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On the Convergence of Broyden's Method for
Nonlinear Systems of Equations

By J. E. Dennis, Jr.*

Abstract. This paper uses majorant techniques to study the convergence of Broyden's

single-rank update method for nonlinear systems of equations. It also contains a very

elementary proof of the local convergence of the method. The heart of the method is a

procedure for generating an approximation to the Jacobian of the system using only in-

formation on hand and not requiring partial derivatives.

1. Introduction. C. G. Broyden [2] suggested an algorithm for iterating to a

solution of a system of nonlinear equations which has shown its mettle in dealing

with practical problems. The purpose of this paper is to provide a Kantorovich-type

analysis and an elementary local convergence proof for this method. In fact, the

analysis is applicable to the entire class of 'single-rank update' methods just to the

extent that it seems to justify heuristically the generally superior performance of

Broyden's method over the rest of the class.

These methods generate sequences {xn}, {//„}, one consisting of approximate

roots and the other of the corresponding approximate inverse Jacobian matrices.

At the nth step, one obtains xn+i from xn and H„ by setting

(1) *»+l    =   Xn   —   JnHnFiXn),

where F(xn) = (ji(x„), • ■ • , fn(xn))T is the residual vector at the point x„ and yn is a

real number about which more will be said later. Hn+i is obtained by using an idea

due to Davidon [5]. It is required to satisfy the equation

(2) Hn+1yn = Hn+1(F(xn+1) — F(xn)) = *„+1 - x„.

This seems to be a very clever use of the small amount of new information furnished

by F(x„+1), since it is equivalent to

f      (Hn+lJ(x) - I)dx = 0,

where J denotes the Jacobian matrix. It makes H„+1 look like a very reasonable

approximation to the inverse Jacobian somewhere between xn and xn+i, at least in

the direction xn+i — x„. For the single-rank methods, the choice of H„+i from the

class of N X N matrices satisfying (2) is

(3) Hn+i = Hn - (//„v„ + ynHnF(x„)) dl/£yn.
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560 J.   E.  DENNIS,  JR.

If Bi = i/71, then

(3') Bn+1   =   Bn~   O,   +  7nF(Xn)) £Bjj. dlF(X„),

where cf„ G £" is, of course, chosen so that c^j>„ ̂  0.

Broyden [3] has shown that for his method, dn = HTnH„F(Xn), if J(x) = L, a

constant matrix, i.e., the system is linear, then \xn\ and {Hn} converge to x*, the

root, and L~l, respectively, from any x0 and any H0 sufficiently close to LT1.

Such a result would be too much to hope for when working with nonlinear

systems, but in Section 2 we will show that the rate of deterioration in the approxima-

tion of J(xn) or J(x*) by B„ depends on the nonlinearity of F in a very simple way.

This will enable us to analyze the method as a Newton-like method [7] in Section 3.

In Section 4, we will draw some reasonable, though nonrigorous, conclusions, based

on the results of Section 3, about the choice of y. Any reader interested just in the

local convergence can read only Lemma 3 and Theorem 5.

2. Error Bounds for the Jacobian Approximation. Let Da be an open convex

set on which F is continuously differentiable. Let x be a fixed element in D0 and let

K be a nonnegative number. We will always use the l2 norm, so if A is a matrix, \\A\\

is the square root of the spectral radius of ATA. Remember that J is the function

which maps x to the Jacobian of x.

Definition. J G Lipx {x} w.r.t. D0 iff for every jc G A» I \J(x) — J(x)\ | g K\ \x — x\ \.
J G Liptf D0 if / G Lipx {x} w.r.t. D0 for every x G A>.

Lemma 1. Let J G Lipx {x} •w.r.t. D0, then for any x G A>,

\\F(x) - F(x) -  J(x)(x -X)\\á (K) \\x - x\\2.

Proof See [4] or [7].

Lemma 2. Let x, x' G E" with xTx' = 1, then

||/-*V|| = ||*'IHMI.

Proof See [3].

