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On the Convergence of a Finite Element Method
for a Nonlinear Hyperbolic Conservation Law

By Claes Johnson and Anders Szepessy

Abstract. We consider a space-time finite element discretization of a time-dependent nonlinear
hyperbolic conservation law in one space dimension (Burgers' equation). The finite element
method is higher-order accurate and is a Petrov-Galerkin method based on the so-called
streamline diffusion modification of the test functions giving added stability. We first prove
that if a sequence of finite element solutions converges boundedly almost everywhere (as the
mesh size tends to zero) to a function u, then u is an entropy solution of the conservation law.
This result may be extended to systems of conservation laws with convex entropy in several
dimensions. We then prove, using a compensated compactness result of Murat-Tartar, that if
the finite element solutions are uniformly bounded then a subsequence will converge to an
entropy solution of Burgers' equation. We also consider a further modification of the test
functions giving a method with improved shock capturing. Finally, we present the results of
some numerical experiments.

0. Introduction. In this note we prove some results concerning the convergence of a
higher-order accurate finite element method for a nonlinear hyperbolic conservation
law. As far as we know, no earlier theoretical results for such methods are available.
We shall consider Burgers' equation in one space dimension, i.e., the problem of
finding a scalar function u(x, t) such that
(0.1a) u, + uux = 0,       x e R = (-00,00), t> 0,

(0.1b) u(0,x) = u0(x),       x<eR,
where u0 is a given function with, say, compact support. As is well known, solutions
of (0.1) may become nonsmooth and develop shocks after finite time, even for
smooth initial data u0. Further, weak solutions of (0.1) are not necessarily unique,
and to guarantee uniqueness, one has to require a certain entropy condition to be
satisfied. A weak solution satisfying the entropy condition is the (unique) so-called
entropy solution of (0.1).

We shall consider a special finite element method for (0.1), namely the streamline
diffusion method based on a space-time finite element discretization with piecewise
polynomials of degree k > 0, together with a certain modification of the test
functions giving added stability. We shall first prove that if a sequence of finite
element solutions converges (as the mesh size h tends to zero) boundedly almost
everywhere to a function u, then u is an entropy solution of (0.1). Thus, streamline
diffusion finite element solutions cannot converge to a weak solution not satisfying
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428 CLAES JOHNSON AND ANDERS SZEPESSY

the entropy condition, i.e., to a nonphysical solution. The method may directly be
formulated for systems of conservation laws in several dimensions and the conver-
gence result just stated extends to this situation if so-called entropy variables are
used (see [12]).

We shall further prove that if the streamline diffusion finite element solutions are
uniformly bounded, then a subsequence will converge almost everywhere to a
function u. We thus conclude that if the finite element solutions are uniformly
bounded, then a subsequence will converge to an entropy solution of (0.1). This
result is obtained by an application of the theory of compensated compactness,
introduced by Murat and Tartar (see [15]) and exploited by DiPerna [1]. We
emphasize that our finite element method is higher-order accurate (for smooth
solutions the error is 0(hk+l/2)) and is not based on adding heavy artificial
viscosity, limiting the accuracy to at best 0(h). The problem of proving uniform
boundedness for the finite element solutions is left open (no maximum principle
seems to be available). However, it may in fact be possible to prove convergence
without the uniform boundedness assumption (R. DiPerna, personal communica-
tion; cf. also Remark 4.4 below).

Streamline diffusion type finite element methods (under the name SUPG, Stream-
line Upwind Petrow Galerkin) were first applied to nonlinear (stationary) hyperbolic
conservation laws in Hughes and Tezduyar [3] with further development in Hughes
et.al. [4]-[8]. The advantage of using entropy variables in finite element formulations
was pointed out in [4], [5], with inspiration from, e.g., Harten [2] and Tadmor [14]. In
the cited work by Hughes et al. several very good numerical results for streamline
methods for the stationary compressible Euler equations in two dimensions are
reported.

