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ON THE CONVERGENCE OF MOMENTS IN THE ALMOST SURE CENTRAL
LIMIT THEOREM FOR STOCHASTIC APPROXIMATION ALGORITHMS

Peggy Cénac

Abstract. We study the almost sure asymptotic behaviour of stochastic approximation algorithms
for the search of zero of a real function. The quadratic strong law of large numbers is extended to the
powers greater than one. In other words, the convergence of moments in the almost sure central limit
theorem (ASCLT) is established. As a by-product of this convergence, one gets another proof of ASCLT
for stochastic approximation algorithms. The convergence result is applied to several examples as
estimation of quantiles and recursive estimation of the mean.
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1. Introduction

Let (Xn) be a sequence of independent and identically distributed (i.i.d.) random variables with E[Xn] = 0
and E[X2

n] = σ2. For the empirical measures

Gn
def=

1
log n

n∑
k=1

1
k

δ Sk√
k

with Sn
def=

n∑
k=1

Xk,

the almost sure central limit theorem (ASCLT) states that, with probability one, Gn =⇒ G where G stands for
the N (0, σ2) distribution and =⇒ denotes the convergence in distribution. It was simultaneously established by
Brosamler [5], Schatte [29] and in the present form by Lacey and Phillip [16]. Moreover, under assumptions on
the moments of (Xn), the convergence of moments in the ASCLT has been established recently by Bercu [2],
Bercu and Fort [3]. That is to say, the following convergences hold:

lim
n→∞

1
n

n∑
k=1

1
k

(
Sk√

k

)2p

=
σ2p(2p)!

2pp!
a.s., (1.1)

lim
n→∞

1
n

n∑
k=1

1
k

(
Sk√

k

)2p−1

= 0 a.s. (1.2)

In fact, this result is a simplified version for i.i.d. random variables. It is extended in a context of martingales.
The case of multidimensional martingales is considered in Bercu et al. [4]. Despite the availability of a wide
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literature concerning the ASCLT for independent variables, very few references can be found on the ASCLT for
martingales apart from the important contribution of Chaâbane [6, 7], Chaâbane and Maâouia [8], Chaâbane
et al. [9] and Lifshits [22, 23]. As a by-product of the convergence of moments, Bercu and Fort [3] propose a
proof of the ASCLT for unidimensional martingale transforms via an original approach which uses the Carleman
moment theorem. In this paper, we prove that stochastic approximation algorithms used for the search of
zeros and which are known to satisfy an ASCLT (see Pelletier [27]) also fulfill the convergence of moments in
the ASCLT.

More precisely, we consider a stochastic algorithm of the form

Zn+1 = Zn + γn [h (Zn) + Rn+1] + σnεn+1, (1.3)

where the function h is defined on R and R-valued. The two sequences (Rn) and (εn) are two real distur-
bances, defined on a probability space and adapted to a filtration F

def= (Fn)n≥0. The stepsizes (γn) and (σn) are
two deterministic positive sequences going to zero. This model includes the algorithms of Robbins–Monro and
Kiefer–Wolfowitz as well as algorithms with Markovian disturbances. Stochastic approximation algorithms such
as (1.3) used for the search of zeros of h have been widely studied under various assumptions (see Duflo [10] for
an overview of these algorithms). In the context of Brownian diffusion process, Lamberton and Pagès [17, 18]
establish the convergence of weighted empirical measures in the form of Gn with a view to getting an approxi-
mation of the diffusion’s invariant distribution, even in the case when the diffusion may have several invariant
distributions. As a corollary of their main convergence result, they get the almost sure central limit theorem in
the context of Brownian diffusion processes.

