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Abstract

Engineers have developed robust and efficient incompressible finite el-
ement formulations using tools such as the Patch Test and the counting of
constraints / variables, the first one aimed at the development of consis-
tent elements and the second one aimed at the development of non-locking
and stable elements. The mentioned tools are rooted in the physics of the
continuum mechanics problem. Mathematicians, on the other side, de-
veloped complex and powerful tools to examine the convergence of finite
element formulations, such as the inf-sup condition, these methods are
based on the properties of the elliptical PDEs that constitute the mathe-
matical model of the continuum mechanics problem.

In this paper we intend to understand the inf-sup condition from an
engineering perspective, so as to be able to incorporate it to the package
of tools used in the development of finite element formulations.

1 Introduction
Problems such as incompressible elasticity and fluid dynamics of incompressible
flows have always constituted a challenge to finite element developers: the stan-
dard displacement (velocity) interpolated elements usually suffer from locking
[2] [23] and to obtain valid results mixed formulations are required . Formu-
lations that have been successfully used to overcome the locking problem, and
that we will consider in this paper, are:

• Mixed u/p formulations in which the displacements (velocities) are in-
terpolated with C0 continuity, while the pressure is represented using an
interpolation discontinuous between elements [14] [23].
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• Mixed penalty formulations in which the displacements (velocities) are
interpolated with C0 continuity, while the volumetric strain (volumetric
strain rate) is represented using an interpolation discontinuous between
elements; the results provided by these elements tend to the results of the
equivalent u/p elements when the penalty coefficient tends to infinity [14]
[23].

• Mixed augmented Lagrangian formulations in which the displacements
(velocities) are interpolated with C0 continuity, while the volumetric strain
(volumetric strain rate) is represented using an interpolation discontinu-
ous between element; the results provided by these elements tend to the
results of the equivalent u/p elements when the number of iterations in
the augmentation procedure tends to infinity. The advantage of the aug-
mented Lagrangian technique over the standard penalty method is the
possibility of using a smaller penalty parameter and therefore better con-
ditioned matrices [9].

Using the above formulations “finite element designers” have developed ele-
ments that avoid the locking problem and converge to the displacements (veloc-
ities) that result from the exact solution of the problem (consistency). However,
in some cases, the pressure predictions of those elements may be polluted with
non-physical pressure modes [14] [18] [19], that is to say an unstable pressure
prediction may be encountered (stability).
New u/p formulations with the displacements (velocities) and the pressure

interpolated with C0 continuous functions have been lately developed and they
are free from pressure modes [15].
To investigate the consistency of a formulation we use the standard Patch

Test together with ad hoc Patch Tests designed to specifically test incompress-
ible formulations: highly u−constrained problems in which, to analyze the for-
mulation potential for locking, a balance is established between the incompress-
ibility constraints and the available u−degrees of freedom. Also a balance be-
tween the u−degrees of freedom and the p−degrees of freedom provides a first
indication of the formulation stability (necessary but not sufficient stability con-
dition) [14] [20] [22] [23] [24]. In the second section of this paper we discuss the
Patch Test.
To investigate the possibility of pressure modes (checkerboard pressure pre-

dictions) there is not a simple numerical tool such as the Patch Test and the
finite element developer usually resigns an a priori analysis, codes the element
and performs abundant numerical experimentation. Even tough the inf-sup
condition [1] [4] is an available analytical tool to investigate the formulation po-
tential for unstable pressure predictions, its use as a finite element development
tool is quite cumbersome. Only lately a numerical test based on the inf-sup
condition was presented, but its use is still not a very simple matter [5] [7]. In
the third section of this paper we discuss a continuum mechanics interpretation
of the inf-sup condition and use a discrete version of it [13] to analyze several
element formulations.
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2 The Patch Test
Irons’ Patch Test is a blend of sound engineering intuition and profound knowl-
edge on the behavior of finite element approximations to continuum mechanics
mathematical models. We shall try to understand the motivation of the Patch
Test examining a very simple example.
In a standard elasticity or fluid mechanics problem let us call bui(x1, x2, x3)

for (i = 1, 2, 3) the displacement or velocity Cartesian components that, in the
neighborhood of a point P, exactly satisfy the mathematical model.
Let us call uhi the finite element approximation to bui obtained with a mesh

characterized by an element dimension, h. The finite element solution at other
point different from P can be written as:

uhi = [ui]
h
P +

∙
∂ui
∂xj

¸h
P

∆xj +
1

2

∙
∂2ui

∂xj∂xk

¸h
P

∆xj∆xk + ... (1)

if the value of [ui]
h
P coincides with the exact solution at P , then

uhi →
∆xj→0

bui (2a)

if and only if
∙
∂ui
∂xj

¸h
P

=

∙
∂bui
∂xj

¸
P

. (2b)

