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ON THE CONVERGENCE OF MOMENT PROBLEMS

J. M. BORWEIN AND A. S. LEWIS

Abstract. We study the problem of estimating a nonnegative density, given a
finite number of moments. Such problems arise in numerous practical applica-
tions. As the number of moments increases, the estimates will always converge
weak * as measures, but need not converge weakly in L, . This is related to
the existence of functions on a compact metric space which are not essentially
Riemann integrable (in some suitable sense). We characterize the type of weak
convergence we can expect in terms of Riemann integrability, and in some
cases give error bounds. When the estimates are chosen to minimize an objec-
tive function with weakly compact level sets (such as the Bolzmann-Shannon
entropy) they will converge weakly in Lx . When an Lp norm (1 < p < co)
is used as the objective, the estimates actually converge in norm. These re-
sults provide theoretical support to the growing popularity of such methods in
practice.

0. Introduction

A very common problem in physics and engineering is known under the gen-
eral title of "the moment problem". We are concerned with estimating some
nonnegative measure, which may for example represent the power spectral den-
sity of some signal, or the density of states in some harmonic solid, or some
other unknown physical property. Corresponding to some finite number of ob-
servations or calculations, we are given a set of "moments"—the integrals of
various given functions with respect to the measure. Since these moments will
not determine the measure uniquely, how should we best estimate the measure,
and how good will our estimate be?

Such problems arise in a wide variety of settings. Moment problems oc-
cur frequently in spectral estimation, and in particular in speech processing,
geophysics, radio astronomy, sonar and radar, and many other areas (see, for
example, [Lang and McClellan, 1983; Kay and Marple, 1981] and the refer-
ences therein). They are also common in numerous models from theoretical
physics such as quantum spin systems, Ising models, and the summation of
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divergent series arising from Stieltjes transforms (see, for instance, [Mead and
Papanicolaou, 1984] and the references therein). In applications moment prob-
lems are frequently also known as "underdetermined inverse problems." The
moment problem in pure mathematics dates back at least to [Hausdorff, 1921].
A recent survey of the wide range of approaches to the moment problem, and
applications, is [Landau, 1987].

Given a finite number of moments, various approaches are possible in esti-
mating the measure. The most popular traditional schemes are known collec-
tively as "Padé approximation" (see, for instance, [Baker and Graves-Morris,
1980]). The idea here is to approximate the measure by atomic measures. In
recent years, however, various authors have considered a rival approach where
the measure is estimated by means of an objective function. Various entropy-
like objectives have been tried (see, for example, [Burg, 1975; Ben-Tal, Bor-
wein, and Teboulle, 1988(b); Borwein and Lewis, 1988(b)]), and advantages
over more traditional approaches have been observed [Mead and Papanicolaou,
1984]. Norms have also been tried as objective functions [Goodrich and Stein-
hardt, 1986].

A very important question arises in connection with this optimization ap-
proach to finite moment problems. How will our estimate converge to the un-
derlying measure as the number of given moments increases? This question
has been considered in the very special case of the Hausdorff moment problem
(where the measures lie on [0,1] and the moments are taken with respect to
s') in [Mead and Papanicolaou, 1984], where it was observed that, indepen-
dent of the objective function used, the estimates converge weak* as measures,
and in [Forte, Hughes, and Pales, 1988], where some convergence results were
proved when (minus) the Boltzmann-Shannon entropy (slogs) is used as the
objective.

In this paper a rather more general approach is taken to the question of con-
vergence. We begin by studying general sequences of optimization problems.
It transpires that we can guarantee weak convergence if the level sets of the
objective function are weakly compact. We therefore summarize some appro-
priate results of Rockafellar concerning the weak compactness of the level sets
of various convex integral functionals on L spaces, and prove some related
results. In particular these results apply to the Boltzmann-Shannon entropy.

Such weak convergence results are important because in general a sequence
of feasible densities (in Lx) for the finite moment problems need not con-
verge weakly (in Lx) to the underlying density. Using a duality theorem for
semi-infinite linear programs we are able to give an elegant and surprising char-
acterization of those integrands with respect to which the estimates converge
weakly: loosely speaking, they are those functions which have good one-sided
Lx -approximations by continuous functions. This property may be taken as a
definition of Riemann integrability in a compact metric space. It agrees with
the standard definition in the classical case, and as in that case is equivalent
to almost everywhere continuity. The failure of estimates to converge weakly
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in Lx arises because of the existence of functions which are not essentially
Riemann integrable.

Despite this, when the underlying space is a subset of K, estimates will
converge in distribution, and when the integrand is continuous we can relate its
degree of smoothness to error bounds for the rate of weak convergence.

The above observations indicate that the choice of objective function is rather
important. In particular, using (minus) the Boltzmann-Shannon entropy ensures
weak convergence in Lx. However, for certain objective functions we obtain
even better convergence properties—convergence in norm. This happens in
particular when an L norm ( 1 < p < oo) is used as the objective. Practical
comparisons between this approach (using various objectives) and more tradi-
tional techniques would be of great interest, now that the optimization approach
has been given a firm mathematical basis.

1. Convergence in moment problems

We are interested in problems of the form

inf f(x)
(MPJ 1 subject to   a¡(x) = b¡,    i = 1, ... , n, 0 < x e X,

and the limiting problem (with infinitely many constraints) (MP^). Here, A is
a partially-ordered, locally convex topological vector space, /: X —► (-00, -f-oo]
is a closed, proper, convex function, and the ai 's are continuous linear func-
tional. In what sense can we expect the solutions of (MPJ to converge to a
solution of (MPM)?

Suppose S is a compact Hausdorff space and A = M (S), the regular Borel
measures, with the usual ordering and the weak* topology (regarding M(S)
as the dual of C(S)). Suppose further that the ai 's are densely spanning in
C(S). As we shall see later, if (MP^) is consistent then it has a unique feasible
solution p, say, and if pn is feasible for (MPJ then pn —y p weak*.

Now suppose that 0 < X e M(S) and repose the problems in A = Lx (S, X),
with the usual ordering and the weak topology, regarding the ax 's as functions
in L^S, a) . It is easy to check that for x e LX(S, X), xdX e M(S). As
before, if (MP^) is consistent then it has a unique feasible solution, x say
(where x = d~p/dX). However, we will show the remarkable fact that, under
very mild assumptions, there will always exist a sequence of xn 's feasible for
(MPJ such that xn ^ x weakly in LX(S, X). For this sequence we therefore
have the pathological behaviour that

is

and yet

VyeC(S),     j(xn-x)ydX^0,
Js

3y e Lx(S, X) s.t.   f (xn -x)ydX*0.
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The conclusion is that in order to ensure convergence, the objective function /
must be carefully chosen.

