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On the Convergence of Difference Approximations
to Scalar Conservation Laws*

By Stanley Osher and Eitan Tadmor

Abstract. We present a unified treatment of explicit in time, two-level, second-order
resolution (SOR), total-variation diminishing (TVD), approximations to scalar conser-
vation laws. The schemes are assumed only to have conservation form and incremental
form. We introduce a modified flux and a viscosity coefficient and obtain results in terms
of the latter. The existence of a cell entropy inequality is discussed and such an equality
for all entropies is shown to imply that the scheme is an E scheme on monotone (actu-
ally more general) data, hence at most only first-order accurate in general. Convergence
for TVD-SOR schemes approximating convex or concave conservation laws is shown by
enforcing a single discrete entropy inequality.

Introduction. Recently there has been an enormous amount of activity related
to the construction and analysis of finite-difference approximations which approxi-
mate nonlinear hyperbolic systems of conservation laws and which are supposed to
have the following properties:

(1) Limit solutions which satisfy a geometric and/or analytic entropy condition.
(2) A bound on the variation of the approximate solutions at least in the scalar

and linear systems case. This bound is such as to imply the absence of spurious
oscillations in the approximate solutions.

(3) At least second-order accuracy in regions of smoothness, except for certain
isolated points as described below.

Some examples of the successful computational consequences of this activity can
be found in the proceedings of the sixth AIAA Computational Fluid Dynamics
Conference, and elsewhere; see, e.g., the bibliography in [21].

Some of the earliest work in the design of schemes having properties (2) and
(3) above was done by Van Leer [27], [28]. There he introduced the concepts of
flux limiters and higher-order Riemann solvers. Recently, Harten [10], [11] obtained
conditions which he showed to be compatible with second-order accuracy, and which
guarantee that a scalar one-dimensional scheme is TVD, that is, total-variation
diminishing. He constructed a scheme having that property and formally extended
it to systems using a field-by-field limiter and Roe's decomposition [22].

We would also like to mention the work of Boris and Book [1] concerning FCT
schemes. They also used flux limiters to suppress oscillations in their schemes.
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20 STANLEY OSHER AND EITAN TADMOR

Harten's construction in [10] was done first for a fully discrete, explicit in time
approximation. P. K. Sweby [24] has investigated the properties of various limiters
in this context.

We shall use the term "high resolution scheme" to mean a formal extension to
systems via a field-by-field decomposition of a scalar, higher than first-order accu-
rate, variation diminishing scheme. These schemes do not, in general, satisfy the
entropy condition; e.g., expansion shocks exist as stable solutions of high resolution
schemes based on Roe's (unmodified) scheme. In [20], Osher's decomposition and
certain flux limiters were used to prove that limit solutions to a class of semidiscrete,
time continuous high resolution schemes do satisfy the entropy condition for hyper-
bolic systems of conservation laws. Convergence of other classes of semidiscrete,
time continuous, high resolution approximations to scalar convex conservation laws
was proven in [19] and [20].

A systematic recipe for constructing semidiscrete high resolution schemes whose
formal accuracy is higher than two (away from the isolated points) using a minimal
band width, was presented in [21].

In the present paper we are considering two-level, (and for simplicity only) ex-
plicit finite-difference approximations to a scalar conservative law having two prop-
erties:

(1) Lax-Wendroff conservative form [15], and
(2) Roe's incremental form [22].
In Section 1 we introduce a modified flux and a viscosity coefficient, both grid-

dependent quantities, with which we set up and advocate a third form of these
schemes, the viscosity form. A sufficient TVD criterion is then presented in terms
of this form.

In Section 2 we consider schemes which have a 3-point stencil. In this case the
modified flux coincides with the original (differential equation's) flux; accuracy is
consequently limited to first order.

Thus, in Section 3, we consider wider stencils. A comprehensive framework
of second-order resolution (SOR), total-variation diminishing (TVD) schemes is
presented. The viscous form of the scheme again plays a key role here.

Two concrete examples for the construction of SOR-TVD schemes according to
the above guidelines are detailed in Section 4; both approaches use the viscous form
of the underlying 3-point TVD schemes. Special attention is called to the second
("piecewise constant viscosity modification") recipe in Corollary 4.9, which results
in an easily implemented and highly attractive two-step formulation.

These four sections comprise Part I. In our attempt at a unified treatment of
this subject, we derived (and in some cases rederived) some notable conclusions:

(i) Three-point TVD schemes are, at most, first-order accurate.
(ii) Accuracy at nonsonic critical points is limited to first order.
(iii) Our piecewise linear flux correction (Theorem 4.3) extends Harten's recipe

[10], under a CFL of limitation 2/3, (Remark 4.10), in agreement with that found
by Sweby in [24].

(iv) Our recipe for converting three-point TVD schemes to five-point SOR-TVD
schemes seems quite general and attractive from both a computational and a the-
oretical point of view. The latter point of view will be used in Part II.
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DIFFERENCE APPROXIMATIONS TO SCALAR CONSERVATION LAWS 21

The discussion concerning a cell entropy inequality begins in Section 5, using
the canonical Godunov scheme. Section 6 contains the heart of our discussion. The
grid-dependent modified flux of Section 1 is extended to a modified flux function
defined on the intervals connecting the grid values. The definition involves a piece-
wise linear function (i.e., the "double wing" seen in Figures 6.4) and the remark
made after the statement of Theorem 6.11, which takes into account the presence
or absence of critical points.

The schemes under consideration are then expressed as convex combinations of
Riemann problem solvers, i.e., of Godunov-type schemes, using the above modified
flux functions. We obtain an entropy in cell inequality involving a familiar (integral)
residual term.

Section 7 discusses the significance of E fluxes (introduced in [18], cf. also [26]).
We show that for any approximate entropy in cell inequality to be valid for all
intervals, the underlying scheme must have an E flux, hence be at most first-order
accurate (Remark 7.2). Conversely, the existence of an E flux implies the nonpos-
itivity of the residual term mentioned above, hence implies a general cell entropy
inequality. To obtain convergence for SOR schemes, we give up the requirement
that all discrete entropy inequalities be valid. This limits our convergence proof to
convex (or concave) conservation laws, as in [19], [20].

In Section 8 we treat SOR-TVD schemes satisfying a single quadratic cell entropy
inequality. Here we use the viscosity modification recipe of Section 4. A cell entropy
inequality follows by estimating the residual integral presented in Section 6. The
rather delicate tuning of the modified flux so as to comply with the three criteria
SOR, TVD, and entropy inequality, leads us to a wide class of explicit in time
SOR-TVD schemes (again only for the convex or concave scalar case).

The main convergence results are contained in Theorems 8.4 and 8.5.

PART I.  TOTAL-VARIATION DIMINISHING SCHEMES

1.   The Modified Flux and the Numerical Viscosity Coefficient. We
study two-step difference schemes of the form

(1-1) vu(t + k) = H(vu-P(t),..., vu+p(t); f, A),

serving as consistent approximations to the scalar conservation law

Here, vv(t) = v(xv,t) denotes the approximation value at the grid point (xv =
i/Ax,t), k = At and Ax are, respectively, the temporal and spatial mesh size with
fixed mesh ratio A = k/Ax, and p a natural number.

We postulate
Assumption 1.1. (i) The scheme (1.1) admits a conservative form in the sense of

Lax-Wendroff [15],

(1-3) H(vv-P,...,vu+p; f, A) = vv - \(hv+l/2 - /i„-i/2),

where /i„+i/2 stands for the Lipschitz continuous numerical flux

^i/+t/2 = h(vv-v+\,.. .,vv+p;f,X),
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22 STANLEY OSHER AND EITAN TADMOR

consistent with the differential one,

h(w,w,...,w;f,X) = f(w).

(ii) The scheme (1.1) can also be written in an incremental form

(1.4) H(vu-P,..., vu+p; f, A) = vv + C++1/2Atv+i/2 - C~_1/2Av„-.1/2,

where we use the standard notation

Af„+i/2 = vv+i - vv.

Equating the right-hand sides of (1.3) and (1.4), rearranging and dividing by A, we
find

(1.5a) /i„+i/2 + 7^+1/2^-1-1/2 = /^-i/2 + ^C~_xi2Avv-i/2.

We term the equated grid-dependent quantities in (1.5a) as the modified flux asso-
ciated with scheme (1.1):

9v = hu±1/2 + tCi/±1/2&vv±1/2

(1.5b) 1(. l j
= 2   hv-\/2 + hv+i/2 + -Cv_1/2Avu-l/2 + -C^+1/2Avv+1/2

As in [25, Section 2], we now use the consistency relation

(1-6.) c;+1/2-c:w, = x%^l

to conclude that with a given modified flux, gu, there is only one degree of freedom
in setting up the recipe of the difference scheme (1.1): This will be manifested in
terms of the quantity,

(i-6b) ^+i/2 = c;+1/2 + C+1/2.

Indeed, by averaging (1.3) and (1.4) we find

vv(t + k) = vv(t) - - (ft„+i/2 - /l„-l/2)

+ 2 (Cí+i/2At;f+i/2 - cü+i/2Av"-i/2) !

adding and subtracting t¡(C~+1,2Avv+i/2 - C¿'_l,2Avl/_i/2) on the right-hand
side, we arrive at

vv(t + k) = vv(t) - -   (h„+1/2 + jC-+1/2Avv+1/2)

- (hv-l/2 + -C+_1/2At>„_i/2 j

+ \ [(c;+i/2+C+i/2) A^+i/2 - (c;-i/2+^+-i/2) ^-1/2].

