International Journal of Applied Mathematics

Volume 30 No. 3 2017, 229-238
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v30i3.2

ON THE CONVERGENCE OF DIRICHLET SERIES WITH RANDOM EXPONENTS

Andrii O. Kuryliak ${ }^{1}$, Oleh B. Skaskiv ${ }^{2}$, Nadiya Yu. Stasiv ${ }^{3}$ §
${ }^{1,2,3}$ Department of Mechanics and Mathematics
Ivan Franko National University of L'viv Universytetska Street 1, L'viv - 79000, UKRAINE

Abstract

For the Dirichlet series of the form $F(z, \omega)=$ $=\sum_{k=0}^{+\infty} f_{k}(\omega) e^{z \lambda_{k}(\omega)} \quad(z \in \mathbb{C}, \omega \in \Omega)$ with pairwise independent real exponents $\left(\lambda_{k}(\omega)\right)$ on probability space (Ω, \mathcal{A}, P) an estimates of abscissas convergence and absolutely convergence are established.

AMS Subject Classification: 30B20, 30D20
Key Words: random Dirichlet series, random exponents, abscissas of convergence

1. Introduction

Let (Ω, \mathcal{A}, P) be a probability space, $\boldsymbol{\Lambda}=\left(\lambda_{k}(\omega)\right)_{k=0}^{+\infty}$ and $\mathbf{f}=\left(f_{k}(\omega)\right)_{k=0}^{+\infty}$ sequences of positive and complex-valued random variables on it, respectively. Let \mathcal{D} be the class of formal random Dirichlet series of the form

$$
f(z)=f(z, \omega)=\sum_{k=0}^{+\infty} f_{k}(\omega) e^{z \lambda_{k}(\omega)} \quad(z \in \mathbb{C}, \omega \in \Omega)
$$

Let $\sigma_{c}(f, \omega)$ and $\sigma(f, \omega)$ be the abscissa of convergence and absolute convergence of this series for fixed $\omega \in \Omega$, respectively. The simple modification of [1]-[3] one has that for the Dirichlet series $f \in \mathcal{D}$ for fixed $\omega \in \Omega$ such that

Received: March 13, 2017 (c) 2017 Academic Publications
${ }^{\S}$ Correspondence author
$\lambda_{k}(\omega) \rightarrow+\infty(k \rightarrow+\infty)$

$$
\begin{gather*}
\sigma(f, \omega) \leq \sigma_{c}(f, \omega) \leq \alpha_{0}(\omega):=\lim _{k \rightarrow+\infty} \frac{-\ln \left|f_{k}(\omega)\right|}{\lambda_{k}(\omega)} \\
\leq \sigma(f, \omega)+\tau(\omega, \Lambda) \tag{1}
\end{gather*}
$$

or in the case $-\ln \left|f_{k}(\omega)\right| \rightarrow+\infty(k \rightarrow+\infty)$

$$
\begin{equation*}
(1-h) \sigma_{c}(f, \omega) \leq(1-h) \alpha_{0}(\omega) \leq \sigma(f, \omega), \quad h=h(\omega, \mathbf{f}) \tag{2}
\end{equation*}
$$

where $\tau(\omega, \Lambda):=\varlimsup_{k \rightarrow \infty} \frac{\ln k}{\lambda_{k}(\omega)}, \quad h(\omega, \mathbf{f}):=\varlimsup_{k \rightarrow \infty} \frac{\ln k}{-\ln \left|f_{k}(\omega)\right|}$.
Also,

$$
\begin{equation*}
\sigma_{c}(f, \omega)=\sigma(f, \omega)=\alpha_{0}(\omega) \tag{3}
\end{equation*}
$$

for fixed $\omega \in \Omega$ such that $\tau(\omega)=0$ or $\ln k /\left(-\ln \left|f_{k}(\omega)\right|\right) \rightarrow+0(k \rightarrow+\infty)$. Remark, that from condition $\tau(\omega)<+\infty$ we get $\lambda_{k}(\omega) \rightarrow+\infty(k \rightarrow+\infty)$. In the case $\sigma_{c}(f, \omega)>0$ the series of the form $\sum_{k=0}^{+\infty} f_{k}(\omega)$ is convergent, thus $-\ln \left|f_{k}(\omega)\right| \rightarrow+\infty(k \rightarrow+\infty)$.

The following assertion is proved in [3, Corollary 5] (another version [2, Theorem 1]) in the case of the deterministic Dirichlet series with sequence of exponents that increase to infinity, i.e., $f_{k}(\omega) \equiv f_{k} \in \mathbb{C}(k \geq 0)$ and $\lambda_{k}(\omega) \equiv \lambda_{k}$, $0 \leq \lambda_{k}<\lambda_{k+1} \rightarrow+\infty(0 \leq k \rightarrow+\infty)$.

