
On the Convergence of Immune Algorithms
Vincenzo Cutello, Giuseppe Nicosia, Mario Romeo

Department of Mathematics and Computer Science
University of Catania

V.le A. Doria 6, 95125, Catania, Italy
Telephone: +39 095 738 –3074 Fax: +39 095 330094

Email: {cutello, nicosia, romeo} @dmi.unict.it

Pietro S. Oliveto
School of Computer Science
University of Birmingham

Edgbaston, Birmingham B15 2TT, U.K.
Email: P.S.Oliveto@cs.bham.ac.uk

Abstract— Immune Algorithms have been used widely and
successfully in many computational intelligence areas including
optimization. Given the large number of variants of each operator
of this class of algorithms, this paper presents a study of the
convergence properties of Immune Algorithms in general, con-
ducted by examining conditions which are sufficient to prove their
convergence to the global optimum of an optimization problem.
Furthermore problem independent upper bounds for the number
of generations required to guarantee that the solution is found
with a defined probability are derived in a similar manner as
performed previously, in literature, for genetic algorithms. Again
the independence of the function to be optimised leads to an
upper bound which is not of practical interest, confirming the
general idea that when deriving time bounds for Evolutionary
Algorithms the problem class to be optimised needs to be
considered.

I. INTRODUCTION

Evolutionary Algorithms (EAs) have been used widely in
many areas (e.g., numerical and combinatorial optimization,
machine learning, constraint satisfaction) since the seventies
and eighties [10]. Nevertheless, the study of their computa-
tional complexity is a fairly new field spawned in the early
nineties. By using the theory of Markov chains, various results
related to the convergence of EAs and various time bounds
for the first hitting times of simple EAs on pseudo-boolean
functions were given [9]. Building on this first block of theory,
recently the first combinatorial optimization problems with
practical applications have been tackled in evaluating the per-
formance of the (1+1)-EA. Among these problems particularly
worth of a mention are maximum matching [12], minimum
spanning tree [13], the NP-complete partition problem [11]
and the NP-hard subset sum problem [8]. For the last problem,
populations and crossover have also been considered.

In this paper we attempt a first general step in the theoretical
analysis of Immune Algorithms (IAs) [16], [4], [21], a class
of EAs inspired by the natural Immune System approach [1],
[2], [14]. The field of IAs is fairly new, although various
successful results have been achieved in different areas. As
done previously for other sub-classes of EAs, we analyse
the convergence properties of IAs. The two previous papers
regarding the convergence of IAs, are related to specific algo-
rithms which had previously proved to be useful in literature
such as MISA (Multi-objective Immune System Algorithm)
[17] and BCA (B-Cell Algorithm) [18]. Here, instead, we

will concentrate on examining general conditions which are
sufficient for proving the convergence of IAs, rather than
designing a specific proof for each algorithm, following the
consideration that the intensive elaboration of convergence
issues ”has finally led to simple proofs which do not require
Markov theory any more” [9]. In such a way only algorithms
that do not satisfy the given conditions need to be examined
with specific techniques concerning their convergence to the
global optimum.

In section 2 we introduce IAs and describe how they are
inspired by the immune system of vertebrates. In section 3
we introduce the concept of stochastic convergence, present
the general IA which will be considered in this research
paper and examine its convergence properties. In section 4 we
discuss bounds for the convergence in probability of the IA
in a similar manner as done previously for genetic algorithms
(GAs) [7], [6], [5] and compare the GA time bounds with the
ones obtained for the IA. As this is just a first step towards
the theoretical analysis of IAs, in the final section we discuss
ideas for future work.

II. IMMUNE ALGORITHMS

Immune Algorithms are randomized algorithms inspired by
immunology and by immune functions and principles observed
in nature [21].

The immune system of vertebrates, hence of humans also,
is composed of a large quantity of cells, molecules and organs
cooperating in the effort of keeping the organism in good
health by fighting diseases which may cause illness. The
immune cells considered in Artificial Immune Systems (AIS)
are lymphocytes, white blood cells whose major concern is to
fight antigens (Ags), molecules belonging to foreign agents
such as bacteria or viruses which have introduced themselves
in the organism.

