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This paper is concerned with the controllability of linear and nonlinear fractional dynamical systems in finite dimensional
spaces. Sufficient conditions for controllability are obtained using Schauder’s fixed point theorem and the controllability
Grammian matrix which is defined by the Mittag-Leffler matrix function. Examples are given to illustrate the effectiveness
of the theory.
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1. Introduction

In the last three decades, interest in fractional calculus
has experienced rapid growth and at present we can find
many papers devoted its theoretical and application as-
pects (see the work of Machado et al. (2011) and the ref-
erences therein). Fractional order models of real systems
are often more adequate than the usually used integer or-
der models in electrochemistry (Ichise et al., 1971), ad-
vection dispersion models (Benson et al., 2000), anoma-
lous diffusion (Metzler and Klafter, 2000), viscoelastic
materials (Renardy et al., 1987), fractal networks (Al
Akaidi, 2004; Arena et al., 2000; West et al., 2003) and
robotics (Valerio and Sa da Costa, 2004), etc. This is
mainly due to the fact that the description of some systems
is more accurate when the fractional derivative is used.

For example, consider the time fractional advection–
dispersion equation obtained by Liu et al. (2003) by re-
placing the time-derivative in the advection–dispersion
equation by a generalized derivative of order α with 0 <
α ≤ 1,

∂αC(x, t)
∂tα

= ν
∂C(x, t)
∂x

+D
∂2C(x, t)
∂x2

,

C(x, 0) = C0(x), x ≥ 0,

where x > 0, t > 0, D > 0, ν ≥ 0. From the mathe-
matical point of view, the fractional derivative dates back
two centuries, but it was not until much later that substan-
tial theoretical research into fractional derivatives and in-
tegrals developed. One can see the monographs of Kilbas
et al. (2006), Miller and Ross (1993), Oldham and Spanier

(1974) as well as Podlubny (1999a) for clear exposition
of fractional calculus. On the other hand, the theory of
fractional differential equations has been extensively dis-
cussed in the literature (see the works of Balachandran
and Kiruthika (2010), Balachandran et al. (2011), Bal-
achandran and Trujillo (2010), Bonilla et al. (2007) and
the references therein).

Qualitative behaviours such as the observability, con-
trollability, stability, stabilizability of fractional dynam-
ical systems are the current issues dealt with by re-
searchers. Mainly, the controllability of dynamical sys-
tems is widely used in the analysis and design of control
systems. Any control system is said to be controllable if
every state corresponding to this process can be affected
or controlled in respective time by some control signals.
Balachandran and Dauer (1987), Klamka (1993; 2008) as
well as Karthikeyan and Balachandran (2011) extensively
discussed the controllability results for linear and nonlin-
ear integer order dynamical systems in finite dimensional
spaces.

Due to the absence of appropriate mathematical
methods, fractional-order dynamical systems have only
been studied marginally in the theory and practice of con-
trol systems. Some successful attempts have been under-
taken, but generally the study in the time domain has al-
most been avoided. However, during recent years a re-
newed interest has been devoted to fractional order sys-
tems in the area of automatic control. Oustaloup (1991)
initiated the first framework for non-integer order systems
in the automatic control area. Fractional-order control is
the use of fractional calculus in the aforementioned top-
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ics, the system being modeled in a classical way or as a
fractional one.

From a certain point of view, the applications of frac-
tional calculus have experienced an evolution analogous
to that of control following two parallel paths depending
on the starting point: the time domain or the frequency
domain. Whilst the applications in dynamic system mod-
eling have used, except in some cases of electrochemistry,
the time domain, the applications in control have been de-
veloped (Machado, 1997) in the frequency domain. Pod-
lubny (1999b) proposed a generalization of the PID con-
troller, namely, the PIλDμ-controller, involving an inte-
grator of order λ and a differentiator of order μ. He also
demonstrated a better response of this type of controller, in
comparison with the classical PID-controller, when used
for the control of fractional-order systems. The integro-
differential equation defining the control action of a frac-
tional order PID controller is given by

u(t) = Kpe(t) +KiD
λe(t) +KdD

μe(t).