In view of (1.5b) and (1.6b), the scheme (1.1) is thus finally recast into its viscous
form

(1.7a) vv(t + k) = vu(t) - -(gv+i - gv-i) + - ^(Q^^Av^^t))],
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DIFFERENCE APPROXIMATIONS TO SCALAR CONSERVATION LAWS 23

expressed in terms of the numerical viscosity coefficient [10], [26]

9u + 9u+i - 2/it/+i/2(1.7b) Qu+l/2 - C^+l/2 + ^+1/2 - ^ Afi/+i/2

Let TV[u(f)] = Y^u l^f+iW — vv{t)\ denote the total variation of the computed
solution at time level i; the following lemma provides us with a sufficient criterion
for the scheme (1.1) to be total-variation diminishing (TVD), in the spirit of [10].

LEMMA 1.2.  (Total-variation diminishing.) The scheme (1.1) has a diminish-
ing total variation,

TV[v(t + k)}<TV[v(t)},

provided its numerical viscosity coefficient Qv+i/2 satisfies

Agv+i/2 |(1.8) < QiH-l/2 < 1-AtV+i/2

Proof. By averaging (1.6a) and (1.6b) we find

(1.9) ^+1/2-2^/2TA^—-j.

In view of these last relations, the inequalities (1.8) boil down to

(i.io)        c:+1/2>o,   c;+1/2>o,   i-c:+1/2-c++1/2>o,

and TVD follows along the lines of [10].    G

2. Three-Point TVD Schemes. In the case of 3-point schemes, p = 1, it was
shown in [25, Lemma 2.1] that there exists one and only one incremental form (1.4)
whose incremental coefficients are

(2.1) °" + l/2-A     AVu+l/2     - ^+1/2"^
fu+1 — hv+i/2

W-l/2

Inserted into (1.5b) we find that the modified flux in this case coincides with the
original one, gu = f„, and the scheme is therefore completely determined by its
numerical viscosity coefficient, Qv+i/2,

(2.2)       vu(t + k)= vv(t) - - (/„+1 - fv-i) + i [A(Q„_1/2Aü„_1/2)].

Abbreviating a(w) = df(w)/dw, the following notation will be used throughout:

A/i/+l/2

(2.3) a„+i/2
Av,v+l/2

if Au„+1/2 ¿ 0,

|a(^±i)      ifA,,+1/2=0.

The TVD constraint (1.8) now reads

(2.4) A|a„+i/2| < Qv+i/2 < 1,
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24 STANLEY OSHER AND EITAN TADMOR

and the following list quotes the schemes in this 3-point TVD category most fre-
quently referred to [6], [7], [16], [22]:

(2.5a) Qv+i/2 = 1       (Lax-Friedrichs scheme),

(2.5b)    Qf+i/2 — n- /        |a(v)|du       (Engquist-Osher scheme),
T '       Atv+i/2 JVu

(2.5c)       Q?+1/2 = A Max fv + {u+1 ~2f^        (Godunov scheme),
*u+i/2        {v-v„)-(v-vv+1)<0        Avu+1/2

(2.5d) Q?+i/2 — A • |a^+i/2l        (Roe-Murman scheme).

In fact, in the special case under consideration of 3-point schemes, condition (2.4) is
necessary as well as sufficient for TVD; see [25, Corollary 2.3]. Hence, the following
3-point schemes are not TVD ones:

(2.6a) <2Í;+i/2 = (-W+i/2)2    (Lax-Wendroff scheme),

(2.6b) Q^+i/2 - ° (forward Euler scheme).

A special significance is attached to the Lax-Wendroff scheme

(2.7)       v„(t + k) = v„(t) - -(/„+! - /„+i) + - [A ((Aop-i/aJ'Atfc-i/a)] ;
when seeking second-order accurate schemes, the further limitation placed on
Qv+i/2 m the 3-point case singles out the Lax-Wendroff choice, (2.6a). In view
of the above, we therefore conclude that 3-point TVD schemes are at most first-
order accurate [10], [18], [25].

At this point we are widening our discussion to include schemes whose stencil
occupies more than three points: The further freedom in setting up the modified
flux gv in this case will enable us to achieve higher (than one) degree of accuracy.

3. Second-Order Resolution Schemes. We start by rewriting the modified
flux, gv, in terms of the correction gv to the original one,

(3.1) gv = U + p„.
Inserted into (1.7a), our scheme now reads

A
vv(t + k) = vl/(t) ÍU+1 + T^+i ) ~ Í /»—i + T^-i)

(3-2) + \ [A(Ql/_1/2A^_1/2)]

= MO - ö(/"+1 ~ f"-Ù + 2 [A(Q^-i/2A^-i/2)]
where Q1/+1/2 stands for the modified viscosity coefficient given by

fv + /i/ + l — 2/l„+i/2

A*V+l/3
(3.3) Q1/+1/2 — Qv+\/2

A^+i/2
In other words, we rewrite our scheme with respect to the original flux, fv, modifying
the viscosity coefficient instead.

Remark 3.1. The viscosity coefficient discussed in [10] corresponds to the modi-
fied one in (3.3); indeed, in the 3-point case treated in [25], where gv = X(gu — /„) =
0, it coincides with (regular) viscosity in (1.7b).
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Comparison of (3.2) and the Lax-Wendroff scheme (2.7) leads us to the following
second-order accuracy requirement:

(3.4a) Q„+1/a = Q„+1/2 - g; + gl/+1 = AVW1/2;
t*fi/+i/a

the deliberately vague notation of A2(a2)„+1/2 on the right stands for Q^x/2 =
A2(o1/+1/2)2 modulo first-order errors, i.e.,

(3.4b) A2(a2)„+1/2 = A2(a„+1/2)2 + 0(\Av\)u+1/2.

Together with the TVD constraint (1.8), we finally arrive at a general description
of second-order TVD schemes, which is summarized in the following

LEMMA  3.2.   (Second-order TVD schemes.) Consider the difference scheme
(1.1) written in its viscous form

(3.5a) vv(t + k) = vu(t) - -(gv+i - g„-i) + - [A^-x^A«,,.!/^],

with modified flux, gv, and viscosity coefficient, Qu+i/2, given respectively by

(3.5b) 9u = U + jüv,

(3.5c) Q„+1/2 = A2(a2)„+1/2 + h±h±L.
Avv+x/2

The scheme (3.5) is second-order TVD, provided the correction terms gu and
A2(a2)„+1/2 on the right-hand side of (3.5b-c) satisfy the following two require-
ments of

(i) second-order accuracy.

(3.6a) AVWi/a = (-W+i/2)2 + 0(|Av|)„+1/2;
(ii) total-variation diminishing:

(3.6b) v ,   A^+x/2 2     2 gv + jjv+l    - ,
Xau+l/2+ < X2(o?)u+i/2 +  A^+i/2   < 1.

A^+x/2
As we shall see below, one cannot satisfy both requirements (3.6a) and (3.6b)

at the nonsonic critical grid values vv where Atv_x/2 • Atv+1/2 < 0 / a(vv),
and, therefore, second-order accuracy must be given up at these values. Difference
schemes with (formal) second-order accuracy at all but those critical grid values are
classified as having second-order resolution, after Harten [10]. Thanks to the TVD
property, no new such first-order accurate critical grid values are added during
the computation (since the scheme is monotonicity-preserving [10], [25]), and the
overall second-order accuracy does not seem to be degraded in this case, at least in
the L1-norm.

There are various approaches to the construction of second-order resolution (ab-
breviated hereafter SOR) schemes, the main three of which are the following:

(i) The MUSCL approach [27], [19] directly modifies the first-order numerical
flux, ft„+x/2) using a Godunov-like solver for a limited slope piecewise linear grid
data.
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26 STANLEY OSHER AND EITAN TADMOR

(ii) The modified equation approach [10], [11] directly modifies the flux f(vu),
based on considerations of the modified equation associated with a first-order
scheme, so that the limited modified flux constructed guarantees second-order TVD
resolution.

(iii) The flux limiter approach [24] directly modifies the first-order incremen-
tal coefficients, C*+1/2, using a class of flux limiters which preserve TVD and
maintain second-order resolution; in particular, such flux limiters can be chosen to
interpret MUSCL and modified flux-type schemes due to Van Leer, Roe, Harten,
Chakravarthy, Osher, and others; see [24].

All the above approaches can be entertained, of course, within the general frame-
work provided in Lemma 3.2. A common "limiting" feature shared by all of these
approaches can be directly derived from the TVD constraints in that lemma: The
grid values gv in (3.5) are expected to form a first-order "smooth" grid function
correction, at least at the generic noncritical zones; since A2(a2)„+1/2 is deter-
mined up to first-order perturbations, see (3.6a), we can absorb such a perturba-
tion, ±Ag„+i/2/Av„+i/2 = 0(|Ati|„+i/2), into the middle term of (3.6b), and the
right-hand inequality now reads

(3.7a) AV)„+1/2 + 2-r^±L- < 1,        A2(a2),+ 1/2 + 2-^- < 1.
Au„+i/2 Avi/2

The left-hand inequality in (3.6b) gives us

Aa„+1/2 - A (a )„+i/2 < 2--,
(3.7b)                                                                            . + /2

-Aa^+x/2 - A (a )„+1/2 < 2--.
AlV+X/2

We shift indices in the first and fourth inequalities in (3.7). The resulting inequal-
ities boil down to the following inequality to be satisfied by TVD schemes:

(3.7c) \(±Xav±l/2 - A2(a2)„±1/2) < -Jü— < i(l - A2(a2)„±1/2).