The lymphocytes, B-cells and T-cells according to the
organ in which they develop, firstly need to recognise the
antigens. This task is performed using cell receptors called
TCRs for T-cells and BCRs or Antibodies (Abs) for B-cells.
Recognition occurs if the shapes of a cell receptor and that
of an antigen are approximately complementary. In this case
the lymphocyte recognising the antigen binds to it, hence
activating the immune response.

409

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

B-cells and T-cells are distinguished in different types
according to the kind of antigens they are able to recognise.
Immune cells do not only recognise perfectly matching anti-
gens but are also capable of recognising foreign agents within
a region of complementarity, the affinity threshold.

The immune response in fighting a disease begins by re-
producing the cells which are able to recognise and bind with
the antigens (clonal expansion). The clones then undergo high
mutation rates. This phenomenon has been given the name
hypermutation. The cells obtained through this process, having
the greater affinity with the antigen, live longer (i.e. have a
higher life time) so to be still in the organism in case a future
attack occurs (memory cells). While the cloning proliferation
rate is directly proportional to the affinity with the antigen, the
hypermutation rate is inversely proportional to such an affinity,
so that the nearer the cell is to antigen complementarity
the lower is the hypermutation rate. On the other hand if a
cell’s antigen affinity is very low, high hypermutation rates
are applied in hope to raise the affinity values quickly. This
process is called affinity maturation while the composition
of antigen recognition, clonal expansion and memory cell
creation, is called clonal selection.

Just like GAs have been inspired by the Darwinian theory of
evolution, IAs derive from the immune system principles [21].
Considering antigen recognition, the idea of imitating such
a process for solving pattern recognition problems is quite
straightforward, and it has proved successful [19], [4]. In a
similar manner, with the introduction of operators resembling
cloning expansion and memory cell creation, IAs for solv-
ing optimization problems have spawned. These algorithms
present a wide range of hypermutation operators inspired by
the concept of affinity maturation, from the Inversely Propor-
tional Hypermutation [16], [4], [15], derived directly from
the somatic process described above to the fitness function
independent hyperMacromutation operator [3].

Following strategies used in theoretical literature of EAs,
where only the mutation operator is determinant to estimate if
an EA visits the global optimum in finite time, in this paper
we consider a simple hypermutation operator to gather some
information about the convergence properties of IAs.

III. LIMIT BEHAVIOUR OF IMMUNE ALGORITHMS

A. Convergence measures of Evolutionary Algorithms

An EA is said to converge to the global optimum of a given
optimization problem if it can be assured that the algorithm
finds the solution in a finite number of steps and if such a
solution will be kept in the population afterwards.

Since the state transitions of an EA are of stochastic nature,
the deterministic concept of convergence cannot be used to
determine the time limit behaviour of this kind of algorithms.
Two commonly used measures of stochastic convergence are
complete convergence and convergence in mean [22] :

Definition Let X be a random variable and (Xt : t > 0) a
sequence of random variables. Then the sequence Xt is said
to converge completely to X, if for any ε > 0

lim
t→∞

t∑
i=0

P (|Xi −X| > ε) < ∞.

Definition Let X be a random variable and (Xt : t > 0) a
sequence of random variables. Then the sequence Xt is said
to converge in mean to X, if

lim
t→∞

E[|Xt −X|] = 0.

Now the following definitions for the convergence of an EA
can be given [9]:

Definition Let Xt : t ≥ 0 be the sequence of populations
generated by an EA and let Ft be the fitness value of the
best individual in the population at time step t. An EA is
said to converge completely to the global optimum f∗ of the
optimization problem defined by the function f : X → R if
the non-negative random sequence Dt = f∗ − Ft converges
completely to zero.

Definition Let Xt : t ≥ 0 be the sequence of populations
generated by an EA and let Ft be the fitness value of the
best individual in the population at time step t. An EA is
said to converge in mean to the global optimum f∗ of the
optimization problem defined by the function f : X → R if
the non-negative random sequence Dt = f∗ − Ft converges
in mean to zero.

B. The Immune Algorithm

The behaviour of a general IA per generation is described
in table I. A description of the most common variants of each
operator follows.

