖

−

 N∑
j=2

a1j + (1 + α)c1

 ‖x1 − x0‖2

≤

 N∑
j=2

(|a1j − αcj | − a1j)− (1 + α)c1

 ‖x1 − x0‖2.

3



Now if j is such that a1j − αcj ≥ 0 then |a1j − αcj | − a1j = −αcj < 0. Otherwise, if a1j − αcj < 0 then
|a1j − αcj | − a1j = αcj − 2a1j ≤ αcj . Hence

N∑
j=2

(|a1j − αcj | − a1j)− (1 + α)c1 ≤ (N − 2)α− (1 + α)c1

≤ (N − c1)α− c1

≤ −c1
2
,

for the choice of α. In particular maxi ‖xi(t)− x0(t)‖ is decreasing for every t. Therefore

φ(max
i
‖xi(t)− x0(t)‖) ≥ φ(max

i
‖xi(0)− x0(0)‖),

and denoting by I0 = maxi ‖xi(0)− x0(0)‖ we have that

max
i
‖xi(t)− x0(t)‖2 ≤ exp

(
−tγφ(I0)

2

)
I0,

which gives that
‖xi(t)− x0(t)‖ → 0, as t→∞, for every i = 1, . . . , N,

in other words the system tends to consensus.

We discuss global stabilization of the HK model by using design tools of feedback control law based on an L∞

approach (see Section 2 in Ref. [26]). In Sec. 6, we present test cases and the corresponding results of numerical
simulations.

4 Local Controllability

In this section, we discuss a local controllability strategy for the controlled HK model. No information can
be deducted on the local controllability around consensus from the linearized systems since, as the following
example shows, it is not controllable.

Example 1. Consider the linearization of system (1) around the consensus x∗. The linearized system for the
variable x̃ = x− x∗ is given by

˙̃x = Ax̃ +Bu, (4)

where A is a block matrix and B is a block vector as follows

A =


0d 0d · · · 0d
c1Id −(

∑
j 6=1 a1j + c1)Id · · · a1NId

...
...

. . .
...

cNId aN1Id · · · −(
∑
j 6=N aNj + cN )Id

 , B =


Id
0d
...

0d

 ,

where 0d is the null matrix and Id is the identity.
Consider the simple case N + 1 = 3 and d = 1. In this case the eigenvalues of A are given by

λ1 = 0,

λ2 = −1− d1

2
− d2

2
−
√

(d1 − d2)2 + 4

2
,

λ3 = −1− d1

2
− d2

2
+

√
(d1 − d2)2 + 4

2
.

where d1 = γφ(‖x1 − x0‖) and d2 = γφ(‖x2 − x0‖). The corresponding eigenvectors are

w1 =

1
1
1

 , w2 =


0

d2

2
− d1

2
−
√

(d1 − d2)2 + 4

2
1

 ,
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and

w3 =


0

d2

2
− d1

2
+

√
(d1 − d2)2 + 4

2
1

 .

In particular, by classical controllability results, such as the Hautus Lemma (see, for instance, Lemma 3.3.7 in
Ref. [31] ) system (4) is not controllable since wT2 B = 0 (and wT3 B = 0).

Following this example, it is possible to prove that if φ is constant on an interval [0, δ], as in Sections 5 and 6
below, then system (1) is not locally controllable. Indeed in this case, system (1) is linear whenever ‖x−x∗‖ < δ
for some consensus x∗ and it does not verify the rank condition, necessary for controllability. For more general
situation the local controllability depends on the communication rate φ between the leader and the agents and,
a priori, we cannot infer the local controllability of the system.
However the system verifies a “weaker” local controllability property, that is the local controllability to consen-
sus. As the following lemma states, if the agents are sufficiently close to each other they are attracted by the
leader. The proof relies on the Lyapunov stability of the leader’s state x0.

Lemma 1. Let u(t) = 0 for every t ≥ 0. If ‖xi(0)− x0‖ ≤ δ/N for every i = 1, . . . , N then

lim
t→∞

xi(t) = x0, for every i = 1, . . . , N.

