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ON THE CONVERGENCE OF AN ACTIVE SET METHOD FOR ℓ1 MINIMIZATION

ZAIWEN WEN † , WOTAO YIN ‡ , HONGCHAO ZHANG § , AND DONALD GOLDFARB ¶

Abstract. We analyze an abridged version of the active-set algorithm FPC AS proposed in [18] for solving the l1-regularized

problem, i.e., a weighted sum of the l1-norm ‖x‖1 and a smooth function f(x). The active set algorithm alternatively iterates

between two stages. In the first “nonmonotone line search (NMLS)” stage, an iterative first-order method based on “shrinkage”

is used to estimate the support at the solution. In the second “subspace optimization” stage, a smaller smooth problem is

solved to recover the magnitudes of the nonzero components of x. We show that NMLS itself is globally convergent and the

convergence rate is at least R-linearly. In particular, NMLS is able to identify of the zero components of a stationary point after

a finite number of steps under some mild conditions. The global convergence of FPC AS is established based on the properties

of NMLS.

Key words. l1-minimization, basis pursuit, compressed sensing, subspace optimization, active set, continuation

AMS subject classifications. 49M29, 65K05, 90C25, 90C06

1. Introduction. In this paper, we consider the convergence properties of a two-stage active set algo-

rithm for the l1-regularized minimization problem

(1.1) min
x∈Rn

ψµ(x) := µ‖x‖1 + f(x),

where µ > 0 and f(x) : R
n → R is continuously differentiable. This work is motivated by an efficient

algorithm proposed in [18] for sparse reconstruction, which is applied to f(x) = 1
2‖Ax− b‖22 and A ∈ R

m×n.

Note that problem (1.1) is differentiable except at points where at least one component of x is zero. We can

define the active set A(x) to be the set of indices corresponding to the zero components and the inactive set

I(x) to be the support of x, i.e.,

(1.2) A(x) := {i ∈ [1, n] | |xi| = 0} and I(x) := {i ∈ [1, n] | |xi| > 0}.

In our framework, a first-order method based on the so-called “shrinkage” operation is used to identify

an active set and then a second-order method is used to explore a smooth subproblem based on this active

set. These two operations are iterated until convergence criteria are satisfied. Similar ideas can be found in

nonlinear programming. For example, gradient projection and conjugate gradient steps have been combined

to solve problems with bound constraints or linear constraints in [2, 3, 12, 15, 16], and linear programming

and quadratic programming subproblems have been used to solve general nonlinear programs in [4, 5].

However, our algorithm is different from the active set algorithm [14] on how the working index set is chosen.

Thanks to the solution sparsity, our approach is more aggressive and effective.

Our contributions are as follows. First, we interpret shrinkage as a gradient projection method for

smooth problems with simple bound constraints [6, 12, 19], since problem (1.1) can be reformulated as the
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minimization of a smooth objective function over a simple convex set (as explained later in (2.3)). Hence, the

analysis in [6, 12, 19] can be extended naturally to explain the behavior of shrinkage. This point of view for

shrinkage offers us the opportunity of utilizing research results in nonlinear programming to study problem

(1.1). Second, we provide another successful example of how to combine powerful algorithmic components

with different purposes together coherently. While subspace optimization (“de-biasing”) has been proved to

be useful as a post-processing procedure in GPSR [11] and FPC [13], it is not easy to integrate it into the

main iterations as in our algorithm. Moreover, we can guarantee certain convergence results although the

analysis becomes very difficult as our algorithm alternates between different phases.

This paper is organized as follows. In section 2, we present some useful properties of shrinkage. In

section 3, we briefly review our two-stage active set algorithm. We analyze our first stage algorithm NMLS

in subsection 4.1. We show that NMLS is globally convergent and the convergence rate is at least R-linear.

The identification of the active set is presented in subsection 4.2. Global convergence of the active set

algorithm is presented in subsection 4.3.

2. Properties of shrinkage. We now briefly review the iterative shrinkage procedure for solving (1.1).

Given an initial point x0, the algorithm iteratively computes

(2.1) xk+1 := S
(
xk − λgk, µλ

)
,

where gk := ∇f(xk), µ, λ > 0, and for y ∈ R
n and ν ∈ R, the shrinkage operator is defined as

S(y, ν) := sgn(y)⊙max {|y| − ν,0} .(2.2)

The convergence of the iterative shrinkage operation (2.1) has been studied in [7, 9, 13] under suitable

conditions on λ and the Hessian ∇2f . An appealing feature proved in [13] is that (2.1) yields the support

and the signs of the minimizer x∗ of (1.1) after a finite number of steps under favorable conditions. For more

references related to shrinkage, the reader is referred to [18].

The scheme (2.1) exhibits characteristics of the gradient projection method for bound constrained opti-

mization. In fact, (1.1) can be reformulated as

(2.3) min f(x) + µξ, subject to (x, ξ) ∈ Ω := {(x, ξ) | ‖x‖1 ≤ ξ},

and (2.2) yields the solution of minx∈Rn ν‖x‖1 +
1
2‖x− y‖22, which is equivalent to

(2.4) min
1

2
‖x− y‖22 + νξ, subject to (x, ξ) ∈ Ω.

Hence, (2.1) and (2.2) performs like a gradient projection operator. Denote by d(λ)(x) the search direction

generated by shrinkage (2.1), i.e.,

(2.5) d(λ)(x) := x+ − x and x+ = S(x− λg, µλ).

We can obtain results similar to Proposition 2.1 in [12].

Lemma 2.1. We have the following properties:

P1. (S(x, ν)− x)⊤(y − S(x, ν)) + ν(ξ − ‖S(x, ν)‖1) ≥ 0 for all x ∈ R
n and (y, ξ) ∈ Ω and ν > 0.

P2. (S(x, ν)− S(y, ν))⊤(x− y) ≥ ‖S(x, ν)− S(y, ν)‖22 for all x, y ∈ R
n and ν > 0.
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P3. ‖S(x, ν)− S(y, ν)‖ ≤ ‖x− y‖ for all x, y ∈ R
n and ν > 0.

P4. ‖d(λ)(x)‖ is nondecreasing in λ > 0 for any x ∈ R
n, i.e., ‖d(λ1)(x)‖ ≥ ‖d(λ2)(x)‖ for λ1 ≥ λ2 > 0.

P5.
‖d(λ)(x)‖

λ
is nonincreasing in λ > 0 for any x ∈ R

n, i.e., ‖d(λ1)(x)‖
λ1

≤ ‖d(λ2)(x)‖
λ2

for λ1 ≥ λ2 > 0.

P6. g⊤d(λ)(x) + µ(‖x+‖1 − ‖x‖1) ≤ − 1
λ
‖d(λ)(x)‖22 for any x ∈ R

n and λ > 0.

P7. For any x∗ ∈ R
n and λ > 0, d(λ)(x∗) = 0 if and only if x∗ is a stationary point for (1.1).

P8. Suppose x∗ is a stationary point for (1.1). If for some x ∈ R
n, there exist scalars ω > 0 and L > 0

such that

(g(x)− g(x∗))⊤(x− x∗) ≥ ω‖x− x∗‖22,(2.6)

‖g(x)− g(x∗)‖ ≤ L‖x− x∗‖.(2.7)

Then we have ‖x− x∗‖ ≤
(
1+λL
λω

)
‖d(λ)(x)‖.