Lemma 3. Let x, x' G D0 and let B be an N X N real matrix. Let d G E" with

<fF{x) 9^ 0 and set

B' = B + (F(x') - F(x) - B{x' - x)) dTB/dTB(x' ~ x)

and

\\x' -x\\-\\dTB\\

\dTB{x' - *)|

Under these conditions, if J G Lip* {x\ w.r.t. D0 then

(4a)       ||5' - /(*)|| £q\\B- m\\ + 2.nx*K_xl\ (II*' - ^ll2 + II* - *l|2).

IfJE: LipÄD0, then

(4b) \\B' -  J(x')\\ ggWB-  Jte)\\ + W + \a) \\x' - x\\.

Proof Assume that we have established (4a); then, since J G Lipx Da, we can set

x = x and add \\J(x) — /(x')|| to both sides of (4a) to obtain (4b). (4a) is easily seen
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THE  CONVERGENCE  OF   BROYDEN'S  METHOD 561

to follow from the following indentities.

dTB
B' -  Ax) = B - J(x) + (F(x') - F(x) -  mte' - x)) —■

d B{x   - x)

(F(x) - F(x) -  J(x)(x - x))
dTB

dL B(x' - x)

- (B -  J(x))(x' - x)
dTB(x' - x)

Now, apply Lemma 1 to the two middle terms and Lemma 2 to the combination of

the first and last terms.

We will now apply (4b) to the case when B = Bn, B' = 2?n+1, x = x„, x' = xn+i,

d = d„. In the next theorem, interpret the quotient qn in the obvious way and define

q-i - 1.
Theorem 1. Let J G Lip^ D0 and let x0, • • • , xn+i, Ba, ••• , Bn+i be generated by

any single-rank method. If {Xi'. i = 1, • • • ,n+ 1} C. D0, then

(5)

||fi.+ 1 -   /(*„+1)|| g (Ê 9i) \\Ba -   /(*o)||

+ K Ê ("n   q(\\ + hq,) ||»l+1 - x,||.
,--o \i—i      I

Proof The proof will be by induction on « + 1.
Let n -f- 1 = 1. By making the proper substitutions in (4b),

ll*i -   /(*i)ll  è q0\\B0 -   J(Xo)\\ +  m + ko) Iix, - Xoll,

which is (5) for n = 0. Assume by way of induction that (5) holds for n + 1 Û k.

Then, again by (4),

II«» - /(**)ll

^ (il «/) \\Bo ~ /(xo)|| + K E f H 1 9i)d + k/) ||*i« - »ill.
\ ,--0        / ¿-0   \    i-1 /

and so

||B*« -  /(**«)! I

^ ?*[(n ?i) n*» - /(xo)n + k g (* n ' «i)d + ki) n**« - *iii]

+ K(l — %qk) ||xi+, — x»||

- (5)

with n + 1 = k -f 1 and the induction is complete.

Now, obviously, q„ ^ 1 and, just as obviously, any analysis based on (5) needs

qn = 1 or that JJ q¡ is uniformly bounded. There are various ways of 'fudging'

however in order to control the deterioration [1], [6].

The Cauchy inequality tells us that q„ = 1 if and only if there is a constant cn ^ 0

such that BT„dn = c„{xn+l — xn) = cnHnFn, i.e., dn = cnHTnHnFn, Broyden's choice.

If we view a particular method as the selection function for dn, then a glance at (3)
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562 J.  E.  DENNIS,   JR.

and (3') convinces us that the two methods are the same if d'n = c„d„ for some sequence

{c„} of nonzero constants. Hence, Broyden's method is the unique single-rank

method which is naturally of bounded deterioration. It seems unnecessary to find

the general analogue of (5) for (4a). The analogue for Broyden's method is the heart

of the proof of Theorem 5.

3. A Kantorovich-Type Analysis for Broyden's Method.   In [7], the author con-

siders the convergence of a class of Newton-like methods of the form

(6) xn+i = xn — AteJ^Ften).

An immediate corollary of the results there is the following important extension

of Rheinboldt's Theorem [10].

