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Abstract: For the Dirichlet series of the form F(z,w) =
= 302 frw)eM @) (2 € C, w € Q) with pairwise independent real expo-
nents (A;(w)) on probability space (€2,.4, P) an estimates of abscissas conver-
gence and absolutely convergence are established.
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1. Introduction

Let (2,4, P) be a probability space, A = ()\k(w))zzf) and f = (fk(w));rj)
sequences of positive and complex-valued random variables on it, respectively.

Let D be the class of formal random Dirichlet series of the form
f2) = flz,w) =)

Let o.(f,w) and o(f,w) be the abscissa of convergence and absolute con-
vergence of this series for fixed w € ), respectively. The simple modification
of [1]-[3] one has that for the Dirichlet series f € D for fixed w € € such that
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A (w) = +oo (k — +00)

= Sl
J(fvw) < Uc(fvw) < 040(&1) T k:l?oo )\k(w)
<o(f,w) + 7w, A), (1)
or in the case —In|fx(w)| = 400 (kK — +00)

(1= Boe(f.w) < (1= Wao(w) < o), h = hiw,), 2)

where 7(w, A) 1= limp_0 )\lkn—(fj), h(w, f) := limy_s00 %

Also,

oo(f,w) = o(f,w) = ao(w) (3)

for fixed w € Q such that 7(w) = 0 or Ink/(—In|fx(w)|) = +0 (k — +0o0).
Remark, that from condition 7(w) < 400 we get Ay(w) — 400 (B — +00).
In the case o.(f,w) > 0 the series of the form ;% fx(w) is convergent, thus
—In|frp(w)| = 400 (k = +00).

The following assertion is proved in [3, Corollary 5| (another version [2,
Theorem 1]) in the case of the deterministic Dirichlet series with sequence of
exponents that increase to infinity, i.e., fx(w) = fr € C (k > 0) and A\x(w) = Ag,
0 < A < Apg1 — +00 (0 <k — +00).

Proposition 1. Let f € D. Then o,(f,w) < o.(f,w) < ap(w) (Vw € Q),
and

ga(f,w) 2 y(Ww)ao(w) = 6(w) = y(w)oe(f,w) = 6(w) (4)

for arbitrary real random variables v, and for all w € Q such that y(w) > 0
and

+oo —y(w —o(w w
Zk:o‘f’“(ww W) =Wk (@) 4 5. (5)

Remark 2. Condition (5) implies, that (y(w)—1)In |fi(w)|+6(w) Ak (w) —
+o0o (k — +00) for such w. But, in general, from this condition don’t follows
neither Ag(w) — +o0 nor In | fi(w)| = 0o (kK — +00).

Proof of Proposition 1. It is obvious that o(f,w) < o.(f,w).

We prove now that o.(f,w) < ap(w). Indeed, assume first that op(w) # oo
and put z9 = ag(w) + &, where ¢ > 0 is arbitrary. Then, |fy(w)]|e* M) =
exp{ Ak (w)(In|fr(w)|/ A (w) + z)}. But by definition of ag(w) there exists a
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sequence k; — 400 (j — +00) such that In|fy(w)|/Ar(w) > —(ag(w) + €/2)
(k=kj, 7> 1). Thus, In|fp(w)|/A(w) + 20 > /2 (k=kj, j>1), and

| fro(w)|e™M @) > M2 > 1 (k= &y, j > 1),

therefore o.(f,w) < ap(w) + &, but € > 0 is arbitrary.

The case ap(w) = +oo is trivial. In the case ap(w) = —oco for every E > 0
and for some sequence k; — +o0o (j — 400) by definition ap(w) we obtain
In|fy(w)|/Ax > E (k = kj, j > 1). Therefore |fy(w)|exp{—EX;} > 1 (k =
kj, j > 1), i.e. the Dirichlet series diverges at the point z = —F, but £ > 0 is
arbitrary. Thus, o, = —o0.