In fact, P1 is simply the optimality conditions for (2.4). P2 and P3 are related to the nonexpansiveness

of shrinkage. P4 and P5 show the relationship between the parameter λ and the norm of the search direction.

P6 will be used in the derivation of our nonmonotone line search condition. P7 gives a useful alternative

characterization of stationarity. And P8 is useful in our convergence analysis. A proof of Lemma 2.1 is given

in Appendix A.

3. An active-set algorithm. In order to simplify the writing and theoretical analysis, we study an

abridged version of the two-stage active set algorithm proposed in [18]. The approach is motivated as follows.

While shrinkage is very effective in obtaining a support superset, it can take a lot of iterations to recover the

signal values. On the other hand, if one imposes the signs of the components of the variable x that are the

same as those of the exact solution, problem (1.1) reduces to a small smooth optimization problem, which

can be relatively easily solved to obtain x. Consequently, the key components are the identification of a

“good” support set by using shrinkage and the construction of a suitable approximate smooth optimization

problem.

In the first stage, we accelerate (2.1) by using a non-monotone line search method based on a strategy in

[19]. Specifically, the new points are generated iteratively in the form xk+1 = xk+αkd
k, where dk := d(λ

k)(xk)

is the search direction defined by (2.5) for some λk > 0, αρ > 0, αk = αρρ
h and h is the smallest integer

that satisfies

(3.1) ψµ(x
k + αρρ

hdk) ≤ Ck + σαρρ
h∆k.

Here, σ > 0,

∆k := (gk)⊤dk + µ‖xk+‖1 − µ‖xk‖1,

C0 = ψµ(x
0), and let the next reference value Ck+1 be taken as a convex combination of Ck and ψµ(x

k+1),

i.e.,

(3.2) Ck+1 = (ηQkCk + ψµ(x
k+1))/Qk+1,

where η ∈ (0, 1), Qk+1 = ηQk + 1 and Q0 = 1.

We now describe the subspace optimization in the second stage. The active indices are further subdivided
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into two sets

(3.3) A±(x) := {i ∈ A(x) | |gi(x)| < µ} and A0(x) := {i ∈ A(x) | |gi(x)| ≥ µ}.

Note that |gi(x
∗)| = µ for i ∈ A0(x

∗) if x∗ is an optimal solution of (1.1). We switch to subspace optimization,

if for some fixed constant δ > 0, either one of the two conditions

λk−1‖gkI(xk)‖ > δ‖d(λ
k−1)(xk−1)‖2 and ‖(|g(xk)| − µ)I(xk)∪A0(xk)‖∞ ≤ ‖d(1)(xk)‖/δ(3.4)

|ψkµ − ψk−1
µ | ≤ ǫmax(|ψkµ|, |ψ

k−1
µ |, 1)(3.5)

is satisfied during the shrinkage stage (The justification for (3.4) and (3.5) will be specified in subsection

4.3). Then, we explore the face defined by the support of xk by solving the problem:

(3.6) min ϕµ(x) := µ sgn(xkIk)
⊤xIk + f(x), s.t. x ∈ Ω(xk),

where

(3.7) Ω(xk) :=
{
x ∈ R

n : sgn(xki )xi ≥ 0, i ∈ I(xk) and xi = 0, i ∈ A(xk)
}
.

To ensure convergence of the active set algorithm, we require that the iterates for solving subspace optimiza-

tion satisfy:

Condition 3.1. Denote by xk,j the j-th iteration for solving (3.6) starting from xk,0 = xk. Then, the

iterates are feasible and monotone decreasing, i.e., ϕµ(x
k,j+1) ≤ ϕµ(x

k,j) for each j.

The detailed description of our approach is presented in Algorithm 1 (FPC AS).

Algorithm 1: FPC AS Algorithm

Choose µ > 0 and x0. Set I = ∅.
Set αρ > 0, σ, η ∈ (0, 1), δ, γ > 1, 0 < λm < λM <∞, Γ > 1, C0 = ψµ(x

0), Q0 = 1, k = 0.
while not converge do

NMLS Compute λk ∈ [λm, λM ] and dk = xk+1 − xk, where xk+1 = S(xk − λkgk, µλk).
Select αk satisfying the Armijo conditions (3.1).
Set xk+1 = xk + αkd

k, Qk+1 = ηQk + 1, and Ck+1 = (ηQkCk + ψµ(x
k+1))/Qk+1.

Sub Do subspace optimization: set do sub = 0.
if I(xk+1) is not equal to I then

if (3.4) is satisfied then set do sub = 1 and δ = γδ.
else if (3.5) is satisfied then set do sub = 1.

if do sub = 1 then

Solve the subproblem (3.6) using at most Γ iterations to obtain a solution xk+2.
Set I = I(xk+1), Ck+2 = ψµ(x

k+2), Qk+2 = 1 and k := k + 2.

else set k := k + 1.

Remark 3.2. The parameter λk is chosen by the Barzilai-Borwein method [1]:

(3.8) λk = max

{
λm,min

{
(sk−1)⊤sk−1

(sk−1)⊤yk−1
, λM

}}
or λk = max

{
λm,min

{
(sk−1)⊤yk−1

(yk−1)⊤yk−1
, λM

}}
,

where sk−1 = xk − xk−1, yk−1 = gk − gk−1 and 0 < λm < λM <∞.

Remark 3.3. In [18], instead of solving problem (1.1) with a given µ, a continuation procedure is

4
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implemented to solve a sequence of problems x∗µk
:= argminx∈Rn ψµk

(x), one by one, where µ0 > µ1 > · · · > µ

and µk goes to µ. In this procedure, the solution (or approximate solution) x∗µk−1
is fed into the next problem

as an initial solution. Numerical experiments have shown that continuation can significantly improve the

overall efficiency. The convergence of the continuation procedure is a simple extension of the convergence of

minx∈Rn ψµ(x).

Remark 3.4. The interested reader is referred to [18] for the efficiency of our algorithm and its ability

to identify the optimal active set in practice.

4. Convergence Analysis. Our analysis in this section is divided into three parts: the convergence

of the shrinkage phase, the identification of the active set and the convergence of the overall algorithm. We

should point out that, although most of the results can be adapted from these analysis in [6, 12, 19] for

smooth minimization, they seem to be new in terms of ℓ1-minimization and it is meaningful to present them

coherently.

4.1. Convergence results of the shrinkage phase. Let Algorithm NMLS be a special case of

Algorithm 1 without the subspace optimization phase, i.e., NMLS consists of shrinkage and the nonmonotone

line search using condition (3.1). We study the convergence properties of NMLS by directly extending the

results of the nonmonontone line search in [19] for minimizing differentiable functions to the nondifferetiable

problem (1.1). We assume:

Assumption 4.1. Define the level set L := {x ∈ R
n : ψµ(x) ≤ ψµ(x

0)}.

1. f(x) is bounded from below on L and ̟ = supk ‖d
k‖ <∞.

2. If L̃ is the collection of x ∈ R
n whose distance to L is at most ̟, then ∇f is Lipschitz continuous

on L̃, i.e., there exists a constant L > 0 such that ‖g(x)− g(y)‖ ≤ L‖x− y‖ for all x, y ∈ {x ∈ R
n :

f(x) ≤ f(x0)}.