Note that we have earlier ([9], [10], [11]) demonstrated the satisfactory properties,
including good stability and high accuracy of streamline diffusion finite element
methods, for linear advection problems, in particular for nonsmooth exact solutions,
and for the incompressible Euler and Navier-Stokes equations. Conventional finite
element methods lack in either stability (as standard Galerkin methods) or accuracy
(as classical artificial viscosity methods). In particular, with a standard Galerkin
method for (0.1) there is a possibility of convergence to a nonphysical solution not
satisfying the entropy condition.

Although the streamline diffusion method in its basic form discussed so far gives a
dramatic improvement as compared to the standard Galerkin method, still some
overshoots persist at discontinuities of the exact solution. Recently, in the case of
stationary problems, Hughes et al. [6], [8] introduced a variant of the streamline
method, a shock-capturing streamline method, based on a certain ingeniously chosen
additional modification of the test functions and demonstrated in numerical experi-
ments the improved shock resolution of the modified method.

In this note we also consider a shock-capturing modification of the basic stream-
line diffusion method for Burgers' equation obtained by applying the idea of [6] to
the present time-dependent problem. The resulting scheme indeed shows consider-
ably improved shock resolution in numerical tests. The convergence results for the
basic streamline method stated above carry over also to the shock-capturing modifi-
cation, but the problem of mathematically analyzing the improved shock resolution
of the modified scheme is open, even for linear problems.
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We finally present the results of some numerical experiments for Burgers' equa-
tion without and with shock-capturing, demonstrating a very satisfactory perfor-
mance in the latter case.

Let us recall that the basic convergence results for finite difference methods for
scalar conservation laws are based on a priori estimates for first derivatives in
Lrnorms (BV-estimates). Such estimates seem to be very difficult to obtain for finite
element methods on general meshes, and thus the basic theory for finite difference
methods for scalar conservation laws can most likely not be extended to finite
element methods. However, for systems of conservation laws one can probably not
expect to achieve Lrcontrol of first derivatives (cf. [13]), and thus a new approach to
the convergence problem may have to be made anyway in this case. Here, the theory
of compensated compactness may open possibilities of proving convergence without
derivative estimates, cf. [1], [15].

To sum up, the theoretical and computational results for the streamline method
obtained so far indicate that efficient finite element methods may be designed for
hyperbolic conservation laws (in particular, if coupled with adaptively constructed
meshes). Thus, in compressible flow there seems to exist a finite element alternative
to the up till now dominating Lx or BV based finite difference methodology.

1. The Streamline Diffusion Method. Let us now define the basic streamline
diffusion method for (0.1). Let 0 = t0 < tx < t2 • ■ ■ be a sequence of time levels, set
K = ('«> (n+i) and introduce the 'slabs' S„ = R X In. For h > 0 and n = 0,1,2,...
let Th" be a quasi-uniform triangulation of Sn into triangles K of diameter hK^h
with smallest angle uniformly bounded away from zero, and define for a given
k > 1,

Vh" = {v e Hl(S„): v\K^ Pk(K), K œ Th"},

where Pk(K) denotes the set of polynomials on K of degree at most k. Typically,
tn+l — tn~ h and thus Sn will normally be one element wide, cf. Section 6. Note
that since u0 has compact support, it follows that also the solution u has compact
support in R X [0, i] for any t. This means that we may restrict the functions in Vh"
to be zero for \x\ large.

We shall seek an approximate solution U = Uh in the space Vh = Y\n>0Vh", i.e.,
for n = 0,1,2,..., we will have

U\s„^Vh"-

Note that the functions in Vh are continuous in x and possibly discontinuous in t at
the discrete time levels tn. The streamline diffusion method for (0.1) can now be
formulated as follows: Find U & Vh such that for « = 0,1,2...,

(1.1)       [  (U, + UUx)(v + h(v,+ Uvx))dxdt+ f(U"+- U"_)v"+ dx = 0
JS„ JR

Vu e Vh",

where 8 = h (cf. Remark 4.5) and

v\=   lim   v(tn + s),        U°= u0.
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As in [10] we see that (1.1) admits at least one solution. Note that (1.1) corresponds
to an implicit time stepping scheme; see Section 6 below.