1) Cloning: The cloning operator generates a new pop-
ulation P (clo) of copies of the individuals in the current
population. Commonly used cloning operators are the static
cloning operator [16], which simply clones each B cell dup
times producing an intermediate population P (clo) of size
d × dup = Nc, and the proportional cloning operator (used
in the pattern recognition version of CLONALG [4]), which
clones B cells proportionally to their antigenic affinities. In
probabilistic cloning [3], instead, the B cells are chosen from
the current population depending on a clonal selection rate pc.

2) Hypermutation: The hypermutation operator acts on the
current population of clones P (clo) by applying, on each
individual, a number of ”single” mutations M determined
by a random process, called random mutation potential. It is
possible to define several mutation potentials [20]. The most
common are:
• Static Hypermutation: the number of mutations is in-

dependent from the fitness function f , so each B cell
receptor at each time step will undergo at most Ms(~x) =
c mutations.

• Proportional Hypermutation: the number of mutations is
proportional to the fitness value. For each B cell ~x the
mutations are at most Mp(f(~x)) = (E∗−f(~x))×(c×γ),
where E∗ is the minimum fitness function value known
for the current instance (for a minimization problem).

410

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

TABLE I

PSEUDO–CODE OF THE IMMUNE ALGORITHM

Immune Algorithm(τB)
1. t := 0;

2. P (t) := Initialize Pop();
3. while (¬ Termination Condition()) do
4. Evaluate(P (t));

5. P (clo) := Cloning (P (t));
6. P (hyp) := Hypermutation (P (clo));
7. Evaluate (P (hyp));

8. (P
(t)
a , P

(hyp)
a) := Aging(P (t), P (hyp), τB);

9. P (t+1) := Selection (P
(t)
a , P

(hyp)
a);

10. t := t + 1;
11. end while

• Inversely Proportional Hypermutation: the number of
mutations is inversely proportional to the fitness value. In
particular, at each time step t, the operator will perform
at most Mi(f(~x)) = ((1 − E∗

f(~x)) × (c × γ)) + (c × γ))
mutations.

• Convex Hypermutation: each ”gene” xi, in the B cell
~x, depending on the hypermutation rate ph executes the
hypermutation of convex combination: x′i = (1− β)xi +
βxk, where β is a random value β ∈ {0, . . . , 1.0}, and
xk is randomly selected in ~x.

• Hypermacromutation: the number of mutations is inde-
pendent from the fitness function f and the parameter c.
In this case, two integers, i and j such that (i+1) ≤ j ≤ γ
are randomly chosen and the operator mutates at most
Mm(~x) = j − i + 1 values, in the range [i, j].

3) Aging: The aging operator eliminates old individuals.
The static pure aging operator uses a parameter τB for the

maximum number of generations the B cells are allowed to
remain in the population. When a B cell is τB + 1 old it is
erased from the current population, no matter what its fitness
value may be. During the cloning expansion, a cloned B cell
inherits the age of its parent. After the hypermutation phase,
only the cloned B cells which have gained a higher fitness
value, will be given age = 0. An elitist version of this operator
is obtained by giving the best individual of the population in
each generation age = 0.

In the stochastic aging operator, the probability that a B cell
remains in the current population is governed by the following
law with parameter τB , (expected B cell mean life):

Plive(τB) = e
− ln(2)

τB .

An elitist version of this operator is obtained by giving the
best individual in the population per generation Plive = 1 and
thus Pdie = 0.

4) Selection: The selection operator generally substitutes
the worst individuals in the population with new randomly
generated individuals (birth phase), although even this op-
erator presents variants, such as no redundancy where it is
avoided that copies of the same individual survive for the next
generation.

The IA used in this paper is kept as general as possible and
follows the scheme presented in table I by considering any
of the above described variants of each operator except for
hypermutation: here a very simple operator which randomly
selects r ≤ γ digits (with γ being the length of the candidate
solution) from each individual of the population and flips them
independently is used.

To keep the operator as general as possible the chosen bits
are not necessarily distinct even though, in practice, mutations
of the same bit in one single macromutation are usually
avoided. This means that if the hypermutation operator, for
example, randomly selects r = 2 and then randomly chooses
the same bit twice, the resulting string is left unchanged. In the
rest of the paper, when the considered hypermutation operator
only flips distinct bits, it will be carefully pointed out.