Proposition 1. Let $f \in \mathcal{D}$. Then $\sigma_{\mathrm{a}}(f, \omega) \leq \sigma_{c}(f, \omega) \leq \alpha_{0}(\omega)(\forall \omega \in \Omega)$, and

$$
\begin{equation*}
\sigma_{a}(f, \omega) \geq \gamma(\omega) \alpha_{0}(\omega)-\delta(\omega) \geq \gamma(\omega) \sigma_{c}(f, \omega)-\delta(\omega) \tag{4}
\end{equation*}
$$

for arbitrary real random variables γ, δ and for all $\omega \in \Omega$ such that $\gamma(\omega)>0$ and

$$
\begin{equation*}
\sum_{k=0}^{+\infty}\left|f_{k}(\omega)\right|^{1-\gamma(\omega)} e^{-\delta(\omega) \lambda_{k}(\omega)}<+\infty \tag{5}
\end{equation*}
$$

Remark 2. Condition (5) implies, that $(\gamma(\omega)-1) \ln \left|f_{k}(\omega)\right|+\delta(\omega) \lambda_{k}(\omega) \rightarrow$ $+\infty(k \rightarrow+\infty)$ for such ω. But, in general, from this condition don't follows neither $\lambda_{k}(\omega) \rightarrow+\infty$ nor $\ln \left|f_{k}(\omega)\right| \rightarrow \infty(k \rightarrow+\infty)$.

Proof of Proposition 1. It is obvious that $\sigma(f, \omega) \leq \sigma_{c}(f, \omega)$.
We prove now that $\sigma_{c}(f, \omega) \leq \alpha_{0}(\omega)$. Indeed, assume first that $\alpha_{0}(\omega) \neq \infty$ and put $x_{0}=\alpha_{0}(\omega)+\varepsilon$, where $\varepsilon>0$ is arbitrary. Then, $\left|f_{k}(\omega)\right| e^{x_{0} \lambda_{k}(\omega)}=$ $\exp \left\{\lambda_{k}(\omega)\left(\ln \left|f_{k}(\omega)\right| / \lambda_{k}(\omega)+x_{0}\right)\right\}$. But by definition of $\alpha_{0}(\omega)$ there exists a
sequence $k_{j} \rightarrow+\infty(j \rightarrow+\infty)$ such that $\ln \left|f_{k}(\omega)\right| / \lambda_{k}(\omega)>-\left(\alpha_{0}(\omega)+\varepsilon / 2\right)$ $\left(k=k_{j}, j \geq 1\right)$. Thus, $\ln \left|f_{k}(\omega)\right| / \lambda_{k}(\omega)+x_{0}>\varepsilon / 2 \quad\left(k=k_{j}, j \geq 1\right)$, and

$$
\left|f_{k}(\omega)\right| e^{x_{0} \lambda_{k}(\omega)} \geq e^{\lambda_{k}(\omega) \varepsilon / 2} \geq 1 \quad\left(k=k_{j}, j \geq 1\right)
$$

therefore $\sigma_{c}(f, \omega) \leq \alpha_{0}(\omega)+\varepsilon$, but $\varepsilon>0$ is arbitrary.
The case $\alpha_{0}(\omega)=+\infty$ is trivial. In the case $\alpha_{0}(\omega)=-\infty$ for every $E>0$ and for some sequence $k_{j} \rightarrow+\infty(j \rightarrow+\infty)$ by definition $\alpha_{0}(\omega)$ we obtain $\ln \left|f_{k}(\omega)\right| / \lambda_{k}>E \quad\left(k=k_{j}, \quad j \geq 1\right)$. Therefore $\left|f_{k}(\omega)\right| \exp \left\{-E \lambda_{k}\right\}>1(k=$ $k_{j}, j \geq 1$), i.e. the Dirichlet series diverges at the point $z=-E$, but $E>0$ is arbitrary. Thus, $\sigma_{c}=-\infty$.