Hence, gv/Avv±i/2 must lie between the above two bounds, both determined up
to first-order perturbations. In particular, in view of the second-order accuracy
requirement in (3.6a), the sign of the parenthesis of the left of (3.7c) is determined
by that of the first term ±Aa„±i/2; further, if we are at a nonsonic value, a(vv) ^ 0,
then this first term cannot be absorbed as a first-order perturbation of the second
one, and (3.7c) requires the middle terms gu/Avv±ij2 to be positive. This implies
that the second-order accuracy must be given up at the nonsonic critical values vv
where Av„_i/2 • At^+i/2 < 0 ^ a(vu), [25], [20].

We now describe two specific recipes which convert arbitrary 3-point TVD
schemes into second-order resolution ones, in the spirit of the above guidelines.
Indeed, although the reasoning may be different, the various "conversion" recipes,
including the two below, end up with difference schemes which bear close similari-
ties to each other, as dictated by the framework provided in Lemma 3.2.

4. Two Recipes for the Construction of SOR-TVD Schemes. We start
by identifying a 3-point scheme by its numerical viscosity coefficient Q^+i/2 =
Q(f\vv,vv+\,X); it is considered here as a functional in the original flux /(•) with
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DIFFERENCE APPROXIMATIONS TO SCALAR CONSERVATION LAWS 27

the further dependence on the grid values v„,v„+i and the mesh ratio A. In view
of the necessity of the TVD constraint on the left of (2.4), we may assume without
loss of generality that the following functional inequality is obeyed:

(4.1)
z(w2) - z(wi)

W2 - Wi
<Q(z;wi,w2,X).

Thus, the TVD requirement is reduced in this case to the CFL-like condition given
on the right of (2.4),

(4.2) Q„+i/2(f) = Q(f;vv,vv+uX) < 1.

Remark 4.1. The above description seems to exclude several difference schemes,
where it is actually the inequality on the left of (2.4), A|A/1/+1/2/At;v+i/2| <
Qv+i/2(f), which leads to the CFL limitation, as in the case, for example, of the
Lax-Friedrichs scheme (2.5a) with Q^,/2 = 1- Together with the TVD constraint
(2.4), however, the Lax-Friedrichs scheme, for example, can be equivalently repre-
sented by a numerical viscosity coefficient Qv+i/2 = Max(l, A|A/„+1/2|/|AiV-i-i/2l)
which fits into our above interpretation. In general, an expansion of Q(- ; -, -, A) in
powers of A is called for, but we shall not elaborate on that here.

To construct an SOR-TVD scheme, the two first-order correction terms gu and
A2(a2)„+i/2 are to be determined; see (3.5). Taking advantage of relation (3.5c),
we shall also make use of the further (first-order) flexibility in determining the
viscosity coefficient, Q^+?/2.

Let us denote

(4.3a) sv = -(s^-i/2 + su+x/2),        sv+l/2 = sgn(At>„+1/2),

and, in view of (3.7c), set the flux correction to be

(4.3b) ~gv = yMin([Q„±1/2(/) - X2(a\±1/2] • |A«„±1/2|).

Here, the term A2(o2)1/+1/2 is chosen so that

(4.3c)   A2(a2)£/+1/2 = (Aa„+1/2)2 + 0(|At,|)„+1/2,        A2(a2)„+1/2 < Qu+x/2(f)

with otherwise arbitrary first-order perturbation 0(|Av|)t/+1/2. The modified flux
is then given by

(4.3d) g„ = f(vu) + jgu,

and we are considering the difference scheme whose viscous form is expressed in
terms of that modified flux,

(4.3e) vv(t + k) = vv(t) - \{gv+l - ?„_,) + ^(Q^At^/a)].
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28 STANLEY OSHER AND EITAN TADMOR

We have

THEOREM 4.2.   The difference scheme (4.3) is SOR-TVD provided its viscosity
coefficient, Q^.f/2, sa^sfies

(4.4a)

(4.4b)

AO^+i/2 + -T-
1/2

S V,/-(-l/2 s 1,

\Ql(if/2-Q^i/2(f)\ = o(\Av\u1/2.
Remark. We note that the definition of (a2)„+i/2 in (4.3c) still allows the flexi-

bility of (some limited amount of) first-order perturbation, as long as Q„+i/2(/) _
A2(a2)„+1/2 remains nonnegative; the latter guarantees that the sign of g„ agrees
with s„±i/2.

Proof. The first condition, (4.4a) is nothing but the TVD requirement (3.6b);
consult (1.8). Away from the critical values where s„ = 0, (4.4b) implies second-
order accuracy; consult (3.4),

QSOR ffi/ + 9v+l
= QÏ+i/2 - [Qv+irtf) - A2(a2),+1/2] + 0(|Av|)1/+1/2^+1/2"  A«„+1/2  -^+1/2

= [QÎ+U2 - Qu+i/2(f)\ + A2(a„+1/2)2 + 0(|At;|)„+1/a
= A2(a„+1/2)2+OflAt;|)„+1/2.    D

Two concrete choices for SOR viscosity will now be discussed.
As a building block for the first, we introduce the piecewise linear flux correction

Agv+i/2.(4.5a) 9v+i/2(v) = '■(v - vv) + gv
Av„+i/a

and use the original 3-point viscosity functional, setting

(4.5b) qH°?/2 =q(j() + \gu+i/2(-);vv,vv+í,X^

Lipschitz continuity of the viscosity functional implies1

(4.6)

and we end up with

Qv+1/2 ~ Qu+l/2(f) <L A^+l/2
An'I/+1/2

THEOREM   4.3.   (Piecewise linear flux modification.)  The difference scheme
(4.3), (4.5) t'a SOR-TVD under the CFL-like condition

2
(4.7) Q„+l/2(f) < 2 + L'

Proof. The SOR requirement in (4.4b) is fulfilled because of (4.6), whose right-
hand side is of order (0|Av|)„+1/2; the TVD requirement on the left of (4.4a)
follows from (4.1), and we are left with the inequality on the right, requiring

(4-8) QZSOR
+ 1/2 <̂1.

'To be precise, the constant L stands for the Lipschitz constant times the (assumed finite)
maximal bound of the ratios |Q(ff,/+i/2(-);fi/>tv+i, A)|/|Ag1/+1/2/At;1/+1/2|.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DIFFERENCE APPROXIMATIONS TO SCALAR CONSERVATION LAWS 29

Ag^+i/2

Indeed, in view of (4.6) we have

(4.9a) Q^?/2<Q,+i/2(/) + £   .
¿av1/+i/2

since <7„+i and g„ cannot have different signs by the choice of s„ in (4.3a), we also
find

(4.9b) Ag„-n/2
Au,f+l/2

<M^'-I'7'I)4q,W,(/)-AV),W:]-
\Avu+i/2\ ¿

The last two inequalities yield the crude bound

L

(4.10)
QSf/a < Qu+iMf) + 2 lQ*+iMf) - A VW1/2]

<fi + §J<k+i/a(/).
and augmented with the assumed CFL-like condition (4.7), the TVD constraint
(4.8) is now satisfied.    D

Remark 4.4. With the primary examples of Engquist-Osher, Godunov and Roe-
Murman schemes in (2.5b-d), the Lipschitz constant L in (4.6) may be taken to be
L = 1, and the CFL limit in (4.7) is found to equal (compare, e.g., [24, Section 3])

(4.11) Qu+iMf) < 2/3.
(Taking into account the negative term -A2(a2)„+1/2 which was ignored in the
crude bound of (4.10), the CFL limit may be further improved to be

(4.12) Qv+l/2(f) < 2 + A2(a32W)

Remark 4.5. In the case of the Lax-Friedrichs scheme, where Q^f = 1 violates
(4.11), we may take L to be zero, which leaves us with the original 3-point CFL
limitation

(4.13) A|a„+1/a| < 1.

Remark 4.6. Consider the special choice (a2)„+1/2 = (a^+i^)2 in (4.3b), which
is admissible in view of (2.4). The piecewise linear flux modification in Theorem
4.3 extends Harten's recipe [10], which was restricted to viscosity functions of the
form Qv+1/2 = Q(A|a„+1/2|); (hence, the Engquist-Osher and Godunov schemes,
for example, were excluded from the discussion [10]).

We now turn to a second more attractive choice of SOR viscosity, inspired by
Theorem 4.2 (see also [10, p. 368]). Here, we use a piecewise constant viscosity
modification of the form

Ai7„+i/2
<K+l/2 = G.,+l/2(/) + Au^+x/2(4.14)

which leads to

THEOREM   4.7.  (Piecewise constant viscosity modification.)   The difference
scheme (4.3), (4.14) t'a SOR-TVD under the CFL-like condition

(4.15) G„+i/a(/)<2/3.
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Proof. The SOR requirement in (4.4b) is directly verified by the very definition
of Ql+^/2 in (4.14); the TVD requirement on the left of (4.4a) follows from (4.1),

(4.16) . .   A^+,/2
'       Au„+1 /2

<A f{v„+i)-f(vv)
vv+i - u„

+ A!7iH-l/2
Auv+l/2

^ V„+l/2>

and we are left with the inequality on the right, requiring

(4.17) Q^f/2 < 1.
Indeed, the same estimate used in Theorem 4.3 before, see (4.9b), together with
the definition of Q^f,2, (4.14), gives us the pessimistic bound

1,
(4.18)       Q^f/2 < Q„+1/2(/) + 2^+i/ai/) - AVWi/2] < ¿Qv+i/M),

and (4.17) follows in view of the assumed CFL-like condition (4.15).    D
Remark 4.8. As before, by improving the crude bound of (4.18), the CFL-limit

may be improved to be that of (4.12).
We note that the piecewise constant viscosity modification involves linear cor-

rections of the numerical flux /„ in (4.3d) and the viscosity coefficient in (4.14);
both are appearing linearly in the original 3-point scheme we are starting with;
see (2.2). Hence, the resulting modification recipe does not change the underlying
3-point TVD code, but, rather, adds to it an antidiffusive term which boils down to