We first show that every iteration of the NMLS algorithm is well defined; namely, there exists a step

size satisfying the Armijo condition (3.1).

Lemma 4.2. Suppose that Assumption 4.1 holds. For the sequence {xk} generated by Algorithm NMLS,

we have ψkµ ≤ Ck ≤ Ak and Qk ≤ 1/(1 − η), where Ak = 1
k+1

∑k
i=0 ψ

k
µ. If ∆k < 0 and ψµ(x) is bounded

from below, there exists αk satisfying the Armijo condition (3.1).

Proof. The inequalities ψkµ ≤ Ck ≤ Ak and Qk ≤ 1/(1− η) follow directly from the proof of Lemma 1.1

and Theorem 2.2 in [19]. From Lemma 5 in [17], the Armijo condition

(4.1) ψµ(x
k + αkd

k) ≤ ψµ(x
k) + σαk∆

k.

is satisfied for any σ ∈ (0, 1), whenever 0 ≤ αk ≤ min{1, 2(1−σ)/(λML). Since ψµ(x
k) ≤ Ck, it follows that

αk can be chosen to satisfy (3.1) for each k.

The next result provides lower and upper bounds for the step size αk.

Lemma 4.3. Suppose that Assumption 4.1 holds. If the Armijo condition (3.1) is satisfied with 0 <

αρ ≤ 1, then αρ ≥ αk ≥ α̃ := min
{
αρ,

2ρ(1−σ)
λML

}
.

Proof. If the initial step size αρ satisfies the Armijo condition (3.1), then αk = αρ. Otherwise, since

ψkµ ≤ Ck and hk is the smallest integer such that αk = αρρ
hk satisfies (3.1), we have

(4.2) ψµ(x
k + αkd

k/ρ) > Ck + σαk∆
k/ρ ≥ ψkµ + σαk∆

k/ρ.

5
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From the convexity of the norm ‖ · ‖1 and Assumption 4.1, we obtain for any α ∈ (0, 1] that

ψµ(x
k + αdk)− ψµ(x

k)(4.3)

= µ‖xk + αdk‖1 − µ‖xk‖1 + f(xk + αdk)− f(xk)

≤ α((gk)⊤dk + µ‖xk + dk‖1 − µ‖xk‖1) +

∫ 1

0

(∇f(xk + tαdk)−∇f(xk))⊤(αdk) dt

≤ α∆k + α2L

2
‖dk‖22,

Since 0 < αk/ρ < 1, it follows from (4.2) and (4.3) that

αk
ρ
σ∆k ≤

αk
ρ
∆k +

(
αk
ρ

)2
L

2
‖dk‖22,

which, after rearranging terms, together with P6 of Lemma 2.1, gives us αk ≥ 2ρ(1−σ)
λML

.

We now prove the global convergence of Algorithm NMLS.

Theorem 4.4. Suppose that Assumption 4.1 holds. Then the sequence {xk} generated by Algorithm

NMLS satisfies limk→∞‖dk‖ = 0.

Proof. From the Armijo condition (3.1) and Lemma 4.3, we have

(4.4) ψk+1
µ ≤ Ck − ζ‖dk‖22,

where ζ = σα̃
λm

. Then the proof is similar to the proof of Theorem 2.2 in [19]. From the updating rule (3.2)

and (4.4), we obtain

Ck+1 =
ηQkCk + ψµ(x

k+1)

Qk+1
≤
ηQkCk + Ck − ζ‖dk‖22

Qk+1
= Ck −

ζ‖dk‖22
Qk+1

.

Since ψµ(x) is bounded from below and ψk ≤ Ck for all k, we conclude that Ck is bounded from below.

Hence, we obtain
∑∞
k=0

‖dk‖2
2

Qk+1
<∞, which together with the fact Qk+1 ≤ 1/(1− η) from Lemma 4.2 implies

that limk→∞‖dk‖ = 0.

Let X∗ be the set of stationary points of (1.1). We now state an assumption for proving the R-linear

convergence of Algorithm NMLS instead of requiring the strong convexity assumption on f(x) as in [19].

Assumption 4.5. (Assumption 2, [17]) (a) X∗ 6= ∅ and for any υ such that minψµ(x) ≤ υ, there exist

scalars ̺ > 0 and ǫ > 0 such that dist(x,X∗) ≤ ̺‖d(1)(x)‖, whenever ψµ(x) ≤ υ, ‖d(1)(x)‖ ≤ ǫ.

(b) There exists a scalar δ > 0 such that ‖x− y‖ ≥ δ whenever x, y ∈ X∗, ψµ(x) 6= ψµ(y).

Lemma 4.6. (Theorem 4, [17]) Suppose that X∗ 6= ∅. Then Assumption 4.5(a) holds under any of the

following conditions:

1. f is strongly convex and ∇f is Lipschitiz continuous on R
n.

2. f is quadratic.

3. f(x) = g(Ex) + q⊤x for all x ∈ R
n, where E ∈ R

m×n, q ∈ R
n, and g is a strongly convex

differentiable function on R
m with ∇g Lipschitz continuous on R

m.

In addition to Lemma 4.6, Assumption (4.5)(a) also holds under the strong second-order optimality

sufficient conditions, i.e., for any stationary point x∗ ∈ X∗, there exists ω > 0 such that

(4.5) d⊤∇2f(x∗)d ≥ ω‖d‖2, whenever di = 0 for all i ∈ A±(x
∗).

6
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The proof of next lemma is a modification of Lemma 5.4 in [12].

Lemma 4.7. Suppose that Assumptions 4.1 holds. If f is twice-continuously differentiable near a

stationary point x∗ of (1.1) satisfying the strong second-order sufficient optimality conditions (4.5), then

there exists ρ > 0 such that

(4.6) ‖x− x∗‖ ≤ ̺‖d(1)(x)‖,

for all x ∈ Bρ(x
∗), where ̺ =

√
1 +

(
(1+L)2

0.5ω

)2

and Bρ(x
∗) is the ball centered at x∗ with radius ρ.

Proof. By the continuity of the second derivative of f , it follows from (4.5) that for ρ > 0 sufficiently

small,

(4.7) (g(x)− g(x∗))⊤(x− x∗) ≥ 0.5ω‖x− x∗‖2

for all x ∈ Bρ(x
∗) with xi = 0 for all i ∈ A±(x

∗). Choose ρ small enough if necessary so that

(4.8) |xi − gi| ≤ µ and |gi| < µ for all i ∈ A±(x
∗) and x ∈ Bρ(x

∗).

