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Abstract: For the Dirichlet series of the form F (z, ω) =
=

∑+∞
k=0 fk(ω)e

zλk(ω) (z ∈ C, ω ∈ Ω) with pairwise independent real expo-
nents (λk(ω)) on probability space (Ω,A, P ) an estimates of abscissas conver-
gence and absolutely convergence are established.
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1. Introduction

Let (Ω,A, P ) be a probability space, Λ =
(

λk(ω)
)+∞

k=0
and f =

(

fk(ω)
)+∞

k=0
sequences of positive and complex-valued random variables on it, respectively.
Let D be the class of formal random Dirichlet series of the form

f(z) = f(z, ω) =
∑+∞

k=0
fk(ω)e

zλk(ω) (z ∈ C, ω ∈ Ω).

Let σc(f, ω) and σ(f, ω) be the abscissa of convergence and absolute con-
vergence of this series for fixed ω ∈ Ω, respectively. The simple modification
of [1]–[3] one has that for the Dirichlet series f ∈ D for fixed ω ∈ Ω such that
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λk(ω) → +∞ (k → +∞)

σ(f, ω) ≤ σc(f, ω) ≤ α0(ω) := lim
k→+∞

− ln |fk(ω)|

λk(ω)

≤ σ(f, ω) + τ(ω,Λ), (1)

or in the case − ln |fk(ω)| → +∞ (k → +∞)

(1− h)σc(f, ω) ≤ (1− h)α0(ω) ≤ σ(f, ω), h = h(ω, f), (2)

where τ(ω,Λ) := limk→∞
ln k

λk(ω)
, h(ω, f) := limk→∞

ln k
− ln |fk(ω)|

.

Also,

σc(f, ω) = σ(f, ω) = α0(ω) (3)

for fixed ω ∈ Ω such that τ(ω) = 0 or ln k/(− ln |fk(ω)|) → +0 (k → +∞).
Remark, that from condition τ(ω) < +∞ we get λk(ω) → +∞ (k → +∞).
In the case σc(f, ω) > 0 the series of the form

∑+∞
k=0 fk(ω) is convergent, thus

− ln |fk(ω)| → +∞ (k → +∞).

The following assertion is proved in [3, Corollary 5] (another version [2,
Theorem 1]) in the case of the deterministic Dirichlet series with sequence of
exponents that increase to infinity, i.e., fk(ω) ≡ fk ∈ C (k ≥ 0) and λk(ω) ≡ λk,
0 ≤ λk < λk+1 → +∞ (0 ≤ k → +∞).

Proposition 1. Let f ∈ D. Then σa(f, ω) ≤ σc(f, ω) ≤ α0(ω) (∀ω ∈ Ω),
and

σa(f, ω) ≥ γ(ω)α0(ω)− δ(ω) ≥ γ(ω)σc(f, ω)− δ(ω) (4)

for arbitrary real random variables γ, δ and for all ω ∈ Ω such that γ(ω) > 0
and

∑+∞

k=0
|fk(ω)|

1−γ(ω)e−δ(ω)λk(ω) < +∞. (5)

Remark 2. Condition (5) implies, that (γ(ω)−1) ln |fk(ω)|+δ(ω)λk(ω) →
+∞ (k → +∞) for such ω. But, in general, from this condition don’t follows
neither λk(ω) → +∞ nor ln |fk(ω)| → ∞ (k → +∞).

Proof of Proposition 1. It is obvious that σ(f, ω) ≤ σc(f, ω).

We prove now that σc(f, ω) ≤ α0(ω). Indeed, assume first that α0(ω) 6= ∞
and put x0 = α0(ω) + ε, where ε > 0 is arbitrary. Then, |fk(ω)|e

x0λk(ω) =
exp{λk(ω)(ln |fk(ω)|/λk(ω) + x0)}. But by definition of α0(ω) there exists a
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sequence kj → +∞ (j → +∞) such that ln |fk(ω)|/λk(ω) > −(α0(ω) + ε/2)
(k = kj , j ≥ 1). Thus, ln |fk(ω)|/λk(ω) + x0 > ε/2 (k = kj, j ≥ 1), and

|fk(ω)|e
x0λk(ω) ≥ eλk(ω)ε/2 ≥ 1 (k = kj , j ≥ 1),

therefore σc(f, ω) ≤ α0(ω) + ε, but ε > 0 is arbitrary.