Ag„+i/2(4.19) -^{gu+1-gu-i)- mm^-))
To make our point more precise, we state as our final result of this first part, the
following

COROLLARY 4.9.   (Piecewise constant viscosity modification—revisited.) Con-
sider the 3-point scheme

(4.20a) vu(t + k) = H(vu-i,vv,vv+i;f,\) = vv - X(hu+1/2 -A„-i/2)

and assume the TVD-like constraint, compare (2.4),

(4.20b)    A|a„+1/a| < Q„+i/a(/) < ¡,        Q„+i/2(/) = A^ Auf+1/2

holds. Then the modified scheme

vv(t + k) = H(vv-i,vu,vv+l;f,X)

(4.21a) Agv+l/2\ fAgu_1/2\+ A
t-— )    Au„+1/2 -I-    --—      Au„_1/2

VAu^+j/2/ '       vAu„_1/2/ '

t'a SOR-TVD. Here, gu is the flux correction, given by

(4.21b) gu = ^Min ([Qv±l,2(f) - A V W1/2] ■ |A^±1/2|),

where

(4.21c) A2(a2)„+1/2 = A2K+1/2)2 + 0(|Aü|)„+1/2 < <?„+i/a(/)-
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Alternatively, we can rewrite (4.21a) in the conservative form

v„(t + k) = H(vv-i,vv,vv+i;f,X) - \hu+x/2 - Ä„_i/2]
(4.22a) = MO ( ^iz+l/2 + -rhv+i/2 I -  ( ft^-l/2 + T^t/-l/2

Here /ij,+i/2 ¿a i/ie numerical flux correction given by

(4.22b) >Wi/2 = 2 Iff" + ffv+i - Si/+i/2l?t/+i - ¡Ml-
Remark 4.10. The Lax-Friedrichs scheme violates the CFL limitation (4.20b).

Nonetheless, an "antidiffusive" modification follows in this case directly from the
flux modification of Theorem 4.3,  with numerical flux correction %+i/2   =

\{gv + Sfc+i)-
Remark 4.11. The conservative form of scheme (4.22) is identical with the correc-

tive type of Harten's artificial compression method [8], [9], the difference lying, of
course, in the exact details of the flux correction used. In particular, we have an op-
erator splitting which could be easily implemented as a two-step predictor-corrector
method [8, Section 6].

Part II. On A Cell Entropy Inequality
5. Godunov's Scheme and Its Cell Entropy Inequality. An entropy pair

(U, F) associated with the conservative model (1.2) consists of a convex entropy
function, U(-), augmented with an entropy flux, F(-), such that U'f = F'. The
requirement of having an entropy inequality of the form
,.   ^ dU,  ,     ..     dF.  ,
(5.1) _(u(M)) + _(u(Xii))<o

for all entropy pairs singles out the unique physically relevant (weak) solution of
(1.2); e.g., [13], [14]. Accordingly, we are seeking conditions which guarantee that
the difference scheme (1.1) will satisfy a cell entropy inequality of the form [12]

(5.2a) U(vv(t + k)) < U(vv(t)) - X(Fu+l/2 - F„_1/2);
here, F„+i/2 = F(vu-q+i,... ,vv+q;f,X) is a numerical entropy flux, assumed to
be consistent with the differential one2

(5.2b) F(w,w,...,w;f,X) = F(w).
If this holds for a wide enough class of entropy functions, the cell entropy inequalities
(5.2) will guarantee the uniqueness of limits of all converging subsequences of the
total-variation bounded solutions, and there follows the convergence of the whole
computed sequence to the unique physically relevant (weak) solution; e.g., [3], [12],
[18], [23], [26].

As an example, we begin with the all-important cell entropy inequality associated
with Godunov's scheme: By averaging two Riemann solvers, one obtains Godunov's
scheme, whose numerical flux is given by [17], [18]

^+i/2 = Vi/2, Min [a„+i/2/(u)],
(5.3) {v-v„){v-v„+1)<0

SiH-i/2 = sgn(Au„+1/2).

2 Both the differential and the numerical entropy fluxes are denoted by F; the distinction is
made by the number of arguments.
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Assuming that the minimum on the right-hand side is attained at a (not necessarily
unique) value vG+1/2 = vG(vu,v„+i,f),

(5.4a) «I/+1/3, Min [su+1/2f(v)} = f(vG+l/2),

then the Godunov scheme

(5.4b) v(t + k) = HG(vv-Uvv, v„+1; /, A)

boils down to

(5.4c) Ä°(vi, vv1vv+1J, A) = v„-\[f{v?+l/3)-f(v°_1/2)].

Integrating over a typical cell the differential entropy inequality (5.1), Jensen's
inequality yields the following well-known lemma; e.g., [3], [18], [26].

LEMMA 5.1. (Cell entropy inequality of Godunov scheme.) Consider the Go-
dunov scheme (5.4) satisfying the CFL condition

(5.5a) A Max |/'(u)| < l.3

Then the following cell entropy inequality holds,

(5.5b)        U[HG(vv-!,t/„,tvn;/, A)] < V[v„) - X[F(vG+1/2) - F(vG_1/2)},

for all entropy pairs (U,F). Equivalently, (5.56) can be rewritten as

(5.5c) Ul^^-uv^Vv-n-J^^KU^-X [ '    /2U'(w)f'(w)dw.
JvG

VK-l/2

As in [26], the cell entropy inequality associated with the Godunov scheme will
be used as a building block for studying such an inequality in conjunction with
other TVD schemes. To this end, we shall make use of a modified flux function
introduced below.

6. The Modified Flux Function. While studying total-variation diminish-
ing schemes, only the modified flux grid values, gv, played a role; see the TVD
requirement (1.8). Subsequently, a simple piecewise linear modified flux correc-
tion, 3i/+i/2(f), was introduced in (4.5a), in connection with the (first) recipe of
SOR-TVD schemes.

Regarding the question of a cell entropy inequality which we now consider, a more
sophisticated construction of a modified flux function is required: Let </("+1/2)(u)
denote its restriction to the /„+i/2-interval, Iv+i/2 = {u | (u - vu)(v - u„+i) < 0}.
The piecewise linear function g(u+1/V (v) connects the modified flux grid values gv
and gu+i on both ends of the interval, through a constant numerical flux value,
toi>+i/2; it depends on two yet to be determined parameters (s+,s~), s^ > 0, in
the following fashion:

Setting the intermediate values

(6.1a) u++1/2 = u++1/2(a+) = t>„ + —¡(g» - K+1/2),

(6.1b) vZ+i/2 - Vfi/2(s") = v»+i - — (.9v+i - fciH-i/s),

3The maximum is taken over all values v varying between vv-i,vv, and iv+i.
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we define, depending on whether vu < u„+i or u„+i < u„,

(6.1c)
ff("+1/2)(u;a+,a-) =

gv-s+(v-vv), v„<v<v++1/2

K+l/2, V|-l/2 < V < V- "V+l/2
gv+i+ s  (v-vu+i),    vv+l/2 < v < u„+i

V|/ < vu+i,

(6.1d)
9C+1/2)(u;a+,a-)+   »-A -

gv+i+s  (v-vu+i),    vv+l < v < vu+l /2
hv+l/2,
gv-s+(v-vv),

<v<v^Ju+l/2 - v - vu+l/2

Vh/2 <V<VV.

Vu+l < Vu-

We have

LEMMA 6.1.  Assume the TVD condition, (1.8), holds

(6.2a) A < Qu+l/2 < 1.
Agi/+l/2
Au^+i/2

Then g^+1^\v,s+,s~), given in (6.1) and satisfying

(6.2b) Qu+i/2 < Aa± < 1,

t'a a well-defined piecewise linear function in the 7„+i/2 interval.

Verification. In view of (6.2a) we have, consult (1.10),

C1/+I/2 - °'     ^+1/2 - °'     Qv+1/2 = Cu+l/2 + ^+1/2 - !'

while the definition of gu in (1.5b) yields

(6.3a) u++1/2 = vv + -^(gv - fe„+1/3) =vv + ^TC++1/2Aul,+1/2,

(6.3b)       v~+1/2 = vv+i - — (gv+i - hu+i/2) = vv+1 - —C~+1/2Avi/+1/2.

Consider first the case where v„ < u„+i: Then by (6.2b), u++1/2 is located to the
left of uI/+1/2'

«Wl/3 - ^+1/2 ^ A^+l/2 - r,--(^+1/2 + C+l/2)A^+l/2 = °<
W1/+I/2

and to the right of u„,
1

A~a+^+1/2 - v» = I7tC+ l/2A^+l/2 ^ 0.

Taking into account the positivity of the incremental coefficients C^+1,2, the follow-
ing graph of y("+1/2'(u;a+,a_) is obtained in this case; see Figure (6.4a). A com-
pletely analogous situation occurs when vv+\ < vv, where the graph of </"+1/2'(u)
takes the form of Figure (6.4b).