Let now zg = y(w)(ap(w) — €) — §(w) for arbitrary € > 0. Then,

(w)
‘fk(w),ewo/\k(w):,fk(w)llf*Y(w)676(w)/\k(c~7)(\f,C(w)‘e(ao(w)fs)/\k(w))7 )

By definition of ap(w), we obtain ap(w) < %fj()w) +¢/2 for k > ko(w), and

thus | fi,(w)|el@ @)= < exp{—Ape/2} <1 (k > ko(w)). Hence by (6) one

has | fi(w)]e®M @) < | fi(w)|! 7@ e=3@A ) and by condition (5) we obtain

o(f,w) > xo=y(w)(ag(w) —e) — 6(w). But, € > 0 is arbitrary. O
From Proposition 1 it simply follows such a statement.

Proposition 3. Let f € D. Then equalities (3) hold for all w €  such,
that

Ink = o(ln | fx(w)]) (k — +00). (7)

Remark 4. If the sequences A and f such that (| fx(w)|e™** (w)) are the se-
quences of independent random variables for every x € R, then by Kolmogorov’s
Zero-One Law ([4]) random variable o(f,w) is almost surely (a.s.) constant.
That is, o(f,w) = o € [—00,+00] a.s. In the book [4] it is written when A

monotonic increasing to infinity sequence \i(w) = A;. The same we get when

—In|fj(w)|
( )\k(fu)
or h(w,f) = 0. It follows from Proposition 3 and equalities (3).

) is the sequence of independent random variables, and 7(w,A) = 0

In the papers [5]-[10] considered question about abscissas of convergence
random Dirichlet series from the class D in case, when Ay = (\g) is increasing
sequence of positive numbers, i.e., 0 = \g < Ay < A1 — +00 (1 < k — +00)
and 7(w,A) = 7(A) < +00.

We have such elementary assertion.



232 A.O. Kuryliak, O.B. Skaskiv, N.Yu. Stasiv

Proposition 5. Let f € D(A) be a Dirichlet series of the form f(z) =
f(z,w) = 32028 ap Zy(w)e* @) where (Z; (w)) is a sequence of random complex-
valued variables.

19 If the condition 7(w,A) = 0 holds and

—In|Z
L —InlZ(w)

=0 a.s. 8
k—+o00 )\k(w) . ( )

then o.(f,w) = o(f,w) = aj(w) == k-h_T —Inlag|/Akx(w) a.s.

20, If ap(w) = +o00 and the conditions 7(w,A) < +o0,

—In|Z
k—+o00 )\k(w)

hold, then o(f,w) = 400 a.s.

We obtain Proposition 5 immediately from inequalities (1).

In the paper [6], it is considered only 1° for the case of the Dirichlet series
f € D(A) of the form f(z) = f(z,w) = Y120 ap Zk(w)e*w.

From Proposition 5, in particular, they follow Theorem 1 (when ag :=
afy = +00) and Theorem 3 (when oy = 0) from [6], which are proved under
such condition for expectation:

(3a>0,8>0): sup{E|Z|* E|Z:|": k> 0} < +oc. (10)

By the Bienayme-Chebyshev inequality ([11, 12]) and the Borel-Cantelli Lemma
([4], also about refined Second Borel-Cantelli lemma see [13]) from condition
(10) it easy follows, that a.s. for all enough large k inequalities k=7 < |Z(w)| <
kY with v = max{2/«a,2/4} hold, and if 7(A) = 0, then and condition (8).
Similarly, if 7(A) < oo, then from condition (33 > 0): sup{E|Z;|%: k >
0} < 400 follows condition (9).

It should be noted, that condition (8) follows from such condition (see [10])
on sequence of distribution functions of random variables (|Zx(w)|),

(Ve > 0): 307 (1= Fp(e™) + Fi(e™™)) < +oo,

where Fj¥(x) := P{w: |Zy(w)| < «}. In particular, from this condition it follows
im0 F(+0) = 0,

In the papers [7]-[9] in the case of independent random variables f = (fx),
besides, generalized on class D(A) assertion of known Blackwell’s conjecture on
power series with random coefficients, proved in [14] (see also [4]).
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In the general case, for Dirichlet series from the class D(Ay) in [10] (see
also similar results for random gap power series in [15]-[18]) two theorems are
proved. In particular, we find ([10]) the following theorem.