We shall begin by considering a sequence of optimization problems posed in
a topological space. With very little restriction on the underlying structure of
the problems, we can give conditions ensuring that the optimal values of the
problems converge to the optimal value of the limit problem, and furthermore
that a sequence of optimal solutions converges to an optimal solution of the
limit problem.

We shall consider a topological space A, with a nested sequence of closed
subsets, A D Fx D F2 D • • • . The following simple result will be useful.

Lemma 1.1. Suppose xn e Fn for each n, and x is a cluster point of the sequence
(xn). Then x e fl^i Fn ■
Proof. Suppose x $ Fm for some m . Since Fm is closed, Fcm is a neighbour-
hood of x, so for some n > m , xne Fcm. But as n > m , xn e Fm , which is
a contradiction.   D

As usual in optimization, to ensure attainment we require some degree of
compactness.

Definition 1.2 (e.g. [Kelley, 1955]). A set C c A is countably compact if every
sequence in C has a cluster point in C.

This property is weaker than either compactness or sequential compactness.
It is easy to see that a closed subset of a countably compact set is countably
compact.

We shall consider functions /: A -> (-00, +oo]. The (lower) level sets of /
are the sets {x e X\f(x) < a} for a < +oo. Thus / is lower semicontinuous
if and only if it has closed level sets.

Proposition 1.3. Suppose f: X —y (-00, oo] has closed, countably compact level
sets. Ifiinff is finite, it is attained.
Proof. Let a := inff be finite, and define Ln := {x\f(x) <a+ l/n}. For each
n , pick xn e Ln . The sequence (xn) c Lx and Lx is countably compact, so
there exists a cluster point x. Applying Lemma 1.1, x e CÇ=X Ln , so f(x) < a.
Thus x attains the infimum.   D

We now consider the sequence of problems

(P„) inf{f(x)\xeFn},
and the limiting problem

f(x)\xef]Fn\.
n=X       )

We denote the value of a problem (P) by V(P). The previous result shows that
if / has closed, countably compact level sets and the values of (PJ and (P^)
are finite, then they are attained.

(Poo) inf -
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Proposition 1.4. Suppose f has closed, countably compact level sets. Then
F(PJ Î V(PJ (finite or infinite).
Proof. Clearly V(Pn) is nondecreasing in n, and bounded above by V(Poo).
Suppose therefore that V(Pn) < y < +00 for all n. By Proposition 1.3, we
can pick for each n, xn e Lxx Fn, where L := {x\f(x) < y} is countably
compact. Thus the sequence (xn) has a cluster point x e L, and by Lemma
1.1, x e rCi Fn ■ Thus ^(P^) < y, and the result follows.   D

Proposition 1.5. Suppose f has closed, countably compact level sets. Suppose
further that xn is optimal for (PJ, and that x^ is the unique optimal solution
of (Poo). with f(xj < +00. Then xn-^xO0.
Proof. Suppose xn ■><* xx, so there exists an open neighbourhood N of x^ ,
and a subsequence (xn ) c Nc. Denoting the set {x\f(x) < f(x00)} by L,

(xn ) c L xx Nc , so by countable compactness there exists a cluster point x of

(xn) (and therefore of (xn)), with xeLxxNc . By Lemma 1.1, x e fÇ=x Fn .

It follows by uniqueness that x = x^ , but this contradicts x e N  .   D

We are specifically interested in the case where A is a topological vector
space and the sets Fn are given by Fn = {x e C\at(x) = b¡, i = 1,...,«},
where C is a closed set (typically a positive cone) and the ai 's are continuous
linear functionals. In particular, we are concerned with the cases X = L [a, ß],
1 < p < 00 (with the weak topology), and Lx[a, ß] and M[a, ß] (with the
weak* topology), where the aAs are determined by a¡(t) = t'~x, or a¡(t) =
e , and C = {x > 0}. Whether the set Fn is nonempty in these cases
can be answered in quite a straightforward way (see, for example, [Karlin and
Studden, 1966]). The question of when the limiting problem is feasible is a
classical moment problem in these cases (see, for example, [Widder, 1941]).

Proposition 1.3 gives one condition for attainment. The question of attain-
ment in the problems (PJ when we do not necessarily know that / has com-
pact level sets, is considered in [Borwein and Lewis, 1988(b)].

Assuming that ^(P^) < +00 and is attained, there are two natural ways
to ensure that the optimum is unique. This will be the case either if / is
strictly convex on its domain {x\f(x) < +00}, or if f|~ t Fn is a singleton.
The following simple result is useful (see [Schaefer, 1971] for the notation).

Proposition 1.6. Let (A, Y) be paired vector spaces, x e X, and suppose the
span of (aA™ is a(Y, X)-dense in Y. Then

{xe X\(x, a¡) = (x,a¡), /'=1,2,...} = {x}.
Proof. If (x - x, a A = 0 for each i, then

x-x = {(aA™f = {o(Y, X) - clspan(ai.)~}± = Yx = {0}.   D

For example, suppose 5cl is compact and X is Lebesgue measure. Then
C(S) is || • Hádense in L (S, X) for q < +00  (see [Rudin, 1966, Theorem
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3.14]). If the sequence (fl,-)f C C(S) spans the (multidimensional) polynomi-
als, then, by the Stone-Weierstrass Theorem [Holmes, 1975, p. 209], the span
of (a,)^° is || • H^-dense in C(S), and therefore || • ||?-dense in L (S, X), and
so o(L , L )-dense. Obviously the span of (a,)^ will also be o(C(S), M(S))-
dense in C(S). On the other hand, C(S) is weak*-dense in L^S) [Holmes,
1975, p. 68], so span^.)^ will be er(Loo , LJ-dense in L^S).

For example, if the sequence (a¡(sx, ... , sk))°lx is given by 1, sx, s2, ... ,
sk, s2 , sxs2, ... , sxsk , s2, ... etc., then the above result will apply. In par-
ticular, it applies in the one-dimensional case where a¿(s) := s'~ for each i.
Similarly, denoting the unit circle by T (so C(T) is the space of 27r-periodic
real-valued continuous functions on R, and L (T) is defined in the usual way
for real-valued functions), the trigonometric polynomials are dense in C(T)
[Rudin, 1966, 4.25]. Thus if (A, Y) = (Lp(T), Lq(T)) with 1 < p < oc or
(C(T), M(T)), and (aA™ = {1, coss, sins, ,..} then Proposition 1.6 will ap-
ply (and analogous results will hold in several dimensions).

Throughout this paper we shall generally assume that the underlying space 5
is a compact metric space. This involves no essential loss of generality since the
existence of a densely spanning sequence (fl,-)i° in C(S) implies that C(S) is
separable, and hence that 5 is metrizable [Jameson, 1974, 26.14].

A function ^:5->R is Bor el if g~~x(V) is a Borel set for every open set
FcK.