Proof. Let T ≥ 0 be the maximal time such that
∑
i ‖xi(t) − x0‖ ≤ δ on t ∈ [0, T ], with the convention that

T = +∞ if
∑
i ‖xi(t) − x0‖ ≤ δ for every t ≥ 0. Then for every t ∈ [0, T ] the interaction coefficients between

agents are
aij = a(‖xi − xj‖) = 1, for every i, j = 1, . . . , N.

For simplicity we set ci = γφ(‖xi(t)− x0(t)‖) and we drop the dependence on t. Hence

d

dt

1

2N

N∑
i=1

‖xi − x0‖2 =
1

N

N∑
i=1

〈ẋi, xi − x0〉

=
1

N

∑
i

∑
j

〈xj − xi, xi − x0〉 −
1

N

∑
i

ci‖xi − x0‖2

=
1

N

∑
i

∑
j

〈xj − x0, xi − x0〉 −
∑
i

‖xi − x0‖2

− 1

N

∑
i

ci‖xi − x0‖2

≤ 1

N

∑
i

‖xi − x0‖
∑
j

‖xj − x0‖ −
∑
i

(1 + ci/N)‖xi − x0‖2

≤
∑
i

‖xi − x0‖2 −
∑
i

(1 + ci/N)‖xi − x0‖2

= −
∑
i

ci/N‖xi − x0‖2

≤ −γφ(δ/2)
1

N

∑
i

‖xi − x0‖2. (5)

In particular the function V (t) = 1
2N

∑N
i=1 ‖xi − x0‖2 is a Lyapunov function for the system. Moreover for

every t ≥ 0 ∑
i

‖xi(t)− x0‖ ≤
∑
i

‖xi(0)− x0‖ ≤ δ.

In particular the estimate (5) holds true for every t ≥ 0 and

V (t) ≤ exp (−2γφ(δ/2)t)V (0),

which gives that xi(t)→ x0 as t→ +∞ for every i = 1, . . . , N .
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As a consequence of this lemma and of Theorem 1, we have the following result of global stabilization and
partial controllability.

Corollary 1. For every initial condition x(0) and for every consensus x∗ there exists a control u such that the
associated solution x(t) of (1) with initial condition x(0) tends to x∗.

Proof. By Theorem 1 there exist a consensus configuration x̄ = (x̄, . . . , x̄) and a control u steering the solution
x(t) of (1) with initial condition x(0) to x̄. Let t1 > 0 be a sufficiently large time such that

‖xi(t1)− x̄‖ ≤ δ

2N
, for every i = 0, . . . , N.

Now consider the desired consensus configuration x∗ = (x∗, . . . , x∗) and a finite sequence of points z0 =
x̄, z1, . . . , z`, z`+1 = x∗ such that

‖zk − zk+1‖ ≤
δ

2N
for every k = 0, . . . , `.

We apply iteratively Lemma 1 in order to construct a control steering the solution to every consensus configu-
ration associated with the sequence z0, z1, . . . , z`, z`+1. For k ∈ {0, . . . , `} let τ > 0 be such that

‖xi(τ)− zk(τ)‖ ≤ δ

2N
, for every i = 0, . . . , N,

then consider the control

u(t) =

{
M zk+1−x0(t)
‖zk+1−x0(t)‖ , if zk+1 6= x0,

0, if zk+1 = x0.

Hence
1

2

d

dt
‖x0(t)− zk+1‖2 = 〈u, x0(t)− zk+1〉 = −M‖x0(t)− zk+1‖,

in particular x0 reaches zk+1 in finite time, say τk. Now ‖xi(τ + τk) − zk+1‖ ≤ δ/N for every i = 1, . . . , N .
Indeed for every t ∈ [τ, τ + τk] let i = i(t) be such that ‖xi(t)− zk+1‖ is maximal, then we have

d

dt
‖xi(t)− zk+1‖2 = 〈ẋi(t), xi(t)− zk+1〉

=
∑
j

〈xj(t)− xi(t), xi(t)− zk+1〉

=
∑
j

〈xj(t)− zk+1, xi(t)− zk+1〉 −N‖xi(t)− zk+1‖2

≤
∑
j

‖xj(t)− zk+1‖‖xi(t)− zk+1‖ −N‖xi(t)− zk+1‖2,

which is smaller than or equal to 0 for the maximality of the index i. Therefore

max
j
‖xj(t)− zk+1‖ ≤ max

j
‖xj(0)− zk+1‖ ≤

δ

N
,

for every t ∈ [τ, τ + τk]. Then set the control u(t) = 0 for t > τ + τk and by Lemma 1 we have that

lim
t→∞

xi(t) = zk+1, for every i = 1, . . . , N.