C. Convergence of Immune Algorithms

The convergence of EAs, in general, has been proved under
certain assumptions. In the following we will show which
conditions, that are sufficient for the convergence of an EA,
can be applied to the general Immune Algorithm taken into
consideration in this paper. Afterwards we will discuss its
convergence to the global optimum.

A single iteration of a general EA can be described as
follows:

∀i ∈ {1, . . . ,m} : xi
′
= mut(reco(mat(x1 . . . , xn)))

(y1, . . . , yn) = sel(xπ(1), . . . , xπ(q), x
′

1, . . . x
′

m)

Here (x1, . . . , xn) ∈ χn is the current parent population and

mat : χn → χρ, rec : χρ → χ,mut : χ → χ, sel : χk → χn

are functions representing respectively the mating process and
the recombination, mutation and selection operators.

In [9] it is shown that under the following conditions such
an EA converges both in mean and completely to the global
optimum of any optimization problem:

Condition 1: Every individual in the population can be
changed to an arbitrary other individual in one single mutation
with probability p > 0.

Condition 2: The best individual in the population survives
in each generation with probability p = 1.

Formally, the two conditions can be described as:

∀x, y ∈ χ P{y = mut(x)} ≥ δm > 0 (1)

P{v∗n(sel(x1, . . . xk)) = v∗k(x1, . . . , xk)} = 1 (2)

Here v∗i returns the best individual of a population of i
individuals.

If only condition 1 is valid it can be proved that the EA
visits the global optimum after a finite number of steps with
probability p = 1 regardless of its initialisation, but not its
convergence since it cannot be guaranteed that the optimum
does remain in the population forever after it has been found.
If condition 2 also holds, then it can be proved that the EA
converges to the global optimum.

411

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

A general IA can be similarly described as follows:

∀i ∈ {1, . . . ,m} : xi
′
= hyp(clone(x1 . . . , xn)))

(x
′′

1 , . . . , x
′′

k) = aging(x1, . . . , xn, x
′

1, . . . x
′

m)

(y1, . . . , yn) = sel(x
′′

1 , . . . , x
′′

k)

Here the aging operator may or may not be used just like not
all EAs use crossover, and k may be greater or smaller than
n.

By examining the process above, it is easy to see that the
aging operator actually takes part in the selection mechanism
of the evolutionary process since it decides whether or not
an individual is to survive and live for the next generation
according to its age. This means that, while condition 1 can
be applied to the IA just by considering the hypermutation
operator, the aging operator needs to be considered in the
formal description of condition 2. Hence,

P{v∗n(aging(x1, . . . xn, x
′

1 . . . x
′

m)) = v∗k(x
′′

1 , . . . , x
′′

k))} = 1

P{v∗n(sel(x
′′

1 , . . . x
′′

k)) = v∗k((y1, . . . , yn))} = 1

describe condition 2 in a correct way when considering IAs.
Theorem 3.1: The IA considered in this paper converges

both completely and in mean to the global optimum of an
optimization problem whatever is its initialisation, as long as
an elitist aging operator is applied.

a) Proof.: In order to prove the theorem we need to show
that both conditions 1 and 2 are satisfied by the IA.

Since neither Cloning nor Aging do modify existing indi-
viduals or create different ones, only two operators may be
responsible for introducing the optimum in the population for
the first time: the hypermutation operator and/or the selection
operator.

Let us consider bit-strings of length γ, with each point of the
search space represented by a vector {0, 1}γ . If an individual
of the population compared to the string representing the
optimum matches in γ − c bits, hence mismatches in c bits,
the probability of the hypermutation operator of reaching the
global optimum in one step is:

P (γ)
c =

c!
γc

1
γ

(1)

Here the favourable choices c! are the different permutations
of c elements out of the γc possible choices. This probability
needs to be multiplied by the probability that the operator
actually randomly chooses to flip c bits. 1

γ is the probability
that r = c with r being the randomly chosen number of
bits to be mutated. (For example if the first two bits, i.e.
c = 2, of a 3-bit string need to be mutated to reach the
global optimum, then the 2! favourable choices are {1, 2}
and {2, 1} out of the 32 = 9 combinations which are
{1, 1}, {1, 2}, {1, 3} . . . {3, 1}, {3, 2}, {3, 3}. This probability
has to be multiplied by the probability that the operator
randomly chooses to mutate 2 bits rather than 1 or 3. Such a
probability is 1/γ = 1/3).