Our next lemma is in the heart of the matter.
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>+v2)(v)

gv= V v2 + r cv+ v2 4v1/2 8..0.1   ■  h..^ 1/.    + I C"f 1  =  nv+ 1/2       I S.+ 1/2       v+ 1/2

vv2

1     +v     + —- C      i,     Av
v +    v+ 72 v+72

Figure 6.4a

v+i

V V2   = Vl  ' — Cv+ 1/2   ivv+ V2
Xs

f(v+1*>(y)

V 1/2

!v+1   »  \+ l/2   + - Cv+ l/2   Avv+ 1/2 Êv =  hv+V2 +

v + 1

vv+ l/2   ■  vv+1   - -y Cv+ 1/2   Avv+ 1/2

rw2 Ävv+V2

V 1/2 =  Vv + ¿7 Cv+ 1/2   AV 1/2

Figure 6.4b

LEMMA 6.2.  Assume the TVD condition, compare (1.8),

(6.5);
Agi/±l/2

< Q„±l/a < 0 < 1
AU(,±1/2 |

holds. Then we have
HG[vl/,vv,vv+1;g^+1^(s+ =s- =eX~1),e-lX]

= vu-e~1X[hl/+i/2 -gu},

HG[v„1,v„,vu;g^-1/2Hs+ =s- =eX-1),e-1X)
= u„ -6~lX[gv -h„-i/2].

Proof. We first note that according to Lemma 6.1, 3^±1/2)(a+ = s~ = OX'1)
are well defined: (6.5)± yields

A0„+i/2 |

(6.6a)

(6.6b)

< Qv+1/2 <Xs±=0<l.
I Au„+1/2 |

By definition we have, see (5.4c),

H°K,tv,«v+i;»(H'l/a)(«+ = *" = ox-1)^-^]
= vv- 9-lX\g^^Kv%.l/a) - 9{V-1,2)M\;

(6.7a)
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a straightfoward computation gives, see (5.4a),

(6.7b) í("+1/2)(«¡?+1/a) = ¡»H-i/a Min [a„+1/2g<"+1/2)(u)] = K+1/2,

while consistency implies

(6.7c) 9(v+ll2)(v„) = gv,

and (6.6a) follows. Similar arguments apply for (6.6b).    D
Remark 6.3. Godunov's numerical flux is determined by the differential one,

computed at the intermediate value vG+1,2; see (5.4a). In our case, (6.7b), any
intermediate value between v*+1/2 and v~x,2 can be taken: For later purposes,
we shall choose in particular

*£fi/aW = \K+i,2Ís+ = 0A-1) + vfl/2(*- = ex-1))
(6.8)

Vu + Vu+i X-2-20~     +1 ~

Taking 6 = 1/2 in Lemma 6.2 and averaging (6.6a) and (6.6b), we finally arrive at

THEOREM 6.4.   Consider the difference scheme (1.1) given in its viscous form
(1.7a) and satisfying the TVD condition

Agu±i/2 |
(6.9)

We then have

Aufil/2
< Qu±l/2 < 1/2.

(6.10)
vv(t + k) = - vv-i,vu,vv;g(v  1'2Us+ = s   = — j ,

+HG [t>„,t;.„vW+1'9) (a+ = a" = ¿) ,

2A

2A

In other words, we have shown that any TVD satisfying difference scheme, (1.7a),
(6.9), is given as an average of two Godunov solvers, thus refining a similar (con-
vex) decomposition introduced in [26, Theorem 5.1]; the current decomposition
differs, however, in its use of a modified flux function, rather than using the orig-
inal differential one. In fact, away from the critical extremum values vv where
Au„_i/2 ■ Au„+1/2 < 0, we can do even better: Under appropriate TVD condition,
any difference scheme coincides with one (rather than the average of two) Godunov
solver. This is the content of our next

THEOREM 6.5. Consider the difference scheme (1.1) given in its viscous form
(1.7a) and satisfying the TVD condition

. I A^±l/2 |
(6.11) Au,i/±l/2

< Qu±l/2 < I-

Then, in the neighborhood of noncritical values vu such that Aul/_i/2 ■ Au^+x/2 > 0,
we have

(6.12a) vv(t + k) = H- TJG v„_i,u„,v„+i; g ls+ = a   =t)>A

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



36 STANLEY OSHER AND EITAN TADMOR

Remark 6.6. The modified flux function g(v) = g(v; s+,s~) appearing in (6.12a)
is uniquely defined in this case, composed of its restriction to the consecutive inter-
vals Iv±i/2\ see Figures (6.13),

(6.12b) g(v°+ = s- = \) =
'!7(-i/2)(u;a+ = a- = i),        u€/„_1/2,

g("+i/2)(u,a+ = a- = i),        ue/^,2.

Verification of Theorem 6.5 is straightforward: By (6.11) we may employ Lemma
6.2 with 0 = 1 in /„±i/a; using (5.4c) and (6.7b), the result (6.12) follows.

¡(v;   s     »S

bv-l

6 v+l

v-4

V+!j

V-l V+l

Figure 6.13a

g(v;   s     ■=   s     = j)

'V+l 5V-1

v+l v-l

Figure 6.13b

We next use the cell entropy inequality associated with Godunov's scheme, see
Lemma 5.1, to infer such an inequality for the difference schemes under considera-
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tion. We start with

LEMMA  6.7.   Consider the TVD scheme (1.7a), (6.9).   Then for all entropy
pairs (U, F) we have

dv

dv,

V[v„(t + k)} < U[vv(t)\ - A(F„+1/2 - F„_1/2)

(6.14a) + A ß     U"(v)   g^-W L 8+ = 8~= L\ _ /(„)

+ A £"1/2 U"(v) \g^W ^ s+ = s- = _Ly /W

rw'i/i a consistent numerical entropy flux given by

(6.14b) F„+1/2 = F(vG+1/2) - U'(vG+l/2) ■ [hv+l/2 - f(vG+1/2)\.

Remark.  Here, the intermediate Godunov value vG+1,2 may be taken as, see
(6.8),

(6.14c) «£fi/a = vG+l/3{0 = 1/2) = VJL±£±± - X(g„+l - g„).

Proof. The maximal slope of g(v+1M(v; s+ = s~ = 1/2A) is \X,

2A   Max    g("±i/v(v;s+ = s- = l-)
ve/„+i/2 \ 2A/

Therefore, we may apply Lemma 5.1, obtaining, see (5.5c),

<1.

U
(6.15a)

U
(6.15b)

Vu-uVvyV^gi" i/2) lv;s+= a   =2~x)>2

< U(vv) - 2A P      U'^g^-W (v; s+= s~ = ±) dv,

G \vu,vv,vu+1;g^^ (v;s+ = s~ = ^) ,2a]

< £/(«„) - 2A /""'    " í/'(u)ff^+1/2^' (u; a+ = s~ = -^) du

Adding and subtracting 2A[F(v„) - F(vG_1/2)] = 2A /"£      (7'/' to the right-hand
' v—1/2

side of (6.15a), we find after integration by parts

U  HG   vv-1,vu,vu-g^-1^(v-,s+=s- = ^j,2X

< U(vv) - 2Xp      V (g^1™ - /)' - 2A [f(vv) - F(vG+1/2)}
"v-l/2

(6.16a)       = U(vu) - 2A • U'(v) ■ (g^-1/2)(v) - /(«)) d"^

- 2A [f(v„) - F(vG_1/2)] + 2A P     U»tf»-W - f).
vu-l/2
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In a similar manner, (6.15b) yields

U

(6.16b)

HG  »„,*„,«„+1;ff("+1/2) (v;s+ = s~ = ^j ,2X

< U(vv) - 2X • U'(v) ■ (g^+1'2\v) - /(«))|^G+1/a

- 2A[F(u«+1/2) - F(vv)} + 2X f "+1/2 /7"[3("+1/2) _ fy

By convexity, the average of the two terms on the left of (6.16a) and (6.16b) dom-
inates the entropy value U(-), computed at the average of the corresponding two
Godunov solvers; invoking Theorem 6.4, we arrive at

U[v„{t + k)\ <U[v„{t)]

(6.17) - AA \f(vg_í/2) + U'(vG_1/2) ■ [g("-1/2)KG-i/2) - f(vG-i/2)]]

, p     U»{¿»-Wl -f) + X p+U2 U"(g("+1M - /),
JvG . ,„ Jv„

+ x
-1/2

and the result (6.14) follows, noting that g("±1/2)(^±i/2) = hu±i/2', see (6.7b).    G
In the same way as the last lemma followed from Theorem 6.4, Theorem 6.5

gives us

LEMMA 6.8. Consider the TVD scheme (1.7a), (6.11) in the neighborhood of
a noncritical value vu where Au„_i/2 • Au„+1/2 > 0. Then for all entropy pairs
(U, F) we have

U [u„(i + k)\ < U[vv(t)} - X(Fv+l/2 - F„_1/2)

(6.18) + A ß     U"(v)   gW» ^; s+ = a- = ±) - f(v)

+ X f?+U2 U"(v) U+1/2) (v; s+ = a- = i) - f(v)

dv

dv.

Remark 6.9. The numerical entropy flux, Fv+x/2, in (6.18) is determined by
Godunov's intermediate value vG+1,2. It coincides with the one given in (6.14b) and
(6.14c): Indeed, vG+1,2 = vG+l/2(0 = 1/2) is located in between u++1 /2(s+ = A-1)
and v~+l,2(s~ = A-1). The proof is omitted.

The only difference in Lemma 6.8 is in the slopes, a±, involved in the last two
integrals on the right of (6.18): At a noncritical value, they are twice than otherwise
allowed by Lemma 6.7; see (6.14a). Making use of |a„| to distinguish between these
two cases, see (4.3a), the corresponding two estimates can be unified as follows.