The statement follows by induction on k = 0, . . . , `.

Remark 1. The idea of the proof of Corollary 1 is the following. Once the system is sufficiently close to
consensus the leader starts moving very slowly to the new desired consensus, reaching it in finite time (possibly
very large). When the leader move sufficiently slow, the distance between leader and followers is always smaller
than δ/N . Lemma 1 guarantees that the followers tend asymptotically to the leader. This strategy can be adapted
to prove an analogous of Theorem 1 in the case in which the interaction function φ between the leader and the
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agents vanishes, in other words in the bounded confidence case. Indeed it is known[22, 7] that the system in free
evolution tends to clusters. The leader can move towards the nearest agent amongst the ones distant more than
δ/N reaching its position in finite time. If the motion of the leader is sufficiently slow then Lemma 1 (which is
in fact a local result) guarantees that the agents in the leader’s cluster tends to the leader and, in particular, do
not leave the cluster. Hence the population in the leader’s clusters increases by one. Finally the system tends
to consensus.

5 Optimal control

In Sec. 3, we consider the problem of regrouping the system of agents to a desired consensus by designing a
feedback control for the leader. There are various tools to design the stabilizing feedback. In this section, we
study how to enforce consensus in the “best” possible way. First, the formulation of optimal control problems
for the HK model with the presence of a leader are considered. Further, we illustrate a Runge–Kutta (RK)
discretization scheme to accurately solve the corresponding optimal control system. In addition, we consider a
model predictive control (MPC) scheme to construct a feedback control strategy. This section extends previous
results on optimal control through leadership of a flocking system[33] to the case of our HK model.
From now on, we set the problem in a more general framework in which we allow the communication rate of
the leader with the followers to be zero. To this purpose we introduce two functions: c1i and c2i . In the first
case, c1i : R→ [0, 1] represents a cut-off smooth function of the bounded confidence δ0 as follows

c1i (r) = c1i (r; δ0, ε0) =

 1, 0 ≤ r ≤ δ0,
ϕ̃(ri0), δ0 < r < (δ0 + ε0),
0, (δ0 + ε0) ≤ r,

(6)

for a smooth decreasing function ϕ̃(r) between (δ0, δ0 + ε0]. We then denote by c2i (r) = φ(r) the function of the
distance between the leader and the followers as in the previous sections, i.e. a non-increasing positive function
such that φ(0) = 1 and limr→∞ φ(r) = 0.
We consider the cost functional

J(x, u) :=
µ

2
|x0(T )− xdes(T )|2 +

1

2N2

∫ T

0

N∑
i,j=1

|xi(t)− xj(t)|2dt

+
1

2

∫ T

0

N∑
i=1

|x0(t)− xi(t)|2dt+
ν

2

∫ T

0

|u(t)|2dt,

where the positive parameters µ and ν in the cost function are weight constants. The second and third term
in the cost functional account for the energy of the system. In addition, the tracking functional at final time
requires the leader to approach a desired target configuration xdes. This term has also the property to stabilize
the MPC scheme[18]. The last term in the functional represents the cost of the control.
Our optimal control problem is stated as follows

min J(x, u) (7)

subject to ẋ0(t) = u(t)

ẋi(t) =
∑
j 6=0,i

aij(xj − xi) + cñi (x0 − xi), for i = 1, ..., N, (8)

with given initial conditions and for ñ = 1, 2.
We associate with (7)-(8), the equation

˙̂x(t) =
1

2N2

N∑
i,j=1

|xi(t)− xj(t)|2 +
1

2

N∑
i=1

|x0(t)− xi(t)|2 +
ν

2
|u(t)|2,

x̂(t0) = 0.