The case α0(ω) = +∞ is trivial. In the case α0(ω) = −∞ for every E > 0
and for some sequence kj → +∞ (j → +∞) by definition α0(ω) we obtain
ln |fk(ω)|/λk > E (k = kj , j ≥ 1). Therefore |fk(ω)| exp{−Eλk} > 1 (k =
kj , j ≥ 1), i.e. the Dirichlet series diverges at the point z = −E, but E > 0 is
arbitrary. Thus, σc = −∞.

Let now x0 = γ(ω)(α0(ω)− ε)− δ(ω) for arbitrary ε > 0. Then,

|fk(ω)|e
x0λk(ω) = |fk(ω)|

1−γ(ω)e−δ(ω)λk(ω)
(

|fk(ω)|e
(α0(ω)−ε)λk(ω)

)γ(ω)
. (6)

By definition of α0(ω), we obtain α0(ω) < − ln fk(ω)
λk(ω)

+ ε/2 for k ≥ k0(ω), and

thus |fk(ω)|e
(α0(ω)−ε)λk(ω) < exp{−λkε/2} ≤ 1 (k ≥ k0(ω)). Hence by (6) one

has |fk(ω)|e
x0λk(ω) ≤ |fk(ω)|

1−γ(ω)e−δ(ω)λk(ω) and by condition (5) we obtain
σ(f, ω) ≥ x0 = γ(ω)(α0(ω)− ε)− δ(ω). But, ε > 0 is arbitrary. �

From Proposition 1 it simply follows such a statement.

Proposition 3. Let f ∈ D. Then equalities (3) hold for all ω ∈ Ω such,
that

ln k = o(ln |fk(ω)|) (k → +∞). (7)

Remark 4. If the sequences Λ and f such that
(

|fk(ω)|e
xλk(ω)

)

are the se-
quences of independent random variables for every x ∈ R, then by Kolmogorov’s
Zero-One Law ([4]) random variable σ(f, ω) is almost surely (a.s.) constant.
That is, σ(f, ω) = σ ∈ [−∞,+∞] a.s. In the book [4] it is written when Λ
monotonic increasing to infinity sequence λk(ω) ≡ λk. The same we get when
(− ln |fk(ω)|

λk(ω)

)

is the sequence of independent random variables, and τ(ω,Λ) = 0

or h(ω, f) = 0. It follows from Proposition 3 and equalities (3).

In the papers [5]–[10] considered question about abscissas of convergence
random Dirichlet series from the class D in case, when Λ+ = (λk) is increasing
sequence of positive numbers, i.e., 0 = λ0 < λk < λk+1 → +∞ (1 ≤ k → +∞)
and τ(ω,Λ) ≡ τ(Λ) < +∞.

We have such elementary assertion.
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Proposition 5. Let f ∈ D(Λ) be a Dirichlet series of the form f(z) =
f(z, ω) =

∑+∞
k=0 akZk(ω)e

zλk(ω), where (Zk(ω)) is a sequence of random complex-
valued variables.

10. If the condition τ(ω,Λ) = 0 holds and

lim
k→+∞

− ln |Zk(ω)|

λk(ω)
= 0 a.s., (8)

then σc(f, ω) = σ(f, ω) = α∗
0(ω) := lim

k→+∞
− ln |ak|/λk(ω) a.s.

20. If α0(ω) = +∞ and the conditions τ(ω,Λ) < +∞,

lim
k→+∞

− ln |Zk(ω)|

λk(ω)
> −∞ a.s. (9)

hold, then σ(f, ω) = +∞ a.s.

We obtain Proposition 5 immediately from inequalities (1).