Our main concern is now the problem of convergence of the method (1.1), i.e.,
whether Uh converges in a suitable sense to an entropy solution u of (0.1) as h tends
to zero. To make this precise, let us recall that a function u e LX(Q), Q = R x
(0, oo), is a weak solution of (0.1) if for all <p e C0°°(ß), H = R x [0, oo), we have

(1.2) j iu<p, + Y<Px)dxdt + j uocp(-,0)dx = 0.

Further, we recall ([1], [15]) that a weak solution u of (0.1) is an entropy solution if
the following entropy inequality is satisfied: For all <p e C™(&) with <¡p > 0,

(1.3) /
u2 u3-Tv* dxdt > 0.

Thus, our problem is to prove that Uh converges to a function u satisfying (1.2) and

(1.3).
Remark. An entropy solution of Burgers' equation according to the above defini-

tion is most likely unique. However, a proof of uniqueness seems to be available in
the literature only under the additional assumption that u has bounded variation,
see[l].    D

We will use the following notation: For to a domain in Rd, d = 1,2, and m a
nonnegative integer, let Hm(u) denote the usual Sobolev space of functions with
derivatives up to order m square integrable over u, with norm || • \\m u and
corresponding seminorm | • \m u including only highest-order derivatives. Further, if
m = 0, this index is omitted, so that || • IL = || • ||¿ (w). Also, we write || • H^ M =
II ' Hz. («)■ We also use the convention that for N > 1

N-Ï

\\ut+uux\\lN = E \\u, + uux\\l,
n = 0

where &N = R X (0, tN). By C we will denote a positive constant independent of u0
and h, not necessarily the same at each occurrence.

2. Preliminaries. A Basic Estimate. The basic stability estimate for (1.1) is obtained
by taking v = U, which gives by integration by parts and summation over n: For
N = 1,2,..., we have

(2.1)        A||i/, + UUx\\lN + \ "¿Vi- VI (R + \\\UN_tR = \\\u0(R.
n = 0

We also note that from (2.1) we may obtain an estimate for ||t/(r)||/< for all t > 0
as follows: For t„< t < tn+l we have

\\u(')Û = \\ui+^R- f'-1 fjMs)Ûds

= \\u-+l\\2R- 2f'Ml  Í {U,+ UUx)Udxds

<\\Ul+l(R + h\\U, + UUx\\l + -\f'"*l\\U(s)\\2Rds,
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so that by Gronwall's inequality for t„ < t < tn+l,

\u(t)\\\c h\\u,+ uuxfSm +1| Ul+l(R

Together with (2.1) this proves that

(2.2) l|tf(OII*<C||«0||R,       t>0.
Further, with irhv e Vh a standard interpolate of v e Hx(ü), we have for s = 0, 1

the interpolation error estimates

(2.3a) \\v - irhv\lM < Chm-S\v\m,a,       1 < m < fc + 1,

(2.3b) H-(^v)l\\R^C/h\v\USn.
We also have the following "super-approximation" result:

Lemma 2.1. There is a constant C such that for cp e Hx(ü), v e Vh, n = 0,1,2,...,

(2.4a) lk«P - ^(««p)IL,a< CAl_1lf,ll/.«!(ß)ll,i,lli,Q>       s = 0,l,
(2.4b) \\(v<p)l-(irh(v<p))"+\\R^ Cjh\\v\\L~iQ)\\<p\\x,St:.