Theorem 2. Let F be as above and let A have the property that given any x G D0,

A(x) is an N X N real matrix. Let 50, ôj be nonnegative real numbers such that

(7) \\A(x) -  /toll =£ S0 + i,||x - xoll

for every x G A> and let ß and t] be real numbers such that A(xa)~l exists and

IMCxo)-1!! û ß, IMíxor1^*«,)!! ú v.
Then, 1 > ß80, \ ^ H m ßKr,/(\ - ß5Q)2 and N(x0, rQ C D0, where

_ 1 - (1 - 2h')l/2

ra = TTTT- (! — P5o),

imply that F has a root x* G Ñ(x0, ^ó) which is unique in D0 C\ N(x0, r¡), where

_ 1 + (1 - 2h')l/2

ßK
(1 - ßK).

Furthermore, x'n+1 = x'„ — A(x0) 1F(x'n) converges to x* from any x'0 G A> ̂  ^(^o> O-

If in addition, 1 > 3/350, h ^ h = (25x + K)ßv/(\ - 3/3S0)2 and N(x0, r0) C A>,

where

._ 1 - (1 - 2A)1/2

r" =     ßQSi + K)      (1 - 3^5o)'

then the sequence {x.} generated by (6) converges to x*.

The fact that the theorem ensures convergence of the {x'n} sequence under less

stringent conditions than for the {xj sequence is a characteristic of this type of

theorem and results from using the {x„\ sequence to establish the existence and

uniqueness of x*.

If we write (5) for the special case of Broyden's method, we obtain

(5') ||£n+1 - /(xB+1)|| Û \\BQ - J(xQ)[\ + ¿f ¿ ||xí+1 - *,||
¿     i-o

which, except for a wrong-way triangle inequality, looks like a version of (7) with

50 = ||2?o — /(x0)||, 5X = %K and the function A only denned at the iteration points.

One is immediately led to conjecture the following theorem for Broyden's method.

Theorem 3. Let F G LipK D0 and let B0 be a nonsingular N X N matrix such
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THE   CONVERGENCE   OF   BROYDEN'S   METHOD 563

that ||J(xo) - ¿oil á S, \\H0\\ ^ ß and \\H0F(xQ)\\ ̂  v. Then, 1 > ß8, § ^ h m

ßK/(l - ß8)2 and N(x0, r'0) C A,, where

,       1 - (1 - 2h'f/2
r° = -ßK ° - ßS)

imply that F has a root x*, \\x0 — x*\\ ^ r'0, andx* is unique in D0 i~\ N(x0, r[), where

>      1 + (1 - 2ftQ1/2 „      Ä_
ri = -7^-(1 - ßö).

Furthermore, xn+1 = x'n — H0F(xn) converges to x* from any x'0 G Do H N(x0, r[).

If in addition, 1 > 3/35, \^h= ßK-q/il - 30Ô)2 and N(xQ, ra) C D0, where

__ 1 - (1 - %hfn n      „.,
'° =-4ßl-(1-3/35),

iften Broyden's method with yn = 1 /or every «, converges to x*.

The existence and uniqueness of x* and the convergence of the x' sequence can

be obtained directly from Theorem 2 by, for example, setting A(x) = B0 for every

x G D0. Thus, we make the second set of assumptions and proceed to a consideration

of the full Broyden sequence. The first step in the proof of Theorem 2 by the tech-

niques of [7] is to show that A(x) is always invertible and to find a scalar function

a() such that a(\\x — XqW)'1 ̂ ||^(x)_1|| for every x G N(x0, /•<,). Let us assume that,

for « ^ 0, E"-o l|*<« - *.|l < r0. Then from (5'),

\\H0Bn+1 - I\\ £ß \\Bn+i - Boll

g ß[\\Bn+i -  /(*»+l)|| + ||/(x.+1) -  /(xo)ll + ||/(xo) - B0\\]

g 0(25 + ££■ Ç ||x,+1 - x,|| + K\\xn+1 - xoll)

á 2/35 + ^ ¿ ll*<« - »ill < 2/35 + -RKrü
¿        i-0 ¿

= 2ß8 + |(1 - (1 - 8A)l/2)(l - 3/35) ̂  3/35 + c(l - 3/35) < 1

since c < 1. Hence, by the Banach Lemma [7], [8], (//o^n+i)-1^ = Hn+l exists and

is bounded in norm by 0(1 - 2/35 - (5ßK/2) ¿7-0 ||*/« - *,ll)"x-

Let b0 = /3"1 and A0 = ß, ta = 0. Define /(*) = 2Jfr2 - (¿>0 - 35)í + 6o)j, At =

ß(\ — 2/35 — 5ßKtk/2)~l, AT/1 = ô* and consider the sequence tM = tk + hkf(tk).