Let now $x_{0}=\gamma(\omega)\left(\alpha_{0}(\omega)-\varepsilon\right)-\delta(\omega)$ for arbitrary $\varepsilon>0$. Then,

$$
\begin{equation*}
\left|f_{k}(\omega)\right| e^{x_{0} \lambda_{k}(\omega)}=\left|f_{k}(\omega)\right|^{1-\gamma(\omega)} e^{-\delta(\omega) \lambda_{k}(\omega)}\left(\left|f_{k}(\omega)\right| e^{\left(\alpha_{0}(\omega)-\varepsilon\right) \lambda_{k}(\omega)}\right)^{\gamma(\omega)} \tag{6}
\end{equation*}
$$

By definition of $\alpha_{0}(\omega)$, we obtain $\alpha_{0}(\omega)<\frac{-\ln f_{k}(\omega)}{\lambda_{k}(\omega)}+\varepsilon / 2$ for $k \geq k_{0}(\omega)$, and thus $\left|f_{k}(\omega)\right| e^{\left(\alpha_{0}(\omega)-\varepsilon\right) \lambda_{k}(\omega)}<\exp \left\{-\lambda_{k} \varepsilon / 2\right\} \leq 1\left(k \geq k_{0}(\omega)\right)$. Hence by (6) one has $\left|f_{k}(\omega)\right| e^{x_{0} \lambda_{k}(\omega)} \leq\left|f_{k}(\omega)\right|^{1-\gamma(\omega)} e^{-\delta(\omega) \lambda_{k}(\omega)}$ and by condition (5) we obtain $\sigma(f, \omega) \geq x_{0}=\gamma(\omega)\left(\alpha_{0}(\omega)-\varepsilon\right)-\delta(\omega)$. But, $\varepsilon>0$ is arbitrary.

From Proposition 1 it simply follows such a statement.

Proposition 3. Let $f \in \mathcal{D}$. Then equalities (3) hold for all $\omega \in \Omega$ such, that

$$
\begin{equation*}
\ln k=o\left(\ln \left|f_{k}(\omega)\right|\right) \quad(k \rightarrow+\infty) \tag{7}
\end{equation*}
$$

Remark 4. If the sequences Λ and \mathbf{f} such that $\left(\left|f_{k}(\omega)\right| e^{x \lambda_{k}(\omega)}\right)$ are the sequences of independent random variables for every $x \in \mathbb{R}$, then by Kolmogorov's Zero-One Law ([4]) random variable $\sigma(f, \omega)$ is almost surely (a.s.) constant. That is, $\sigma(f, \omega)=\sigma \in[-\infty,+\infty]$ a.s. In the book [4] it is written when Λ monotonic increasing to infinity sequence $\lambda_{k}(\omega) \equiv \lambda_{k}$. The same we get when $\left(\frac{-\ln \left|f_{k}(\omega)\right|}{\lambda_{k}(\omega)}\right)$ is the sequence of independent random variables, and $\tau(\omega, \Lambda)=0$ or $h(\omega, \mathbf{f})=0$. It follows from Proposition 3 and equalities (3).

In the papers [5]-[10] considered question about abscissas of convergence random Dirichlet series from the class \mathcal{D} in case, when $\Lambda_{+}=\left(\lambda_{k}\right)$ is increasing sequence of positive numbers, i.e., $0=\lambda_{0}<\lambda_{k}<\lambda_{k+1} \rightarrow+\infty(1 \leq k \rightarrow+\infty)$ and $\tau(\omega, \Lambda) \equiv \tau(\Lambda)<+\infty$.

We have such elementary assertion.

Proposition 5. Let $f \in \mathcal{D}(\Lambda)$ be a Dirichlet series of the form $f(z)=$ $f(z, \omega)=\sum_{k=0}^{+\infty} a_{k} Z_{k}(\omega) e^{z \lambda_{k}(\omega)}$, where $\left(Z_{k}(\omega)\right)$ is a sequence of random complexvalued variables.
1^{0}. If the condition $\tau(\omega, \Lambda)=0$ holds and

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \frac{-\ln \left|Z_{k}(\omega)\right|}{\lambda_{k}(\omega)}=0 \quad \text { a.s. } \tag{8}
\end{equation*}
$$

then $\sigma_{c}(f, \omega)=\sigma(f, \omega)=\alpha_{0}^{*}(\omega):=\underset{k \rightarrow+\infty}{\lim }-\ln \left|a_{k}\right| / \lambda_{k}(\omega) \quad$ a.s.
2^{0}. If $\alpha_{0}(\omega)=+\infty$ and the conditions $\tau(\omega, \Lambda)<+\infty$,

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \frac{-\ln \left|Z_{k}(\omega)\right|}{\lambda_{k}(\omega)}>-\infty \quad \text { a.s. } \tag{9}
\end{equation*}
$$

hold, then $\sigma(f, \omega)=+\infty$ a.s.
We obtain Proposition 5 immediately from inequalities (1).
In the paper [6], it is considered only 1^{0} for the case of the Dirichlet series $f \in \mathcal{D}\left(\Lambda_{+}\right)$of the form $f(z)=f(z, \omega)=\sum_{k=0}^{+\infty} a_{k} Z_{k}(\omega) e^{z \lambda_{k}}$.