(9)
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In such a way the optimal control problem can be written in the form

min

(
1

2
|x0(T )− xdes(T )|2 + x̂(T )

)
, (10)

subject to ẋ0 = u(t)

ẋi =
∑
j 6=0,i

aij(xj − xi) + cñi (x0 − xi), for i = 1, ..., N.

˙̂x =
1

2N2

N∑
i,j=1

|xi(t)− xj(t)|2 +
1

2

N∑
i=1

|x0(t)− xi(t)|2 +
ν

2
|u(t)|2,

with given initial conditions.
For the simplicity, we write (10) in the more compact form

min

(
1

2
|x0(T )− xdes(T )|2 + x̂(T )

)
, (11)

subject to ˙̃x = f̃(x̃, u),

where x̃ = (x0, x1, ..., xN , x̂)T ∈ R(N+2)d and f̃ is the right hand side of (9).
We consider the discretization of the optimal control problem (11) by a RK scheme on a uniform time mesh,
with the following time-step size

h =
tf − t0
n

,

where n is the total number of discrete time intervals in (t0, tf ) and the value of x̃(t) at the discrete time tk is
denoted with

x̃k = x̃(tk), tk = kh, for k = 0, . . . , n.

Corresponding to the RK discretization setting, the optimal control problem (11) with s-stage RK scheme
becomes the following

min

(
1

2
|x0(T )− xdes(T )|22 + x̂(T )

)
,

subject to x̃k+1 = x̃k + h

s∑
i=1

bif̃(yki, uki), x̃(t0) = x̃0,

yki = x̃k + h

s∑
j=1

aij f̃(ykj , ukj), (12)

for 1 ≤ i, j ≤ s, and 0 ≤ k ≤ n − 1. The vector uk ∈ Rsd represents the s-stages of the RK discrete control
vector at time step k. We have

uk = (uk1, uk2, ..., uks) ∈ Rsd.
The discrete optimality system corresponding to (12) is given by

x̃k+1 = x̃k + h
∑s
i=1 bif̃(yki, uki), x̃(t0) = x̃0

yki = x̃k + h
∑n
j=1 aij f̃(ykj , ukj)

Ψk = Ψk+1 +
∑s
i=1 biχki, Ψn = −∇xΦ(x̃(T ))

χki = (∇xf̃(yki, uki))
>
(

Ψk+1 +
∑s
j=1

bjaji
bi

χkj

)
.

(13)

From this system, the following gradient results

∇uki
J(u) = −(∇uf̃(yki, uki))

>

Ψk+1 +

s∑
j=1

bjaji
bi

χkj

 , (14)
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for 1 ≤ i, j ≤ s, and 0 ≤ k ≤ n− 1.

To investigate the well-posedness of the optimal control problem (12), we remark that the smoothness and
coercivity conditions stated in Ref. [20] can be verified for the optimal control problem governed by the
equations (12). It follows that the accuracy results stated in Ref. [20] (Theorem 2.1) for the RK scheme apply
to (12).
We then discuss a MPC scheme (see, for instance Ref. [18]) implementing a closed-loop control strategy for the
HK model in order to track a given sequence of desired positions in time. Let (0, T ) be the time interval where
the evolution is considered. We assume time windows of size ∆t = T/M for positive integer M . Let tm = m∆t,
m = 0, 1, . . . ,M , at time t0, we have the initial conditions denoted by x̃0 and the desired positions at the end
of each time window denoted by xdes(tm), m = 1, . . . ,M . The MPC strategy starts at time t0 and solves the
open-loop optimal control problem (12) defined in the interval (t0, t1). Then, the results x̃ of system measured
in time t = t1 will be a initial value for the subsequent optimization problem defined in the interval (t1, t2).
This procedure is repeated by receding the time horizon until the last time window is reached. We notice that
the closed-loop system with the MPC scheme is nominally asymptotically stable, see Refs. [18, 28].
The MPC procedure is summarized in the following algorithm.

Algorithm 1 (MPC Control). Set m = 0, x̃(0) = x̃0;

1. measure the state x̃(tm) = x̃m and the target xdes(tm+1);

2. in (tm, tm+1), set initial condition x̃0
m = x̃m;

3. solve (12), thus obtain the optimal pair (x̃, u);

4. if tm+1 < T , set m := m+ 1, x̃m = x̃(tm), go to 1;

5. end.