In extending equation (1) to strings belonging to an alphabet
of cardinality K, with each point of the search space rep-
resented by a vector {0, 1, 2, . . . ,K − 1}γ , the probability
that each of the digits to be mutated actually turns into
the correspondent digit of the optimal string needs to be
considered:

P (γ)
c =

c!
γc

1
(K − 1)c

1
γ

(2)

Here 1
K−1 is the probability that a single digit mutates to

the correct value.
As P

(γ)
c is always positive, condition 1 is proved. There

is also a probability Ps > 0 that the optimum is randomly
introduced in the population by the selection operator, that
should be considered, although P

(γ)
c is enough to prove

condition 1.
To prove that condition 2 also holds we need to take into

consideration all the operators acting on the population and
show that none of them will ever be responsible for the loss
of the optimal solution once it has been found.

The cloning operator creates copies of individuals but does
not modify the values of any element so it cannot lose the
optimum.

The hypermutation operator only acts on the individuals of
the population P (clo) introduced by the cloning operator but
does not modify individuals which have been created by any
other operator, including itself.

The aging operator does get rid of old individuals but the
best candidate solution of each generation is given age = 0
(or Pdie = 0 according to which operator is used). Hence, it is
impossible that Aging loses the copy of the optimum, unless
it deletes individuals of age = 0 which seems to be pointless
(by definition of Aging operator).

At last the selection operator, gets rid of the least fit
individuals, so the optimum does not risk to be lost. In the
no redundancy variant if there is more than one optimum in
the population then only one optimal individual will survive
the selection process. This is sufficient to prove condition 2
and the proof of the theorem follows.

In such a way the convergence of a great range of IAs
can be proved as long as an operator (usually hypermutation
or selection) satisfies condition 1 and as long as it can be
shown that condition 2 also holds. This is usually done by
verifying the elitism of the aging operator and very rarely
(in the case of IAs) of Selection. For instance the proof of
theorem 3.1, with minor modifications, would also hold for
the B-cell algorithm previously proved to converge by using
Markov chains in [18]. The B-cell algorithm does not use
an Aging operator and employs Hypermacromutation rather
than the hypermutation operator considered in theorem 3.1. It
would be sufficient to show that hypermacromutation satisfies
condition 1 to obtain the proof.

Theorem 3.2: The IA considered in this paper does not
converge completely to the unique global optimum of an

412

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

optimization problem regardless of its initialisation if the
hypermutation operator only flips distinct bits and a non elitist
variant of an aging operator is applied.

b) Proof.: In theorem 3.1 condition 1 has been proved
as long as the IA uses an operator (i.e. hypermutation or
selection) which is able to reach any other possible individual
of the search space. This, as discussed previously, assures the
IA will visit the optimum. To prove convergence condition
2 also needs to be satisfied. It is important to notice that
condition 2 is sufficient for convergence, but not necessary.
To prove that an EA does not converge to the global optimum
it is sufficient to prove that whenever the optimum has been
found there will always exist a successive generation in which
the EA does not have the optimum in the population. If there
is a probability, no matter how low, that the IA will lose the
optimum without having found another optimal solution in the
mean time, then it does not converge with probability one and
far less completely. Such a probability is guaranteed by the
non-elitism of the aging operator, since when the individual
representing the optimum reaches a sufficient age it will be
removed from the population.

Let at generation t, the population P (t) consist of X1 opti-
mal individuals and X2 = P (t)−X1 non-optimal individuals.
At time t + τB , all the X1 optimal solutions will have been
surely removed from the population (for simplicity static aging
is considered). The proof consists of showing that there always
is a positive probability that all the optimal solutions have
been removed from the population before a new one has been
introduced, whatever the number of optimal individuals and
the values of the non-optimal ones. The cloning operator will
create a population of clones consisting of copies of the X1