In the paper [6], it is considered only 10 for the case of the Dirichlet series
f ∈ D(Λ+) of the form f(z) = f(z, ω) =

∑+∞
k=0 akZk(ω)e

zλk .
From Proposition 5, in particular, they follow Theorem 1 (when α0 :=

α∗
0 = +∞) and Theorem 3 (when α0 = 0) from [6], which are proved under

such condition for expectation:

(∃α > 0, β > 0): sup{E|Zk|
α,E|Zk|

−β : k ≥ 0} < +∞. (10)

By the Bienayme-Chebyshev inequality ([11, 12]) and the Borel-Cantelli Lemma
(

[4], also about refined Second Borel-Cantelli lemma see [13]
)

from condition
(10) it easy follows, that a.s. for all enough large k inequalities k−γ ≤ |Zk(ω)| <
kγ with γ = max{2/α, 2/β} hold, and if τ(Λ) = 0, then and condition (8).
Similarly, if τ(Λ) < +∞, then from condition (∃β > 0): sup{E|Zk|

−β : k ≥
0} < +∞ follows condition (9).

It should be noted, that condition (8) follows from such condition (see [10])
on sequence of distribution functions of random variables (|Zk(ω)|),

(∀ε > 0):
∑+∞

k=0

(

1− F ∗
k (e

ελk) + F ∗
k (e

−ελk)
)

< +∞,

where F ∗
k (x) := P{ω : |Zk(ω)| < x}. In particular, from this condition it follows

limk→+∞ F ∗
k (+0) = 0.

In the papers [7]–[9] in the case of independent random variables f = (fk),
besides, generalized on class D(Λ) assertion of known Blackwell’s conjecture on
power series with random coefficients, proved in [14] (see also [4]).
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In the general case, for Dirichlet series from the class D(Λ+) in [10] (see
also similar results for random gap power series in [15]–[18]) two theorems are
proved. In particular, we find ([10]) the following theorem.

Theorem 6 ([10]). Let f ∈ D(Λ+) and f =
(

fk(ω)
)

be a sequence such
that

(

|fk(ω)|
)

is the sequence of pairwise independent random variables with
functions of distribution Fk(x) := P{ω : |fk(ω)| < x}, x ∈ R, k ≥ 0. The
following assertions are true:

a) If σ(ω) = σ(f, ω) ≥ ρ ∈ (−∞,+∞) a.s., then
(∀ε > 0):

∑+∞
k=0(1− Fk((e

−ρ + ε)λk)) < ∞.

b) If there exists a sequence (δk) : δk > −∞ (k ≥ 0), lim
k→+∞

δk = e−ρ, ρ ∈

(−∞,+∞], and
∑+∞

k=0(1− Fk(δ
λk

k )) = +∞, then σ(f, ω) ≤ ρ a.s.

Another theorem in [10] contains the converse statements.

In this paper we prove similar theorems for Dirichlet series with random
exponents (λk(ω)) and deterministic coefficients f = (fk), fk ∈ C, k ≥ 0. Note
that in paper [19] a power series of the form

∑+∞
k=0 z

Xk(ω) is studied, where
(Xk(ω)) is a strictly increasing integer-valued stochastic process.

2. The Main Results: Series with Random Exponents

In this section we assume that fk(ω) ≡ fk ∈ C (k ≥ 0) and condition ln k =
o(ln |fk|) (k → +∞) holds, that condition (7) is satisfied for all ω ∈ Ω, there-
fore by Proposition 3 equalities (3) for every ω ∈ Ω hold.

Theorem 7. Let f ∈ D(Λ) and Λ =
(

λk(ω)
)

be a sequence of pairwise
independent random variables with distribution functions Fk(x) := P{ ω :
λk(ω) < x}, x ∈ R, k ≥ 0. The following assertions hold:

i) If σ(ω) = σ(f, ω) ≥ ρ ∈ (0,+∞) a.s. then

(∀ε ∈ (0, ρ)) :
∑+∞

k=0

(

1− Fk(ln |fk|/(−ρ+ ε))
)

< ∞.

ii) If 0 ≥ σ(ω) = σ(f, ω) ≥ ρ ∈ (−∞, 0] a.s. then

(∀ε > 0):
∑+∞

k=0 Fk(ln |fk|/(−ρ+ ε)) < ∞.

Proof of Theorem 7. i) If σ(f, ω) ≥ ρ ∈ (0,+∞) a.s., then from (3) we have
(∃B ∈ A, P (B) = 1)(∀ω ∈ B) : lim

k→+∞
− ln |fk|/λk(ω) ≥ ρ, and by definition of
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lim,

(∀ω ∈ B)(∀ε ∈ (0, ρ))(∃k∗(ω) ∈ N)(∀k > k∗(ω)) :

λk(ω) < ln |fk|/(−ρ+ ε). (11)

We denote

Ak :=
{

ω : λk(ω) ≥
ln |fk|

(−ρ+ ε)

}

.