Theorem 1.7. Let S be a compact metric space, 0 < p e M(S), and suppose
(a,.)" c C(S) with clspan(a;)^° = C(S). For n = 1, 2, ... , define

Fn:=io<peM(S)\j atd(p-p) = 0, i=l,...,n\.

Suppose pn e Fn for each n. Then pn —>p weak * in M(S). In fact

(1.8) / gd(p n-p) -> 0   as n -> +00
Js

for any bounded Borel function g: S ^yR, continuous p-a.e.
Proof. Proposition 1.6 shows that f|^li F„ = {ß} • Since span(a/)^>° is dense in
C(S), for some m and some X e Rm , || Yl'JLx ̂iai — 1 ll^ < 5 (where 1 denotes
the constant function), so in particular Yl?=i^ia¡(s) ^2 for all s e 5. Now
for any p e Fm we have

= \\p\\ = jp(S)   (since p > 0)

=/^H/;(f>,) *=f>,.
Thus Fm is closed and bounded in norm, so is weak * compact by the Alaoglu-
Bourbaki theorem [Holmes, 1975].
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Now apply Proposition 1.5 with /(•) := S(-\Fm) (where S(x\C) := 0 if
x e C and +oo otherwise) to deduce that ßn^p weak *. The final statement
follows by [Ash, 1972,4.5.1].   D

As a special case, suppose S = [a, ß] c R, and let g := X[a¡S] in (1.8) (where
Xc(x) := 1 if x e C and 0 otherwise). It then follows that pn[a, s] —y p[a, s]
as n —> oo for all s e [a, ß], or pn —► /Z in distribution. We thus recover the
result of [Mead and Papanicolaou, 1984, Theorem 2].
Error bounds. An alternative approach to Theorem 1.7 involves a direct ap-
proximation argument. This idea also furnishes error bounds for the rate of
convergence in (1.8) when g is continuous. As in Theorem 1.7, let 5 be a
compact metric space with (újf C C(S).
Definition 1.9. For any function g: S -> R define the error function

En(g) :=inf< 8-T,Àiai
i=X

\Xe

Thus if clspan(a()~ = C(S) then for any g e C(S), En(g) -> 0 as n -» oo . In
fact, when 5 = [a, ß] c R and a¡(s) := s'~x, various theorems due to Jackson
and others relate the rate of convergence of En(g) to zero with the smoothness
of g. For example, if g is analytic on [a, ß] then there exists some p > 1
and a constant A such that En(g) < Kp~n for all n (see [Lorentz, 1986]).
Analogous results exist for approximation by trigonometric polynomials.

Theorem 1.10. With the same notation as Theorem 1.7, suppose ax = 1. Sup-
pose pn e Fn for each n . Then for any bounded Borel function g: S —► R,

/ Sd(pnJs
PA

Proof. By definition, given ô > 0 there exists X e
En(g) + ô ■ Therefore

\    gd(pn-p)\= \f (^-¿Al.flI.) d(pn-p)\Js \Js V      ,=i       J

<2En(g)p(S)   for each n.

n withiis-ELVt-Hoo^

JS l     i=i
d\pn-p\

<  f(En(g) + ô)d(pn+p) = 2(En(g) + ô)p(S).Js
Since ô was arbitrary the result follows.   D

Note that since ax = 1, p(S) = Js dp is a known moment.

2. Compactness of level sets
The conditions we gave in the previous section for the convergence in value

and optimal solution of the sequence of problems (PJ depended on the ob-
jective function / having compact (in fact countably compact) level sets. We
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are interested specifically in the case where the underlying space A is a Banach
space with its associated weak or weak* topology. The following concept is
therefore useful.

Definition 2.1. Suppose A is normed and /: A —► (-00, +00]. Then / is
coercive if lim^^ "%„>,, f(x) = +00 .

Proposition 2.2. A function f is coercive if and only if all its level sets are
bounded.
Proof. Suppose some level set is unbounded, so for some sequence (xn) with
\\x„\\ ~* +°°> /(■*«) < « < +00 for all n. Then inf.. „> /(*) < a for all y,
so lim    +0Oinf,| .,> /(*) < a and f is not coercive.

Conversely, if / is not coercive then for some a < +00, inf,,,^ /(x) < a
for all y . Therefore {x\f(x) < a} is unbounded.   □

Corollary 2.3. Let X be the dual of a normed space, and suppose f: X -»
(-00, +00] is coercive and weak*-lower semicontinuous. Then f has weak*-
compact level sets.
Proof. The level sets of / are weak*-closed by assumption, and bounded by
Proposition 2.2, so they are weak'-compact, by the Alaoglu-Bourbaki theorem
[Holmes, 1975, p. 70].   G

We are concerned with convex functions /. In this case there is a dual
characterization, by the Moreau-Rockafellar Theorem. Given paired spaces
(A, Y), denote the Mackey topology on A by t(A , Y) (see, for example,
[Schaefer, 1971]).

Theorem 2.4 [Rockafellar, 1974, Theorem 10(a)]. Suppose (A, Y) are paired
spaces, with f:X—> (-00, +00] a closed, proper, convex function with conjugate
f*: Y —» (-00, +00]. If f* is bounded above on x(Y, X)-neighbourhood of 0
then the level sets,
(2.5) {x e X\f(x) < a} , a < +00,

are o(X, Y)-compact. Conversely, if one of the level sets (2.5) with a > inff is
o(X, Y)-compact, then 0 e core(dom/*) and f* is x(Y, X)-continuous at 0
(so in particular, f* is bounded above on a x(Y, X)-neighbourhood of 0).   G

Corollary 2.6. Suppose, in Theorem 2.4, Y is a Banach space and X = Y*.
Then all the level sets (2.5) are weak*-compact if and only if 0 e
|| • || -int(dom/*).
Proof. This follows directly from the theorem, using the fact that, by [Rockafel-
lar, 1974, Corollary 8B], f* is continuous on core(dom/*) = int(dom/*).   G

We are particularly interested in objective functions / which are convex in-
tegral functionals: /: L (S) -* (-00, +00] defined by f(x) = fstp(x(s))ds,
where tp is a convex function on R. These integrals are defined as in [Rock-
afellar, 1974]. We will primarily be interested in the case where 5 is a finite
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measure space. The following result is a specialization of a theorem [Rockafel-
lar, 1974, Theorem 22] giving conditions for the level sets of such an / to be
weakly compact.

Theorem 2.7. Let (S, ds) be a complete, totally o-finite measure space, and
suppose <p: R -> (-oo, +00] is closed, convex, proper.

(A) For 1 < p < 00 and l/p + l/q = 1, define f: L (S) -» (-00, +00] by
f(x) = fs (p(x(s)) ds. Suppose

(2.8) <p*(y(-))eLx(S)   for all y e Lq(S).
Then the level sets of f are o (LAS), Lq(S))-compact.