From Proposition 5, in particular, they follow Theorem 1 (when $\alpha_{0}:=$ $\left.\alpha_{0}^{*}=+\infty\right)$ and Theorem 3 (when $\alpha_{0}=0$) from [6], which are proved under such condition for expectation:

$$
\begin{equation*}
(\exists \alpha>0, \beta>0): \sup \left\{\mathbf{E}\left|Z_{k}\right|^{\alpha}, \mathbf{E}\left|Z_{k}\right|^{-\beta}: k \geq 0\right\}<+\infty . \tag{10}
\end{equation*}
$$

By the Bienayme-Chebyshev inequality $([11,12])$ and the Borel-Cantelli Lemma ([4], also about refined Second Borel-Cantelli lemma see [13]) from condition (10) it easy follows, that a.s. for all enough large k inequalities $k^{-\gamma} \leq\left|Z_{k}(\omega)\right|<$ k^{γ} with $\gamma=\max \{2 / \alpha, 2 / \beta\}$ hold, and if $\tau(\Lambda)=0$, then and condition (8). Similarly, if $\tau(\Lambda)<+\infty$, then from condition $(\exists \beta>0): \sup \left\{\mathbf{E}\left|Z_{k}\right|^{-\beta}: k \geq\right.$ $0\}<+\infty$ follows condition (9).

It should be noted, that condition (8) follows from such condition (see [10]) on sequence of distribution functions of random variables $\left(\left|Z_{k}(\omega)\right|\right)$,

$$
(\forall \varepsilon>0): \sum_{k=0}^{+\infty}\left(1-F_{k}^{*}\left(e^{\varepsilon \lambda_{k}}\right)+F_{k}^{*}\left(e^{-\varepsilon \lambda_{k}}\right)\right)<+\infty
$$

where $F_{k}^{*}(x):=P\left\{\omega:\left|Z_{k}(\omega)\right|<x\right\}$. In particular, from this condition it follows $\lim _{k \rightarrow+\infty} F_{k}^{*}(+0)=0$.

In the papers [7]-[9] in the case of independent random variables $\mathbf{f}=\left(f_{k}\right)$, besides, generalized on class $\mathcal{D}(\Lambda)$ assertion of known Blackwell's conjecture on power series with random coefficients, proved in [14] (see also [4]).

In the general case, for Dirichlet series from the class $\mathcal{D}\left(\Lambda_{+}\right)$in [10] (see also similar results for random gap power series in [15]-[18]) two theorems are proved. In particular, we find ([10]) the following theorem.

Theorem 6 ([10]). Let $f \in \mathcal{D}\left(\Lambda_{+}\right)$and $\mathbf{f}=\left(f_{k}(\omega)\right)$ be a sequence such that $\left(\left|f_{k}(\omega)\right|\right)$ is the sequence of pairwise independent random variables with functions of distribution $F_{k}(x):=P\left\{\omega:\left|f_{k}(\omega)\right|<x\right\}, x \in \mathbb{R}, k \geq 0$. The following assertions are true:
a) If $\sigma(\omega)=\sigma(f, \omega) \geq \rho \in(-\infty,+\infty)$ a.s., then

$$
(\forall \varepsilon>0): \quad \sum_{k=0}^{+\infty}\left(1-F_{k}\left(\left(e^{-\rho}+\varepsilon\right)^{\lambda_{k}}\right)\right)<\infty .
$$

b) If there exists a sequence $\left(\delta_{k}\right): \delta_{k}>-\infty(k \geq 0), \underset{k \rightarrow+\infty}{\lim } \delta_{k}=e^{-\rho}, \rho \in$ $(-\infty,+\infty]$, and $\sum_{k=0}^{+\infty}\left(1-F_{k}\left(\delta_{k}^{\lambda_{k}}\right)\right)=+\infty$, then $\sigma(f, \omega) \leq \rho$ a.s.

Another theorem in [10] contains the converse statements.
In this paper we prove similar theorems for Dirichlet series with random exponents $\left(\lambda_{k}(\omega)\right)$ and deterministic coefficients $\mathbf{f}=\left(f_{k}\right), f_{k} \in \mathbb{C}, k \geq 0$. Note that in paper [19] a power series of the form $\sum_{k=0}^{+\infty} z^{X_{k}(\omega)}$ is studied, where $\left(X_{k}(\omega)\right)$ is a strictly increasing integer-valued stochastic process.