Numerous applications have demonstrated that PIλDμ-
controllers perform sufficiently better in the control of
fractional-order dynamical systems than the classical
PID-controllers.

There are very few contributions regarding the con-
trollability of fractional dynamical systems in the litera-
ture. Chen et al. (2006) proposed robust controllability
for interval fractional-order linear time invariant systems,
whereas Adams and Hartley (2008) studied finite time
controllability for fractional systems. Monje et al. (2010)
discussed fractional-order systems and controls with fun-
damental ideas and applications. Shamardan et al. (2000)
extended some basic results on the controllability and ob-
servability of linear discrete-time fractional-order systems
and developed some new concepts inherent to fractional-
order systems with analytical methods for checking their
properties.

The analysis of controllability and observability of
continuous and discrete time fractional order systems
modeled by fractional state space equations was provided
by Bettayeb and Djennoune (2008) as well as Guermah
et al. (2008), respectively. Klamka (2010) addressed the
minimum energy control problem of infinite-dimensional
fractional-discrete time linear systems and established
necessary and sufficient conditions for exact controllabil-
ity. Recently, Balachandran et al. (2012) obtained control-
lability results for nonlinear fractional dynamical systems
using Schauder’s fixed point theorem.

It should be mentioned that the theory of controlla-
bility for nonlinear fractional dynamical systems is still
in the development process with solutions far from be-
ing satisfactory. Motivated by this fact, the main aim of
the present article is to present controllability results for
nonlinear fractional dynamical systems with the choice of

boundedness of Do (1990) for the nonlinear function. Suf-
ficient conditions for controllability are established using
Schauder’s fixed point theorem and fractional calculus.
The paper is organised as follows. In Section 2, some
well known fractional operators, special functions and the
solution representation of fractional differential equations
are given. Section 3 is devoted to the formulation of lin-
ear and nonlinear fractional dynamical systems. Sufficient
conditions for controllability results are established using
Schauder’s fixed point theorem and fractional calculus.
Finally, in Section 4, examples are provided to illustrate
the effectiveness of the theory.

2. Preliminaries

Let p, q > 0, with n−1 < p < n, n−1 < q < n, n ∈ N,
D being the usual differential operator. Let R

m be the m-
dimensional Euclidean space, R+ = [0,∞), and suppose
f ∈ L1(R+). The following definitions and properties are
well known, for p, q > 0 and f as a suitable function (see,
e.g., Kilbas et al., 2006; Samko et al., 1993).

(a) Riemann–Liouville fractional operators (left sided):

(Iq
0+f)(x) =

1
Γ(q)

∫ x

0

(x− t)q−1f(t) dt,

(Dq
0+f)(x) = Dn(In−q

0+ f)(x).

(b) Caputo fractional derivative (left sided):

(CDq
0+f)(x) = (In−q

0+ Dnf)(x).

In particular, Iq
0+

CDq
0+f(t) = f(t) − f(0),where 0 <

q < 1.
The following is a well-known relation, for a finite

interval [a, b] ∈ R+:

(Dq
a+f)(x)=(CDq

a+f)(x) +
n−1∑
j=0

f (j)(a)(x− a)j−q

Γ(1 + j − q)
,

for n = �(q) + 1.

The Laplace transform of the Caputo fractional derivative
is given as

L{
CDq

0+f(t)
}

(s) = sqF (s) −
n−1∑
k=0

f (k)(0+)sq−1−k.

Riemann–Liouville fractional derivatives have singu-
larity at zero (Chikrii and Matichin, 2010) and fractional
differential equations in the Riemann–Liouville sense re-
quire initial conditions of special form lacking physical
interpretation. To overcome this difficulty, Caputo (1967)
introduced a new definition of the fractional derivative
but, in general, neither the Riemann–Liouville nor Ca-
puto fractional operators possess semigroup or commu-
tative properties, which are inherent to the derivatives of
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integer orders. Therefore, the concept of sequential frac-
tional differential equations is discussed by Kilbas et al.
(2006) as well as Miller and Ross (1993).