(B) For 1 < p < 00 and S a finite measure space, (2.8) is implied by the
growth condition

a*(v) <-\v\q + b   for all v,
q

for some constants a > 0 and b, or dually, for all u,

\u\p/ap-b, if p<+00,
i])-b,    if p = +00.

For p = 1 and S finite, (2.8) is implied by <p* being everywhere finite,   a

., , . J M lap - b
I o(u\[-a, a]

Example 2.9. For applications to moment problems, the case where p = 1 and
<p(u) = +00 for u < 0 is of particular interest. In this case, define d :=
limu_>+oo (p(u)/u (which exists). It is easy to check that <p* is everywhere finite
if and only if d = +00 (see [Borwein and Lewis, 1988(b)]). As an example,
consider (minus) the Boltzmann-Shannon entropy:

{u log u,    u > 0,
0, u = 0,
+00,        u < 0.

Then d = +00 and <p*(v) = ev~  . Applying the above results, the level sets

io<xeL,[0, 1]| í x(s)logx(s)i/s<ai

are weakly compact (a < +00). This could be seen more directly from the
Dunford-Pettis criterion for weak compactness in L, (the approach taken in
[Forte, Hughes, and Pales, 1988]).

The assumption that S is a finite measure space is important here. Writ-
ing I^x) for fs<p(x(s))ds, we know by [Rockafellar, 1974, Theorem 21]
that with \p as above and 7' : L,(R) -* (-00, +00], the conjugate functional
(/ )*: L   (R) - (-00, +œ] is given by (/)* = / . . Thus for y e L(R),

/OO

ey{s)-xds,
-OO
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from which it is clear that dom(7 )* = 0. Thus by Theorem 2.4, the level sets
of /   are not weakly compact.

We can prove a converse to Theorem 2.7(A) (in the Lx case).

Theorem 2.10. Let (S, p) be a complete, totally o-finite measure space which is
not purely atomic, and suppose </>: R —y (-00,-1-00] is closed, convex,
proper. Suppose 4>* is not everywhere finite. Then the level sets of 1^: LX(S) -*
(-00, +00] of the form {x e LX(S)\ Js 4>(x(s)) dp < a} are not weakly compact
for a > inf/^.
Proof. Notice that the result holds vacuously if I is identically +00. By
[Rockafellar, 1974, Theorem 21], (7J*: L^S) -* (-00,+00] is given by
(V* = V • Suppose 4>*(v0) = +00.

Since S is not purely atomic [Holmes, 1975, p. 106], there exists a subset
SQ contained in the complement of the atoms of S, with 0 < p(S0) < 1. Since
S0 is not an atom, there exists Sx c S0 with 0 < p(Sx) < \. Continuing
inductively, we can construct a nested sequence S0 D Sx D S2 D •■■ with
0 < p(Sn) < 2~n for each n .

Now define a sequence (yn) c Lx(S) by yn(-) := v0xs (•) • Pick any weakly
compact set Q in Lx (S). By the Pettis criterion for weak compactness in Lx,

sup{|(x,yJ||xeQ} = |v0|sup. xdp
Js.

\x e!A} -yQ   as«->oo

(see [Dunford and Schwartz, 1958, IV.8.11]). Thus for large n, yn e Q° :=
{y|(x, y) < 1 for all x e Q}. Since these sets form a base of neighbourhoods
of the origin for :(LM, L, ), yn —y 0 in the Mackey topology (see, for example,
[Schaefer, 1971]). However

V W = / <f(v0xSn(s))dp(s) = p(Sn)tp*(v0) + p(Scn)tf>*(0) = +00,

so 1^. is not finite on any Mackey neighbourhood of 0. The result now follows
from Theorem 2.4.   G

As an example, consider the logarithmic entropy
f -log«,    «>0,

<p(u) = <
I +00,        u<0.

Then the conjugate function is

. / -l-log(-v),    v<0,
cp (v) = <

( +00, v > 0,

so the above theorem shows for example that
.1

XGL,[0, 1]| f  logx(s)ds>a
Jo
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is not weakly compact for any finite a. Thus it is not possible to apply the
results of §1 directly with objective functions of this form. Such problems are
studied in [Lewis, 1989], where it is shown for example that if xn is the (unique)
optimal solution for the problem

maximize   J0 logx(s)ds

subject to   ¡q(x(s) -x(s))s'ds = 0,        i = 0, ... , n, 0 <x e Lx[0, 1],
where x is continuous and strictly positive, then 1/x^ —> 1/x weakly in Lx.

3. RlEMANN INTEGRATION

Consider the set

Gn := \o<xeLx[0, 1]| Í (x(s) -x(s))s'ds = 0, i = 0, ..., n\.

Thus Gn is the set of nonnegative densities agreeing with x up to the first n
moments (where 0 < x e Lx). If xn e Gn for n = 1, 2, ... then Theorem
1.7 shows that

(3.1) /  (xn(s) - x(s))g(s)ds -* 0    as n-y oo
Jo

for any bounded Borel function g: [0, 1] -> R which is continuous a.e. (or
in other words for Riemann integrable Borel functions). What we shall show
in the next two sections is that, loosely speaking, this condition on g is also
necessary for (3.1) to hold in general. In particular this shows that xn does not
necessarily converge to x weakly in Lx. It is precisely this fact that motivates
our interest in objective functions with weakly compact level sets.

In order to demonstrate this result in a general setting we begin in this sec-
tion by developing a theory of Riemann integration in compact metric spaces.
Throughout this section, S is a compact metric space with 0 < p e M(S).
Definition 3.2. A function g: S —> R is Riemann integrable (with respect to p)
if given any e > 0 there exist p , q e C(S) with p < g < q and ¡s(q -p) dp <
s. We say g is essentially Riemann integrable (with respect to u) if there exists
a Riemann integrable Borel function h with h(s) = g(s)  p-a.e.

Thus a function is Riemann integrable when it can be L,-approximated from
above and below by continuous functions (cf. [Jacobs, 1978, 1.9.1]). When
S = [q , ß] and p is Lebesgue measure, step functions and continuous functions
Lx -approximate each other arbitrarily well from above and below. It follows by a
standard result on the Riemann integral [Stromberg, 1981, 6.28], that Definition
3.2 agrees with the standard notion in this case.