2. The Main Results: Series with Random Exponents

In this section we assume that $f_{k}(\omega) \equiv f_{k} \in \mathbb{C}(k \geq 0)$ and condition $\ln k=$ $o\left(\ln \left|f_{k}\right|\right) \quad(k \rightarrow+\infty)$ holds, that condition (7) is satisfied for all $\omega \in \Omega$, therefore by Proposition 3 equalities (3) for every $\omega \in \Omega$ hold.

Theorem 7. Let $f \in \mathcal{D}(\Lambda)$ and $\Lambda=\left(\lambda_{k}(\omega)\right)$ be a sequence of pairwise independent random variables with distribution functions $F_{k}(x):=P\{\omega$: $\left.\lambda_{k}(\omega)<x\right\}, x \in \mathbb{R}, k \geq 0$. The following assertions hold:
i) If $\sigma(\omega)=\sigma(f, \omega) \geq \rho \in(0,+\infty)$ a.s. then

$$
(\forall \varepsilon \in(0, \rho)): \quad \sum_{k=0}^{+\infty}\left(1-F_{k}\left(\ln \left|f_{k}\right| /(-\rho+\varepsilon)\right)\right)<\infty
$$

ii) If $0 \geq \sigma(\omega)=\sigma(f, \omega) \geq \rho \in(-\infty, 0]$ a.s. then

$$
(\forall \varepsilon>0): \quad \sum_{k=0}^{+\infty} F_{k}\left(\ln \left|f_{k}\right| /(-\rho+\varepsilon)\right)<\infty .
$$

Proof of Theorem 7. i) If $\sigma(f, \omega) \geq \rho \in(0,+\infty)$ a.s., then from (3) we have $(\exists B \in \mathcal{A}, P(B)=1)(\forall \omega \in B): \underset{k \rightarrow+\infty}{\lim }-\ln \left|f_{k}\right| / \lambda_{k}(\omega) \geq \rho$, and by definition of
lim,

$$
\begin{gather*}
(\forall \omega \in B)(\forall \varepsilon \in(0, \rho))\left(\exists k^{*}(\omega) \in \mathbb{N}\right)\left(\forall k \geqslant k^{*}(\omega)\right): \\
\lambda_{k}(\omega)<\ln \left|f_{k}\right| /(-\rho+\varepsilon) . \tag{11}
\end{gather*}
$$

We denote

$$
A_{k}:=\left\{\omega: \lambda_{k}(\omega) \geq \frac{\ln \left|f_{k}\right|}{(-\rho+\varepsilon)}\right\}
$$

It is clear, that $B \subset \bar{C}:=\bigcup_{N=0}^{\infty} \bigcap_{k=N}^{\infty} \bar{A}_{k}$, hence $P(\bar{C})=1$, and $C=$ $\bigcap_{N=0}^{\infty} \bigcup_{k=N}^{\infty} A_{k}$ is the event " $\left(A_{k}\right)$ infinitely often", i.e. \bar{C} is the event " $\left(A_{k}\right)$ finitely often". From pairwise independence of random variables $\left(\lambda_{k}(\omega)\right)$ follows pairwise independence of events $\left(A_{k}\right)$. Therefore, by refined Second BorelCantelli Lemma ([13, p.84])

$$
\sum_{k=0}^{+\infty}\left(1-F_{k}\left(\ln \left|f_{k}\right| /(-\rho+\varepsilon)\right)\right)=\sum_{k=0}^{+\infty} P\left(A_{k}\right)<+\infty
$$

ii) If $0 \geq \sigma(\omega, f) \geq \rho \in(-\infty, 0]$ a.s., then instead of (11) we obtain

$$
\begin{gathered}
(\exists B, P(B)=1)(\forall \omega \in B)(\forall \varepsilon>0)\left(\exists k^{*}(\omega) \in \mathbb{N}\right)\left(\forall k \geq k^{*}(\omega)\right): \\
\lambda_{k}(\omega)>\ln \left|f_{k}\right| /(-\rho+\varepsilon) .
\end{gathered}
$$

Therefore, for $A_{k}:=\left\{\omega: \lambda_{k}(\omega) \leq \ln \left|f_{k}\right| /(-\rho+\varepsilon)\right\}$ by the refined Second Borel-Cantelli lemma we obtain again

$$
\sum_{k=0}^{+\infty} F_{k}\left(\ln \left|f_{k}\right| /(-\rho+\varepsilon)\right)=\sum_{k=0}^{+\infty} P\left(A_{k}\right)<+\infty
$$

This completes the proof of Theorem 7.