Concerning the step (3) of Algorithm 1, which consists in solving the optimal control problem (12), the solution
of the state equation in (12) gives the mapping u→ x̃(u), that allows to transform the constrained optimization
problem in an unconstrained one as follows

min
u∈U

J(u) := J(x(u), u). (15)

We solve these problem implementing a nonlinear conjugate gradient (NCG) strategy. The evaluation of the
corresponding gradient is given in (14): For a given u, we solve first the forward HK equation and then the
adjoint problem. This procedure is implemented with the RK scheme and is summarized in the following

Algorithm 2 (Evaluation of the gradient at u).

1. Solve the discrete optimal control system (13) with the given initial conditions;

2. solve the discrete adjoint equation in (13) with the computed terminal condition;

3. compute the gradient ∇uJ(u) using (14);

4. end.

We solve the optimization problem (12) by computing the gradient using Algorithm 2 and implementing it in
a NCG scheme; see, e.g., Ref. [4]. For details on NCG implementation see, for instance, Refs. [20, 21].

6 Numerical experiments

In this section, we present numerical simulations with system (1) in the one dimensional case, i.e. for d = 1.
First, we consider the uncontrolled HK model where the control u = 0. This model is solved using the explicit
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Table 1: Parameters for the HK model with leadership.

connectivity function (aij) δ 2.5
ε 0.05

connectivity function (c1i ) δ0 5
ε0 0.05

connectivity function (c2i ) la 20
strength of leader power γ 10

fourth-order Runge–Kutta method illustrated in previous section. In our experiments, the connectivity functions
aij = a(‖xi − xj‖) are given by

a(r) = a(r; δ, ε) =


1, 0 ≤ r ≤ δ,
1
2 + 1

2 tanh
(

1
r−δ + 1

r−(δ+ε)

)
, δ < r < (δ + ε),

0, (δ + ε) ≤ r.

The connectivity coefficient accounting for the relationship between the leader and the other agents is chosen
as follows

c1i (r) = c1i (r; δ0, ε0) =


1, 0 ≤ r ≤ δ0,
1
2 + 1

2 tanh
(

1
r−δ0 + 1

r−(δ0+ε0)

)
, δ0 < r < (δ0 + ε0),

0, (δ0 + ε0) ≤ r,

where r is the distance from the leader and δ0 is the bounded confidence. Alternatively, we take

c2i (ri0) = e−
|xi−x0|

2

la ,

where la = 20 is a parameter that scales the region of attraction. The comparison of the connectivity function
is shown in Fig. 1.
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Figure 1: Comparison of the connectivity function aij , c1i ,c2i

Fig. 2 shows numerical results with the HK model and an uncontrolled external leader. The initial positions
of the agent’s opinion are distributed randomly in [−20, 20] while the leader’s initial opinion is x0(0) = 30. For
these initial conditions x(0) = (x0(0), x1(0), ..., xN (0)), N = 19, and bounded confidence δ = 2.5, δ0 = 5, it
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can be seen that the opinions xi(t), for i = 0, ..., N , converge to a limiting opinion x∗. Moreover, due to
the limitation of confidence, clusters of agents’ opinions are formed, that is, agents with different opinions form
groups or clusters, namely x∗i 6= x∗j when i and j are not in the same cluster, while in the other case, x∗i = x∗j
whenever i and j are in the same cluster.
We investigate the HK model with a leader subject to the global stabilizing feedback control given by Theorem 1.
We allow the connectivity function with the leader φ to be zero in the bounded confidence case (that is with
connectivity functions ci1). We consider two test cases, corresponding to two different initial conditions. In
the bounded confidence case, for some initial configuration, this feedback fails to be a global stabilizer (see
Fig. 4(a)). For all tests, the parameters related to the model are set up as stated in Table 1.
Case I The initial conditions are taken as in the previous experiment, i.e. a group of 20 agents including the
leader are examined where the opinion leader is at x0(0) = 30, while the other opinions are chosen randomly in
[-20,20]. In the Figures 3(a), we report the results with the HK system with c1i , and in Fig. 3(b), we report
results obtained with c2i , when the control with different functions c1i and c2i is applied. We see that by applying
the input control to the HK system, the leader forces the agent’s opinions to achieve consensus.
Case II The initial position of the leader opinion is placed at the center of the group of agents, while the