It is clear, that B ⊂ C :=
⋃∞

N=0

⋂∞
k=N Ak, hence P (C) = 1, and C =

⋂∞
N=0

⋃∞
k=N Ak is the event “(Ak) infinitely often”, i.e. C is the event “(Ak)

finitely often”. From pairwise independence of random variables (λk(ω)) fol-
lows pairwise independence of events (Ak). Therefore, by refined Second Borel-
Cantelli Lemma ([13, p.84])

∑+∞

k=0

(

1− Fk

(

ln |fk|/(−ρ+ ε)
))

=
∑+∞

k=0
P (Ak) < +∞.

ii) If 0 ≥ σ(ω, f) ≥ ρ ∈ (−∞, 0] a.s., then instead of (11) we obtain

(∃B,P (B) = 1)(∀ω ∈ B)(∀ε > 0)(∃k∗(ω) ∈ N)(∀k ≥ k∗(ω)) :

λk(ω) > ln |fk|/(−ρ+ ε).

Therefore, for Ak :=
{

ω : λk(ω) ≤ ln |fk|/(−ρ+ ε)
}

by the refined Second

Borel-Cantelli lemma we obtain again
∑+∞

k=0
Fk

(

ln |fk|/(−ρ+ ε)
)

=
∑+∞

k=0
P (Ak) < +∞.

This completes the proof of Theorem 7. �

Remark 8. If σ(f, ω) > ρ ∈ [0,+∞) a.s., then from (3) by definition of
lim we have (∀ω ∈ B)(∃ε∗ = ε∗(ω) > 0)(∃k∗(ω) ∈ N)(∀k > k∗(ω)) : λk(ω) <
ln |fk|/−(ρ+ ε∗), and similarly as in proof of i) we obtain

+∞
∑

k=0

(

1− Fk(− ln |fk|/ρ)
)

< +∞

in the case ρ > 0 and in the case ρ = 0 one has

+∞
∑

k=0

(

1− Fk(+0)
)

< +∞,

i.e., in particular, limk→+∞ Fk(+0) = 1. Namely, if lim
k→+∞

Fk(+0) < 1, then

σ(f, ω) ≤ 0 a.s.
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Theorem 9. Let Λ =
(

λk(ω)
)

be a sequence of random variables with
distribution functions Fk(x) := P{ ω : λk(ω) < x}, x ∈ R, k ≥ 0, and
f ∈ D(Λ). The following assertions hold:

i) If there exist ρ ∈ (0,+∞) and a sequence (εk) such that εk → +0 (k →

+∞) and
∑+∞

k=0

(

1− Fk(
ln |fk|
−ρ+εk

)
)

< +∞, then σ(f, ω) ≥ ρ a.s.

ii) If there exist ρ ∈ (−∞, 0] and a sequence (εk) such that εk → +0

(k → +∞) and
∑+∞

k=0 Fk(
ln |fk|
−ρ+εk

) < +∞, then σ(f, ω) ≥ ρ a.s.

Proof of Theorem 9. i) We note 1− Fk(ln |fk|/(−ρ+ εk)) = P (Ak), where

Ak :=
{

ω : λk(ω) ≥ ln |fk|/(−ρ+ εk)
}

.

Therefore, from condition one has
∑+∞

k=0 P (Ak) < ∞. Thus, by the first
part of Borel-Cantelli Lemma P (C) = 1, C :=

⋂∞
N=0

⋃∞
k=N Ak. Since, C =

⋃∞
N=0

⋂∞
k=N Ak, then for all ω ∈ C there exists k = k∗(ω) such that ω ∈ Ak

and −ρ+ εk < 0 for all k ≥ k∗(ω). Here, (∀k ≥ k∗(ω)) : λk(ω) <
ln |fk|
−ρ+εk

. Using
− ln |fk|
λk(ω)

> ρ− εk, we get

σ(f, ω) = lim
k→+∞

− ln |fk|

λk(ω)
≥ lim

k→+∞
(ρ− εk) = ρ a.s. (12)

ii) By the condition
∑+∞

k=0 P (Ak) < +∞, where

Ak :=
{

ω : λk(ω) < ln |fk|/(−ρ+ εk)
}

.