Define x̄ as x̄i = 0 if i ∈ A±(x
∗), otherwise, x̄i = xi. From (4.8), we obtain

(4.9) ‖x− x̄‖ ≤ ‖d(1)(x)‖

for all x ∈ Bρ(x
∗) and

Si(x̄− g, µ)− x̄i = 0, and d(1)(x)i = Si(x− g, µ)− xi = −xi

for all i ∈ A±(x
∗), while

Si(x̄− g, µ)− x̄i = d(1)(x)i = Si(x− g, µ)− xi

for i /∈ A±(x
∗). Hence, we obtain

(4.10) ‖S(x̄− g, µ)− x̄‖ ≤ ‖d(1)(x)‖

for all x ∈ Bρ(x
∗). From the Lipschitz continuity of g, (4.9), (4.10) and P3 of Lemma 2.1, we have

‖d(1)(x̄)‖ = ‖S(x̄− ḡ, µ)− S(x̄− g, µ) + S(x̄− g, µ)− x̄‖

≤ L‖x̄− x‖+ ‖d(1)(x)‖

≤ (1 + L)‖d(1)(x)‖(4.11)

for all x ∈ Bρ(x
∗). Therefore, we obtain from P8 of Lemma 2.1, (4.7) and (4.11) that

‖x̄− x∗‖ ≤

(
1 + L

0.5ω

)
‖d(1)(x̄)‖ ≤

(
(1 + L)2

0.5ω

)
‖d(1)(x)‖.

Since ‖x− x̄‖2 + ‖x̄− x∗‖2 = ‖x− x∗‖2, the inequality (4.6) is proved by squaring (4.9) and (4.11).

We next present a relationship between ψµ(x
k+1) and ∆k with respect to the objective function value
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at a stationary point. The proof here is adapted from the proof of Theorem 5.2 in [17] and it uses the

relationship between ‖d(λ)(x)‖ and ‖d(1)(x)‖ derived from P4 and P5 of Lemma 2.1 as

min(1, λm)‖d(1)(x)‖ ≤ ‖d(λ)(x)‖ ≤ max(1, λM )‖d(1)(x)‖,(4.12)

min(1,
1

λM
)‖d(λ)(x)‖ ≤ ‖d(1)(x)‖ ≤ max(1,

1

λm
‖dλ)(x)‖,(4.13)

for any λ such that λm ≤ λ ≤ λM .

Lemma 4.8. Suppose that Assumptions 4.1 and 4.5 hold. Then there exist ϑ, β > 0 and k̂ > 0 such that

the sequence {xk} generated by Algorithm NMLS satisfies

(4.14) ψµ(x
k+1)− ϑ ≤ −β∆k, ∀k ≥ k̂.

Proof. Theorem 4.4 gives that limk→∞ ‖d(λ
k)(xk)‖ = 0. Hence, limk→∞ ‖d(1)(xk)‖ = 0, i.e., ‖d(1)(xk)‖ ≤

ǫ for k > k̄ for k̄ large enough, from (4.13). Since ψµ(x
k+1) ≤ Ck and Ck+1 is a convex combination of Ck

and ψµ(x
k+1), we have Ck+1 ≤ Ck and

(4.15) ψµ(x
k+1) ≤ Ck ≤ Ck−1 ≤ · · · ≤ C0 = ψµ(x

0).

By Assumption 4.5(a), we have

(4.16) ‖xk − x̄k‖ ≤ ̺‖d(1)(xk)‖, ∀k ≥ k̄,

where ̺ > 0 and x̄k ∈ X∗ satisfies ‖xk − x̄k‖ = dist(x,X∗). Since limk→∞ ‖d(1)(xk)‖ = 0, we have

limk→∞ ‖xk − x̄k‖ = 0. Then it follows from limk→∞ ‖xk+1 − xk‖ = 0 and Assumption 4.5(b) that {x̄k}

eventually settles down at some isocost surface of ψµ(x), i.e., there exist an index k̂ ≥ k̄ and a scalar ϑ such

that ψµ(x̄
k) = ϑ for all k ≥ k̂. By Theorem 2 in [17], lim infk→∞ψµ(x

k) ≥ ϑ.

Using the mean value theorem with x̃k a point lying on the segment joining xk+1 with x̄k, we obtain

ψµ(x
k+1)− ϑ = ∇f(x̃k)⊤(xk+1 − x̄k) + µ‖xk+1‖1 − µ‖x̄k‖1(4.17)

= (∇f(x̃k)− gk)⊤(xk+1 − x̄k)−
1

λk
(dk)⊤(xk+1 − x̄k)

+(gk +
1

λk
dk)⊤(xk+1 − x̄k) + µ‖xk+1‖1 − µ‖x̄k‖1.

Since α̃ ≤ αk ≤ αρ ≤ 1, Lemma 5 (a) in [17] implies that

(gk +
1

λk
dk)⊤(xk+1 − x̄k) + µ‖xk+1‖1 − µ‖x̄k‖1 ≤ (αk − 1)

(
1

λk
‖dk‖2 +∆k

)
≤ −(1− α̃)∆k,

which together with Lipschitz continuity of g(x) and Cauchy-Schwartz inequality, yields from (4.17) that

ψµ(x
k+1)− ϑ ≤ L‖x̃k − x̄k‖ ‖xk+1 − x̄k‖+

1

λk
‖dk‖ ‖xk+1 − x̄k‖ − (1− α̃)∆k(4.18)

From (4.16), we obtain, for k ≥ k̂,

‖x̃k − xk‖ ≤ ‖xk+1 − xk‖+ ‖xk − x̄k‖ ≤ αk‖dk‖+ ̺‖d(1)‖ ≤ δ1‖d
k‖.
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where δ1 = αρ + ̺min(1, 1/λm). Similarly, we have ‖xk+1 − x̄k‖ ≤ δ1‖d
k‖ and ‖xk+1 − xk‖ ≤ αρ‖d

k‖.

Therefore, we obtain from (4.18) that

ψµ(x
k+1)− ϑ ≤

(
Lδ21 +

δ1
λm

)
‖dk‖2 − (1− α̃)∆k,

which gives (4.14) with β =
(
Lδ21 +

δ1
λm

)
λM + (1− α̃).

Finally, we are able to establish the R-linear convergence result.

Theorem 4.9. (R-linear convergence) Suppose that Assumptions 4.1 and 4.5 hold. Then there exist ϑ,

0 < τ < 1 and k̂ > 0 such that the sequence {xk} generated by algorithm NMLS satisfies

(4.19) ψµ(x
k)− ϑ ≤ τk−k̂((ψµ(x

0)− ϑ),

for each k. Moreover, the sequence {xk} converges at least R-linearly.

Proof. 1) We claim that for all k > k̂

(4.20) ψµ(x
k+1)− ϑ ≤ (1− σα̃b2)(Ck − ϑ),

where b2 = 1/(β + σα̃). Suppose −∆k ≥ b2(Ck − ϑ), then the Armijo condition (3.1) gives

ψµ(x
k+1)− ϑ = (Ck − ϑ) + (ψµ(x

k+1)− Ck) ≤ (Ck − ϑ) + σα̃∆k

≤ (1− σα̃b2)(Ck − ϑ).

Suppose −∆k < b2(Ck − ϑ). From (4.14) in Lemma 4.8, we obtain, for all k > k̂, that

ψµ(x
k+1)− ϑ ≤ −β∆k ≤ βb2(Ck − ϑ) = (1− σα̃b2)(Ck − ϑ).

2) We now show that for each k > k̂,

(4.21) Ck+1 − ϑ ≤ τ(Ck − ϑ),

where 0 < τ = 1− (1− η)σα̃b2 < 1. The proof is similar to Theorem 3.1 of [19]. From the update formula

(3.2), we have

(4.22) Ck+1 − ϑ =
ηQk(Ck − ϑ) + (ψµ(x

k+1)− ϑ)

1 + ηQk
.