Remark 1 In order to be able to converge to the exact continuum solution when
the mesh is refined (h → 0) the finite element formulation has to be capable of

representing exactly the derivatives
h
∂bui
∂xj

i
P
for any mesh size.

The Patch Test was designed to assess on the fulfillment of the above con-
dition. In Fig. 1 we represent a typical mesh used for the Patch Test when
examining quadrilateral plane elements. The patch of elements is subjected to
nodal point displacement (velocity) constraints just sufficient to remove all phys-
ical rigid body modes, and is subjected to externally applied boundary nodal
point forces that correspond to constant boundary stress conditions. The anal-
ysis yields the nodal point displacements (velocities) and the internal element
stresses. The Patch test is passed if this predicted quantities exactly match the
analytical solution.
The fulfillment of the Patch Test indicates that the necessary condition for

convergence is achieved, although the actual convergence may be very slow.
To identify what order of stress variation can be reached, within acceptable
convergence rates, higher-order Patch Test need to be performed [3].
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3 The inf - sup condition
In this section we will derive the inf-sup condition based on the physics of the
continuum mechanics problem we are trying to solve; for these purposes we will
consider a linear problem in which we seek for the displacement or velocity field
u that satisfies the Principle of Virtual Work (equilibrium) [2]:Z

V

bσ : δε dv = Z
V (S)

f · δu dv(ds) . (3)

In the above equation, bσ is the stress tensor that satisfies equilibrium; ε is
the infinitesimal strain tensor in the case of elasticity problems or strain rate
tensor in the case of fluid flows; V is the continuum body volume and S its
external surface. The external loads per unit volume or unit external surface
are f while the continuum body displacements or velocities are u.
For the discretized problem we have,Z

V

σh : δεh dv =

Z
V (S)

f · δuh dv(ds) (4)

where (.)h indicates the magnitudes corresponding to the discretized problem.
In what follows we analyze a number of mathematical properties that are

fulfilled by the discretized quantities (see [2] for a more rigorous presentation of
these properties).

3.1 Bounds for the stress error

The displacements error for an h−discretization is,

eh = bu− uh . (5)

Equation (3) corresponding to the continuum is satisfied for any pair (δu , δε)
that satisfies:

• The rigid (essential) boundary conditions.

• The compatibility conditions [17].

In particular, Eqn. (3) is satisfied for the pair (δuh, δεh); therefore we can
write, Z

V

bσ : δεh dv =

Z
V (S)

f · δuh dv(ds) (6)

using Eqns. (4) and (6) we get,Z
V

(bσ − σh) : δεh dv = 0 . (7)
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Remark 2 The above equation only states the well known fact that in a finite
element model, the nodal loads equivalent “in the virtual work sense” to the
external loads, are exactly equilibrated by the nodal loads, equivalent in the “in
the virtual work sense” to the stresses.

3.2 Bounds for the energy error

For a linear hyperelastic material under a conservative loading we can define
the Potential Energy (Π), in this case the Principle of Virtual Energy leads to
[21],

δΠ = 0 (8)

where,

Π = U − V (9a)

U =
1

2

Z
V

Cijkl εij εkl dv ≥ 0 . (9b)

In the above equations, U is the elastic energy and V is the loads potential en-
ergy; Cijkl are the Cartesian components of the fourth order elastic constitutive
tensor and εij are the strain components (we are considering only infinitesimal
strains).
Assuming a discretized solution that fulfills the Patch Test, the error in the

strain components is,

ehij = bεij − εhij (10)

hence, considering the symmetries in the constitutive tensor [17] we can write,

bU =
1

2

Z
V

Cijkl (ε
h
ij ε

h
kl + ehij e

h
kl + 2 ε

h
ij e

h
kl) dv ≥ 0 (11a)

bU = Uh +
1

2

Z
V

Cijkl e
h
ij e

h
kl dv +

Z
V

Cijkl ε
h
ij e

h
kl dv ≥ 0 . (11b)