Remark 8. If $\sigma(f, \omega)>\rho \in[0,+\infty)$ a.s., then from (3) by definition of lim we have $(\forall \omega \in B)\left(\exists \varepsilon^{*}=\varepsilon^{*}(\omega)>0\right)\left(\exists k^{*}(\omega) \in \mathbb{N}\right)\left(\forall k \geqslant k^{*}(\omega)\right): \quad \lambda_{k}(\omega)<$ $\ln \left|f_{k}\right| /-\left(\rho+\varepsilon^{*}\right)$, and similarly as in proof of $\left.\mathbf{i}\right)$ we obtain

$$
\sum_{k=0}^{+\infty}\left(1-F_{k}\left(-\ln \left|f_{k}\right| / \rho\right)\right)<+\infty
$$

in the case $\rho>0$ and in the case $\rho=0$ one has

$$
\sum_{k=0}^{+\infty}\left(1-F_{k}(+0)\right)<+\infty
$$

i.e., in particular, $\lim _{k \rightarrow+\infty} F_{k}(+0)=1$. Namely, if $\underset{k \rightarrow+\infty}{\lim } F_{k}(+0)<1$, then $\sigma(f, \omega) \leq 0$ a.s.

Theorem 9. Let $\Lambda=\left(\lambda_{k}(\omega)\right)$ be a sequence of random variables with distribution functions $F_{k}(x):=P\left\{\omega: \lambda_{k}(\omega)<x\right\}, x \in \mathbb{R}, k \geq 0$, and $f \in \mathcal{D}(\Lambda)$. The following assertions hold:
i) If there exist $\rho \in(0,+\infty)$ and a sequence $\left(\varepsilon_{k}\right)$ such that $\varepsilon_{k} \rightarrow+0(k \rightarrow$ $+\infty)$ and $\sum_{k=0}^{+\infty}\left(1-F_{k}\left(\frac{\ln \left|f_{k}\right|}{-\rho+\varepsilon_{k}}\right)\right)<+\infty$, then $\sigma(f, \omega) \geq \rho$ a.s.
ii) If there exist $\rho \in(-\infty, 0]$ and a sequence $\left(\varepsilon_{k}\right)$ such that $\varepsilon_{k} \rightarrow+0$ $(k \rightarrow+\infty)$ and $\sum_{k=0}^{+\infty} F_{k}\left(\frac{\ln \left|f_{k}\right|}{-\rho+\varepsilon_{k}}\right)<+\infty$, then $\sigma(f, \omega) \geq \rho$ a.s.

Proof of Theorem 9. i) We note $1-F_{k}\left(\ln \left|f_{k}\right| /\left(-\rho+\varepsilon_{k}\right)\right)=P\left(A_{k}\right)$, where

$$
A_{k}:=\left\{\omega: \lambda_{k}(\omega) \geq \ln \left|f_{k}\right| /\left(-\rho+\varepsilon_{k}\right)\right\} .
$$

Therefore, from condition one has $\sum_{k=0}^{+\infty} P\left(A_{k}\right)<\infty$. Thus, by the first part of Borel-Cantelli Lemma $P(\bar{C})=1, C:=\bigcap_{N=0}^{\infty} \bigcup_{k=N}^{\infty} A_{k}$. Since, $\bar{C}=$ $\bigcup_{N=0}^{\infty} \bigcap_{k=N}^{\infty} \bar{A}_{k}$, then for all $\omega \in \bar{C}$ there exists $k=k^{*}(\omega)$ such that $\omega \in \bar{A}_{k}$ and $-\rho+\varepsilon_{k}<0$ for all $k \geq k^{*}(\omega)$. Here, $\left(\forall k \geq k^{*}(\omega)\right): \lambda_{k}(\omega)<\frac{\ln \left|f_{k}\right|}{-\rho+\varepsilon_{k}}$. Using $\frac{-\ln \left|f_{k}\right|}{\lambda_{k}(\omega)}>\rho-\varepsilon_{k}$, we get

$$
\begin{equation*}
\sigma(f, \omega)=\underline{\lim }_{k \rightarrow+\infty} \frac{-\ln \left|f_{k}\right|}{\lambda_{k}(\omega)} \geq \underline{\lim }_{k \rightarrow+\infty}\left(\rho-\varepsilon_{k}\right)=\rho \quad \text { a.s. } \tag{12}
\end{equation*}
$$

ii) By the condition $\sum_{k=0}^{+\infty} P\left(A_{k}\right)<+\infty$, where

$$
A_{k}:=\left\{\omega: \lambda_{k}(\omega)<\ln \left|f_{k}\right| /\left(-\rho+\varepsilon_{k}\right)\right\} .
$$