Notice that r0 > h = 1? <£ ||#o-F(*o)|| = ||xi — x0||. Suppose now that 0 < 4 < r0,

then, since /(/•») = 0, r0 - rt+1 = r0 - /» + Ä*(/(r0) - /(rt)) = i/o - '*)(! + **/'(£)),

£ G (4, r0). Now,

/'(Ö = 4tf{ - (i» - 35)< 4A>o - (*o - 35)

= (1 - (1 - Sh)1/2Xb0 - 35) - (60 - 35) = -(1 - 8/i)1/2-(60 - 35) < 0.

Hence, 1 + hkf(0 < 1 so r0 — th+1 < r0 — tk. Furthermore, hk ^ ß = h0, so

hkf(0 ^ -h0(b0 - 35) = -1 + 3/35 > -1 and 1 + A/({) > 0. Thus,
0 < r0 — tk+1 < r0 — tk and {tk\ is a strictly increasing sequence in [0, r0]. Hence, it

converges to t* á r0. If t* < r0, then t* = t* + /3(1 - 205 - 5£/3i*/2)~7('*)> and
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so j(t*) = 0. This ensures that t* = r0, since r0 is the smallest root of / in [0, r0]. We

have already that U è ||*i — x0||. Suppose now that ;c0, xu • ■ • , xk satisfy the prop-

erties that ||xi+1 — x,|| ^ i,+i — ti,i = 0,1, ■ • ■ ,k — I. Then Ei-ô||*<« — *<|| =

tk < r0 and Hk exists with \\Hk\\ ^ hk. Now, apply Lemma 1 and (5'):

||x»+,  - Xi||

Ú hk[\\F(xk) - Fteu-x) - /(**«)(** - *»-i)|| + ||/(**-i) - **«IHI*» - **-il|]

á AjUJTIIx» - ^_i||2 + (5 + & E ll*i« - *ill) II** - **«ll]

á hSK(tk - tk^)2 + (5 + §***_!)(** - i»_x)] -^~- + f(h-i)
** — «t-i

= &*-, + /'(**«)

= ¿>0(1 - 2A05 - ftSJSTi».,) + AKtu-i - (b0 - 35)

= 60 - 25 - f/3MTí*-i + 4JTÍ».! - 60 + 35 = 5 + fi*,.,.

We can thus write

||**+i - x»|| ^ Ä»[2Zfo - í*-!)2 + fih-Mh - f,.,) + /(*,_,)]

á ¿*/(<*) = tk+1 - t„,

since the bracketed expression is the Taylor expansion for the quadratic /. Now, we

can conclude by induction that E;-o ll*í+i — *íll Ú tk < r0 for every k. Hence,

[x„} is a Cauchy sequence and must converge to some x** G Ñ(x0, r0). It only

remains for us to show that x** = x*. From (5'), we obtain ||^£|| g ||/(x*)|| +

5 + %Ktk Ú \\J(xa)\\ + 8 + 5Ktk/2 < \\J(x0)\\ + 8 + 5Kr0/2 m C. Hence

||F(x**)|| = lim \\F(xk)\\ = lim ||B»||-||xt+l - x.|| ^ C lim ||x»+1 - x»|| = 0.
k k k

Now, r0 < r[ so the unicity assertion concerning x* ensures that x* = x**.

The following corollary is straightforward.

Theorem 4. Let x* be a root of the nonlinear system F. Let the first partial deriva-

tives satisfy a Lipschitz condition of order 1 in some open set containing x* and let

J(x*) be invertible. Under these conditions, there is an e > 0 and a 5 > 0 such that if

x0 is any N-vector and B0 is any matrix satisfying \\x0 — x*\\ < e and \\J(x0) — B0\ \ < 8,

then Broyden's method with y„ = 1 for all n converges to x* from x0.

It is possible to give a more elementary proof of local convergence which requires

only that J G Lipx {x*} w.r.t. D0. This condition holds for example if all the first

partíais of F exist around x* and the difference quotients of the first partials are

bounded at x*. This is the continuity condition often used to provide a simple proof

of the local quadratic convergence of Newton's method.