(c) Linear sequential derivative: For n ∈ N, the sequential
fractional derivative for a suitable function y(t) is defined
by

y(kq := (Dkqy)(t) = (DqD(k−1)qy)(t),

where k = 1, . . . , n, (D0y)(t) = y(t), and Dq is any frac-
tional differential operator (here we refer to it as CDq

0+).
For brevity, let us take Iq

0+ as Iq and CDq
0+ as CDq,

and the fractional derivative is taken in the Caputo sense.

(d) Mittag-Leffler function:

Eq,p(z) =
∞∑

k=0

zk

Γ(kq + p)
for q, p > 0.

The general Mittag-Leffler function satisfies

∫ ∞

0

e−ttp−1Eq,p(tqz) dt =
1

1 − z
for |z| < 1.

The Laplace transform of Eq,p(z) follows from the inte-
gral

∫ ∞

0

e−st tp−1Eq,p(±atq) dt =
sq−p

(sq ∓ a)
.

That is,

L{
tp−1Eq,p(±atq)

}
(s) =

sq−p

(sq ∓ a)
,

for �(s) > |a| 1q and �(p) > 0. In particular, for p = 1,

Eq,1(λzq) = Eq(λzq) =
∞∑

k=0

λkzkq

Γ(qk + 1)
, λ, z ∈ C

have the interesting property

CDqEq(λtq) = λEq(λtq)

and

L{Eq(±atq)} (s) =
sq−1

(sq ∓ a)
for p = 1.

(e) Solution representation: Consider the linear fractional
differential equation of the form

CDqx(t) = Ax(t) + f(t), t ∈ [0, T ],
x(0) = x0,

where 0 < q < 1, x ∈ R
n, and A is an n × n matrix.

In order to find a solution, apply the Laplace transform to

both the sides and use the Laplace transform of the Caputo
derivative to get

sqX(s) − sq−1x(0) = AX(s) + F (s).

Applying the inverse Laplace transform to both the sides,
we have

L−1 {X(s)}=L−1
{
sq−1 (sqI −A)−1

}
x0

+L−1 {F (s)} ∗L−1
{

(sqI −A)−1
}
.

Finally, substituting the Laplace transformation of the
Mittag-Leffler function, we get the solution to the given
equation (Chikrii and Matichin, 2008; Kexue and Ji-
gen, 2011),

x(t) = Eq(Atq)x0

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s) ds.

where Eq(Atq) is the matrix extension of the above-
mentioned Mittag-Leffler function with the following rep-
resentation:

Eq(Atq) =
∞∑

k=0

Aktkq

Γ(kq + 1)
,

with the property CDqEq(Atq) = AEq(Atq).

3. Controllability results

Consider a linear dynamical system represented by the
fractional differential equation of the form

CDqx(t) = Ax(t) +Bu(t), t ∈ [0, b] := J, (1)

x(0) = x0,

where 0 < q < 1, x ∈ R
n, u ∈ R

m, and A is an n × n
matrix while B is an n ×m matrix. Then the solution of
the system (1) is given by (Chikrii and Matichin, 2008)

x(t) = Eq(Atq)x0

+
∫ t

0

(t− s)q−1Eq,q(A(t − s)q)Bu(s) ds. (2)

In particular, the solution (2) satisfies the fractional differ-
ential equation (1). Similarly to the conventional control-
lability concept, the controllability of the fractional dy-
namical system is defined as follows (Chen et al., 2006).

Definition 1. The system (1) is said to be controllable on
J if for every x0, x1 ∈ R

n there exists a control u(t) such
that the solution x(t) of Eqn. (1) satisfies the conditions
x(0) = x0 and x(b) = x1.
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Theorem 1. The linear control system (1) is controllable
on [0, b] if and only if the controllability Grammian matrix

W =
∫ b

0

(b− s)q−1[Eq,q(A(b − s)q)B]

[Eq,q(A(b − s)q)B]∗ ds

is positive definite for some b > 0.

Proof. Since W is positive definite, it is non-singular
and therefore its inverse is well defined. Take the control
function

u(t) = B∗Eq,q(A∗(b− t)q)W−1[x1 − Eq(Abq)x0]. (3)

Here ∗ indicates the matrix transpose and the norm of a
matrix is taken as the usual matrix norm. Further, observe
that the control (3) steers the system (1) from x0 to x1.