Since, by the first part of Borel-Cantelli Lemma

P (C) = 1, C :=

∞
⋂

N=0

∞
⋃

k=N

Ak.

Where, as above for every ω ∈ C =
⋃∞

N=0

⋂∞
k=N Ak there exists k = k∗(ω) such

that ω ∈ Ak and −ρ+εk > 0 for all k ≥ k∗(ω), such hat, (∀k ≥ k∗(ω)) : λk(ω) ≥
ln |fk|
−ρ+εk

. Hence, − ln |fk|
λk(ω)

> ρ − εk and, therefore, we have again the “chain” of

relations (12).

The proof of Theorem 9 is complete. �
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3. Some Corollaries

Corollary 10. Let f ∈ D(Λ) and Λ = (λk(ω)) be a sequence of pairwise
independent random variables with distribution functions Fk(x), k ≥ 0. If
lim

k→+∞
Fk(+0) < 1 and fk → 0 (k → +∞), then σ(f, ω) = 0 a.s.

Proof of Corollary 10. By Remark 8, σ(f, ω) ≤ 0 a.s. It is remains to prove
that σ(f, ω) ≥ 0 a.s. Indeed, λk(ω) ≥ 0, therefore Fk(0) = P{ω : λk(ω) < 0} =
0. Hence,

∑+∞
k=k0

Fk(ln |fk|/εk) < +∞ because ln |fk|/εk < 0 (k ≥ k0). Thus,
by Theorem 9 ii), σ(f, ω) ≥ 0 a.s. �

Corollary 10 implies immediately the statement of Corollary 11.

Corollary 11. Let f ∈ D(Λ) and Λ = (λk(ω)) be a sequence of pairwise
independent random variables with distribution functions Fk(x), k ≥ 0. If
there exists a positive random variable a(ω) such that (∀x ≥ 0)(∀k ∈ Z+) :
Fk(x) ≤ Fa(x) := P{ω : a(ω) < x} and Fa(+0) < 1 and fk → 0 (k → +∞),
then σ(f, ω) = 0 a.s.

Corollary 12. Let f ∈ D(Λ) and Λ = (λk(ω)) be a sequence of random
variables with distribution functions Fk(x), k ≥ 0. If fk → 0 (k → +∞) and
there exist a positive random variable b(ω) and ρ > 0 such that (∀x ≥ 0)(∀k ∈
Z+) : Fk(x) ≥ Fb(x) := P{ω : b(ω) < x},

∫ +∞
0 nµ(tρ) dFb(t) < +∞, where

nµ(t) =
∑

µk≤t 1 is the counting function of a sequence µk = − ln |fk|, then
σ(f, ω) ≥ ρ a.s.

Proof of Corollary 12. We remark that

n
∑

k=k0

(

1− Fk(
ln |fk|

−ρ+ εk
)
)

≤

∫ µn

µk0

(

1− Fk

(

t/ρ
))

dnµ(t)

≤

∫ µn

µk0

(1− Fb(t/ρ))dnµ(t) +O(1)

=

∫ µn/ρ

µk0
/ρ

nµ(tρ) dFb(t) +O(1),

(n → +∞), because − ln |fk| > 0 (k ≥ k0) and ρ − εk < ρ for all k ≥ 0.

Therefore, the series
∑+∞

k=k0

(

1 − Fk(
ln |fk|
−ρ+εk)

))

converges. Hence by Theorem 9

ii) we complete the proof. �
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Corollary 13. Let Λ = (λk(ω)) be a increasing (a.s.) sequence of pairwise
independent random variables and f ∈ D(Λ). If F0(+0) < 1, where F0 is
distribution function of λ0(ω), and fk → 0 (k → +∞), then σ(f, ω) = 0 a.s.

Proof of Corollary 13. We remark that Fk+1(x) ≤ Fk(x), because λk(ω) ≤
λk+1(ω) (k ≥ 0) a.s. Therefore, by Corollary 11 we obtain the conclusion of
Corollary 13. �
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