For the last integral in the above equation we can write,Z
V

Cijkl ε
h
ij e

h
kl dv =

Z
V

(bσ − σh) : εh dv (12)

since in Eqn. (7), εh fulfills all the requirements to be a valid δεh, the above
integral is equal to zero. Considering that

R
V
Cijkl e

h
ij e

h
kl dv ≥ 0 we get,bU ≥ Uh . (13)

Remark 3 The exact value of the elastic energy is always bigger than the value
of the elastic energy provided by the finite element model, except when the finite
element model solution is coincident with the exact solution.
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3.3 Energy of the strain error field

Let us consider in the continuum problem the following strain field: [ehij + δεhij ];
the elastic energy associated to it is,

U(ehij + δεhij) =
1

2

Z
V

Cijkl e
h
ij e

h
kl dv +

Z
V

Cijkl e
h
ij δε

h
kl dv+

1

2

Z
V

Cijkl δε
h
ij δε

h
kl dv . (14)

The second integral on the l.h.s. of the above equation is zero, due to the
result in Eqn. (7); therefore,

U(ehij + δεhij) = U(ehij) + U(δεhij) =⇒ U(ehij) ≤ U(ehij + δεhij) (15)

the above inequality can also be written in the following ways,

U(bε− εh) ≤ U(bε− εh + δεh) (16a)Z
V

(bσ − σh) : (bε− εh) dv ≤
Z
V

(bσ − σh + δσh) : (bε− εh + δεh) dv .

(16b)

Remark 4 The elastic energy associated to the strain error field is minimum.

3.4 Upper bound for the strain energy

In a well behaved problem it must be possible, even for the compressibility
modulus κ −→∞, to define a finite number M > 0 such that,

Uh ≤M

Z
V

εh : εh dv (17)

where M depends on the actual elasticity problem being considered and on its
material constants, but not on the strain field εh.
A finite element formulation may not fulfill the above condition if for exam-

ple:

1. Being the pressure and strain fields non-continuous between elements, the
inter-element energy is unbounded.

2. The element formulation locks (e.g. isoparametric plate / shell elements
and standard isoparametric displacement based elements in incompress-
ibility problems [2])

Of course, for any strain field in the continuum problem, the above condition
must be fulfilled, for example,

U(bε− εh + δεh) ≤M

Z
V

(bε− εh + δεh) : (bε− εh + δεh) dv . (18)
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3.5 Lower bound for the strain energy

In order to be free of “spurious zero energy modes” it must always be possible
to define a number α > 0 such that,

Uh ≥ α

Z
V

εh : εh dv (19)

where α depends on the actual elasticity problem being considered and on its
material constants, but not on the strain field εh.
Of course, for any strain field in the continuum problem, the above condition

must be fulfilled, for example,

U(bε− εh) ≥ α

Z
V

(bε− εh) : (bε− εh) dv . (20)

3.6 Material indifference

In Eqns. (17) and (19) the constants M and α depend on the material param-
eters. In this subsection we discuss the requirements for these constants to be
material indifferent.
Using Eqns. (20), (16a) and (18) we can write,

α

Z
V

¡bε− εh
¢
:
¡bε− εh

¢
dv ≤ inf

∀δεh
U(bε−εh+δεh) ≤M inf

∀δεh

Z
V

(bε−εh+δεh) : (bε−εh+δεh) dv
(21)

and therefore,

Z
V

¡bε− εh
¢
:
¡bε− εh

¢
dv ≤ M

α
inf
∀δε

h

Z
V

(bε− εh + δεh) : (bε− εh + δεh) dv . (22)

We define,

dE = inf
∀δε

h

Z
V

(bε− εh + δεh) : (bε− εh + δεh) dv (23)

the energy distance from the exact solution to the solutions contained in the
space of the possible finite element solutions. Convergence of the finite element
solution means,

lim
h−→0

inf
∀δε

h

Z
V

(bε− εh + δεh) : (bε− εh + δεh) dv = 0 . (24)

Since, as we stated above, our objective is to have the same convergence rate
for any set of material constants, we need:Z

V

¡bε− εh
¢
:
¡bε− εh

¢
dv ≤ c dE (25)
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where c is a constant independent of the mesh size (h) and of the material
constants.

