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Abstract. The convergence of the Zassenhaus formula is proven under an
appropriate condition as well as for other exponential operators such as the
Baker-Campbell-Hausdorff formula.

1. Introduction

In a previous paper [1], new systematic approximants have been proposed for
exponential functions, operators and inner derivation δH. Remainders of systematic
approximants have been evaluated explicitly. In particular, the following n — m
approximant fn m(A, B) of the exponential operator exp(A -f B) is useful in quantum
physics [1]:

fntm(A,B) = (eA/neB}neC2/n2... en~mCm)n. (1.1)

Here the coefficients {Cn} are polynomials in the operators A and B, which appear
in the Zassenhaus formula [1-3]. It has been proven in [1] that limfnrn(A,B)

Ji-» oo

= Qxp(A + B) for any set of operators A and B in a Banach algebra. The case m = 1
yields Trotter's formula [4] Qxp(A + B)= lim [exp(A/ri) Qxp(B/n)J\ which has been

n-* oo

the keystone of Monte Carlo simulations of quantum spin systems [5-7].
The main purpose of the present paper is to prove that

lim fnm(A,B) = exp(A + B) (1.2)

for any fixed value of n, under an appropriate condition. The case n= 1 yields the
Zassenhaus formula. That is, the proof of (1.2) is essentially reduced to that of the
convergence of the Zassenhaus formula. The latter is given in Section 2, and
Equation (1.2) is proven in Section 3. The convergence of the Baker-Campbell-
Hausdorff formula and related exponential operators is investigated in
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Section 4. These formulae have been used frequently in studying critical phenomena
of quantum systems on the basis of the renormalization group approach [8-11].

2. The Zassenhaus Formula

The Zassenhaus formula is the following formal expansion (i.e., an infinite product
of exponential operators):

eλ(A + B)_eλAeλBeλ
2C2eλ

3C3 /2.1)

where {Cn} are defined recursively1 as

52 -λB -λA λ(A+B}} !

0 f — Ί7.r - — 1Ί) _ 1 A I I 4 _L n\\ I -•- r- -̂, A . * τ-»-ι /r\ Q\

and in general

n ... . (2.4)
nl [dλn \λ=()

We have the following Theorem.

Theorem 1. For any set of operators A and B in a Banach algebra,

||*AW+^-^^...eλ^ (2.5)

where δn(x) and I(x) are defined in (2.15) and (2.7), respectively, and lim δn(x) = 0 for

(2.6)
M->00

Proof. First we prove the convergence of the series defined by

I(λ)= ΣλlCJ; H C J I ^ M I I + H B I I , (2.7)
n=ί

under the above condition. For this, note that

||C2 | |+ ... +λn~1\\Cn_ιn} . (2.8)
jλ = 0

In particular, we have

=a2(\\A\\ + ||5||)2;
Q

(2.9)

1 Equation (3.17) in [1] should read (2.3) in the present paper
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and

(2.10)
a1=2.

Thus, in general we obtain

where an is defined recursively by

1
(2.12)

x = 0

for n^2.
One of the key points in our proof is to notice the following relation

exp(α tx + α 2 x 2 + ... -\-anx
n) = 1 + α1x + 2(α2x

2-f ... +anx
n)-}-0(xn+1). (2.13)

This is easily proven from (2.12) by mathematical induction. Now, we introduce a
function fn(x) defined by

2+ ... +αnx". (2.14)

Then fn(x) satisfies the relations

exp/π(x)=l-α 1x + 2/II(
(2.15)

n(x) = 0(xn+i}^0 and <5W(0) = 0.

Clearly, /π(0) = 0 and fn(x) is an increasing functional series for x^O, because
all an > 0. Furthermore, it is easily seen from Figure 1 that fn(x) is bounded from
above as

(x), (2.16)

in the region 0:gx:gln2— -, where f(x) can be defined by a lower branch (/(O) = 0)

of the solution

exp/(x) = l-α 1x + 2/(x). (2.17)

Thus, we arrive at the result that

lim/B(x) = /„(*) (2.18)
n~* oo

exists. On the other hand, from the definition of an,f^(x) satisfies the equation

exp/G O(x)=l-α1x + 2/00(x); /00(0) = 0. (2.19)

Therefore, we obtain that /^M^/M- That is,

lim<5n(x) = 0 for 0 ^ x ^ l n 2 - . (2.20)
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Fig. 1. A figure illustrating how to determine the functions fn(x) and f(x) and to show the dependence of
/„(*) upon δn(x)

This relation yields the result that

I(λ)£\λ\(\\A\\ + \\B\\)+ Σ λnan(\\A\\ + \\B\\)n (2.21)

and that the right hand side of (2.21) converges for \λ\(\\A\\ + ||£||)^ln2- -. We

have also /(x):gln2 in the above region of x.
Next, we discuss the convergence of (2.1) with the use of the above result on I(λ)

and δn(x). Putting

eλAeλB...eλnc-\\ , (2.22)

we have

)^ \\eλAeλB ... eλnCn\\ Cn ... e~λBe~λA-

(2.23)

Here

P(λ)=\\ 0>n(eλ(A+B)e-λnC«...e-λBe-λA)\\ (2.24)

with the use of a projection operator &n introduced in [/], which is defined [/] by