Since, by the first part of Borel-Cantelli Lemma

$$
P(\bar{C})=1, \quad C:=\bigcap_{N=0}^{\infty} \bigcup_{k=N}^{\infty} A_{k} .
$$

Where, as above for every $\omega \in \bar{C}=\bigcup_{N=0}^{\infty} \bigcap_{k=N}^{\infty} \bar{A}_{k}$ there exists $k=k^{*}(\omega)$ such that $\omega \in \bar{A}_{k}$ and $-\rho+\varepsilon_{k}>0$ for all $k \geq k^{*}(\omega)$, such hat, $\left(\forall k \geq k^{*}(\omega)\right): \lambda_{k}(\omega) \geq$ $\frac{\ln \left|f_{k}\right|}{-\rho+\varepsilon_{k}}$. Hence, $\frac{-\ln \left|f_{k}\right|}{\lambda_{k}(\omega)}>\rho-\varepsilon_{k}$ and, therefore, we have again the "chain" of relations (12).

The proof of Theorem 9 is complete.

3. Some Corollaries

Corollary 10. Let $f \in \mathcal{D}(\Lambda)$ and $\Lambda=\left(\lambda_{k}(\omega)\right)$ be a sequence of pairwise independent random variables with distribution functions $F_{k}(x), k \geq 0$. If $\underset{k \rightarrow+\infty}{\lim _{k}} F_{k}(+0)<1$ and $f_{k} \rightarrow 0(k \rightarrow+\infty)$, then $\sigma(f, \omega)=0$ a.s.

Proof of Corollary 10. By Remark $8, \sigma(f, \omega) \leq 0$ a.s. It is remains to prove that $\sigma(f, \omega) \geq 0$ a.s. Indeed, $\lambda_{k}(\omega) \geq 0$, therefore $F_{k}(0)=P\left\{\omega: \lambda_{k}(\omega)<0\right\}=$ 0 . Hence, $\sum_{k=k_{0}}^{+\infty} F_{k}\left(\ln \left|f_{k}\right| / \varepsilon_{k}\right)<+\infty$ because $\ln \left|f_{k}\right| / \varepsilon_{k}<0\left(k \geq k_{0}\right)$. Thus, by Theorem 9 ii), $\sigma(f, \omega) \geq 0$ a.s.

Corollary 10 implies immediately the statement of Corollary 11.

Corollary 11. Let $f \in \mathcal{D}(\Lambda)$ and $\Lambda=\left(\lambda_{k}(\omega)\right)$ be a sequence of pairwise independent random variables with distribution functions $F_{k}(x), k \geq 0$. If there exists a positive random variable $a(\omega)$ such that $(\forall x \geq 0)\left(\forall k \in \mathbb{Z}_{+}\right)$: $F_{k}(x) \leq F_{a}(x):=P\{\omega: a(\omega)<x\}$ and $F_{a}(+0)<1$ and $f_{k} \rightarrow 0(k \rightarrow+\infty)$, then $\sigma(f, \omega)=0$ a.s.

Corollary 12. Let $f \in \mathcal{D}(\Lambda)$ and $\Lambda=\left(\lambda_{k}(\omega)\right)$ be a sequence of random variables with distribution functions $F_{k}(x), k \geq 0$. If $f_{k} \rightarrow 0(k \rightarrow+\infty)$ and there exist a positive random variable $b(\omega)$ and $\rho>0$ such that $(\forall x \geq 0)(\forall k \in$ $\left.\mathbb{Z}_{+}\right): F_{k}(x) \geq F_{b}(x):=P\{\omega: b(\omega)<x\}, \int_{0}^{+\infty} n_{\mu}(t \rho) d F_{b}(t)<+\infty$, where $n_{\mu}(t)=\sum_{\mu_{k} \leq t} 1$ is the counting function of a sequence $\mu_{k}=-\ln \left|f_{k}\right|$, then $\sigma(f, \omega) \geq \rho$ a.s.