Denote the bounded functions on 5 by B(S) and the Riemann integrable
functions by RI(S, p). Then C(S) c RI(S, p) c B(S), and RI(S, p) and is
a closed subspace of B(S) (with the uniform norm), by [Jacobs, 1978, 9.5.1].
It is easy to check that in general RI(S, p) will not be separable. We can also
regard the (equivalence classes of) essentially Riemann integrable functions as
a closed subspace of L   (S, p), which again will in general not be separable.
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Proposition 3.3. Suppose support(^) = S. Then a Borel function g is essentially
Riemann integrable if and only if given any e > 0 there exists p, q eC(S) with
P(s) < i(s) < q(s) a.e. and ¡s(q -p)dp < e.
Proof. Suppose g has the given property. For each n = 1,2,... there exist
pn, qne C(S) with pn(s) < g(s) < qn(s) a.e. and ¡s(qn-pn)dp < l/n. By
replacing pn with \f"=lP¡ and qn with A"=i9¿ for each n (where V anc* A
denote pointwise maxima and minima respectively), we can assume px <p2<
■■■ , and qx> q2> ■■■ . Suppose for some n and s0 e S, Pn(s0) > qn(s0). By
continuity there exists an open neighbourhood U of s0 with pn(s) > qn(s) for
all s e U. Since support(jU) = S, p(U) > 0, which contradicts pn(s) < qn(s)
a.e. Thus pn < qn for all n .

Now define Borel functions u, v : S -* R by u := V°!i P¡ and v := /\°ZX q¡.
Then pn < u < v < qn for each n, and u(s) < g(s) < v(s) a.e. Define null
sets

Sx := {s\g(s) < u(s)}   and   S2 := {s\g(s) > v(s)},

and then define a Borel function h : S -» R by

__ r u(s),    if se SxöS2,
\ g(s),    otherwise.

Then h(s) = g(s) a.e., and pn<u<h<v<qn for each n, so h is Borel
and Riemann integrable. Thus g is essentially Riemann integrable.

The converse is immediate.   G

We are interested in the existence of functions which are not essentially Rie-
mann integrable. The following construction is useful.

Proposition 3.4. Suppose support(^) = S and p is nonatomic. Given any e > 0
there exists an open set Ac S with 0 < p(A) < e, and such that p(A n U) > 0
for every nonempty open set U c S.
Proof. By [Jameson, 1974, 11.3], S is separable, so pick a dense sequence
(s()j°.  Write B£(s) for the open ball, centre s with radius e.   For each i,
Hfcli B\/k(si) = isi} y s0 since ß is nonatomic, p(Bx,k(sA) —> 0 as k —> oo.
Pick Sj > 0 such that p(Bs(sA) < e2~'', and define A := \J°ZxBs(s¡). Then
A is open with 0 < p(A) < J2°lx e2~l = e. Furthermore, if 0 ^ If then
si 6 U for some /', so 0 ^ UnBs(sl) is open. Since support(/¿) = S,
p(A n U) > p(U n Bâ(st)) > 0 as required.   G

Theorem 3.5. Suppose p is not purely atomic. Then there exists a set A, open
in S, such that the function xA is not essentially Riemann integrable.
Proof. Since p is not purely atomic there exists a subset Sx contained in the
complement of the atoms of p with p(Sx) > 0. Since p is regular, there exists
compact S2 c Sx with p(S2) > 0. Let S0 := S2 n support(^). Then S0 is a
compact metric space, //L   is nonatomic, and supportedç ) = Sa.
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By Proposition 3.4, there exists a set A0, open in S0, with 0 < p(A0) <
\ß(S0) and such that p(A0x\UQ) > 0 for every nomempty set U0, open in S0 .
In other words, there exists a set A , open in S, with 0 < p(A n S0) < ^ß(SQ)
and such that p(A n U) > 0 for every set U, open in S, with U xx S0 ̂  0.

Now suppose p e C(S) with p(s) > xA(s) a.e. Suppose p(s) < 1 for some
s e S0. By continuity, there exists V, open in S, with s e V such that
p(s) < 1 for all s e V. However VxlSo^0 implies that p(A n V) > 0, and
this contradicts p(s) > 1 a.e. on A. Thus p(s) > 1 for all s eS0. Hence

f(p-XA)dß= f (p-XA)dß+     (p-XA)dß
Js Js% Js0

> / (P-XA)dß= / pdp-p(AnSl
Js„ Jsn

)'O'

> /i(S0) - ¿í(¿ n s0) > //(S0) - ±p(s0) = ±p(s0).

It follows immediately from the definition that xA is not essentially Riemann
integrable.   G

The last result of this section shows that the classical characterization of
Riemann integrability on R as continuity a.e. extends to this setting. (Note
that we do not require h to be Borel.)

Theorem 3.6. Let A:5->K be bounded. Then h is Riemann integrable if and
only if it is continuous a.e.
Proof. Define the upper and lower envelopes of h , h, h: S -» R respectively,
by

h(s) := limh(t),    h(s) := lim h(t),    for s e S.
'-* t-*s

Then h<h<h, h is lsc, h is use, and

h = A^ - n\a x% usc} '       - = V^ - n\P ^s ̂ sc^-

See [Ash, J972, A6] for these ideas. Clearly h is continuous at s if and only
if h(s) = h(s) = h(s).

Now suppose h is continuous a.e., so h(s) = h(s) a.e. By [Ash, 1972, A6.6]
there exist sequences (pj™ , (tfjf c C(S) with pn } h and qn | h as n —> oo.
By the monotone convergence theorem,

lim     p„dp = / h dp =     h dp = lim / q„dp.
n^°°Js Js Js »-"X'Js

Thus pn < h < qn for each n and fs(qn -pn)dp \ 0 as n -* oo, so h is
Riemann integrable.

Conversely, suppose h is not continuous a.e. so for some measurable S0c S
with p(S0) > 0, h(s) < h(s) for all s e S0. Then for some e > 0 and some
measurable Sx c S with p(Sx) > 0, h(s) < h(s) - e for all s e Sx .
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Now for any p, q e C(S) with p <h <q, p <h and q > h, and so

f(q-p)dp>     (h-h)dp> / (h - h)dp > ep(Sx).
Js Js Jst

Thus h is not Riemann integrable.   G

4. Duality and weak convergence

We make the following assumptions:
' S is a compact metric space,

0 < p e M(S),
(4.1) I 0<xeLx(S,p),

g : S -* R, Borel, bounded p-a.e.,
. clspan(a;.)^ = C(S).

Let Gn c LX(S, p) be defined by

(4.2) Gn:= ¡O <x e LX(S, p)\    (x-x)a;ö(u = 0,  i=l, ... ,n\

We consider sequences (xj, , with xn e Gn for each n , and we are interested
in conditions ensuring

(4.3) / (xn -x)gdp -y 0   as n-y oo.

From Theorem 1.7 we immediately obtain the following result.

Theorem 4.4. Suppose assumptions (A.1) hold and define Gn as in (4.2).  //
g(s) = h(s) p-a.e., where h is a bounded Borel function which is continuous a.e.
with respect to the measure x dp, then (4.3) holds for every sequence xneGn.
In particular, this holds if g is essentially Riemann integrable.
Proof. Since h is continuous a.e. with respect to the measure x dp, we can
apply Theorem 1.7 with dp := xdp and dpn := xndp. For the last part, if
g is essentially Riemann integrable then g(s) = h(s) p-a.e., where h is Borel
and Riemann integrable, so bounded, and continuous p-a.e. (and so x dp-a.e.),
by Theorem 3.6.   G

In order to prove the main result we shall use a duality result from [Borwein
and Lewis, 1988(a)].