THEOREM 6.10. Consider the difference scheme (1.7a) satisfying the TVD
condition

(6.19) Aç7„±i/2
Auv±l/2

S (¿«,±1/2 S —2^—■
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dv

Then, for all entropy pairs (U, F) we have

U[vv(t + k)\

< U[vv(t)] - A(F„+1/2 - F„_1/2)

(6.20a) +Aj£     C/"(u)[^-1/2)(u;a+ = a- = i±J^i)-/(u)

+ A fj+m U"(v) [ff(^1/2) („. s+ = 8- = I + Jf^ _ /(w)] *,,

tw'i/i a consistent numerical entropy flux

(6.20b) F„+1/2 = F(«°+1/2) - C/'(«G+1/a)[&v+1/a - /(t£+1/2)].

For later purposes, we shall prefer a slightly different version of inequality (6.20),
where the last two integrals on the right are shifted over the /l/+i/2 interval. We
state

THEOREM 6.11. Consider the difference scheme (1.7a) satisfying the TVD
condition

(6.21) A<7„±i/2
S Qu±i/2 < —2—'I A^±l/2

Then for all entropy pairs (U, F) we have

U[vu(t + k)} < U[vu(t)] - A(F„+1/2 - F„_1/2)

(6.22a) +X¡yX U"(v) [<^+1/2> (v;st = i±&l,

l + la^+ilN '

with a consistent numerical entropy flux

F„+i/2 = F(vG+1/2) - U'(vG+1/2)[hv+l/2 - f(vG+1/2)}

dv,

(6.22b) + a£"+1 U"(v) [g^1/2) (u;a+ = s~ = 1+2*;+l1) - f(v)
"k+1/2

du.

Remark. Theorem 6.11 finally leads us to the modified flux function4 we were
looking for; its restriction to the 7„+1/2-inverval is given, according to (6.22a), by

g{v)\i^/2 = g(v+1/2)(v)

(6.23) l + |^+i|
2A )•

_ _(^+i/2) /     + _ ! + l5"l s-— 9 \v,s„ — ,sv^

Proof. We first note the identity

U"(v)g^+1/2\v;s+,s^)dv+ / U"(v)g^+l'2\v,st,s2 )dv
ib.^4;     -" Jv?+w

= p"+1U"(v)g(»+1M(v;si,S2-)dv.
JVu

4To be precise, g(v) is double-valued in the critical neighborhood.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



40 STANLEY OSHER AND EITAN TADMOR

Indeed, of the two integrals on the left, the first depends only on af, the second
only on aj. Adding and subtracting

X[o+1  U>) [g(V+m {V]S+ =S~ = 1~±n±A) - f{V) dv

to the right-hand side of (6.20a) and using (6.24), the theorem follows.    D
Remark 6.12. The two integrals appearing on the right of (6.22) are responsible

for the unnaturally shifted estimates with respect to the u„-grid value. If, in the
previous proof, we instead add and subtract

C'" """" k""* (";>+="' ' i±JH -mdv

to the right-hand side of (6.20a) and use (6.24), we end up with a reversed shifted
form,

U[vu(t + k)} < U[vu(t)\ - X(Fv+l/2 - Fu_1/2)

(6.25a)

where

taT U"(v) ¿-W («;«+_! = - + \Sy-l\
2X

_     l + \sv\\ " dv,

F»+i/2 = F(vG+l/2) - U'(vG+l/2) [h„+1/2 - f(vG+1/2)

(6,25b) rv°+i/2        r / i + k i\
-Ajf U»(v)[g("+W(v;s+=S- = ±^yf(v) dv.

Averaging of (6.22) and (6.25) results in the symmetric entropy estimate of this
type,

U[vu{t + k)< U\vv(t)) - X(Fv+1/2 - F„_1/2)

(626) +X["  U» M») I I.-X» "/(«)] dv

Ar*h,[/"(u)[?(u)|/i/+1/2-/(u)]du.+

7. Necessity and Sufficiency of E'-Fluxes. Theorem 6.11 shows that a
desired cell entropy inequality, (5.2a), follows, provided the last integral on the
right of (6.22a) is negative,

(7.1)   J"" U"(v) [g^/V (w;s+ = i±J^i,a- = i±^) - /(•>' du <0.

The requirement of negativity for all convex entropy functions U, in this case, is
equivalent to the requirement that g(u)|/l/+1/2 will lie below or above f(v), de-
pending on whether u„ < u„+i or u„+i < v„; taking into account the piecewise
linear form of g(v) \ /„+1/a in (6.23), see Figure 6.4, this requirement amounts to the
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following inequalities:

(i) SiH-l/2 ' fWl/2 - /(«)] < 0, U € /„+1/2, '

(ii)    (a)

(b)

^ 1 + IM-       2      :X    Max      M^
\v-vv\<eî     v-vv

+ 2 +
£"   =  l + |s   1^+1/2^^+1/21'

A       Max
|v-tv+i|<£~+1

2

/(u) - gu+1
v - vu+i

<
l + |»„+i|

+1 - l + ^+il^+Val^+Val-

Numerical fluxes satisfying condition (i) are called influxes after Osher [18]. Equiv-
alent^, the corresponding schemes are characterized as exactly those having more
numerical viscosity than that of Godunov's scheme [26]. In terms of the modified
viscosity coefficient Q„+i/2 in (3.3), the first inequality (i) reads, consult (2.5c),

(E) Qv+l/2 ^ Qf+l/2-

Observe that two viscosity coefficients are comparable in the sense advocated in
[26], provided that the same modified flux is used for the corresponding schemes;
in the above E-condition, the original flux, f„, was used in both cases, see Remark
3.1. Regarding the CFL condition in the second inequality (ii), it can be shifted to
the more symmetric form in the spirit of Remark 6.12,

1 + IM ± _ 2C7¿lZ2|Atv+1/2|
S       2      '(CFL) A    Max

|t)-V„|<£¿

f{v) - gv
v - u„ et = l + IM

With a similar shifting of the TVD condition (6.21), we arrrive at

THEOREM  7.1   (TADMOR  [26,   THEOREM  5.1]).   Consider an E-type TVD
scheme (1.7a) such that

(7.2) Qv+i/2 < Mm I—-—,---1 ,

and assume the following CFL condition holds:

\f(v)-9„

(7.3)

A    Max
\v-v„\<et

eî- =

v — vv
l + k

2^±i/2lA^±i/2l
l + IM

Then, for all entropy pairs (U, F) the following cell entropy inequality is satisfied:

(7.4) U[vv(t + k)\ < U[vv(t)\ - A(F„+1/2 - F„_1/2).

5 It is sufficient to consider v lying in between

vu+iMs+ = (1 + KI)/2A)    ^   «f+i/«(*~ = Í1 + K+1D/2A).
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Remark. We have preferred to center the TVD condition (7.2) and CFL condition
(7.3) around the u^-grid value. Therefore, no specific reference was given as to the
consistent numerical entropy flux Fu+x/2 in (7.4): It may be chosen, throughout the
computational grid, by (6.22b), (6.25b) or any convex combination of the two.

Proof. The only part which requires clarification is the validity of the TVD
constraint, see (6.21),

| Agv+1/2
(7.5)

Indeed, (3.1) and (2.5) yield

Affi/+l/2

A*V+l/2
< Qv+1/2-

(7.6) AU;1/+1/2
< A|a„+1/2| +

Agf+l/2

Au,f+l/2
< QG+l/2 +

A0i/+l/2
Au1/+1/2

since gv/Avv±i/2 is positive by (3.7c), we find, as in (4.9b),

(7.7)
A0u+1/2
AuWl/2

< Maxd^l.l^+il)     gv + gv+i
lA^+l/2l Au„+1/2

Augmented with the E-condition, (7.6) and (7.7) yield (7.5)

Agu+i/2
Au„+1/2

nG 9u + 9u+i/2     „ gv + g»+\ _ n
^ Qu+l/2 + —T7,- S Wi^+i/2 + -7-- = Qu+

' ^^+1/2 ^^+1/2
1/2-

Remark 7.2. It is the CFL-like condition (7.3) which throws some further light on
the first-order accuracy limitation encountered with difference schemes satisfying
all cell-wise entropy inequalities (5.2a). Indeed, in case Au„+i/2 > 0 (similarly
Aui/-i/2 < 0)î then necessarily gv = /„ + gv/X will lie above (similarly below) fv,
in contrast to the requirement induced by (7.1); specifically, as u approaches u„,
the CFL-like ratio on the left of (7.3),

(7.8) A    Max f(v) - f(Vu) + 1
V -vu A u — Up,

will diverge unless the correction gv vanishes. In this case, the modified flux gv
is reduced to the differential one, /„, and we are back in the standard first-order
accurate E-schemes, subject to the familiar

(7.9) A    Max
\v-v„\<ei

m-fM
v -vv

<I.- 2

In particular, according to (7.9), the usual half CFL number is sufficient in this
case, in agreement with [26]:

1
(7.10) A,        .Mb l/»|<

Of course, (7.9) offers a more delicate alternative. Note that, unlike the TVD
constraint (1.8), some further information regarding the flux behavior in between
the grid values is always required for a cell entropy inequality to hold.

Next we show that the E-condition is, in a sense described below, necessary for
a cell entropy inequality, thus complementing the sufficiency of Theorem 7.1. To
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this end, we subtract v„(t) from both sides of (1.1) and (1.3), divide by k = At and
take the limit Ai [ 0, obtaining the semidiscrete approximation

(7.11a) ^ + ¿(Ä.+1/2 - fc„-i/a) = 0;

here, the time derivative is understood in the distribution sense, and the numerical
flux is still allowed to depend on the mesh size, Ax,

(7.11b) ft„+i/2 = h(v„-p+i,... ,v„+p; f,X I 0,Ax).