3.7 Application to incompressible materials

We can decompose the stress and strain tensor into their deviatoric and hydro-
static components; therefore,

σ = s+ p g (26a)

ε = ε0 +
1

3
εvg (26b)

where, σ is the stress tensor, s its deviatoric part, g the spatial metric tensor

and p the hydrostatic stress component; ε and ε0 are the strain tensor and devi-
atoric strain tensor respectively when analyzing a solid and the strain rate and
deviatoric strain rate tensors when analyzing a fluid, while εv is the volumetric
strain (strain rate) component.
The constitutive law for an incompressible linear elastic (or Newtonian fluid)

material is,

s = 2 μ ε0 (27a)

p = κ εv (27b)

in the above κ −→∞; εv −→ 0 and p remains a finite number.
For the continuum and discretized problems we can write,

U = UD + UV = μ

Z
V

ε0 : ε0 dv +
κ

2

Z
V

(εv)
2
dv (28a)

Uh = Uh
D + Uh

V = μ

Z
V

εh
0 : εh

0 dv +
κ

2

Z
V

¡
ε h
v

¢2
dv . (28b)

For this case, and taking into consideration that bεv = 0, Eqn. (7) can be
written as,

Z
V

¡bs− sh
¢
: δε0

h
dv +

Z
V

¡bp− ph
¢
δε h

v dv = 0 (29a)Z
V

³bε0 − ε0
h

´
: δε0

h
dv +

κ

2μ

Z
V

εhv δε h
v dv = 0 (29b)

and Eqn. (13) as,Z
V

bε0 : bε0 dv ≥ Z
V

ε0
h
: ε0

h
dv +

κ

2μ

Z
V

¡
ε h
v

¢2
dv . (30)
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Also, for the incompressible materials we can write the property in Eqns.
(16a) and (16b) as,

Z
V

³bε0 − ε0
h

´
:
³bε0 − ε0

h

´
dv +

κ

2μ

Z
V

¡
ε h
v

¢2
dv ≤Z

V

³bε0 − ε0
h
+ δε0

h

´
:
³bε0 − ε0

h
+ δε0

h

´
dv +

κ

2μ

Z
V

¡
ε h
v + δε h

v

¢2
dv .

In order to be free of the locking phenomena it must be possible, in the
incompressible case (κ −→∞), to define a finite number M > 0 such that,

Uh ≤M

∙
1

κ

Z
V

ε0
h
: ε0

h
dv +

1

2μ

Z
V

¡
ε h
v

¢2
dv

¸
. (31)

In order to be free of “spurious zero energy modes” it must be possible, in
the incompressible case (κ −→∞), to define a number α > 0 such that,

Uh ≥ α

∙
1

κ

Z
V

ε0
h
: ε0

h
dv +

1

2μ

Z
V

¡
ε h
v

¢2
dv

¸
. (32)

If we want to have a material indifferent convergence rate, using Eqn. (25)
we get,

1

κ

Z
V

³bε0 − ε0
h

´
:
³bε0 − ε0

h

´
dv +

1

2μ

Z
V

¡
ε h
v

¢2
dv ≤

c

µ
1

κ

Z
V

³bε0 − ε0
h
+ δε0

h

´
:
³bε0 − ε0

h
+ δε0

h

´
dv +

1

2μ

Z
V

¡
ε h
v + δε h

v

¢2
dv

¶
.

Calling β = 1/c we get that for all possible values of δεh the finite element
formulation has to fulfill the following inequality

1
κ

R
V

³bε0 − ε0
h
+ δε0

h

´
:
³bε0 − ε0

h
+ δε0

h

´
dv + 1

2μ

R
V

¡
ε h
v + δε h

v

¢2
dv

1
κ

R
V

³bε0 − ε0
h

´
:
³bε0 − ε0

h

´
dv + 1

2μ

R
V
(ε h
v )

2
dv

≥ β > 0 .