Proof. To prove (2.4a), it is sufficient to prove that for each triangle K e Th",

\\v<p - irh{v(p)\\sK^ Ctf-'WvW^KWvW^K,        s = 0,1.
To this end, let (ph e P0(K) be defined by

/   <phwdx= I  ywdx    VwGP0(i),
JK JK

i.e., (ph is the L2( .^-projection of cp onto the set P0(K) of constants on K. By
well-known estimates we have

(2-5) ll<P-<pj*:< CAlltpIl!,*.
Further,

|| Dtp - irh(v<p)\\K^\\v<ph - irh(v<ph)\\K + \\v(p - vq>h\\K+ \\irh(v(p) - irh(vcph) \\K

= Tx + T2+ T3

with obvious notation. Now, since v e Vh and cph is constant on K, irh(v(ph) = v<ph
on K and thus Tx = 0. Further, using (2.5), we have

(2-6) T2 =\\v<p- v<ph\\K^ C/j||i;||00,jf||<p||i.K-,

and

T3 ^\\irh{v(<p- <ph))\\K

(2.7) <||«(<P-«P*)||jf+ ||"(<P-<Pa) -^(f(<p-<pJ)IU
< CÄ||i;||oo,Ar||«p||i.jc+ Ch\v(çp - (jpJ|1Jf < C/i||ü||oo.^||<p||i,/c,

where in the last step we also used the inverse estimate

Difi :K)^Ch-1\v\Lx{K),       v^Pk(K).

Recalling (2.6) and (2.7), we thus obtain (2.4a) with s = 0. In a similar way we
obtain (2.4a) with s = 1 and (2.4b), and the lemma follows.   D
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3. Convergence Towards Entropy Solutions. We start our discussion with the
following result, which proves that if the solutions Uh of (1.1) converge boundedly
almost everywhere to a function u, then u satisfies (1.2) and (1.3), i.e., u is an
entropy solution of (0.1). As noted, this proves that the method (1.1) cannot produce
discrete solutions converging to a nonphysical solution of (0.1), or in other words,
that (1.1) in some sense has a correct dissipation built in. Again we note that this
dissipative effect is not obtained by adding a strong dissipative term of, e.g., the
form -huxx to (0.1a), as is typically done in the case of monotone difference schemes
(e.g., the Lax-Friedrichs' scheme). Such an added dissipative term limits the order of
accuracy to at most first order, while the scheme (1.1) is of order at least k + 1/2
for smooth solutions.

Theorem 3.1. Suppose the solutions Uh of (1.1) converge boundedly a.e. in & to a
function u as h tends to zero, so that in particular for h > 0,

(3.1) l|t4L,Q<C.

Then u satisfies (1.2) and (1.3), and thus u is an entropy solution of (0.1).

Proof. To prove that u satisfies (1.2), we choose v = irhtp with <p e Q0^) in (1.1)
to get

f  (U, + UUx)q>dxdt + ( (U"+- U"_)<p"+ dxJS„ JR

= /   (Ut+UUx)(<p-irh<p)dxdt+ j (Ul-Un_){cp"+-(irh<p)l)dx
S„ R

-h\   (U,+ UUx)((irhcp)t+U(irh<p)x)dxdt

= El + E2 + E¡,

with the obvious notation. Integrating here by parts on the left-hand side and
summing over n, we get

-[ [u^ + ^j-tpAdxdt- ( u0<p(-,0)dx
(3.2) M 2      ! Jr

= E El+ E E2+ £ E^R\ + R2 + Rl
n»0 «>0 «>0

Now, by (2.3), (2.1) and (3.1) we have

\R:h\<Ch\\U,+ i/i/J0||9||i.B«cAïl9lli.o,        i-1,3,
I \1/2

\Rl\^cfî\ ¿Z\\ui-ui\\2R\    ||ç>||i,o<CVa1<p||i,o.
\n>0 I

Passing to the limit in (3.2), we now see that u satisfies (1.2).
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Finally, to prove (1.3), we choose v = irh(U<p) with <p > 0, <p e C0°°(Í2) to get

[  (U, + UUx)Ucpdxdt + f (U1- U!)U"+<pn+ dx + hi  (Ut+ UUx)2<pdxdt
S„ JR JS„

= f   (Ul+UUx)(U<p-Trh(U<p))dxdt

+/ (tfí-v:)((üw:-(w»(H¡>)):)&JR

+ h f   (U, + UUx){(Uq>),-MUV)), + U((U<p)x-(irh(U<p))x))dxdt

-h f  (U, + UUx){UVl + U\x) dxdt = Fx + F2 + F„3 + F,4,
Js„

again with the obvious notation. Integrating by parts as above and summing over n,
we get

"/ {Ç<Pr + Ç<Px)dxdt + \ E / {ui-ui)2qr+dx
ß   \ / n>\     B.