Definition 4.5. Let A be a topological vector space, with convex C c X. Then
the quasirelative interior of C (qri C) is the set of those x e C for which
clcone(C - x) is a subspace.

Example 4.6. Fora cr-finite measure space (T, p) and X = LX(T, p),

qri{x|x(0 > 0 a.e.} = {x|x(/) > 0 a.e.}

[Borwein and Lewis, 1988(a), Example 3.11].
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Theorem 4.7. Let X be a locally convex topological vector space; f: X ->
(-00, +oo] convex, A: X —> R" continuous and linear, and b eM." . Suppose
there exists x e qri(dom/) with Ax = b. Then

inf{f(x)\Ax = b, x e X} = max{¿>rA - f*(ATX)\X e R"}

(where the right-hand side is attained).
Proof. See [Borwein and Lewis, 1988(a), Corollary 4.10].   G

Theorem 4.8. Suppose assumptions (4.1) hold and define Gn as in (4.2). Sup-
pose there exists ô > 0 and a closed set S0 c support(^) with x(s) > S p-a.e.
on Sn, such that gL is not essentially Riemann integrable with respect to /zL .
Then there exists a sequence xn e Gn , n = 1, 2, ... , such that (4.3) fails.
Proof. Without loss of generality (if necessary replace g with —g), by Propo-
sition 3.3 there exists e > 0 such that for any q e C(SQ) with q(s) > g(s)
p\~ -a.e.,  L (q - g) dp > e . (Note that gL   is Borel.)

Consider the semi-infinite linear program,

sup / ugdp
Js0

subject to    / uaidp =     xa¡dp,    i = 1, ... , n,
Js0 Js0

0<ueLx(S0,p\sJ.
Applying Theorem 4.7, the dual problem is

( SIP, )

DISP„)
minimize     /   \S^X,aA xdpk vt?   7

n

subject to   y^A,a;(s) > g(s)      p\s -a.e., X e
i=i

Now u := x\s  G qri(Z.1(5'0 , p\s )  ) by Example 4.6, and is feasible for (SIP).
Thus by Theorem 4.7, F(SIPJ°= F(DSIPJ .

However, for any feasible X for (DSIPJ, J2Xjai is continuous and thus
ISo(E"i=i^ial-8)dß>e,so

I   \YlÀiai)xdß^l  gxdp + eôp(S0).

Note that p(SQ) > 0 by assumption (otherwise g\s (s) = 0 a.e., so is essentially
Riemann integrable). It follows that

K(SIPJ = K(DSIP„) > / gxdp + eôp(S0).
JS0

Thus for each n there exists un , feasible for (SIPJ , with

/  ungdp> /  xgdp + =eöp(S0).
Js„ Jsn ¿
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Finally, define xn e LX(S, p) by
¡un(s),   seS0,

W_lx(s),     seSc0.
Then xn e Gn for each n , and

/ (xH - x)gdp =     (u  - x)gdp > -reôp(S0) > 0.
Js Js0 l

Thus (4.3) fails.   G

The duality argument above could be circumvented by a direct separation
argument if so desired.

If, in Theorem 4.8, x e LAS, p), where 1 < p < oo, then we can in
fact find a sequence xn e Gn, n = 1,2, ... , such that (4.3) fails, with each
xn e L (S, p). To see this, simply follow the same proof, with (SIPJ reposed
in L . The dual problem remains unchanged, and Theorem 4.7 still applies be-
cause qri((Lp)+) = {x|x(í) > 0 a.e.} by [Borwein and Lewis, 1988(a), Example
3.11] (where in the case p = oo we use the weak* topology).

Furthermore, if actually x e C(S) and 50 = S in Theorem 4.8, then we
can even require each xn e C(S). Again follow the same proof, this time with
(SIPJ reposed in C(S). The dual problem is again unchanged, and Theorem
4.7 still applies because x e int(C(5)+) = qri(C(S)+).

Putting Theorems 4.4 and 4.8 together we obtain an exact characterization
of those functions g for which (4.3) holds.

Corollary 4.9. Suppose assumptions (4.1) hold and define Gn as in (4.2). Sup-
pose further that support^) = S, and for some ô > 0, x(s) > S p-a.e. Then
(4.3) holds for all sequences xn e Gn if and only if g is essentially Riemann
integrable.
Proof. One direction is contained in Theorem 4.4, while the converse follows
by taking S0 := S in Theorem 4.8.   G

It is interesting to observe that in fact both directions in the above proof could
be accomplished using the duality argument: since the a¡ 's are densely spanning
in C(S), when g is essentially Riemann integrable V(DSïPn)-+fsgx dp as
n —y oo (with SQ:= S). The result then follows by weak duality.

The principal motivation of the last two sections was to show that xn e Gn
for each n very rarely implies xn -* x weakly in LX(S, p).

Corollary 4.10. Suppose p is nonatomic and i/O. Then there exists a se-
quence xn e Gn for each n, and an open set A c S, such that fA(xn -x) dp -** 0
as n -y oo. In particular, xn -^ x weakly in Lx (S, p).
Proof. Since x # 0, for some S > 0, p{s\x(s) > S} > 0. By the regularity
of p there exists compact Sx c {s|x(s) > ¿} with p(Sx) > 0. Set S0 :=
Sx n support(//), so S0 is compact, p(S0) = p(Sx) > 0, and x(s) > S p-a.e.
on S0 . Clearly p\s  is nonatomic and has support S0 . By Theorem 3.5 we can
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find a set A0, open in S0, such that xA is not essentially Riemann integrable
with respect to p\s . Now A0 = A n S0 for some set A, open in S. Define
g := xA and apply Theorem 4.8.   G

5. Examples
The following model gives some interesting examples. As before, we denote

by L2(T) the space of real-valued Lebesgue measurable functions on [-it, n]
with the norm ||x||2 := (¿ f*nx(s)2 ds)x/2 , and the pointwise ordering.

' inf ||x||2
ÍFS  )        JsubJectt0   ¡*n(x(s)-x(s))cos(js)ds = 0,    j = 0,...,n,
[     ">        ] J*n(x(s)-x(s))sin(js)ds = 0,    j=l,...,n,

0<xe L2(T).
Here, 0 < x e L2(T). The problem therefore is to find the function in L2(T)
with minimal norm, given its nonnegativity and first (2n + 1) Fourier coeffi-
cients. By the strict convexity of || • ||2 and the weak compactness of the unit
ball in L2, if xn is the unique optimal solution of (FSJ then xn -» x weakly
in L2(J) (by Proposition 1.5). In fact we shall see in the next section that
\\xn-x\\2-+0.