optimal solutions and of the X2 non optimal solutions. Let
the clones of the X2 non-optimal solutions be mX2 . Since
the hypermutation operator always flips at least one bit, the
clones of the optimal solutions will not produce global optima.
On the other hand each of the mX2 clones may turn into
the global optimum at the next step with probability p, such
that p ≤ pd=1. Here, pd=1 is the probability of reaching the
optimum from the most likely position, which is at distance
d = 1. Hence, the probability of none of them turning into the
global optimum is higher than (1−pd=1)mX2 . This probability
is minimised when mX2 is maximised. This occurs when there
is only one global optimum in the population P (t) (i.e. X1 = 1
and X2 = n − 1). If a new global optimum has not been
generated, the selection operator will take, at most, all the
X1 optimal individuals to the next generation (and their age
will be incremented by 1), together with the best non optimal
individuals. Furthermore it may introduce some new randomly
created individuals. So, a lower bound on the probability of the
hypermutation operator of not generating the global optimum
before all the global optimums in the current population are
lost is:

pNO ≥ (1− pd=1)mn−1τB > 0.

Also the probability of the selection operator of not randomly
introducing the global optimum in τB generations is to be

considered together with the described above probability.
Although it is expected that for non-trivial functions the former
probability is very low. Hence the optimal solutions will be
eventually lost (i.e. in finite time). The proof follows.

A hypermutation operator that only flips distinct bits is chosen
for the theorem because it simplifies the proof. In the extreme
case that all the individuals in the population are all optimal
individuals there will be no optimum in the population after
at most τB generations unless a new optimal solution is
introduced by the selection operator which is rather unlikely.
Furthermore, in practical applications, the hypermutation op-
erator chooses distinct bits. On the other hand, theorem 3.1
holds with both kinds of hypermutation.

In the general IA, the possibility of using stochastic selec-
tion in the evolutionary process is not considered since it is
not very common to find such an operator in an IA. In such a
case condition 2 for theorem 3.1 would not hold unless some
elitist mechanism is combined with the probabilistic selection.

IV. CONVERGENCE IN PROBABILITY

For genetic algorithms, and evolutionary algorithms in gen-
eral, it is possible to calculate the number of iterations that
guarantee the obtainment of an optimal solution with a fixed
probability δ, with 0 < δ < 1 . This upper bound t(δ), is
independent of the problem being tackled.

In [7] the authors use Markov chains to detect bounds for
a genetic algorithm designed for binary coded problems by
ensuring that every possible population has been visited by
the algorithm with a probability of at least δ. While, in [6]
the authors extend their results from binary representations to
alphabets of cardinality K = 2x, in [5] a tighter upper bound
has been derived by guaranteeing that all possible individuals,
have been seen at least once with probability δ, rather than all
possible populations:

t̃1(δ) = INT

 ln(1− δ)

nln

[
1−min

{(
1− µ

)γ−1(
µ

K−1

)
,

(
µ

K−1

)γ}]

(3)
Here n is the size of the population and γ the string length.

The goal of the following analysis is to find an upper bound
for the number of generations necessary to guarantee a visit
of the considered IA to a global optimum in t1 generations
under probability δ.

Let {0, 1, 2, ...,K − 1}γ be the vector representing the
search space of the optimization problem with an alphabet
of cardinality K and solutions of length γ.

As discussed in section III-C, the probability that each of
the digits to be mutated actually turns into the correspondent
digit of the optimal string is:

P (γ)
c =

c!
γc

1
(K − 1)c

1
γ
≥ γ!

γγ(K − 1)γ

1
γ

(4)

413

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Fig. 1. The upper bound (the straight line) for the immune algorithm, and the
upper bound for the genetic algorithm versus µ values. Both algorithms use a
binary alphabet (K = 2). The analysis is performed with δ = 0.9, n = 1000,
and γ = 100.

Here 1
K−1 is the probability that a single digit mutates to

the correct value. The proof of the inequality is trivial since
for K = 2

γ!
γγ

=
c!
γc

(c + 1)
γ

· · · (γ − 1)
γ

γ

γ
≤ c!

γc

and for K ≥ 2, (K − 1)γ ≥ (K − 1)c.
The probability that the hypermutation operator does not

convert a specific string into the optimal one with a population
of n individuals and in t generations is at most (1− PIA)tn,
hence the probability that the optimum has been seen in t
generations time is Pt ≥ 1− (1− PIA)tn.

Now it is possible to fix the number of generations t1 for
probability Pt to be greater than δ:

1− (1− PIA)t1n ≥ δ.