Theorem 5. Let x* be a root of Fand J G Lip^ [x*\ w.r.t. D0. Under these condi-

tions, ifJ(x*) is invertible, then there exist real positive numbers t and 8 such that if B0

is a real N X N matrix, \\B0 — J(x*)\\ ^ 5, and \\x0 — x*\\ < e, Broyden's method

with y„ = 1 converges to x* from this starting point.

Proof Let ß bound ||/(x*)_1||. Choose 5 g 1/65 and e g 25/5K, such that
N(x0, e) C So- Now, select x0, B0 as above. It is clear from the Banach Lemma [7], [8]
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THE  CONVERGENCE  OF   BROYDEN'S  METHOD 565

that H0 exists and is bounded in norm by 0(1 — 05) \ The choice of e ensures that

F(x0) exists and so Xi exists.

ex - ||*i - **ll - ll*o - ** - HoiFteo) + F(x*))\\

^ \\-Ho\\-\\F(.x0) - F(x*) - B0(x0 - x*)\\

^ \\Ho\\ [\\F(x0) - F(x*) -  /(x*X*o - **)|| + ||/(**) - So||-|l*o - **l|]

< T^ßl (**e° + Seo) - i -0g (*Ke° + S)e°

- 1^05\s + 5fr = ST=Tse° < 2e°-

Hence, Ffo) and 2?i exist. Now,

||*i — *o|| è ||xo — x*|| — 11*1 — **|| è e0 — \e0 = Je0.

Applying Lemma 3 and the above, we obtain

II* -  /(**)ll ^ 5 + j (¿e20 + e2) ||x, - Xolf1

^5 + | Kea\ea ||x, — JColl"1

á S + f &o á 7? « < 2«.4 2

Hence,"||/(x*)"1j81 — J|| < 205, so HY exists and is bounded in norm by 0(1 — 205)"1,

so x2 is defined. Assume by way of induction that xu ■ ■ • , x„, Hu • ■ ■ , Hn-i all exist

and eh Û hk-u II* ~ ^(**)ll á (2 - (¿)*)5, fea«. Then, H/ix*)"1* - /|| á
(2 — (§)*05 < I and so /?» exists by the Banach Lemma and is bounded in norm by

0(1 — 205)-1. This ensures that xn+1 exists. Now

*„« a ||ffn||-[||F(*„) - H**) - /(**X*. - **)fl + l|/(**) - Bn\\en]

g 0(1 - 2ß8T1[\Kel + (2 - (*)") 5en]

g 0(1 - 205)-1[(è)n (5/5) + (2 - (i)")5K

< 0(1 - 20Ô)-125e„ < K-

We complete the induction by applying Lemma 3 to write

II*« -  /C**)ll á \\Bn-  Jte*)\\ + hK(e2n+i + el) \\x„+1 - *.||-'

g (2 - (J)n)5 + ÎKea

û (2- (|)n + í-(|)n-f)5

= (2 - (I)" + (è)n+1)5

= (2 - (i)n+1)5.

We have used here that, as above, §e„ ^ ||x„+i — x„||.

Hence, the sequence {xn}, {Hn\ exists and e„ ^ (è)ne0, so Broyden's method

converges.
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In Lemma 3 and the theorem above, we note that if K = 0, i.e., the system is

linear, then ||2?n — J{x*)\\ ^ \\B0 — J(x*)\\ and e = "°o ". This is simply a reflection

of the fact, indicated by the expression for e! in terms of e0, that for a linear system,

5 Ú 1/20 is sufficient to ensure convergence from any x0. See [3].

It is simple to change the hypothesis of Theorem 5 so that B0 is required to be

close to J(x0) instead of J(x*).

Corollary 5. Under the hypothesis of Theorem 5, there exist real positive numbers

5', e such that if\\x0 — x*\\ ^ e', and Ba is a real N X N matrix, \\B0 — J(x0)\\ ^ 5',

then Broyden's method converges to x* from this starting point.