+hf (ut+uux)2<pdxdt= E E F'- E s¿-
a j=\   «>0 /=1

Using now (2.1), (2.4) and (3.1), we conclude that

(3.4a) |Sji|<CA||£i+£^,y|c>||lio<Ci/S'||V||i>0,       ;-1,3,4,
/ \1/2

(3.4b) |S2|^Cvt7   E lit/:- Í/-IIJ    ll«p||i,o<Ci/A"||«p||1,0.
%>o '

Passing then to the limit in (3.3), we find that u satisfies (1.3), and the proof is
complete.    D

Remark 3.1. Theorem 3.1 may be extended to systems of conservation laws in
several dimensions using entropy variables; see [12].   D

4. Convergence a.e. by Compensated Compactness. We now relax the conditions of
Theorem 3.1 and only assume that the maximum norm bound (3.1) is satisfied.
Under this assumption we shall prove, using a compensated compactness result by
Murat and Tartar (see [15]), that a subsequence Uh converges a.e. to a function u. By
Theorem 3.1 it then follows that u is an entropy solution of (0.1). We thus conclude
that a subsequence Uh converges a.e. towards an entropy solution of (0.1) if
assumption (3.1) is satisfied.

Theorem 4.1. Suppose the solutions Uh of (1.1) satisfy (3.1). Then a subsequence Uh
converges a.e. to an entropy solution u of (0.1).

Proof. According to [5] it is sufficient to prove that

(4.1) ytr1(U)+-^q(U)£A+B,
where U = Uh and

A = compact set of H l(Q),
B = bounded set of M(fi),
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with the following two choices of the functions tj and q:

(4.2)

(4.3)

t)(v) = v,       q(v) = Y'

í)(«) = y,      9(»)-y-

Here, M(Q) denotes the set of bounded measures on Ü.
To prove (4.1) in the case (4.2), let us choose u = irhcp, tp e C0°°(Í2) in (1.1) to give

as above

lh u2
+ ~T'<Px\dxdt

= f (U,+ UUx)(<p-Trh<p)dxdt +  E    f {UÎ- U"){<p"+-(irh<p)"+)dx
•>a „>x Jr

-hi (Ut+ I/Cr,)((flw),.+ U(irhrp)x)dxdt

I 2\1/2^caii^+î/î/jijçIU + cVa  E I|í/:-£/-IIJ   lklli,D,
\«>0 /

so that by (2.1)

(4.4)

This proves that

U¿f ¡U<p, + ^-<px\dxdt«;Cjh\\<p\\i.Q-

and (4.1) follows in the case (4.2).
Finally, in the case (4.3) we choose in (1.1) v = irh(U<p), <p e C0°°(ñ), to get as

above

i 4

= -a/ (u, + uux)2<pdxdt - y E /(£/;- Ul)\"+ dx+Y. si,
Ja ¿ «>o JB y-i

so that, recalling (2.1) and (3.4),

r2
(4.5) /if"+ y-<Px I dxdt <C||<pI|l-(B) + Ci/a1<p||iB-

This proves (4.1) in the case (4.3), and the proof is complete.   D
Remark 4.1. Notice that since the flux function f(u) = u2/2 in Burgers' equation

is strictly convex, it is sufficient to establish (4.1) for one strictly convex entropy tj
and corresponding entropy flux q, e.g., with tj and q given by (4.3) (cf. [15]). For a
general nonconvex / we would have to prove (4.1) for all convex entropies tj and
corresponding fluxes q, a considerably more difficult task.   D
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Remark 4.2. In the compensated compactness argument that we have used, the
assumption of one space dimension seems essential. Thus, extension of Theorem 4.1
to the case of several space dimensions is not direct.   D