Substituting t = b in (2) and inserting (3), we get

x(b) = Eq(Abq)x0

+
∫ b

0

(b− s)q−1Eq,q(A(b − s)q)BB∗

× Eq,q(A∗(b − s)q)W−1[x1− Eq(Abq)x0] ds

= Eq(Abq)x0 +WW−1[x1 − Eq(Abq)x0]
x(b) = x1.

Thus (1) is controllable.
On the other hand, if it is not positive definite, there

exists a nonzero y such that

y∗Wy = 0,

that is,

y∗
∫ b

0

(b− s)q−1Eq,q(A(b− s)q)B

×B∗Eq,q(A∗(b− s)q)y ds = 0,
y∗Eq,q(A(b− s)q)B = 0 on [0, b].

Let x0 = [Eq(Abq)]−1y. By assumption, there exists
an input u such that it steers x0 to the origin in the interval
[0, b]. It follows that

x(b) = 0 = Eq(Abq)x0

+
∫ b

0

(b− s)q−1Eq,q(A(b − s)q)Bu(s) ds

0 = y +
∫ b

0

(b− s)q−1Eq,q(A(b − s)q)Bu(s) ds.

Then

0 = y∗y +
∫ b

0

(b− s)q−1y∗Eq,q(A(b − s)q)Bu(s) ds.

But the second term is zero, leading to the conclusion that
y∗y = 0. This is a contradiction to y 	= 0. Thus W is
positive definite. Hence the proof is completed. �

Consider a nonlinear fractional dynamical system
represented by the fractional differential equation of the
form

CDqx(t) = Ax(t) +Bu(t) + f(t, x(t), u(t)), t ∈ J
(4)

x(0) = x0,

where 0 < q < 1, x ∈ R
n, u ∈ R

m, and A, B are
matrices of dimensions n × n and n × m, respectively,
while f : J × R

n × R
m → R

n is a given function.
Let us introduce the following notation. Denote by

Q the Banach space of continuous R
n ×R

m valued func-
tions defined on the interval J with the norm ‖(x, u)‖ =
‖x‖ + ‖u‖, where ‖x‖ = sup{|x(t)| : t ∈ J} and ‖u‖ =
sup{|u(t)| : t ∈ J}. That is, Q = Cn(J) × Cm(J),
where Cn(J) is the Banach space of continuous R

n val-
ued functions defined on the interval J with the sup norm.
For each (z, v) ∈ Q, consider the fractional dynamical
system

CDqx(t) = Ax(t) +Bu(t) + f(t, z(t), v(t)),
x(0) = x0.

Then the solution is given by

x(t)
= Eq(Atq)x0

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)Bu(s) ds (5)

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, z(s), v(s)) ds.

For our convenience, let us introduce the following
notation:

a1 = sup ‖Eq,q(A(b − t)q)‖,
a2 = sup ‖Eq(Atq)x0‖,
γi = 4a2

1b
q‖αi‖‖B∗‖‖W−1‖q−1,

βi = 4a1b
q‖αi‖q−1

d1 = 4a1‖B∗‖‖W−1‖[|x1| + a2],
d2 = 4a2,

a = max
{
a1b

q‖B‖q−1, 1
}
,

ci = max{γi, βi},
d = max{d1, d2}.

Now we prove the main result of the paper.

Theorem 2. Let the function f satisfy the condition

‖f(t, x, u)‖ ≤
p∑

i=1

αi(t)φi(x, u), (6)
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where φi : R
n × R

m → R+ are measurable functions
and αi : J → R+ are L1 functions for i = 1, 2, . . . , p.
Suppose that the linear system (1) is controllable, and if
the following equality holds:

lim sup
r→∞

(
r −

p∑
i=1

ci sup
{
φi(x, u)

: ‖(x, u)‖ ≤ r
})

= +∞. (7)

Then the nonlinear system (4) is controllable on J .

Proof. Define the operator P : Q → Q by

P(z, v) = (x, u),

where

u(t) = B∗Eq,q(A∗(b− t)q)W−1

[
x1 − Eq(Abq)x0

−
∫ b

0

(b − s)q−1Eq,q(A(b − s)q)f(s, z, v) ds
]

(8)

and

x(t) = Eq(Atq)x0

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)Bu(s) ds (9)

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, z, v) ds.