Proof. Let e and 5 be as in the previous theorem. Select e' ^ e and 5' such that

5' + Ke' S- 5. Now, let ||x0 - x*|| < e', ||2?0 - J(x0)|| < 5'. Then, p0 - J(x*)\\ ^

po - y(xo)|| + \\J(Xo) - J(x*)\\ áj'l^íí and ||x0 - x*|| < e, so the result

follows from Theorem 5.

4. The Choice of y„- In the introduction, we made the obvious statement that dn

was chosen so that dly„ ^ 0. Clearly, this requirement alone allows us to define

H„+1 from Hn by (3). The following theorem clarifies this requirement.

Theorem 6. Let Hn be a nonsingular N X N matrix and let dn G EN, such that

(fñyn 7a 0. Then, Hn+i is nonsingular if and only ifdTnF(xn) 9* 0.

Proof. First, let us assume that dTnF(Xn) = 0. Direct substitution in (3) yields

Hn+1F(xn) - HnF(xn). Also,

Hn+1F(xn+1) = HnF(xn+i) - (Hnyn + ynHnF(Xn)) dnFi*n+l)

dnyn

= HnFten+i) - Hnyn - Yn#„n*„) = (1 - y»)HnFten).

If yn = 1, Hn+i is clearly singular. If y„ 9a 1, then as above, Hn+lF{xn+i) =

(1 - yn)Hn^F(Xn) and so tfn+1(F(x„+1) - (1 - y„)F(x„)) = 0. Hence, either #B+1 is

singular or F(x„+1) = (1 — 7„)F(x„). If the latter were true, then dT„F(x„+1) = 0 and

d^yn = 0 would result. This would contradict the hypothesis dly„ ¿¿ 0, so Hn+1 is

singular.

Assume now that Hn+iX = 0 for some x^0. Clearly, dix ?± 0 since H„+i agrees

with the nonsingular matrix H„ on the orthogonal complement of d„. From (3),

Hnx = i.Hnyn + ynHnF(Xn))dlx/dlyn

and so

x = (yn + ynF(xn))dlx/dlyn.

Hence, dTnx = (<0>„ + 7n^(x„))dr„x/^n and so 7»<F(;cn) = 0. Now, if y„ = 0,

F(xn+1) = F(x„) and J^„ = 0, so we can conclude that dn is perpendicular to F(xn).

The previous theorem obviously has a more general analogue in the language of

Lemma 3.

The proof of Theorem 6 could have been simplified by using (3') but we wanted

the little result that dTnF(xn) = 0 implies Hn+1F(xn+i) = (1 - yn)HnF(xn).

Let us suppose that we are choosing yn by some minimization criterion like

minT||F(x„ — yHnF(Xn))\\. In a difficult situation, we may have to settle for a small

yn and F(xn+i) close to F(xn). This means that y„ is close to zero and, since the norm
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of dn is relatively irrelevant, d^y„ would be close to zero. The obvious remedy is to set

dn = yn- Now, we note that dTnF(Xn) = F(x„+1)TF(Xn) — F(x„)TF(Xn) will be near

zero and so the new direction of search Hn+1F(xn+i) ~ HnF(Xn), the direction we

have just searched unsuccessfully. C. G. Broyden confirms that the above heuristics

fit his computational experience with d„ = yn. See [2].

In Broyden's successful method, also defined in [2], d„ = —HT„HnF(xn) and so

dT„F{Xn) is in no serious danger of going to zero except as a result of convergence,

i.e., the direction of search will probably not suffer too much from a small yn. Of

course, c/^>>„ will be in danger and so the magnitude of the correction will be distorted

and it may be desirable to obtain a fresh approximate Jacobian. This seems to explain

behavior observed by M. J. D. Powell [9].

A useful strategy for choosing y would probably be based on the one outlined

by A. Goldstein [8] for Newton's method. It would seem reasonable to choose y by

some descent criterion until one feels he has a good approximate root and then

switch to y = 1.

5. Concluding Remarks. In this investigation we have ignored the fact that for

many problems the direction dn will sweep through a basis often enough to make (5)

and (5') unduly pessimistic. Powell [9], at additional computational expense, modifies

Broyden's correction in such a way that B„ converges to J(x*) if xn converges to x*.

There seems little doubt that Powell's modification is justified for many problems.
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University of Essex, Department of Computer Science. The author wishes to thank
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