Remark 4.3. We notice that the entropy condition (1.3) for Burgers' equation used
in this note corresponds to the entropy condition for the compressible Euler
equations expressed in entropy variables used in [4], [5]. In both cases the entropy
condition is basically obtained by multiplying the conservation law itself by the
quantity ucp, where u is the unknown and <p a nonnegative test function, and then
integrating. From the finite element point of view, this is a favorable situation, since
the discrete counterpart of the entropy inequality can then be obtained by taking
v = irh(U<p) in the finite element equation; cf. [12].   D

Remark 4.4. The assumption (3.1) is used at two crucial steps above, namely in
(4.4)-(4.5) and in the Murat-Tartar result used in the proof of Theorem 4.1. In both
cases the assumption (3.1) may be replaced by a somewhat weaker condition; in (4.5)
we only need that JhWUhWla^ tends to zero as h tends to zero, and to apply the
Murat-Tartar result, it seems to be possible to replace (3.1) by the assumption
II^IL/ß) < c for some /> > 6.    D

Remark 4.5. To obtain the theoretical results of this paper, it is not criticial to use
precisely the test functions (i; + h(v, + Uvx)) in (1.1). In fact, it is sufficient to
choose 8 = 8(h) such that S -> 0 and A/ v^ -* 0 as h -» 0. The choice 8 = A (or
more precisely 8 - (I + U2)~1/2h, cf. [4], [12]), however, seems most natural and is
also the choice that gives 0(hk + l/2) convergence for smooth solutions; cf. Section 6
below.   D

5. A Shock-Capturing Streamline Diffusion Method. We now consider a variant of
the streamline diffusion method (1.1) with improved shock-capturing (cf. [6], [8]).
Using the notation

ß-ß(U)-(l,U),       W = (v„vx),

the modified test function in (1.1) can be written

v + 8(vt+ Uvx) = v + 8ß ■ vv,

where ß ■ Vv = vt+ Uvx.
The further modified test functions in the shock-capturing streamline diffusion

method are given by

V + 80-VO + 8ß -vv,

where ß = ß(U)is the projection of ß(U) onto VU (locally for each (x, /)), that is,

\VU\

and 8 is a parameter again with 8 - h. Note that by the definition of ß, we have

(5.1) ß-vu = ß-vu.
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The shock-capturing streamline diffusion method can now be formulated as
follows: Find í/eF¡ such that for « = 0,1,2,...,

(5.2)

i  (U, + UUx)(v + 8ß(U) ■ W + 8ß(U) ■ Vv) dxdt

+ i (UZ- U")v"+ dx = 0,       Vi> e Vh".

Theorems 3.1 and 4.1 directly extend to the shock-capturing method (5.2). Note
that the basic stability estimate for (5.2), in view of (5.1), is the same as (2.1) (with h
replaced by (8 + 5)). As already indicated, the improved shock-capturing of (5.2)
still awaits analysis.

6. Numerical Results. We now give some numerical results obtained using the
obvious version of (1.1) and (5.2) with piecewise bilinear finite elements on a
uniform mesh of the form

t
t
I

M -

h

For each n we have in this case that (1.1) and (5.2) is equivalent to a nonlinear
system of equations with unknowns representing the nodal values of {/" and U" + 1
at the points marked by solid circles in the above figure. Here, also the known nodal
values of U"_ entering (1.1) as data are indicated by squares. The computations were
made with h = 0.1 and with the following initial data:

u0{x)

foTx < 2.05,
for 2.05 < x s; 5,

jc)/2.9    for5 < x < 7.9,
for x > 7.9.

The corresponding exact solution has a rarefaction wave centered at x = 2.05 and
develops a shock at x = 7.9 at time / = 2.9.

Below we give the results after 1, 21 and 51 time steps obtained using (1.1) with
8 = h, and (5.2) with 8 = h and 8 = h, 2.5A and 5h. The exact solution is
represented by the dashed line. We note the improved shock-resolution of (5.2) with
proper choice of 8. For comparison we also give the results at the corresponding
time levels obtained by the Lax-Friedrichs' finite difference method and Godunov's
method with A? = Ax = 0.1 and initial data 2"C
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