Thus

t1 ≥
log(1− δ)

nlog(1− PIA)
= tIA (5)

Here t1 is the number of required generations for the Im-
mune Algorithm to see the global optimum with a probability
of at least δ. By solving the inequality tIA ≤ tGA, it turns out
that, as long as γ is sufficiently large (i.e. γ >> 1) the upper
bound for the IA is lower than that of the GA for values of µ
satisfying: {

µ < 1
e if µ ≤ K−1

K

µ > 1− 1
e

1
K−1 if µ ≥ K−1

K

(6)

In particular for a binary alphabet we have{
µ < 1

e if µ ≤ 1
2

µ > 1− 1
e if µ ≥ 1

2

(7)

The results of such a comparison can be viewed numerically
in figure 1. In this plot we show the upper bound computed
for the immune algorithm (equation 5), and the upper bound
obtained in [5] for the genetic algorithm versus the mutation
probability µ. The value chosen for the population size n is
typical both for genetic and immune algorithms and the string
length γ should be sufficiently large. Since the hypermutation
operator does not depend on a mutation probability µ, its
corresponding curve is a straight line.

Fig. 2. The upper bound (the straight line) for the immune algorithm, and
the upper bound for the genetic algorithm versus µ values. Upper plot: both
algorithms use an alphabet of cardinality K = 3. Lower plot: both algorithms
use an alphabet of cardinality K = 25.

Although the analysis has theoretical significance, its prob-
lem independence represents the main weakness of the results
since more realistic bounds, hence of greater interest, can be
obtained by taking into consideration the problem class of
functions to be optimised. In [23] it has already been discussed
how in the best case (i.e. µ = 0.5 giving the lowest bound-
value) the required number of generations is the same as
that of a Random Algorithm (RA) choosing independently n
random individuals per generation. Furthermore for low values
of µ, which are the ones of practical interest, the required
number of generations grows to infinity. For the IA the last
consideration does obviously not apply but the number of
generations required to guarantee the optimum is still higher
than that of the RA. Figure 2 shows the upper bounds for
alphabets of cardinality K = 3 and K = 25 with the same
parameters used for figure 1.

V. CONCLUSION

In this paper a first general step towards the theoretical
analysis of IAs has been performed. Conditions for the conver-
gence of such a class of algorithms are given, and examples of
how to evaluate such conditions are applied to a general IA. An
analysis of the time needed to guarantee an optimal solution
using a simple Hypermutation operator confirms the general
knowledge regarding EAs that the analysis of their complexity
needs to be related to the problem class to be optimised and
shows that such a consideration is also valid in the theory of
IAs.

Analyses of simple EAs on simple boolean functions have
given a broader insight of how useful different operators may
be and of what kind of landscapes they are effective on. Since
such an approach has progressively led to the analyses of

414

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

EAs on combinatorial optimization problems with practical
applications, a similar strategy in analysing IAs is worth
considering. The examination of simple AIS inspired operators
could give a better insight of how IAs actually work and when
one of the many variants of each operator should be chosen
rather than another. Furthermore it would be interesting to
understand if so many of the existing variants of each operator
are really useful or not.

REFERENCES

[1] D. Dasgupta D. (ed.), Artificial Immune Systems and their Applications,
Berlin, Germany: Springer-Verlag, 1999.

[2] L. N. De Castro and J. Timmis, Artificial Immune Systems: A New
Computational Intelligence Paradigm, London, UK: Springer-Verlag,
2002.

[3] V. Cutello and G. Nicosia and M. Pavone, A Hybrid Immune Algorithm
with Information Gain for the Graph Coloring Problem, GECCO ’03,
Chicago, IL, USA, LNCS, Springer, vol. 2723, pp.171-182, 2003.

[4] L. N. de Castro and F. J. Von Zuben Learning and optimization using
the clonal selection principle. IEEE Trans. on Evol. Comp., vol. 6, no.
3, pp. 239-251, 2002.

[5] D. Greenhalgh and S. Marshall, Convergence Criteria for Genetic
Algorithms, SIAM J. Comput., vol. 30, No. 1, pp. 269-282, 2000.