Theorem 6 ([10]). Let f € D(Ay) and £ = (fx(w)) be a sequence such
that (| fi(w)|) is the sequence of pairwise independent random variables with
functions of distribution Fy(z) := P{w : |fr(w)] < z}, x € R, k > 0. The
following assertions are true:

a) Ifo(w) = o(f,w) > p € (—o0,+00) a.s., then
(Ve > 0): S020(1 — Fp((e™” 4+ )™)) < o0.

b) If there exists a sequence (0g): 0p > —oo (k> 0), lim § = e ?, p €
k—+o00

(—00, +00], and 3 125(1 — Fk(ég"“)) = 400, then o(f,w) < p a.s.

Another theorem in [10] contains the converse statements.

In this paper we prove similar theorems for Dirichlet series with random
exponents (Ax(w)) and deterministic coefficients £ = (fx), fr € C, k > 0. Note
that in paper [19] a power series of the form > /% »X*) is studied, where

(Xk(w)) is a strictly increasing integer-valued stochastic process.

2. The Main Results: Series with Random Exponents

In this section we assume that fr(w) = fr € C (kK > 0) and condition Ink =
o(In|fx|]) (k— 400) holds, that condition (7) is satisfied for all w € Q, there-
fore by Proposition 3 equalities (3) for every w € Q hold.

Theorem 7. Let f € D(A) and A = (M\(w)) be a sequence of pairwise
independent random variables with distribution functions Fy(z) = P{ w :
Me(w) <z}, x € R, k> 0. The following assertions hold:

i) If o(w) = o(f,w) > p € (0,400) a.s. then
(Ve € (0,p)): 3325 (1= Fi(ln|fil/(=p +¢))) < 0.
ii) If 0 > o(w) = o(f,w) > p € (—00,0] a.s. then
(Ve > 0): 3455 Fi(n| fil /(=p + ) < oo,

Proof of Theorem 7. i) If o(f,w) > p € (0,+00) a.s., then from (3) we have
(3Be€ A,P(B)=1)(Vw e B): lim —In|fx|/Ax(w) > p, and by definition of

k—+o00



234 A.O. Kuryliak, O.B. Skaskiv, N.Yu. Stasiv

]‘i_m7
(Vw € B)(Ve € (0,p))(Fk" (w) € N)(Vk = k™ (w)):
Ak(w) <In|fg|/(=p+e). (11)
We denote

Ap = {w: A (w) > 7ln|fk| }
(=p+e)
It is clear, that B C C := UN—oMNren Ak, hence P(C) = 1, and C =
Ni—o Urex Ak is the event “(Ay) infinitely often”, i.e. C is the event “(Ay)
finitely often”. From pairwise independence of random variables (A;(w)) fol-

lows pairwise independence of events (Ay). Therefore, by refined Second Borel-
Cantelli Lemma ([13, p.84])

S (1= Bl fl/(—p+2))) = 30,7 PAg) < .

k
ii) If 0 > o(w, f) > p € (—o0,0] a.s., then instead of (11) we obtain
(3B,P(B) =1)(Vw € B)(Ve > 0)(Fk*(w) € N)(Vk > k™ (w)):
Ak(w) > In | fil/(=p +¢).

Therefore, for Ay := {w: Ap(w) < ln]fk.\/(—p—l—z-:)} by the refined Second
Borel-Cantelli lemma we obtain again

+00 +0oo
Do Eemlfil/(mp+e) = P(A) < +oc.
This completes the proof of Theorem 7. 0

Remark 8. If o(f,w) > p € [0,+00) a.s., then from (3) by definition of
lim we have (Vw € B)(3e* = £*(w) > 0)(3k*(w) € N)(Vk > k" (w)): Ap(w) <
In |fx|/—(p+ €*), and similarly as in proof of i) we obtain

“+o00

> (1= Fu(=In[fil/p)) < +o0

k=0
in the case p > 0 and in the case p = 0 one has

—+00

> (1= Fi(+0)) < oo,
k=0
i.e., in particular, limy_, o Fi(+0) = 1. Namely, if lim Fj(4+0) < 1, then
k—4o00

o(f,w) <0 as.
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Theorem 9. Let A = ()\k(w)) be a sequence of random variables with
distribution functions Fy(z) == P{ w : \(w) < z}, z € R, k > 0, and
f € D(A). The following assertions hold:

i) If there exist p € (0,+00) and a sequence () such that e, — +0 (k —

+00) and 3% (1 — Fk(%)) < 400, then o(f,w) > p a.s.

ii) If there exist p € (—o00,0] and a sequence (ey) such that g, — +0
(k — +00) and 320 Fk(%) < +o00, then o(f,w) > p a.s.