Now let

ψi(r) = sup {φi(x, u) : ‖(x, u)‖ ≤ r} .

Since (6) holds, there exists r0 > 0 such that

r0 −
p∑

i=1

ciψi(r0) ≥ d,

which implies

p∑
i=1

ciψi(r0) + d ≤ r0.

Then, by (8) and (9),

‖u(t)‖

≤ a1‖B∗‖‖W−1‖
[
|x1| + a2 + bqa1q

−1

p∑
i=1

‖αi‖ψi(r0)
]

≤
[
d1

4a
+

1
4a

p∑
i=1

γiψi(r0)

]
≤ 1

4a

[
d+

p∑
i=1

ciψi(r0)

]
.

‖x(t)‖

≤a2 +
a1b

q‖B‖
4aq

[
d+

p∑
i=1

ciψi(r0)

]

+
a1b

q

q

p∑
i=1

‖αi‖ψi(r0)

≤ d

4
+

1
4

[
d+

p∑
i=1

ciψi(r0)

]
+

1
4

p∑
i=1

ciψi(r0)

≤ 1
2

[
d+

p∑
i=1

ciψi(r0)

]
.

Therefore, |u(s)| ≤ r0/4a, for all s ∈ J , and hence
‖u‖ ≤ r0/4a, which gives ‖x‖ ≤ r0/2. Thus, we have
proved that, if

Q(r0) =
{

(z, v) ∈ Q : ‖z‖ ≤ r0 and ‖v‖ ≤ r0

}
,

then P maps Q(r0) into itself. Now let us take t1, t2 ∈ J
with t1 < t2, and for all (x, u) ∈ Q(r) we have to show
that P [Q(r)] is equicontinuous for all r > 0:

‖u(t1) − u(t2)‖
=

∥∥∥∥
[
B∗Eq,q(A∗(b− t1)q

−B∗Eq,q(A∗(b − t2)q)
]
W−1

[
x1 + Eq(Abq)x0

+
∫ b

0

(b− s)q−1Eq,q(A∗(b − s)qf(s, x(s), u(s)) ds
]∥∥∥∥

≤∥∥B∗Eq(A∗(b− t1)q

−B∗Eq(A∗(b− t2)q)
∥∥‖W−1‖

[
‖x1‖ + ‖Eq(Abq)x0‖

+
∫ b

0

(b− s)q−1‖Eq,q(A∗(b− s)q‖
p∑

i=1

‖αi‖ψi(r) ds
]
.

(10)

We have

‖x(t1) − x(t2)‖
=

∥∥∥Eq(At
q
1)x0 − Eq(At

q
2)x0

+
∫ t1

0

(t1 − s)q−1Eq,q(A(t1 − s)q)Bu(s) ds

−
∫ t2

0

(t2 − s)q−1Eq,q(A(t2 − s)q)Bu(s) ds

+
∫ t1

0

(t1 − s)q−1Eq,q(A(t1 − s)q)f ds

−
∫ t2

0

(t2 − s)q−1Eq,q(A(t2 − s)q)f ds
∥∥∥
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≤‖Eq(At
q
1)x0 − Eq(At