[6] H. Aytug and S. Bhattacharrya and G. J. Koehler, A Markov chain
analysis of genetic algorithms with power of 2 cardinality alphabets.
European J. Oper. Res. vol. 96, pp. 195-201, 1996.

[7] H. Aytug and G. J. Koehler, Stopping criteria for finite length genetic
algorithms. INFORMS J. on Comp., vol. 8, no. 2, pp. 183-191, 1996.

[8] J. He and X. Yao, Drift analysis and average time complexity of
evolutionary algorithms, Artificial Intelligence, vol. 127, no. 1, pp. 57-
85, 2001.

[9] G. Rudolph, Finite Markov Chain Results in Evolutionary Computation:
A Tour d’Horizon Fundamenta Informaticae, vol. 35, pp. 67-89, 1998.

[10] D. E. Goldberg, Genetic Algorithms for Search, Optimization, and
Machine Learning, Addison-Wesley Pub. Co., 1989.

[11] C. Witt, Worst-Case and Average-Case Approximations by Simple
Randomized Search Heuristics, in Proc. of the 22nd Annual Symposium
on Theoretical Aspects of Computer Science (STACS ’05), LNCS,
Springer, vol. 3404, pp. 44-56, 2005.

[12] O. Giel and I. Wegener, Evolutionary algorithms and the maximum
matching problem, in Proc. of the 20th Annual Symposium on Theoret-
ical Aspects of Computer Science (STACS 2003), LNCS, Springer, vol.
2607, pp. 415-426, 2003.

[13] I. Wegener and F. Neumann, Randomized local search, evolutionary
algorithms, and the minimum spanning tree problem, GECCO’2004,
Seattle, WA, USA, LNCS, Springer, vol. 3102, pp. 713-724, 2004.

[14] G. Nicosia and V. Cutello and P. J. Bentley and J. Timmis, Artificial
Immune Systems, Third Int. Conf. (ICARIS 2004), Catania, Italy. LNCS,
Springer-Verlag, vol. 3239, 2004.

[15] V. Cutello and G. Nicosia and M. Pavone and J. Timmis, An Immune
Algorithm for Protein Structure Prediction on Lattice Models, IEEE
Transactions on Evol. Comp., vol. 10, 2006 (to appear).

[16] V. Cutello and G. Nicosia, An Immunological Approach to Com-
binatorial Optimization Problems, Advances in Artificial Intelligence,
IBERAMIA (2002). LNAI, Springer vol. 2527, pp. 361-370, 2002.

[17] M. Villalobos-Arias and C. A. Coello Coello and O. Hernández-
Lerma, Convergence Analysis of a Multiobjective Artificial Immune
System Algorithm, In Nicosia et al. (eds) Proc. Int. Conf. Artificial
Immune Systems (ICARIS 2004), LNCS, Springer, vol. 3239, pp. 226-
235, 2004.

[18] E. Clarke and A. N. W. Hone and J. Timmis, A Markov Chain Model
of the B-cell Algorithm, ICARIS 2005, LNCS, Springer, vol. 3627, pp.
318-330, 2005

[19] G. Nicosia and F. Castiglione and S. Motta, Pattern Recognition by
primary and secondary response of an Artificial Immune System, Theory
in Biosciences, vol. 120, no.2, pp. 93-106, 2001.

[20] V. Cutello and G. Narzisi and G. Nicosia and M. Pavone,
Clonal Selection Algorithms: A Comparative Case Study using Effective
Mutation Potentials, ICARIS 2005, LNCS, Springer, vol. 3627, pp.13-
28, 2005.

[21] G. Nicosia, Immune Algorithms for Optimization and Protein Structure
Prediction, PhD Thesis, Department of Mathematics and Computer
Science, University of Catania, Italy, December 2004.

[22] T. Back and D. B. Fogel and Z. Michalewicz, Handbook of
Evolutionary Computation, Bristol, UK, IOP Publishing, 1997.

[23] M. Safe and J. A. Carballido and I. Ponzoni and N. B. Brignole,
On Stopping Criteria for Genetic Algorithms., Advances in Artificial
Intelligence - SBIA 2004. 17th Brazilian Symposium on Artificial Intel-
ligence. Proceedings (Lecture Notes in Artificial Intelligence Vol.3171),
2004, p 405-13.

415

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