Proof of Corollary 12. We remark that

$$
\begin{aligned}
\sum_{k=k_{0}}^{n}\left(1-F_{k}\left(\frac{\ln \left|f_{k}\right|}{-\rho+\varepsilon_{k}}\right)\right) & \leq \int_{\mu_{k_{0}}}^{\mu_{n}}\left(1-F_{k}(t / \rho)\right) d n_{\mu}(t) \\
& \leq \int_{\mu_{k_{0}}}^{\mu_{n}}\left(1-F_{b}(t / \rho)\right) d n_{\mu}(t)+O(1) \\
& =\int_{\mu_{k_{0}} / \rho}^{\mu_{n} / \rho} n_{\mu}(t \rho) d F_{b}(t)+O(1)
\end{aligned}
$$

$(n \rightarrow+\infty)$, because $-\ln \left|f_{k}\right|>0\left(k \geq k_{0}\right)$ and $\rho-\varepsilon_{k}<\rho$ for all $k \geq 0$. Therefore, the series $\sum_{k=k_{0}}^{+\infty}\left(1-F_{k}\left(\frac{\ln \left|f_{k}\right|}{\left.-\rho+\varepsilon_{k}\right)}\right)\right)$ converges. Hence by Theorem 9 ii) we complete the proof.

Corollary 13. Let $\Lambda=\left(\lambda_{k}(\omega)\right)$ be a increasing (a.s.) sequence of pairwise independent random variables and $f \in \mathcal{D}(\Lambda)$. If $F_{0}(+0)<1$, where F_{0} is distribution function of $\lambda_{0}(\omega)$, and $f_{k} \rightarrow 0(k \rightarrow+\infty)$, then $\sigma(f, \omega)=0$ a.s.

Proof of Corollary 13. We remark that $F_{k+1}(x) \leq F_{k}(x)$, because $\lambda_{k}(\omega) \leq$ $\lambda_{k+1}(\omega)(k \geq 0)$ a.s. Therefore, by Corollary 11 we obtain the conclusion of Corollary 13.

References

[1] S. Mandelbrojt, Séries de Dirichlet: Principes et Méthodes, GauthierVillars, Paris (1969).
[2] O.M. Mulyava, On the convergence abscissa of a Dirichlet series, Mat. Stud., 9, No 2 (1998), 171-176 (in Ukrainian).
[3] O.Yu Zadorozhna, O.B. Skaskiv, Elementary remarks on the abscissas of the convergence of Laplace-Stieltjes integrals, Bukovyn. Mat. Zh., 1, No 3-4 (2013), 45-50 (in Ukrainian).
[4] J.-P. Kahane, Some Random Series of Functions, 2nd Ed., Cambridge Univ. Press, Cambridge (1985).
[5] Fanji Tian, Dao-chun Sun, Jia-rong Yu, Sur les séries aléatoires de Dirichlet, C. R. Acad. Sci. Paris, 326 (1998), 427-431.
[6] Fanji Tian, Growth of random Dirichlet series, Acta Math. Sci., 20, No 3 (2000), 390-396.
[7] H. Hedenmalm, Topics in the theory of Dirichlet series, Visn. Kharkiv. Un-tu. Ser. Mat., Prykl. Mat., Mekh., No 475 (2000), 195-203.
[8] P.V. Filevych, On the relations between the abscissa of convergence and the abscissa of absolute convergence of random Dirichlet series, Mat. Stud., 20, No 1 (2003), 33-39.
[9] X. Ding, Y. Xiao, Natural boundary of random Dirichlet series, Ukr. Mat. Zh., 58, No 7 (2006), 997-1005.
[10] O.B. Skaskiv, L.O. Shapovalovska On the abscissas convergence random Dirichlet series, Bukovyn. Mat. Zh., 3, No 1 (2015), 110-114 (in Ukrainian).
[11] H.J. Godwin, On generalizations of Tchebycheff's inequality, J. Amer Stat. Assoc., 50 (1955), 923-945.
[12] I.R. Savage, Probability inequalities of the Tchebycheff type, J. of Research National Bureau of Standarts, 65B, No 3 (1961), 211-222.
[13] P. Billingsley, Probability and Measure, Wiley, New York (1986).
[14] C.D. Ryll-Nardzewski, Blackwell's conjecture on power series with random coefficients, Studia Math., 13 (1953), 30-36.
[15] L. Arnold, Über die Konverge einer zufälligen Potenzreihe, J. Reine Angew. Math., 222 (1966), 79-112.
[16] L. Arnold, Konvergenzprobleme bei zufälligen Potenzreihen mit Lücken, Math. Zeitschr., 92 (1966), 356-365.
[17] K. Roters, Convergence of random power series with pairwise independent Banach-space-valued coefficients, Statistics and Probability Letters, 18 (1993), 121-123.
[18] L.O. Shapovalovska, O.B. Skaskiv, On the radius of convergence of random gap power series, Int. Journal of Math. Analysis, 9, No 38 (2015), 18891893.
[19] Ph. Holgate, Some power series with random gaps, Adv. Appl. Prob., 21 (1989), 708-710.