opinions of the other agents are randomly distributed in a neighborhood of the leader’s position where the
distance between the leader opinion and the next nearest agent opinion is greater than the length of bounded
confidence δ0. With this set of initial conditions, we get the results as shown in Fig.4, where Fig. 4(a) and 4(c)
show the solution of the HK system with the c1i function and Fig. 4(b) and 4(d) show results using c2i . As we
see in Fig. 4(a), because the value of c1i is initially zero, the feedback control u is equal to zero. Therefore the
leader has no influence on the other agents and fails in steering the agent to consensus. On the other hand,
with the c2i function consensus is obtained.

To complete this section, we present results of numerical experiments obtained with the optimal control problem
(12) in the time interval [0, 10]. We consider two series of experiments; in the first one, we consider the consensus
problem and in the second one, we focus on the tracking problem. In both tests, we solve the optimal control
problem (7) with N + 1 = 10. The parameters related to the model are given as shown in Table 1. In addition,
the parameters in the objective function are given by µ = 1, ν = 0.001. The initial opinions of the agents
are randomly chosen in [-5,10] and the opinion of the leader is at x0(t0) = 20. Furthermore, the target is
xdes = cos([0, 10]). To apply the MPC strategy, the time horizon is divided into subintervals of size ∆t = 0.25.
From Fig. 5 and Fig. 6 we see that the resulting optimal control is able to steer the system to achieve the
objective.

7 Conclusions

In this work, different control strategies for the Hegselmann–Krause opinion formation model with leadership
were investigated. On the one hand, the control function was determined as a feedback control obtained via a
stabilization procedure. On the other hand, it was obtained using a model predictive optimal control strategy.
In both cases, the control function was included in the leader dynamics.
For the proposed control schemes, the issues of global stabilization, controllability, and tracking are investigated.
Furthermore, in order to implement the model predictive control scheme, an appropriate Runge–Kutta scheme
and a nonlinear conjugate gradient method were discussed. Results of numerical experiments demonstrated
the validity and limitation of the proposed control strategies to drive the Hegselmann–Krause model to attain
consensus.
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Figure 2: Free evolution of the system (uncontrolled case). Simulation with N + 1 = 20 agents. The initial
position values are chosen randomly in [−20, 20] and leader opinion is at x0(0) = 30. Fig.(a) shows with c1i .
Fig.(b) result is with c2i . The evaluation of the opinion is denoted by a line and the dashed line represent the
opinion of the leader.

14



0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

Opinion position

time (t)

x
(t

)

 

 

Leader

other agents

(a) t=50 with c1i

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

Opinion position

time (t)

x
(t

)

 

 

Leader

other agents

(b) t=50 with c2i

Figure 3: Stabilizing control. Simulation with N + 1 = 20 agents. The initial position values are chosen
randomly in [−20, 20] and leader opinion is at x0(0) = 30. Fig.(a) show results with c1i , results (b) with c2i . The
opinion evaluation of each agent is denoted by a continuous line and the dashed line presents the opinion of the
leader.
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Figure 4: Stabilizing control. Simulation with N + 1 = 20 agents. The leader’s initial opinion is at center of
group, other initial positions are randomly distributed on both sides of leader’s position. Fig.(a) and (c) show
the results with c1i and Fig.(b) and (d) results with c2i . The opinion evaluation of each agent is denoted by a
continuous line and the dashed line presents the opinion leader.
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Figure 5: Optimal control. Simulation with N + 1 = 10 agents. Figures (a) and (b) represent the optimal
results of the HK with leadership for µ = 0. The objective is to force all agents to reach the consensus x∗. The
opinion evaluation of each agent is denoted by a continuous line and the dashed line represents the opinion of
the leader.
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Figure 6: Optimal control. Simulation with N + 1 = 10 agents. In figures (a) and (b) the optimal results of HK
with leadership for µ = 1. The objective is to force all agents to reach the desired position xdes = cos([0, 10]).
The opinion evaluation of each agent is denoted by a continuous line and the dashed line represents the opinion
of the leader.
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