Hence, using (4.20) in (4.22) and using Qk+1 ≤ 1/(1− η) yields

Ck+1 − ϑ ≤
(ηQk + 1− σα̃b2)(Ck − ϑ)

1 + ηQk
=

(
1−

σα̃b2
Qk+1

)
(Ck − ϑ)

≤ (1− (1− η)σα̃b2)(Ck − ϑ),

which proves (4.21). Therefore, we obtain (4.19) from (4.21) by using (4.15).

3) If f(x) is strictly convex, then the R-linear convergence follows from (4.19) immediately. Otherwise,
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we prove R-linear convergence as follows. From the defintion of Ck+1 in (3.2), we have

(4.23) Ck − ψk+1
µ = (1 + ηQk)(Ck − Ck+1) ≤

1

1− η
(Ck − Ck+1).

The Armijo condition (3.1) implies that

(4.24) ψk+1
µ − Ck ≤ σαk∆

k ≤ σαk
γ − 1

λk
‖dk‖22 ≤

σ(γ − 1)

λMαρ
‖xk+1 − xk‖22.

Rearranging terms of (4.24) and using (4.23) yield

‖xk+1 − xk‖ ≤

√
λMαρ

(1− γ)σ

(
Ck − ψk+1

µ

)
≤

√
λMαρ

(1− γ)(1− ηmax)σ
(Ck − Ck+1),

which implies that {xk} converges at least R-linearly since {Ck−Ck+1} converges at least R-linearly because

of (4.21).

4.2. Identification of the active set by the shrinkage phase. We now discuss the identification

of the active set by Algorithm NMLS. First, we state an elementary result in the lemma below.

Lemma 4.10. Assume that the sequence {xk} converges to x∗, i.e., limk→∞ xk = x∗. Then, for any

ξ > 0, there exists a finite number k̄ > 0 so that for all k > k̄, 1) sgn(xki ) = sgn(x∗i ) for all i ∈ I(x∗); 2.

|xki − x∗i | < ξ for i ∈ I(x∗) and |xki | < ξ for all i ∈ A(x∗).

Proof. Suppose that the first part does not hold, there exists a i ∈ I(x∗) and a subsequence {xk},

such that for k large enough sgn(xki ) 6= sgn(x∗i ) which implies that ||xk − x∗||1 ≥ |xki − x∗i | ≥ |x∗i |, which is

contradiction. The second part can be proved similarly.

The next result uses the generalized directional derivative and the generalized gradient of ψµ(x) similar to

the projected gradient method for linearly constrained problems in [6]. The generalized directional derivative

of a function ψ at x in the direction d ∈ R
n is

ψ⋄(x; d) ≡ lim
t↓0

sup
y→x

ψ(y + td)− ψ(y)

t
,

and it satisfies that

(4.25) ψ⋄(x; d) = max
p∈∂ψ(x)

〈p, d〉.

The genearlized gradient of a function ψ is defined as

gΩ(x) := arg min
p∈∂ψ(x)

‖p‖.

Then it is straightforward to verify that the generalized gradient of the l1-regularized function ψµ is

(4.26) gΩ(x) := arg min
p∈∂‖x‖1

‖g(x) + µp‖2 =





gi(x) + µ sgn(xi), if xi ∈ I(x),

gi(x)− µ sgn(gi(x)), if xi ∈ A0(x),

0, if xi ∈ A±(x),
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and Lemma 11.1.1 in [8] gives

(4.27) − ‖gΩ(x)‖ = min
‖d‖≤1

ψ⋄(x, d).

Next, we show that the active set of a stationary point can be identified after a finite number of steps

under some conditions.

Theorem 4.11. Suppose that f(x) is continuously differentiable and let {xk} be an arbitrary sequence

converges to x∗ such that limk→∞ ‖gΩ(x
k)‖ = 0. Then A±(x

k) = A±(x
∗) for all k sufficiently large.

Proof. Since xk converges to x∗, it is clear that A±(x
k) ⊆ A±(x

∗) for all k sufficiently large. Assume,

however, that there is an infinite subsequence K0 and an index l such that l ∈ A±(x
∗) but xkl > 0 (If not,

choose a sequence such that xkl < 0), without loss of generality, for all k ∈ K0. Let d = el, where el is the

vector whose lth element equals to one and all other elements equal to zero. We obtain from (4.27) that

(4.28) gkl + µ = max
p∈∂‖xk‖1

〈gk + µp, d〉 ≤ max
‖d‖≤1

ψ⋄
µ(x

k, d) = ‖gΩ(x
k)‖

Therefore, since limk→∞ ‖gΩ(x
k)‖ = 0, we obtain

g∗l + µ ≤ 0,

which contradicts the fact that |g∗l | < µ as l ∈ A(x∗).

Denote by xk+ := S(xk−λkgk, µλk) the point generated by shrinkage at xk. We show that the generalized

gradient at xk+ converges to zero similar to Theorem 3.2 in [6].

Theorem 4.12. Suppose Assumption 4.1 holds. Then if ∇f(x) is uniformly continuous in L̃, the

sequence {xk} generated by Algorithm NMLS satisfies that

lim
k→∞

‖gΩ(x
k+)‖ = 0.

Proof. Let ǫ > 0 be given and choose a direction vk+ with ‖vk+‖ ≤ 1 such that

‖gΩ(x
k+)‖ ≤ −ψ⋄

µ(x
k+, vk+) + ǫ.

Using P1 of Lemma 2.1 for any zk+ = xk+ + tk+v
k+ and tk+ > 0, we have

(4.29) (xk+ − xk + λkgk)⊤(zk+ − xk+) + µλk(‖zk+‖1 − ‖xk+‖1) ≥ 0.

Taking tk+ small enough so that sgn(zk+i ) = sgn(xk+i ) for any i ∈ I(xk+) yields

|zk+i | − |xk+i | = tk+




sgn(xk+i )vk+i if i ∈ I(xk+),

|vk+i | if i ∈ A(xk+).

≤ max
p∈∂|xk+

i
|
piv

k+
i(4.30)

Rearranging terms of (4.29) and using (4.30) give

(4.31) tk+(x
k+ − xk)⊤vk+ ≥ −tk+λ

k(gk − gk+)⊤vk+ − tk+λ
k max
p∈∂‖xk+‖1

〈gk+ + µp, vk+〉.
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Using (4.31), (4.25) and Cauchy-Schwartz inequality, we obtain

−λkψ⋄
µ(x

k+, vk+) ≤ ‖xk+ − xk‖ ‖vk+‖+ λk‖gk − gk+‖ ‖vk+‖.

Since λk is bounded, ‖xk+ − xk‖ converges to zero from Theorem 4.4 and ∇f is uniformly continuous, we

conclude that

lim sup
k→∞

−ψ⋄
µ(x

k+, vk+) ≤ 0,

which implies that

lim sup
k→∞

‖gΩ(x
k+)‖ ≤ ǫ.

Since ǫ is arbitrary, the proof is completed.