(33)
When κ→∞, since ph = κε h

v is a finite number, we get,

R
V
(ph + δph)

¡
ε h
v + δε h

v

¢
dvR

V
ph ε h

v dv
≥ β > 0 . (34)

If the maximum reached by the above equation, considering the different
possible values of δε h

v , is zero then it means that the denominator tends to
infinity when κ −→ ∞ and therefore the element formulation locks; that is to
say, the element interpolations are not capable of representing an incompressible
situation.
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On the other hand, if the minimum value reached by the above equation,
considering the different possible values of δph, is zero then it means that the
finite element formulation incorporates “spurious rigid body modes”.
Hence, using the standard notation we can write [2],

inf
∀δph

sup
∀δε h

v

R
V
(ph + δph)

¡
ε h
v + δε h

v

¢
dvR

V
ph ε h

v dv
≥ β > 0 (35)

For a formulation that can interpolate “spurious rigid body modes”
R
V
(ph +

δph)
¡
ε h
v + δε h

v

¢
dv = 0.

In a finite element discretization in which,

uh = HuU (36)

ε0h = BDU (37)

εhv = BvU (38)

ph = HpP (39)

and,
U : vector of nodal displacements or velocities,
P : vector of element pressures,
we can write [24] for an u/p and penalty formulations,

∙
Kuu Kup

KT
up 0

¸ ∙
U
P

¸
=

∙
R
0

¸
(40a)∙

Kuu Kup

KT
up − 1

κI

¸ ∙
U
P

¸
=

∙
R
0

¸
(40b)

where,

Kuu =

Z
V

BT
D 2μ BD dv (41)

Kup =

Z
V

BT
vHp dv (42)

the non-fulfillment of Eqn. (35) implies that there exists a vector of element
pressures, P pm, that satisfies the equation,

Kup P pm = 0 . (43)

These vectors P pm are called pressure modes [18] [19].
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3.8 Stability of the pressure prediction

As it was shown in Refs. [18] and [19] for those element formulations for which
pressure modes exist, some models may provide non-unique pressure predictions
while always providing unique velocity predictions. Actual numerical analyses
produce a linear combination of the physical pressure plus the pressure modes,
usually in the form of a checkerboard. Many a posteriori techniques have been
developed to filter out from the model pressure predictions the checkermodes
[14]; also in Ref. [6] an a priori technique is presented to avoid the contamination
of the pressure prediction with checkermodes.

4 Analysis of finite element formulations
To illustrate with a couple of simple applications the discussion presented in the
previous section we will analyze some simple finite element formulations that
satisfy the Patch Test.
In all cases we will consider the simple mesh shown in Fig. 2, in which all

the nodes on the external perimeter are prevented from moving.

4.1 The standard Q1-P0 element

This is one of the most used element formulations; having a bilinear velocity in-
terpolation and a constant pressure prediction, discontinuous between elements.
The number of velocity degrees of freedom is nu = 2 and the number of pressure
degrees of freedom is np = 4 . In this case,

Kup =

∙
1 −1 −1 1
1 1 −1 −1

¸
. (44)

The two pressure modes that satisfy Eqn. (43) are:

P (H)pm =

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ (45)

P (CB)pm =

⎡⎢⎢⎣
1
−1
1
−1

⎤⎥⎥⎦ . (46)

While the pressure mode in Eqn. (45) represents a hydrostatic pressure
distribution the pressure mode in Eqn. (46) represents a checkerboard pressure
distribution. The solution provided by the numerical analysis is a combination of
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the expected physical solution plus the hydrostatic mode plus the checkerboard
mode.
In a well posed problem, at least one of the nodes on the domain surface must

have a natural boundary condition, therefore the hydrostatic pressure mode is
prevented; however, the checkerboard mode has to be filtered out.

4.2 The Q1-P0 element plus a fifth displacement (veloc-
ity) node

In this case we enrich the Q1-P0 element formulation with a central displacement
(velocity) node; hence, for the problem in Fig. 2 the number of velocity degrees
of freedom is nu = 10 and the number of pressure degrees of freedom is np = 4
. For this element,

Kup =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 1
1 1 −1 −1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (47)

It is obvious that the introduction of a fifth displacement (velocity) node
does not introduce any change with respect to the fulfillment of the inf-sup
condition and the pressure modes are still the ones in Eqns. (45) and (46).