Proof of Theorem 9. i) We note 1 — Fi,(In|fx|/(—p + €k)) = P(Ag), where
A = {w: Ae(w) > In | fil /(=p +ep) }-

Therefore, from condition one has > /% P(A;) < oco. Thus, by the first
part of Borel-Cantelli Lemma P(C) = 1, C := N¥_oUrey Ak. Since, C =
UN=oNre v Ak, then for all w € C there exists k = k*(w) such that w € Ay

and —p+ e, < 0 for all k > k*(w). Here, (Vk > k*(w)): Ap(w) < 2L Using
—In|fy]

() > p— &g, we get

—1
o(fow) = tm 2l oy () =p as (12)
k—4o00 )\k(w) k—+oc0

ii) By the condition > %% P(Ay) < 400, where

Ap = {w: Me(w) <In|fil/(—p +ex)}

Since, by the first part of Borel-Cantelli Lemma

P(C)=1, C:= ﬁ GAk.

N=0k=N

Where, as above for every w € C = | JY_oNre v Ak there exists k& = k*(w) such
that w € Ay and —p+ep, > 0 for all £ > k*(w), such hat, (Vk > k*(w)): Ap(w) >
%. Hence, _Al:(g)’“‘ > p — € and, therefore, we have again the “chain” of
relations (12).

The proof of Theorem 9 is complete. O
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3. Some Corollaries

Corollary 10. Let f € D(A) and A = (A\;(w)) be a sequence of pairwise
independent random variables with distribution functions Fy(x), k > 0. If
lim Fi(+0) <1 and fr — 0 (k — +00), then o(f,w) =0 a.s.

k——+o00

Proof of Corollary 10. By Remark 8, o(f,w) < 0 a.s. It is remains to prove
that o(f,w) > 0 a.s. Indeed, A\g(w) > 0, therefore Fj(0) = P{w: A\p(w) <0} =
0. Hence, Zgﬁ‘,’ﬁo Fi(In|fx|/ex) < +oo because In |fi|/ex, < 0 (k > ko). Thus,
by Theorem 9 ii), o(f,w) > 0 a.s. O

Corollary 10 implies immediately the statement of Corollary 11.

Corollary 11. Let f € D(A) and A = (A\;(w)) be a sequence of pairwise
independent random variables with distribution functions Fy(x), k > 0. If
there exists a positive random variable a(w) such that (Vx > 0)(Vk € Z4):
Fi(z) < Fy(x) = P{w: a(w) < z} and F,(+0) < 1 and f — 0 (k — +00),
then o(f,w) =0 a.s.

Corollary 12. Let f € D(A) and A = (A\i(w)) be a sequence of random
variables with distribution functions Fy(x), k > 0. If f, — 0 (k — +00) and
there exist a positive random Varlable b(w) and P > 0 such that (Vz > 0)(Vk €
Zy): Fp(z) > Fp(x) := P{w: b(w) < z}, f nu(tp) dFy(t) < +oo, where
nu(t) = >, <1 is the counting functwn of a sequence p = —1In|fy|, then
o(f,w) > p a.s.

Proof of Corollary 12. We remark that

> (- Fk(M» < /”" (1= F(t/p))dn,(t)
I

—ptEk ko

< / " (1= Fy(t/p)dny(t) + O(1)

Hko
pn/p

= [ natto) arite) + o),
Bkg /P

(n — 400), because —1In |[fx] > 0 (k > ko) and p — e, < p for all £ > 0.

Therefore, the series Z,jzozo (1- Fk(Jn|f k| )) converges. Hence by Theorem 9

ptek)
ii) we complete the proof. O
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Corollary 13. Let A = (Aix(w)) be a increasing (a.s.) sequence of pairwise

independent random variables and f € D(A). If Fy(+0) < 1, where Fy is
distribution function of A\o(w), and fr — 0 (k — +00), then o(f,w) =0 a.s.

Proof of Corollary 13. We remark that Fj11(z) < Fj(x), because A\g(w) <

Ai+1(w) (kK > 0) a.s. Therefore, by Corollary 11 we obtain the conclusion of
Corollary 13. 0
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