(2.25)
k = 0
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Now, we have

ak\λ\k(\\A\\ + \\B\\)
=ι

= &nίl-a1Λ + 2fn(Λ) + δn(Λf]=δn(Λ)9 (2.26)

for Λ <Πn2- - with A = \λ\(\\A\\ + \\B\\\ where we have used the relations (2.11) and

(2.15). Thus, we arrive finally at the inequality (2.5). Since δn(Λ) goes to zero for

/Ί<Πn2-- as rc^oo, we obtain (2.6) under the condition that \λ\(\\A\\ 4- \\B\\)

^In2 -- . This is only a sufficient condition for the convergence of (2.6). It is,

however, worthwhile to have proven explicitly the convergence of the Zassen-
haus formula for the first time.

Quite similarly, Theorem 1 is easily extended to the following set of operators
A19A29 ... Ap:

Theorem 2. For any set of operators {A.} in a Banach algebra,

lim eλAleλA2 . . . ̂  V2^ . . . e
λn€n = exp \λ f A] (2.27)

tt^oo [ j=ι \

p i
for \λ\ ̂  II^H :§ln2— -, where Cn are now defined by

7=1 2

(2.28)
o

and in general Cn is determined recursively by

Cn= —\—(e-
λn~lc»-ι...e~λ2C2e~λAp...e~λAίeλ(Aί + +Ap})\ . (2.29)

n\[dλn J A = 0

The proof of this theorem is quite analogous to that of Theorem 1.

3. Systematic Approximants Formula of Exponential Operators

As discussed in Section 1, the n — m approximant fn m(A, E) defined by (1.1) with the
coefficients {Cn} in (2.2)-(2.4), is very useful in quantum physics. In connection with
this, we have the following theorem.

Theorem 3. For any set of operators A and B in a Banach algebra,

1 (3.1)
for n'1 (\\A\\ + ||B||)gln2- -. Under this condition,

lim fatm(A,B) = e*+B. (3.2)
m-» co
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Proof. We put

I (3.3)

as in [/]. Then, we have

Pgn||0||[max(||0||, II^H)]""1^I-1, (3.4)

as was shown in [/], where

gf = exp -(^4 + B) and h = \_fnm(A,B)~\lln, (3.5)

and

Fm(λ) = ̂ >

m(Qxp[_2λ(\\A\\ + ||J5||) + /12||C2|| + ... +/lm | |Cm | |]). (3.6)

Using the result obtained in Section 2, we get

FJίλ)^δm[\λ\(\\A\\ + \\B\\) ] 9 (3.7)

for μ|(M|| + IIB||)gin2- -. On the other hand, we have

Γ m

||B||)exp (n-1) £ n~*||Ck |
L k = 2

;n-i)/m^(Miι + ||B||)|

(3.8)

for \λ\(\\A\\ + ||B||)gln2- -. Here we have used the upper bound of fm(x):fm(x)

rgln2, which has been proven in Section 2. Thus, we arrive finally at Theorem 3,
noting that lim <5m(x) = 0.

m—>• oo

Similarly we have the following theorem for more than two operators.

Theorem 4. For any set of operators {Aj} in a Banach algebra,

7 = 1
p \ / P \

~ * V \\A.\\ \QXΌ\n~1(2 — n) Y \\A.\\ , (3.9)

where fn m({A.}) is defined by



On the Convergence of Exponential Operators 199

and {Ck} are given by (2.28) and (2.29).

Forn'1 | Λ

(3.11)
m -» GO \ j = l /

The proof of this theorem is quite the same as that of Theorem 3.

4. The Baker-Campbell-Hausdorff Formula and Related Exponential Operators

The BCH formula takes the following form

eλAeλB = ez(λ) and

where [12, 13]

Z 1 = A + B,Z2=^[^JB],Z3 = i[Z2,B-^],Z4=^[[Z2,^],B]J (4.2a)

and in general

co co T f c + j Ί

. (4.2b)

We have the following theorem :

Theorem 5. The BCH formula converges, namely (4.1) converges for \λ\(\\A\\ -f | |J3||)
<ln2.

Proof. Clearly the following expansion

eλVβ - 1 + λ(A + B) + . . . = 1 + F(λ) (4.3)

converges for any set of bounded operators A and B in a Banach algebra. Then, Z(λ)
is given by

Z(A) = ln[l+F(l)]= £ A"ZB. (4.4)
n = 1

This is convergent when \\F(λ)\\ <1. This condition is satisfied if |/l|(||^4|| + ||B||)
<lnl

Similarly it is also useful to introduce the following expansion

eλ(A + B) = eλAeλBew(λ). Wψ)= Σ λnWn, (4.5)
n=2

where WK2 - C2 , P 3̂ - C3 , Pf4 - C4 with (CJ defined in (2.2), (2.3) and (2.4), and in
general

" " « «
ϊ l n Σ Σ Σ
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We obtain easily the following theorem:

Theorem 6. For any set of operators A and B in a Banach algebra, the expansion (4.5)
converges, at least, for

\λ\(\\A\\ +\\B\\) <^ln2.

The proof of this theorem is given in the same way as for Theorem 5.
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