The corresponding cell entropy inequality will read

(7.12a) ^r^í)] + ¿(F"+i/2 - Fv-i/i) < 0;

here, (U, F) is any consistent numerical entropy pair

(7.12b) /w U'f.
In stating our next theorem, the terminology of separated data will be used: We
shall say that the data are separated if all relevant grid values involved in the
scheme's stencil are separated with respect to, say, the separating interval Ij+1/2',
that is, we either have

(7.13a) Vj-k < Vj < Vj+i < Vj+k,        k = l,...,p,

or

(7.13b) Vj-k > Vj > Vj+i > Uj+fc,       k = 1,...,p.

A monotone profile is, of course, the canonical example of separated data: Any two
consecutive grid values may serve as a separating interval in this case.

Equipped with this terminology, we now turn to

THEOREM 7.3. (E-flux is necessary for cell entropy inequality.) Consider the
semidiscrete approximation (7.11) and assume the cell entropy inequality (7.12)
holds for all consistent numerical entropy pairs (U,F).

Then the numerical flux, h, is an E-flux in any separating interval.

Proof. Introducing the consistent numerical entropy flux

(7.14a) F^/2 = F(u„+1) - t/'(u„+i)[/i„+1/2 - /(u„+i)],

the following equality [18, Section 3] holds,
dU 1 1    fVv+1

(7.14b) _[Ut/(i)] + _[F1/+1/2-Fl/_1/2] = — J^       U"(w)[K+l,2-f(w)}dw.

Subtracting (7.14b) from (7.12a) we find, after multiplication by Ax,

(7.15), p' " U"(w)[hu+1/2 - f(w)} dw + (Hv+1/2 - ff„_1/2) < 0;

here, ¿/„+1/2 stands for the difference F„+1/2 - F„+1/2, which is consistent with
zero,

(7.16a) H(w, w,...,w;f,X lO,Ax) = F(w) - F(w) = 0.
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Consider a (2p 4- l)-grid-valued stencil separated by, say, the Ij+1/2 interval; we
shall extend it to all grid points, defining

(7.16b) Vj+k = Vj+P,    Vj-k = Vj-p,       k = p + l,p + 2,....

Let u be any value in between Vj and uJ+i and apply (7.15)„ with Kruákov's choice
for entropy function, U(w) = \w — v\: For all but the v = j index, the first term on
the left of (7.15)„ vanishes, and we end up with

(7.17a)      H,+1/a>fri+3/2>--->ffoo = 0,       u = j + \,j + 2,...,
(7.17b)    Hj-1/2<Hj-Z/2<-<H-oo = 0,       v = j-l, j-2,....
Here, the equalities H±00 = 0 on the right of (7.17) follow from the consistency
(7.16a) and the definition of our extension in (7.16b). Complemented with (7.15).,,
which in this case reads

,,.„. 0>/       6(w-v)[hj+1/2-f(w)]dw + (Hj+1/2-Hj.1/2)
(7.18) Jvj

= Sj+l/2[hj+l/2 - f(v)] + (Hj+i/2 - Hj^i/2),
we find, for all u in Ij+1/2,

sj+l/2[hj+l/2 - f(v)\ < #¿-1/3 - Hj+i/2 < 0.
That is, h is an E-flux over the Ij+1/2 interval as asserted.    D

Next we have to confront the limitation of E-schemes being at most first-order
accurate [18]: Indeed, according to the E-condition, their modified numerical vis-
cosity is bounded away from that of the Lax-Wendroff scheme; hence (3.4) fails.
Moreover, being an E-flux in separating intervals alone still meets the limitation of
first-order accuracy. The proof follows along the lines of [18].

8. Second-Order Resolution and a Cell Entropy Inequality. In light of
our discussion in the last section, we are seeking cell entropy inequalities for SOR-
TVD schemes only for special entropy pairs: Specifically, we shall consider the pair
U(v) = u2/2, F(v) = /" wf'(w) dw. In the genuinely nonlinear case where / is,
say, strictly convex, all (convex) entropy inequalities (and therefore convergence to
the unique solution) then follow in the limit; see [14], [5].

We start with 3-point E-type upwind schemes. Upwinding simply means that
we difference in the "streamwise" direction. In particular, considering the char-
acteristic direction, we require either C^+x/2 or C~+l,2 to vanish, depending on
whether f'(v) is positive or negative throughout the 7„+1/2-mterval; in either of
these two nonsonic cases, the sum of the incremental coefficients C^+l,2 equals
their difference in absolute value, i.e.,

Afv+i/2 I(8.1a) Qu+i/2(f) = A
Au„+1/2

/»l/,+1/2^0.

This is, of course, nothing but a restatement of the well-known fact that away from
sonic values, all upwind schemes coincide with Roe-Murman's (2.5d).

The SOR-TVD schemes to be considered are then constructed according to the
piecewise constant viscosity modification of Theorem 4.7, where the viscosity coef-
ficient used is given by

(8.1b) Qv+i/2 = Qt»f/2 = Qv+l,2(f) + Au"+1/2
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Here, g is the flux correction, see (4.21b),

(8.1c) g„ = yMinag^/ai/) - A2(a2)l/±1/2] • \Avu±i,2\)

with second-order resolution condition requiring

(8.1d) A2(a2),+1/2 = X2(av+i,2)2 + 0(|Au|)„+1/2 < Q„+i/2(/),

and a first-order perturbation 0(|Au|)„+1/2, which is yet to be precisely deter-
mined. Unless otherwise stated, the following CFL-like condition will be assumed,

(8-le) Q„+i/2(/) < 1/3.
In particular, the above use of the piecewise viscosity modification from Theorem
4.7 is justified, since (4.15) holds. Furthermore, the essential estimate (4.9b),

Agu+i/2
Au^+1/2

1
<7i\Qu+i/2(f)-y(a2)u+i/2],

yields the TVD requirement (6.21),

A&/±l/2
Au,̂±1/2

< Ala^-ti^l +

< Qv±l/2{f) +

Agi/± 1/2
Au„±1/2

A0i>±l/2
Au„ ^QI°^,2<\Qu±1,2(Î)<\,"|/±l/2 |

so that Theorem 6.11 applies.6 According to this result, the desired cell entropy
inequality holds for the above quadratic entropy, provided

dv

X Max |/»|<l/2.
\v-v„\<\Av„±1/2\

(8.2)    £"' [,<*+"» (.,.♦ = i±^,8;+1 = i±£al) - m

is nonpositive.
We first study the critical case, stating

LEMMA 8.1.   Consider the critical case \sv\ = |a„+i| = 0 (that is, both u„ and
vv+i are critical grid values), and assume the following CFL condition holds

(8.3)

We then have

(M) C V'+m H = Hjr1-'-- ■ i±lH -'<«
Proof.  We appeal to the conservative form of the modified scheme, quoted in

(4.22): By assumption, sv and therefore gv vanish, and hence

^iH-l/2 = ñt^+i - s^+i/2l^+i|];

since a^+x/2 agrees with the sign of ¿i„+i, we conclude that the numerical flux
correction /i„+i/2 vanishes in this case. Thus, we are left with the original E-flux
we have started with. By Theorem 7.1 therefore, all entropy weighted integrals in
(7.1), and in particular (8.4), are nonpositive, provided the CFL condition (7.3)

6In fact, twice the CFL limit (8. le) can be used away from critical neighborhoods where
M-l^+lljiO.

du<0.
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holds: The latter follows in view of (8.3), noting that the modified flux corrections
g„ and gv+i vanish—consult Remark 7.2.    D

Next we turn to the noncritical case |a„| + |a„+i | > 1: Calculating the area below
the piecewise linear "double-wing" form of

0(,+i/2) / s+ _ i + IM  -   = i + k+ih

see Figure 6.4, we obtain

["• [,<""» (v,4 = !±£1i1Ch = i+feal) -/(„ dv

(8.5a)
= Au1/+1/2/i„+1/2 + — 1+ a„ '(^+1/2)'

/•«•'+1

+ l + \sv+l\{C"^
(Au„+1/2)2

f(v) dv;

inserting the value of /i^+1/2 from (1.7b) and (3.1),

2Ä
■              _ fu + fu+1 1 ,-     ,   -        -,        1 nSOR    a„
Vn/2 - -7,- + lyA9v + 9u+l) - WtQu+1/2&vu+1/2,2X

we find

r v°"m (iu«/«r»i,i=iii^,c„=i+|>"+
= Au^+i/2

2A
u+u+i   r+i

2X ^)-f(v) dv

(8.5b)
/        f(v)

JVu

dv

+ (Au„+i/2)
2A

2 r
lu + 9v+l      nSOR     , 2       fri+ 2
Âv^JÏ     Q»^l2+ X + \sv\{C»+l'2)

+ - ¡(c:+iI2>1 + K-HI
In the next proposition we estimate from above the last brackets on the right of
(8.5b). The somewhat technical proof is postponed to the end of this section.

PROPOSITION 8.2.   The following estimate holds:
9u + 9u+l       ^SOR

(8.6)

lu -r yu+1       nsOR      , ¿       (n+        \2   1   __?_—(r-        \1
-7-    — - Uu+i/2 + x , i   iy.^u+1/2) + T+1T77V "+1/2'L\Vu+i/2 1 + \Si,\ 1 +- \bu + i\

■[Q2+i/2(/)-A2(a2Wi/2].
|ai/| + |a„+i|.   2

^-2-l^+i/2 ^
In view of (8.5b) and Proposition 8.2, we can now complement Lemma 8.1 with

LEMMA 8.3.   Consider the noncritical case \su\ + \su+i\ > 1 (that is, either u„
or u„+i t'a a noncritical value).  We then have

[J [,<"■"* (,,.* = l±M,^ = i±^al) - /(«)] *
(8 7a)       s (A^ 2A

(Au^+j/2)2

+

ET^+i/2

-9-(Qu+l/2\f)- X   \a   )u+l/2)
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Here, ET„+i/2 stands for the error in the trapezoidal rule, applied over the /„+i/2-
interval,

(8.7b) ET„+1/2 = Au^+x/2
f(vu) + f(vu+i)\!]-f''M'

In order to guarantee a cell entropy inequality in the noncritical case, the inte-
gral on the left of (8.7a) should be nonpositive. This can be achieved by choosing
A2(a2)„+1/2 so as to make the expression in brackets on the right of (8.7a) nonpos-
itive.