q
2)x0‖

+
∫ t2

t1

(t2 − s)q−1‖Eq,q(A(t2 − s)q)‖‖B‖‖u(s)‖ ds

+
∫ t1

0

[
(t1 − s)q−1‖Eq,qA(t1 − s)q)‖

−(t2 − s)q−1‖Eq,q(A(t2 − s)q)‖
]
‖B‖‖u(s)‖ ds

+
∫ t1

0

[
(t1 − s)q−1‖Eq,q(A(t1 − s)q)‖

−(t2 − s)q−1‖Eq,q(A(t2 − s)q)‖
]
‖f‖ ds

+
∫ t2

t1

(t2 − s)q−1‖Eq,q(A(t2 − s)q)‖‖f‖ ds

≤ ‖Eq(At
q
1)x0 − Eq(At

q
2)x0‖

+
∫ t2

t1

(t2 − s)q−1‖Eq,q(A(t2 − s)q)‖‖B‖‖u(s)‖ ds

+
∫ t1

0

[
(t1 − s)q−1‖Eq,q(A(t1 − s)q)‖

−(t2 − s)q−1‖Eq,q(A(t2 − s)q)‖
]
‖B‖‖u(s)‖ ds

+
∫ t1

0

p∑
i=1

‖αi‖ψi(r)
[
‖Eq,q(A(t1 − s)q)‖

×(t1 − s)q−1 − (t2 − s)q−1‖Eq,q(A(t2 − s)q)‖
]

ds

+
∫ t2

t1

(t2 − s)q−1‖Eq,q(A(t2 − s)q)‖

×
p∑

i=1

‖αi‖ψi(r) ds. (11)

Moreover, for all (x, u) ∈ Q(r),

‖u(t)‖ ≤ ‖B∗‖‖Eq,q(A∗(b− t)q)‖‖W−1‖[
‖x1‖ + ‖Eq(Abq)x0‖

+
∫ b

0

(b − s)q−1‖Eq,q(A∗(b− s)q‖
p∑

i=1

‖αi‖ψi(r)ds
]
.

(12)

Thus the right-hand side of Eqns. (10) and (11) is in-
dependent of (x, u) ∈ Q(r) and tends to zero as t1 → t2.
Hence P [Q(r)] is equicontinuous for all r > 0 and, by
the regularity assumption on f , the operator is continu-
ous, and hence it is completely continuous by the applica-
tion of the Arzela–Ascoli theorem. Since Q(r0) is closed,
bounded and convex, the Schauder fixed point theorem
guarantees that P has a fixed point (z, v) ∈ Q(r) such

that P(z, v) = (z, v) ≡ (x, u). Hence we have

x(t)
= Eq(Atq)x0

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)Bu(s) ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s), u(s)) ds.

Thus, x(t) is the solution of the system (4), and it is easy to
verify that x(b) = x1. Hence the system (4) is controllable
on J . �

4. Examples

In this section we apply the results obtained in the previ-
ous section to linear and nonlinear fractional dynamical
systems.

Example 1. Consider the following nonlinear fractional
dynamical system represented by the scalar fractional dif-
ferential equation:

CD1/2x(t) = x(t)+u(t) + sinx(t) cos u(t), t ∈ [0, 1],
x(0) = x0, (13)

where A = B = 1, q = 1/2, b = 1, f(t, x(t), u(t)) =
sinx(t) cos u(t). The two parameter Mittag-Leffler func-
tion is given by

E1/2,1/2((t− s)1/2)=
∞∑

k=0

(t− s)k/2

Γ((k + 1)/2)
.

By simple calculation, one can see that the controlla-
bility Grammian is

W =
∫ 1

0

(1 − s)−1/2[E1/2,1/2((1 − s)1/2)]

× [E1/2,1/2((1 − s)1/2)]∗ ds

=
∫ 1

0

(1 − s)−1/2
∞∑

k=0

(1 − s)k/2

Γ((k + 1)/2)

×
∞∑

m=0

(1 − s)m/2

Γ((m+ 1)/2)
ds

=
∫ 1

0

∞∑
k=0

∞∑
m=0

(1 − s)(k+m−1)/2

Γ((k + 1)/2)Γ((m+ 1)/2)
ds

=
∞∑

k=0

∞∑
m=0

2
(k +m+ 1)Γ((k + 1)/2)Γ((m+ 1)/2)

> 0
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and the control function is

u(t) =
∞∑

k=0

(1 − t)k/2

Γ((k + 1)/2)
n−1

1

[
x1 −

∞∑
k=0

(1)k/2

Γ((k/2 + 1)
x0

−
∞∑

k=0

∫ 1

0

(1 − s)(k−1)/2

Γ((k + 1)/2)
sinx(s) cosu(s) ds

]
,

where

n1

=
∞∑

k=0

∞∑
m=0

2
(k +m+ 1)Γ((k + 1)/2)Γ((m+ 1)/2)

.