4.3 The Q1-P0 element plus a fifth displacement (veloc-
ity) node with an enriched pressure field

In this case we keep the displacement (velocity) interpolation of the previous
example but we enrich the pressure interpolation using inside each element an
interpolation of the form,

p = po + pr r + ps s . (48)

For this element,
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Kup =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4
9

1
3 −1 4

9 −13 −1 4
9

1
3 1 4

9 −13
1 1

3
4
9 1 −13

4
9 −1 1

3
4
9 −1 −13

4
9

0 −169 0 0 0 0 0 0 0 0 0 0
0 0 −169 0 0 0 0 0 0 0 0 0
0 0 0 0 −169 0 0 0 0 0 0 0
0 0 0 0 0 −169 0 0 0 0 0 0
0 0 0 0 0 0 0 −169 0 0 0 0
0 0 0 0 0 0 0 0 −169 0 0 0
0 0 0 0 0 0 0 0 0 0 −169 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(49)
The two pressure modes that satisfy Eqn. (43) are:

P (H)pm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
0
0
1
0
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

P (CB)pm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
−1
0
0
1
0
0
−1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (51)

It is obvious that the introduction of a fifth displacement (velocity) node
plus an enriched pressure interpolation does not introduce any change with
respect to the fulfillment of the inf-sup condition and the pressure modes are
still a hydrostatic pressure mode (Eqn. (50)) and a checkerboard pressure mode
(Eqn. (51)).
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Remark 5 In the above three examples we analyzed finite element formulations
that while fulfilling the Patch Test do not satisfy the inf-sup condition. The
three element formulations when used in numerical modeling of incompressible
situations provide stable displacement (velocity) predictions but the pressure pre-
dictions are polluted with the pressure modes.

5 Conclusions
A finite element formulation that fulfills the constant stress Patch Test will con-
verge to the exact displacements (velocities) continuum solution under any ge-
ometrical or loading conditions and considering any material parameters. Even
if in some case the convergence may be so slow that the element is useless for
practical applications, we can assure that if we keep refining the mesh (h→ 0)
the exact displacements (velocities) continuum solution will be reached. If the
constant stress Patch Test is not fulfilled the convergence to the exact dis-
placements (velocities) continuum solution under every circumstances cannot
be assured; therefore, finite element formulations that do not fulfill the constant
stress Patch Test have to be disregarded for actual engineering applications.
The fulfillment of higher order Patch Test will guarantee not only conver-

gence when h→ 0 but also a reasonable convergence velocity.
Even tough the Patch Test is a tool developed for analyzing linear element

formulations, it has proven to be an extremely valuable tool for analyzing non-
linear element formulations [8], [11].
Regarding our topic, the finite element analysis of incompressible problems,

we may state as a first conclusion that we can only consider as acceptable finite
element formulations the ones that fulfill the constant stress Patch Test and in
the higher order Patch Tests and/or benchmark problems present an acceptable
convergence velocity.
The elements that fulfill the inf-sup condition will also guarantee a well

behaved pressure solution. Even tough this is a very important aspect of the
finite element formulation performance, it may be waived and it is actually
waived in many practical applications: due to its simplicity, reliability and
good performance in the prediction of the displacement (velocity) field, the two
dimensional Q1-P0 element or its three dimensional counterpart, the H1-P0
element are a favorite choice in engineering applications (and a very reasonable
choice too !).
In Fig. 3 we present the band plot of the pressure prediction obtained

using a plane strain rigid-viscoplastic model of a metal rolling process [10] [12].
The model was developed using a quadrilateral element that while fulfilling the
Patch Test does not fulfill the inf-sup condition [9]: it can be recognized that
the physical pressure solution is polluted by a checkerboard-type solution. In
Fig. 4 we plot the plate / rolls contact pressure distribution along the contact
arc, obtained from the above band plot; obviously the checkerboard solution
pollutes this pressure distribution rendering it useless for practical applications.
However, also in Fig. 4 using the same model solution we again present the
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plate / rolls contact pressure distribution along the contact arc, but now we
post-processed it from the nodal forces; since the nodal forces are not polluted
by the checkerboard pressure solution (see Eqns. (40a) and (40b)) this time the
proper friction hill type pressure distribution was obtained [16]. Therefore, in
the development of metal forming models, when elements that do not fulfill the
inf-sup condition are used, special care must be taken for modeling the pressure
dependent blank / tools friction (e.g. when using a Coulomb friction model).
The results in Fig. 4 clearly indicate that an element formulation that fulfills

the Patch Test but fails to fulfill the inf-sup condition can be reliably used if
the software developer incorporates the proper filters to prevent the spurious
pressure modes from polluting the solution.
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