We claim that such a choice admissible by the second-order resolution condition
(8. Id) t'a indeed available in all nonsonic intervals: According to the upwinding
property (8.1a),

(8.8a) QI+1/2U) = A2k+i/2|2,
and by a standard error estimate [4, Section 2],

(8.8b) ETt/+1/2=(A^1+21/2)3r(c),        Ç€/„+1/2.

It is here that we use the first-order flexibility in defining A2(a2)l/+i/2 previously
noticed in Theorem 4.2. We choose

A2(a2)„+1/2 = Ql+i/2(f) + A|A%+1/2' Max \f"(v)\.

Unifying the critical and noncritical cases, we arrive at

(8.9) A2(a2)„+1/2 = Ql+i/2(f) + ^|Au„+1/2| Max |/"(u)|.
O 'I/+1/2

In order to comply with the inequality on the right of (8.Id), we set in (8.1c)

(8.10a) gv = y [Min[Q„±1/2(/) - A2(a2)„±1/2]+ • |Au„±1/2|].

In terms of the numerical flux modification

(8.10b) ÊW1/2 = 2 [ff" + 9u+i - su+i/2\gu+\ - 9u\] ,

the resulting scheme then reads:

(8 10c)       Vv(-1 + k) = Vv(-l) ~ A(/l/+1 ~ /l/_l) + 2 [A(^+i/2(/)A^+i/2(i))]

_ (^+1/2 _ ^i/-l/2))

and we summarize what we have shown in

THEOREM 8.4.   Let Qv+i/2(f) be an upwind E-type viscosity coefficient, and
assume the following CFL condition holds:

(8.11) A-Max|/»| < 1/3.

Then the difference scheme (8.9), (8.10) satisfies
(i) total-variation diminishing;
(ii) second-order resolution;
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(iii) the cell entropy inequality7

HC + *) ̂  KW - A(F„+1/2 - Fu+i/2).
Remark 8.5. As argued in Theorem 4.2, the scheme has formal second-order

accuracy in all intervals such that gv and gv+i do not vanish. According to (8.10a),
therefore, all nonsonic noncritical invervals such that

Qv+i/2(f) - A (a )„+i/2 = A|a„+1/2| - A la^+i^l

_AlAi^iZ?ÍMax|/>)|>0

are included; in view of the CFL condition (8.11), the first difference on the right
exceeds 2A|a„+1/2|/3, and the last inequality is valid provided that

(8.12) ^lA^+i/2| • Max |/"(u)| < K+1/2|.

In other words, scheme (8.9), (8.10) is second-order accurate at all noncritical neigh-
borhoods satisfying (8.12). Observe that increasing A2(a2)l/+1/2 results in a similar
increase of the modified viscosity coefficient Q„+i/2 in (3.4a).

Remark 8.6. The additional viscosity added is directly related to the amount of
u2/2 entropy loss across shock discontinuities which is precisely |ET„+1/2|. This
should indicate the possible generalizations to other entropy pairs; moreover, it
seems to imply that second-order resolution is the maximum possible for cell entropy
satisfying schemes, the entropy loss being cubic [14].

As a special case, let us consider now the genuinely nonlinear model where / is,
say, strictly convex. We distinguish between two possibilities.

(i) The shock case: Avu+i/2 < 0. Since the trapezoidal error in (8.8b) is negative
in this case, the admissible choice A2(a2)v+1/2 = A2|a^+1/2|2 = <22+i/2(/) wm
make the integral (8.7a) nonpositive, as required.

(ii) The rarefaction case: Au„+1/2 > 0. As expected, this is the more delicate
case because the sign of the trapezoidal error is now reversed to be positive, which
will be compensated by additional dissipation as before. To summarize, we choose

(8.13) A2(a2W1/2 = Ql+i/2(f) + ^(Au„+1/2)+ Max [/'»],

in which case we have

THEOREM 8.5. (The convergence of SOR-TVD schemes.) Assume f is strictly
convex, Qu+i/2(f) I5 an upwind E-type viscosity and the CFL condition (8.11)
holds. Then the difference scheme (8.13), (8.10) satisfies

(i) total-variation diminishing;
(ii) second-order resolution, where

-(Au„+1/2)+ Max[/"(u)] < \au+i/2\;
¿ 'l>+l/2

(iii) a consistent quadratic cell entropy inequality,
and, as a consequence of (i) and (iii),

(iv) convergence to the unique physically relevant solution.

7The numerical entropy flux is given in (6.22b).
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Remark 8.6. The above-mentioned quadratic cell entropy inequality is due to
the related inequality of Theorem 6.11. If (the nonshifted form of) Theorem 6.10
is used instead, the same cell entropy inequality follows, this time with added
dissipation compensating the rectangular rule error rather than the trapezoidal one.
Details are omitted. Recently, Osher [19] has considered SOR-TVD semidiscrete
approximations to the genuinely nonlinear model (1.2). Convergence was then
guaranteed with more dissipation added at shocks, rather than at the expected
rarefactions. Indeed, the estimates used in [19] correspond to those quoted in our
Theorem 6.10, and the dissipation unnaturally, yet necessarily, added at shocks can
be therefore attributed to the reversed sign of the rectangular rule error. We also
note that in the cases studied in [19], [20] and in the last two theorems, formal
second-order accuracy had to be given up at strong jumps, which were measured
with respect to the amount of convexity, Max/i/+1/2[/"(u)].

Remark 8.7. One can obtain similar results by starting with 3-point TVD
schemes which are not necessarily of upwind type. For example, choosing the
modified Lax-Friedrichs schemes where Qu+i/2(f) — 1/2, see [26], one can repeat
the above arguments and conclude similar convergence results. Details are omitted.

We close this section with the
Proof of Proposition 8.2. The flux correction gv in (8.1c) satisfies

(8.14),
gu

Avv±i/2        2

summing (8.14)„ and (8.14)„+i we find

<T[^±i/2(/)-aVW];

(8.15)
gu + gu+i ̂  kl + k+il

\Qu+i/2(f)->?(a2)u+i/2]-
Au„+1/2 2

We recall the definition of the viscosity coefficient in (8.16),

I A<7i/+l/2
(8.16) ~Qu+l/2 — ~Qu+l/2(f) -

Au„+1/2

Finally, we examine the incremental coefficients C*+1 ,2 in (1.9): Utilizing (3.1), we
have

(8.17a) °*+l/2 Qu+l/2(f) +
Affu+1/2

\Avv+1/2

Consequently, the following equality holds,

1 - la, ■

T Xav+i/2 T
Agv + 1/2
Auu+l/2\

(8.17b)

Indeed, if \sv
then

" kl <c+    \2 _
i + kr "+1/2 \Qu+i/2(f) - Aa„+i/2]'

1, then both sides vanish; if otherwise a„ and therefore gv vanish,

A^+l/2 I
Auu+1/2

_  /Agi/+l/2\  _
\A^+l/2/

gu+i

AuiH-1/2

gu+i

Au„+i/2
vanishes as well, so that in view of (8.17a) equality holds in (8.17b). Similar argu-
ments yield

1 - k+ll/,-,-       \2_1-k+il
<8I7c»      ttO^»1 A\Qu+î/2(Î) + Aa„+1/2] .
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In view of the TVD constraint (1.8) we also have

1
iCu+l/2)    + (^+1/2)

2 _

(8.17d)
1/2/    T ^„+1/2/ 2 (QSOR)2+A2^AMV2V

' \^^+l/2/

< Qu+l/2(f) +
Agu+i/2
AuW1/2

12

Adding (8.17b), (8.17c), and (8.17d) we arrive at

ÏTM (Cy++1/2)2 + l + k+il^17^
(8.18)

< QU+1/2U) +
&9u+l/2

+ (2-|a„|-|a1,+1|)Q2+1/2(/).I Au^+x/2 1
The inequalities (8.15), (8.16) together with (8.18) amount to the desired inequality
(8.6): If |M = k+i| = 1) the derived upper bound reads

«i+i/2(/)-^KV+i/2 + A^+i/2
Auu+1/2

-l + 2Qu+if2(f) + A^+l/2
Au„+1/2

where in view of (8.14)„, together with the CFL condition (8.le), the last brackets
on the right are indeed nonpositive:

-l + 2Ql/+1/2(/) +

if |3t,| + k+i| = 1, we find
1

A<7„+i/2
Au„+i/2

<l + ^+i/2(/)<0;

- \Qu+i/2(f) - \x2(a2)v+i,2 + 2Ql+i/2(f)

+ Agu+i/2
Au„+1/2

-l + 2Qv+i,2(f) + Agv+i/2
Au^+i/2

As before, the last brackets on the right are nonpositive, while the sum of the
preceding three terms does not exceed the asserted value,

- \Qu+l,2(f) + \Ql+l/2{f) + \ [Ql+l/2(f) - AVW1/2]

<\{Ql+i/2(f)-*2(a2Ui/2};
finally, although not specifically referred to, gv = gv+i = 0 in the critical case,
\s„\ = |a„+i| = 0, yielding

-Q,+i/2(/) + 3Q2+1/2(/)<0.    D
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