The assumption that g(x) is uniformly continuous in L̃ in Theorem 4.12 can be relaxed to the assumption

that the sequence {xk} is bounded. The problem (1.1) is said to be degenerate at x∗ if there exist some

i such that |g∗i | = µ. Theorems 4.11 and 4.12 yield A±(x
k+) = A±(x

∗) for k sufficiently large. We have

not established limk→∞ ‖gΩ(x
k)‖ = 0 for the sequence {xk} since we cannot show the inequality (4.30).

However, we can still show that xki , i ∈ A±(x
∗), converges to zero at least q-linearly.

Corollary 4.13. Suppose that Assumption 4.1 holds and the sequence {xk} is generated by Algorithm

NMLS. If ∇f(x) is uniformly continuous in L̃, then xki , i ∈ A±(x
∗), converges to zero either after a finite

number of steps or at least q-linearly.

Proof. 1) Assume that A±(x
∗) is nonempty. Since f(x) is continuously differentiable, there exists a

γ > 0 with the property that for all x ∈ Bγ(x
∗) so that |gi(x)| < µ if i ∈ A±(x

∗). Let k+ be chosen large

enough that xk ∈ Bγ(x
∗) for all k > k+. Suppose that there exists xkl = 0 for l ∈ A±(x

∗) and k ≥ k+. Then

the shrinkage gives Sl(x
k − λkgk, µλk) = 0 since |xkl − λkgkl | = λk|gkl | < µλk. Hence, dkl = 0. Consequently,

when an index l ∈ A±(x
∗) becomes active, i.e., xkl = 0, at iterate xk, k ≥ k+, it remains active for all the

subsequent iterations.

2) We now focus on the nontrivial indices in A±(x
∗), i.e., there exists l ∈ A(x∗) and xkl 6= 0 for all

k ≥ k+. Let ξ sufficiently small. There exists k̄ sufficiently large so that |xk̄i | < ξ for i ∈ A(x∗) from Lemma

4.10 and A±(x
k+) = A±(x

∗) from Theorems 4.12 and 4.11 for all k ≥ k̄. Since α̃ < αk < αρ ≤ 1 and

xk+1
i = (1− αk)x

k + αkx
k+, we obtain

|xki | ≤ (1− α̃)k−k̄ξ

for any i ∈ A±(x
∗) and all k ≥ k̄.

The efficiency of our active set algorithm depends on how fast the iterative shrinkage scheme can identify

the correct support. Since the true zero components can be nonzero after a lot of iterations in practice and

the size of the support I(xk) decides the size of subspace optimization, we can use the identification function

proposed in [10] for general nonlinear programming to identify an approximate support.

Definition 4.14. A continuous function ρ(x) : Rn → R+ is called an identification function for x∗

with respect to a sequence {xk} if ρ(x∗) = 0 and

(4.32) lim
xk→x∗,x 6=x∗

ρ(xk)

‖xk − x∗‖
= +∞.
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Therefore, the active set A(xk) and the support I(xk) can be replaced approximately by sets

(4.33) Aρ(x
k) := {i ∈ [1, n] | |xki | ≤ ρ(xk)}, Iρ(x

k) := {i ∈ [1, n] | |xki | > ρ(xk)}.

We further divide the approximate active indices Aρ(x
k) into two sets

(4.34) Aρ,±(x
k) := {i ∈ Aρ(x) | ||g

k
i | − µ| ≥ ρ(xk)}, Aρ,0(x

k) := {i ∈ Aρ(x
k) | ||gki | − µ| ≤ ρ(xk)}.

Lemma 4.15. Let ρ be an identification function for x∗ and the sequence {xk} converges to x∗. Then

Aρ(x
k) = A(x∗) and Aρ,0(x

k) = A0(x
∗) for k sufficiently large.

Proof. 1) If i ∈ A(x∗), we have

(4.35) |xki | ≤ ‖xk − x∗‖2 ≤ ρ(xk),

for k sufficiently large, so that, by (4.33), i ∈ Aρ(x
k). On the other hand, there exists k sufficiently large so

that ρ(xk) < min{|x∗i |, i ∈ I(x∗)} and ||xki | −
1
2ρ(x

k)| > 1
2ρ(x

k) for i ∈ I(x∗). Hence, if |x∗i | > 0, we have

i /∈ Aρ(x
k).

2) If i /∈ A±(x
∗), then |gi(x

∗)| = µ. From the Lipschitz continuity of g(x), we have

||gi(x
k)| − µ| ≤ ||gi(x

k)| − |gi(x
∗)|| ≤ |gi(x

k)− gi(x
∗)| ≤ L‖xk − x∗‖ ≤ ρ(xk),

for k sufficiently large. On the other hand, if i ∈ A±(x
∗), then |g∗i | < µ, hence, by continuity of g(x),

i ∈ Aρ,±(x
k). Therefore, these facts together with 1) yield Aρ,0(x

k) = A0(x
∗) for k sufficiently large.

Using the strong second-order sufficient optimality conditions (4.5) of problem (1.1), we will show that

the function

(4.36) ρ1(x) :=
√
‖(|g| − µ)I(x)∪A0(x)‖,

is an identification function for the sequence {xk} generated by Algorithm NMLS.

Lemma 4.16. Suppose Assumption 4.1 holds. If the sequence {xk} is generated by Algorithm NMLS,

then for each i ∈ A±(x
∗) we have

(4.37) lim supk→∞

|xki |

‖xk − x∗‖2
<∞.

Proof. From the proof of Corrollary 4.13, an index l ∈ A±(x
∗) of xk remains active for all the subsequent

iterations once it becomes active for k sufficiently large. Hence, the inequality 4.37 holds in this case. Now,

let us focus on the nontrivial indices in A±(x
∗). That is, suppose that there exists l ∈ A(x∗) and xkl 6= 0

for all k ≥ k+ and we assume xkl > 0 without loss of generality. If (4.37) does not hold, we can choose k

sufficiently large, if necessary, so that

(4.38)
|xkl |

‖xk − x∗‖2
≥

L(2 + λML)
2

2(1− σ)|gkl + µ|
,

and

(4.39) |xkl − λkgkl | < µλk,
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for λk ≥ λm > 0. since xk converges to x∗, x∗l = 0 and |gl(x
∗)| < µ. Hence, we obtain from (4.39) that

(4.40) dkl = Sl(x
k
l − λkgkl , µλ

k)− xk = −xkl .

Since the shrinkage operator is component separable, P6 of Lemma 2.1 holds for each component, i.e.,

(4.41) ∆k
i := gidi + µ(|xi + di| − |xi|) ≤ −

1

λ
|di|

2.

Specifically, we have from (4.40) that

(4.42) ∆k
l = −(gkl + µ)xkl .