For h e L2(T), denote by Sn(h) (e C(T)) the «th partial sum of the
Fourier series for h . Thus

1 "Sn(h)(s) = -rd0 + J2(dj cos(js) + Cj sin(js)),
7 = 1

where dj := A f*^ h(s) cos(js) ds and Cj := £ /"B h(s) sin(js) ds.

Lemma 5.1. If Sn(x) > 0 then it is the unique optimal solution of (FSJ.
Proof. Since {1, cos(s), sin(s), cos(2s), ...} forms an orthogonal basis for
L2(T), Sn(x) is the unique optimal solution of (FSJ with the constraint x > 0
omitted. The result follows.   G

Theorem 5.2. Suppose x e C(T) is of bounded variation and strictly positive.
Then for all n sufficiently large, Sn(x) is the unique optimal solution of (FSJ,
and it approaches x uniformly as n -» oo.
Proof. Sn(x) -» x uniformly by [Katznelson, 1968, 11.2,2]. Since x is strictly
positive and continuous, by compactness Sn(x) > 0 for all n sufficiently large,
and the result now follows by Lemma 5.1.   G

Example 5.3. There exists a function h e C(T) such that the partial Fourier
sums Sn(h) are uniformly bounded, but Sn(h)(0) v* h(0) as n —► oo (the
Fourier series of h diverges at 0). See [Stromberg, 1981, p. 530] for this ex-
ample. By adding a suitable constant to h we can assume h and S (h) are
nonnegative for each n .

Set x := h in (FSJ, and repose the problem in C(T). By Lemma 5.1,
Sn(h) is the unique optimal solution of (FSJ . Of course, \\S (h) -h\\2 —y 0 as
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n -* oo, and in fact Sn(h)(s) -* h(s) a.e. [Stromberg, 1981, 8.26]. However,
Sn(h) V4- h pointwise, so Sn(h) v* h weakly in C(T).

Example 5.4. Denote the function with constant value 2 by 2, and the ball of
radius l/\/2, center 2, by

5(2, l/y/l) := {x e L2(T)\\\x - 2||2 < \/V2),

Define g e L2(T) by g(s) := ¿ZT=i 2~J C0SUS) ■ Consider the problem

inf S(x\B(2, 1/V2))-£K g(s)xds
subject to   f\x(s)ds = An,

fl„ cos(js)x(s) ds = 0,    j = 1, ... , n,
f*nsin(;"s)x(s)ds = 0,    j = 1, ... ,n,

0 < x e L2(T).
Since {1, cos(s), sin(s), ...} is an orthogonal basis of L2(T), any feasible

solution of (RJ can be written

x(s) = 2 + Y,{dj cos(js) + Cj sin(js)),

(R„)

j>n

and for x e 5(2, l/v^) we require J2j>n(dj + c,) < 1. For this x,

g(s)x(s)ds = nJ22~Jdj.
/ j>n

The optimal solution of (RJ will thus be determined by the optimal solution
of

{sup Ej>n2-Jdj
\ subject to   J2J>n {d) + c2)<l,       c,del2,

which is easily seen to be given by c := 0, d := k2~J for j > n, and 0 for
j < n for some positive constant k, using the inner product structure of l2.
The constant k is determined by

¿2k2(2-J)2 = k2J2A-J=k2(l-A-") = l,
j>n j>n

n   J—so k = 2 v3. Thus the unique optimal solution of (RJ is

xJs):=2 + v/3^2',-Jcos(;s).
j>n

(Notice that xn(s) > 2 - V3¿Zj>n 2"~J = 2 - VÏ > 0, so xn is indeed feasible.)
On the other hand, the unique feasible solution of the limiting problem (R )
is clearly x := 2. But ||xn - 2||2 = l/\/2 for all n .

Thus in this example the objective function has weakly compact level sets
(and so by Propositions 1.4 and 1.5, or direct computation, xn —y 2 weakly and
V'R) T ̂ (R   )) but xn*2 in norm.
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Furthermore, as before, |xn(s)-2| < y/3 a.e., so no subsequence of (xn) can
converge to 2 a.e. (otherwise the dominated convergence theorem would give a
contradiction to ||xn - 2||2 = l/Vl for all n).

Example 5.5. As in Theorem 1.7, let S be a compact metric space, 0 < 77 e
M(S), and suppose clspa^aA^ = C(S). Consider the semi-infinite linear
program

i inf ¡s g dp
( SILP^ ) < subject to   Jsa¡d(p -p) = 0,    i = 1, ... , n,

{ 0<pe M(S),
where g e C(S). By Theorem 1.7, if pn is feasible for (SILPJ then pn -> 77
weak * in M (S).

However, it is well known that for such problems we can restrict attention
to measures supported on a finite number of points (see, for example, [Bor-
wein, 1983]). Suppose 77 is nonatomic. Then for any purely atomic mea-
sure p, supported on, say, {sl,..., sm}, given any 6 > 0 there exists com-
pact A c S\{sx, ... , sm} with ~fi(K) > p(S) - ô (since 77 is regular). By
Urysohn's lemma [Jameson, 1974, 12.2] there exists continuous h: S -> [0, 1]
with h(sA = 0, i = 1, ... , m , and h\K = 1. Thus fshd(p - p) > p(S) - S .
It follows that 11/7 - p\\ >p(S) (since ô was arbitrary).

Thus in this case, no sequence of finitely supported optimal solutions pn to
(SILPJ can possibly approach the limiting solution 77 in norm.

6. Norm and finite convergence
Until now we have been concerned with weak convergence of solutions to

truncated moment problems with respect to various spaces of functions. In
particular, we saw that under reasonable conditions the solutions converged
weakly with respect to essentially Riemann integrable functions. In this section
we shall consider stronger types of convergence.
Definition 6.1. A normed space A is locally uniformly convex (LUC) if for
any x , xn e U(X), the unit ball of A, n = 1, 2, ... , with ||x„ + x|| -► 2,
||x„-x||-0.

This property is called "localized uniform rotundity" in [Day, 1962], and is a
weaker condition than uniform convexity. Since any L space with I < p < oo
is uniformly convex (Clarkson's Theorem), these spaces are also LUC.

Proposition 6.2. Suppose X is LUC, xn —» x, weakly, and \\xn\\ -* ||x||. Then
xn —y x in norm.
Proof. The case x = 0 is clear, so suppose without loss of generality that
xn, x ¿ 0, n = 1, 2... , and define y := x/||x||, yn := xj||xj . Then
\\y„\\ - II.HI = 1 f°r eacn n y and yn —> y weakly.

By the Hahn-Banach theorem, there exists <j> e U(X*) with <f>(y) = 1. Now
<t>(y„ +y) -> 24>(y) = 2 as n -> oo , so \\yn + y|| -> 2 . Thus by the definition of
LUC, yn —► y in norm, and the result follows.   G
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Motivated by this, we make the following definition.