Since W > 0, the linear system is controllable and
the nonlinear function f(t, x, u) = sinx cosu does not
satisfy the condition stated in Theorem 2. However, by
Theorem 3.1 of Balachandran et al. (2012), the nonlinear
system (13) is controllable on [0, 1]. �

Example 2. Consider the fractional harmonic oscillator
equation (Herrmann, 2011)

(
mCD2q + k

)
x(t) = 0, (14)

where k and m are appropriate constants. Introducing a
control variable and a nonlinear forcing term, we get the
following controlled fractional harmonic oscillator equa-
tion:

CD2qx(t) + x(t) = u(t) +
x(t)

1 + x2(t) + u2(t)
, t ∈ J.

Let us introduce the auxiliary variables x1(t) = x(t)
and x2(t) =C Dqx1(t). Then

CDqx1(t) =CDqx(t) = x2(t),
CDqx2(t) =CD2qx(t),

= −x1(t) + u(t) +
x1

1 + x2
1(t) + u2(t)

.

Hence the above equation has the matrix form

CDqx(t)=Ax(t)+Bu(t)+f(t, x(t), u(t)), (15)

with

A =
(

0 1
−1 0

)
, B =

(
0
1

)
, x(t) =

(
x1(t)
x2(t)

)

and

f(t, x(t), u(t)) =

⎛
⎜⎜⎝

0

x1(t)
1 + x2

1(t) + u2(t)

⎞
⎟⎟⎠ .

The two parameter Mittag-Leffler matrix function is given
by

Eq,q(A(t − s)q) =

⎛
⎝ N1(t− s) N2(t− s)

N3(t− s) N4(t− s)

⎞
⎠ ,

N1(t− s) =
∞∑

k=0

(−1)k(t− s)2kq

Γ(2kq + q)
,

N2(t− s) =
∞∑

k=0

(−1)k(t− s)(2k+1)q

Γ((2k + 1)q + q)
,

N3(t− s) =
∞∑

k=0

(−1)k+1(t− s)(2k+1)q

Γ((2k + 1)q + q)
,

N4(t− s) =
∞∑

k=0

(−1)k(t− s)2kq

Γ(2kq + q)
.

By simple matrix calculation one can see that the
controllability matrix

W =
∫ b

0

(b − s)q−1[Eq,q(A(b − s)q)B]

× [Eq,q(A(b − s)q)B]∗ds

=
∫ b

0

(b− s)q−1

(
M1 M2

M3 M4

)
ds,

where

M1 = N2
2 (b− s)

=
∞∑

k=0

∞∑
m=0

(−1)k+m(b− s)2q(k+m+1)

Γ(2q(k + 1))Γ(2q(m+ 1))
,

M2 = M3 = N2(b − s)N4(b− s)

=
∞∑

k=0

∞∑
m=0

(−1)k+m(b− s)2q(k+m)+q)

Γ(2q(k + 1))Γ(q(2m+ 1))
,

M4 = N2
4 (b− s)

=
∞∑

k=0

∞∑
m=0

(−1)k+m(b− s)2q(k+m)

Γ(q(2k + 1))Γ(q(2m+ 1))
,

is positive definite for any b > 0. Further, the nonlinear
function f(t, x(t), u(t)) satisfies the hypothesis of Theo-
rem 2. Observe that the control defined by

u(t) = B∗Eq,q(A∗(b− t)q)W−1

[
x1 − Eq(Abq)x0

−
∫ b

0

(b− s)q−1Eq,q(A(b − s)q)f(s, x, u) ds
]

steers the system (15) from x0 to x1, and so the fractional
system (15) is controllable on [0, b]. �

5. Conclusion

This paper deals with the controllability of linear and non-
linear fractional dynamical systems. It should be men-



530 K. Balachandran and J. Kokila

tioned that the boundedness of the nonlinearity (Do, 1990)
assumed here is different from that of Balachandran et al.
(2012). Necessary and sufficient conditions for the con-
trollability of linear systems are derived. Consequently,
sufficient conditions for nonlinear systems are established
with the natural assumption that the linear system is con-
trollable by using Schauder’s fixed point theorem. To
show the effectiveness of the theory, examples are pro-
vided.
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