We now prove that αk = 1 is an acceptable step size. Using the Lipschitz continuity of g(x), (4.41) and

(4.42), we have

ψµ(x
k + dk)− ψµ(x

k)(4.43)

≤ ((gk)⊤dk + µ‖xk + dk‖1 − µ‖xk‖1) +

∫ 1

0

(∇f(xk + tdk)−∇f(xk))⊤(dk) dt

≤ σ∆k + (1− σ)∆k +
L

2
‖dk‖22 ≤ σ∆k + (1− σ)∆k

l +
L

2
‖dk‖22

= σ∆k − (1− σ)(gkl + µ)xkl +
L

2
‖dk‖22

From P3, P7 of Lemma 2.1 and the Lipschitz continuity of ∇f , we obtain

‖d(λ
k)(xk)‖ = ‖d(λ

k)(xk)− d(λ
k)(x∗)‖

= ‖S(xk − λkgk, µλk)− xk − (S(x∗ − λkg∗, µλk)− x∗)‖

≤ ‖xk − x∗‖+ ‖xk − λkgk − (x∗ − λkg∗)‖

≤ 2‖xk − x∗‖+ λk‖gk − g∗‖

≤ (2 + λML)‖x
k − x∗‖

Combining the upper bounds for ‖dk‖ and the lower bound for |xkl | yields

L

2
‖dk‖22 ≤

L

2
(2 + λML)

2‖xk − x∗‖2

≤

(
(1− σ)xkl (g

k
l + µ)

‖xk − x∗‖2

)
‖xk − x∗‖2

= (1− σ)xkl (g
k
l + µ),

which together with (4.43) implies that

ψµ(x
k + dk) ≤ ψµ(x

k) + σ∆k ≤ Ck + σ∆k.

Hence, αk = 1 is an acceptable step size and xk+1
l = xkl + dkl . Therefore, using (4.39), we obtain xk+1

l = 0

which contradicts the fact that xkl > 0 for all k ≥ k+.

Lemma 4.17. Suppose Assumption 4.1 holds and the sequence {xk} is generated by Algorithm NMLS.
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If x∗ satisfies the strong second-order sufficient optimality conditions, then there exists κ∗ > 0 such that

(4.44) ‖|g(xk)| − µ)I(xk)∪A0(xk)‖ ≥ κ∗‖d1(xk)‖

for k sufficiently large.

Proof. Define x̄ as x̄i = 0 if i ∈ A±(x
∗), otherwise, x̄i = xi. Choose γ > 0, so that, for xk ∈ Bγ(x

∗), we

have

‖d(1)(xk)‖ ≤ ‖d(1)(xk)− d(1)(x∗)‖

≤ ‖d(1)(xk)− d(1)(x̄k)‖+ ‖d(1)(x̄k)− d(1)(x∗)‖

≤ (2 + L)(‖xk − x̄k‖+ ‖x̄k − x∗‖).(4.45)

From Lemma 4.16, there exists a constant ξ such that

(4.46) lim supk→∞

|xki|

‖xk − x∗‖2
≤ ξ <∞,

which implies, for k sufficiently large, that

(4.47) ‖x̄k − xk‖ ≤
∑

i∈A±(x∗)

|xki | ≤ nξ‖xk − x∗‖2 ≤ nξ‖xk − x∗‖(‖xk − x̄k‖+ ‖x̄k − x∗‖).

Hence, for any ǫ > 0 and k sufficiently large, (4.47) yields

(4.48) ‖x̄k − xk‖ ≤ ǫ‖x̄k − x∗‖,

since xk converges to x∗. Combining (4.45) and (4.48), there exists a constant c > 0 such that

(4.49) ‖d(1)(xk)‖ ≤ c‖x̄k − x∗‖

for k sufficiently large.

Let k be chosen large enough that

(4.50) ‖xk − x∗‖ < min{|x∗i |, i ∈ I(x∗)}.

Suppose, in this case, that i ∈ A(xk). If |x∗i | > 0, then ‖xk − x∗‖ ≥ |x∗i |, which contradicts (4.50). Hence

x̄ki = x∗i = 0. Moreover, if i ∈ A±(x
∗), then by the definition of x̄k, x̄ki = x∗i = 0. In summary,

(4.51)




x̄ki = x∗i = 0, for each i ∈ A(xk) ∪ A±(x

∗),

|gi(x
∗)| = µ, for each i ∈ A±(x

∗)c

where A±(x
∗)c is the complement of A±(x

∗). Define Z = A(xk)c ∩ A±(x
∗)c.

By the strong second-order sufficient optimality conditions for x near x∗, we have

ω

2
‖x̄− x∗‖2 ≤ (x̄− x∗)⊤

∫ 1

0

∇2f(x∗ + t(x̄− x∗)) dt(x̄− x∗) = (x̄− x∗)⊤(g(x̄)− g(x∗)).(4.52)

15



We substitute x = xk in (4.52) and utilize (4.51) to obtain

|(x̄k − x∗)⊤(g(x̄k)− g(x∗))| ≤
∑

i∈Z

|(x̄ki − x∗i )| · ||gi(x̄
k)| − µ|(4.53)

≤ ‖x̄k − x∗‖ ‖(|g(x̄k)| − µ)I(xk)∪A0(xk)‖

for k sufficient large, since Z ⊆ A±(x
∗)c and Z ⊆ A(xk)c = I(xk) . Hence, we obtain

(4.54)
ω

2
‖x̄k − x∗‖ ≤ ‖|g(xk)| − µ)I(xk)∪A0(xk)‖.

Combining (4.49) and (4.54), the proof is complete.

Theorem 4.18. Suppose Assumption 4.1 holds and the sequence {xk} generated by Algorithm NMLS

converges x∗. If x∗ satisfies the strong second-order sufficient optimality conditions, then ρ1(x
k) defined by

(4.36) is an identification function.

Proof. From Lemmas 4.7 and 4.17, we obtain

lim
x→x∗,x 6=x∗

ρ1(x)

‖x− x∗‖
≥

√
κ∗‖d1(xk)‖

̺‖d1(xk)‖
→ +∞

for k sufficiently large. Therefore, ρ1 is an identification fucntion.

Remark 4.19. From the proof of Lemma 4.16, in particular, the proof of the inequality (4.43), the step

size α = 1 is acceptable if

(4.55) λ ≤
2(1− σ)

L
.

Therefore, Theorems 4.12 and 4.11 yield A±(x
k) = A±(x

∗) for k sufficiently large.

4.3. Convergence results of the active set algorithm. We now study the subspace optimization

stage of Algorithm 1. The justification for test (3.4) and (3.5) is based on the convergence properties of

Algorithm NMLS. On the one hand, we want to start subspace optimization as soon as possible; on the

other hand, we want the active set that defines the subspace optimization problem to be as accurate as

possible. If there is at least one nonzero components of x∗, then ‖g∗I∗‖ ≥ µ since |g∗i | = µ for i ∈ I∗ from

the optimality conditions. Suppose the sequence {xk} generated by the first stage converges to an optimal

solution x∗ of (1.1). Then g(xk) converges g(x∗) and ‖d(λ
k)(xk)‖2 converges to zero from P7 of Lemma 2.1.

Hence, the quantity λk−1‖gkI(xk)‖/‖d
(λk−1)‖2 tends to infinity and the first part of condition (3.4) will be

satisfied after a finite number of iterations. However, the quantity λk−1‖gkI(xk)‖/‖d
(λk−1)‖2 cannot tell us

whether the current point xk is optimal or not. Hence, we also check the second part of condition (3.4) in

which ‖(|g(xk)| − µ)I(xk)∪A0(xk)‖∞ is a measure of optimality. In fact, if i /∈ A±(x
∗), then |gi(x

∗)| = µ. By

Lemma 4.7, we have

||gi(x
k)| − µ| ≤ ||gi(x

k)| − |gi(x
∗)|| ≤ |gi(x

k)− gi(x
∗)| ≤ L‖xk − x∗‖ ≤ L̺‖d(1)(xk)‖

Hence, there exists a constant δ such that ‖(|g(xk)|−µ)I(xk)∪A0(xk)‖∞ ≤ δ‖d(1)(xk)‖ for k sufficiently large.