Definition 6.3. Let A be a normed space. A function /: A -> (-00, +00] is
Kadec if /(xj -» f(x) < +00, and xn -* x weakly as « -♦ 00 implies xn -> x
in norm.

Example 6.4. (i) If A is finite-dimensional then any /: A -> (-00, +00] is
Kadec.

(ii) If A = lx then any / is Kadec, by Schur's lemma [Holmes, 1975].
(hi) If A is LUC then || • || is Kadec.

Suppose that A is a normed space, and / has weakly compact level sets.
Under the conditions of Proposition 1.5 we know that the solutions xn of
the finite problems (PJ approach the solution x of the limit problem (P^)
weakly. Furthermore, by Proposition 1.4, f(xn) -* f(x). If / is Kadec we
can then deduce that xn -» x in norm.

For example, consider the following moment problems, where (S, p) is an
arbitrary measure space, 1 < p < 00, 1/p + 1/q = 1, and a; e L (S, p.),
i = 1,2, ... , are densely spanning:

( inf Hxll,
(LMPn ) I subject to   Jsaixdp = b¡,    i = I, ... , n,

{ 0<xeLp(S,p),

and the corresponding limiting problem (LMP^). Suppose that (LMP^) is
consistent. Since || • || is strictly convex, (LMP^) has a unique optimal solu-
tion, x. Furthermore, since LAS, p) is reflexive [Holmes, 1975, p. 129], the
unit ball is weakly compact. Thus, as above, the optimal solutions of (LMPJ ,
xn, satisfy \\xn\\ -> ||x|| and xn -* x weakly, so since Lp(S, p) is LUC,
xn —y x in norm.

This raises the question of what happens when p = 00 . Providing (S, p) is
cr-finite, L^S, p) = LX(S, p)* [Holmes, 1975], so the unit ball in L00(S\ ß)
is weak* compact. Thus, as before, UxJI^ —► HxH^ , and xn —► x weak*.
However, the optimal solutions of such problems in general are multiples of
characteristic functions of subsets of S (see [Borwein and Lewis, 1988(a)]), so
clearly we will not in general have \\xn - x}^ -> 0.

Theorem 6.5. Let X be a normed space, and suppose f, g: X —> (-00, +00]
are weakly Isc, with f Kadec. Then f + g is Kadec.

Proof. Suppose xn -* x weakly and f(xn) + g(xn) —► f(x) + g(x). Since f
and g are lsc, Hm/(xJ > f(x) and limg(xn) > g(x). Furthermore

îîm/(xj = ïîm(/(x) + g(x) - g(xn)) = f(x) + g(x) - limg(xj
<f(x) + g(x)-g(x) = f(x).

Thus f(xn) —y f(x), and so since / is Kadec, xn —► x in norm as required.   G
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Example 6.6. Suppose 1 < m e N and (S, p) is a finite measure space. Con-
sider the function /: Lm(S, p) —y (-oo, +00] defined by

f(x)= íex{s)dp = ^\\x\C+ f  £  ±x(s)%.
JS JS0<i1im   '

By Clarkson's theorem, || • ||m is Kadec, so clearly || • ||™/m! is also Kadec
(and weakly lsc). The second function in the expression above is weakly lsc
since the integrand is a continuous, proper convex function (see [Rockafellar,
1968]). Thus by Theorem 6.5, / is Kadec. Furthermore, since for x > 0,
f(x) > ||x||™/m!, the intersection of level sets of / with the positive cone are
weakly compact. Note also, f is strictly convex.

Now suppose that ai e Lx(S, p), and that x e L00(S', p). Consider the
problem

finf fsex{s)dp
(EXW)       < subject to   fsai(s)(x(s) -x(s))dp = 0,    i=l,...,n,

{ 0<xeLx(S,p).
Since x is feasible, with finite value, the unique optimal solution xn of (EXJ
has finite value, so xn e Lm(S, p) for every 1 < m e N. Reposing the problem
in Lm , the fact that / has weakly compact level sets implies /(xj | f(x) and
xn -+ x weakly by Propositions 1.4 and 1.5. Since / is Kadec, xn —y x in
|| • ||m . Finally, since m was an arbitrary integer, we obtain ||xn - x||p -» 0 in
every Lp space with p < +00. Thus for this choice of objective function we
obtain very strong convergence with few restricting assumptions.

Finite convergence. In some cases we will have even stronger convergence than
norm convergence: xn converges to x in a finite number of steps. The follow-
ing example suffices to demonstrate this, although stronger results are possible
using the results of [Borwein and Lewis, 1988(b)].

Let (S, p) be a finite measure space, and ai e L^S, p) for 7=1,2,....
Suppose 4>: R —► (-00, +00] is closed, and strictly convex on its domain,
with tp(x) = +00 for x < 0 and 0(x) < +00 for x > 0, and suppose
linx^^ 4>(x)/x = +00 . Consider the following sequence of problems:

finf fsct>(x(s))dp(s)
(EPn ) < subject to   fsa¡(s)x(s)dp(s) = b¡,    i = 1, ... , n,

{ 0<xeLx(S,p).
Suppose finally that x is defined by

x(s) := (</>*)' [¿Ä^.WJ > 0   a.e. on S,

and is feasible for each (EPJ .
Theorem 4.7 and [Borwein and Lewis, 1988(b), Theorem 4.8] imply that the

value of (EPJ is equal to the value of the dual problem
Í maximize   gn(X) := £"=1 ¿>,a, - Js 4>* (El, *,«,(*)) dp(s),

1        "'       \ subject to   X e R" ,
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and that if X" is optimal for (DEPJ then the unique optimal solution of (EPJ
is xn, where

xn(s):=(4>*)'\j^Xniai(s)\ ,       seS.

However, essentially following the proof of [Borwein and Lewis, 1988(b), The-
orem 4.8],

(V$Ä = *i- jf «,(s)<**)' í¿AA.(s)J dp(s),

from which it follows that if we define X  e R" by
I,,    i<N,

^{X; .
0,     i>N,

then Vgn(T) = 0,soT is optimal for (DEPJ . Thus (4>*)'(¿Z"=\ í«/(0) = *
is uniquely optimal for (EPn) for all n > N. So we see that the optimal
solution of (EPJ converges to the optimal solution of (EP^), the limiting
problem, in at most N steps.

Example 6.7. Consider the case of Example 3.4, where S = [0, 1] with Le-
besgue measure,
Shannon entropy:
besgue measure, a¡(s) = s'      for each i, and </> is (minus) the Boltzmann-

xlogx,    x>0,
< 0, x = 0,

+00, x < 0.

Then tp*(v) = ev~ . Thus whenever the limiting solution x(s) = e , where
P(s) is a polynomial in s, the solutions of the corresponding truncated moment
problems will converge to x in a finite number of steps.
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