If it happens that the shrinkage phase converges slowly and cannot make sufficient progress after a lot of

iterations, the relative change of the objective function value between two consecutive iterations usually

will be small. Hence, satisfaction of (3.5) indicates that the Algorithm NMLS is stagnating. Therefore,
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Algorithm FPC AS is well-defined. We now analyze the global convergence of Algorithm FPC AS similar to

Theorem 4.1 in [12].

Theorem 4.20. (Global convergence) Suppose Assumption 4.1 holds and Condition 3.1 is satisfied.

Then Algorithm FPC AS either terminates in a finite number of iterations at a stationary point, or we have

(4.56) lim infk→∞‖d(λ)(xk)‖ = 0.

Proof. Since we terminate each subspace optimization after at most Γ iterations, either only NMLS is

performed for large k or NMLS is restarted an infinite number of times. If only NMLS is performed for large

k, then (4.56) follows from Theorem 4.4. Suppose that NMLS is restarted an infinite number of times at

k1 < k2 < · · · and that it terminates at k1 + l1 < k2 + l2 < · · · , respectively. Thus ki < ki + li ≤ ki+1 for

each i. If (4.56) does not hold, then there exist ǫ such that ‖d(1)(xk)‖ ≥ ǫ. It follows from (4.4) and (4.15)

that

(4.57) ψki+liµ ≤ Cki+li−1 − ζ‖dk‖2 ≤ ψµ(x
ki)− ζǫmin(1, λm).

From the definition of subspace optimization, we obtain ϕµ(x
ki+li) = ψµ(x

ki+li). Since subspace optimiza-

tion will not make a zero component in A(xki+li) nonzero, we obtain I(xki+1) ⊆ I(xki+li) and

ϕµ(x
ki+1) = ψµ(x

ki+1).

By Condition 3.1, we have ϕµ(x
ki+1) ≤ ϕµ(x

ki+li); hence ψµ(x
ki+1) ≤ ψµ(x

ki+li). This together with (4.57)

gives

ψµ(x
ki+1) ≤ ψµ(x

ki)− ζǫmin(1, λm),

which contradicts the assumption that ψµ(x) is bounded from below.

5. Conclusions. We have presented a two-stage active-set algorithm for the l1-norm regularized opti-

mization in which the iterative shrinkage scheme is used to estimate the support at the solution and then a

subspace optimization problem is solved to recover the magnitudes of the components in the estimated sup-

port. The difficulty is to integrate shrinkage and subspace optimization coherently to guarantee convergence.

We show the convergence of the first stage algorithm NMLS by noting that shrinkage operator exhibits many

characteristics similar to those of the gradient projection for the bounded constrained problem. In particular,

NMLS is able to identify of the zero components of a stationary point after a finite number of steps under

some mild conditions. The overall convergence of FPC AS is enforced by decreasing the original objective

function after the subspace optimization phase.

Appendix A. Proof of Lemma 2.1 .

Proof. 1) The first-order optimality conditions for a stationary point x∗ is

(A.1) ∇f(x∗)(x− x∗) + µ(ξ − ‖x∗‖1) ≥ 0, for all (x, ξ) ∈ Ω,

since ξ∗ = ‖x∗‖1. Applying (A.1) to problem (2.4) gives P1.
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2) Replacing y with S(y, ν) and ξ with ‖S(y, ν)‖1 in P1 gives

(S(x, ν)− x)⊤(S(y, ν)− S(x, ν)) + ν(‖S(y, ν)‖1 − ‖S(x, ν)‖1) ≥ 0.

A similar inequality is obtained if x and y is exchanged. Adding these two inequalities gives P2.

3) P3 is the nonexpansive property of shrinkage operator given by Lemma 3.2 in [13].

4) P4 and P5 are given by Lemma 3 in [17].

5) Replacing x with x− λg, y with x, ξ with ‖x‖1 and ν = µλ in P1 gives

(S(x− λg, µλ)− (x− λg))⊤(x− S(x− λg, µλ)) + µλ(‖x‖1 − ‖S(x− λg, µλ)‖1) ≥ 0,

which is equivalent to

(d(λ)(x) + λg)⊤(−d(λ)(x)) + µλ(‖x‖1 − ‖x+‖1) ≥ 0,

which further gives P6 after rearranging terms. An alternative proof is given in Lemma 2.1 in [17].

6) If x∗ is a stationary point, replacing x with x∗ in P6 and together with the optimality conditions

(A.1), we obtain ‖d(λ)(x∗)‖ = 0. On the contrary, if ‖d(λ)(x∗)‖ = 0, then S(x∗ − λg∗, µλ) = x∗. Replacing

x by x∗ − λg∗ in P1, we obtain

(S(x∗ − λg∗, µλ)− (x∗ − λg∗))⊤(y − S(x∗ − λg∗, µλ)) + µλ(ξ − ‖S(x∗ − λg∗, µλ)‖1) ≥ 0,

which gives (A.1). An alternative proof is given in Lemma 1 in [17].

7) Replacing x with x− λg(x) and replacing y with x∗ in P1 gives

(S(x− λg, µλ)− (x− λg))⊤(x∗ − S(x− λg, µλ)) + µλ(‖x∗‖1 − ‖S(x− λg, µλ)‖1) ≥ 0,

which is equivalent to

(A.2) (d(λ)(x) + λg)⊤(x∗ − x+) + µλ(‖x∗‖1 − ‖x+‖1) ≥ 0.

Since (x+, ‖x+‖1) ∈ Ω, the optimality conditions (A.1) gives

λ(g∗)⊤(x+ − x∗) ≥ µλ(‖x∗‖1 − ‖x+‖1),

which together with (A.2) gives

(A.3) (d(λ)(x) + λ(g − g∗))⊤(x∗ − x+) ≥ 0.

Expanding (A.3) and rearranging terms, we obtain

(A.4) d(λ)(x)⊤(x∗ − x)− ‖d(λ)(x)‖2 + λ(g∗ − g)⊤d(λ)(x) ≥ λ(g − g∗)⊤(x− x∗).

Using the Schwartz inequality, inequalities (2.6) and (2.7) in (A.3), we obtain

(1 + λL)‖d(λ)(x)‖ ‖x∗ − x‖ − ‖d(λ)(x)‖2 ≥ λω‖x∗ − x‖2,
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which proves P8.
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[15] J. J. Moré and G. Toraldo, Algorithms for bound constrained quadratic programming problems, Numer. Math., 55

(1989), pp. 377–400.

[16] , On the solution of large quadratic programming problems with bound constraints, SIAM J. Optim., 1 (1991),

pp. 93–113.

[17] P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable minimization, Math. Program.,

117 (2009), pp. 387–423.

[18] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, A fast algorithm for sparse reconstruction based on shrinkage, subspace

optimization and continuation, SIAM Journal on Scientific Computing, 32 (2010), pp. 1832–1857.

[19] H. Zhang and W. W. Hager, A nonmonotone line search technique and its application to unconstrained optimization,

SIAM J. Optim., 14 (2004), pp. 1043–1056.

19

D 