Let z∗ be a zero of h. Many criteria ensure the almost sure convergence of (Zn) to z∗. In the wide literature
concerning this convergence, let us refer to Benveniste et al. [1], Duflo [10], Dupuis and Kushner [11], Hall and
Heyde [13], Kushner and Clark [15], Ljung et al. [24]. Moreover, in the case when (Zn) converges almost surely
to z∗, the weak convergence rate is given by√

γn

σ2
n

(Zn − z∗) =⇒ N (
0, Σ2

)
, (1.4)

where Σ2 is a positive real number related to the second moment of (εn) and to the differential of the function h
at the point z∗ (see among many others Benveniste et al. [1], Duflo [10], Kushner and Clark [15], Ljung et al. [24],
Zhu [30]).

Let us define vn
def= γnσ−2

n . The main goal of this paper is to establish an analog result of (1.1) and (1.2) in
the context of stochastic approximation algorithms. More precisely, under appropriate assumptions on moments
of the noise (εn), we prove the following result: for p ≥ 1,

lim
n→∞

1∑n
k=1 γk

n∑
k=1

γk [
√

vk (Zk − z∗)]p = g(p) a.s., (1.5)

where g(p) is the moment of order p of the Gaussian distribution N (0, Σ2). The ASCLT for stochastic ap-
proximation algorithms can be viewed as a corollary of this result due to Carleman’s theorem. By the way, in
the scalar case, we get another proof for the ASCLT established by Pelletier [27]. Moreover, in the particular
case p = 2, the convergence (1.5) is the quadratic strong law of large numbers established by Le Breton [19],
Le Breton and Novikov [20, 21], Pelletier [26]. The main contribution of this paper is the extension (1.5) of the
strong law to any power p.

The paper is organized as follows. Section 2 is devoted to the assumptions and the presentation of the main
results. In Section 3, we propose some statistical applications to estimation errors for several particular cases of
Robbins–Monro procedure. The proofs are established in Section 4.
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2. Assumptions and main results

Let us begin with the definition of the class of positive sequences that will be used in our assumptions. This
definition is introduced in Mokkadem and Pelletier [25].

Definition 2.1. Let α ∈ R and (vn) be a nonrandom positive sequence. Then (vn) is said to be in the
set GS(α) if

lim
n→∞ n

(
1 − vn−1

vn

)
= α.

For example, typical sequences in GS(α) are nα(log n)β or nα(log log n)β , for α, β ∈ R. The assumptions we
will refer to in the sequel are the following.

(H1) Zn converges almost surely to z∗.
(H2) The function h is defined on R and z∗ is a zero of h such that, on a neighborhood of z∗,

h(z) = H (z − z∗) + O
(
|z − z∗|2

)
, (2.1)

where H < 0.
(H3) The noise (εn) is a martingale difference sequence such that

lim
n→∞ E

[
ε2

n+1|Fn

]
= σ2 a.s.

(H4) The disturbance (Rn) is split into two terms such that

Rn = rn + O
(
|Zn−1 − z∗|2

)
a.s.,

|rn| = o
(
v−1/2

n (log sn)−q
)

a.s. ∀q ≥ 0, (2.2)

where sn
def=

n∑
k=1

γk.

(H5) The nonrandom sequences (γn) and (σn) are such that

(γn) ∈ GS(−α) with α ∈
]
max

{
1
2
,
2
a

}
, 1
]

,

(σn) ∈ GS(−β) with β ∈
]α
2

, α
]
,

lim
n→∞nγn > −2β − α

2H
·

Let ξ
def= limn→∞

(
nγn

)−1. We can now define the asymptotic variance Σ2 which appears in (1.4):

Σ2 def=
−σ2

2H + ξ(2β − α)
·

Note that (H5) implies that ξ ∈ [0,−2H/(2β − α)[ and thus that Σ2 is well defined and strictly positive.

Comments on the assumptions.

The residual term (Rn) enables the study of algorithms with small Markovian disturbances. The way these
algorithms can be rewritten as equation (1.3) is detailed in Duflo [10].
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Let us now comment the last assumption (H5) on the gains. For the usual gains

γn =
γ0

nα
and σn =

σ0√
nα+β

, with γ0 > 0, σ0 > 0, and 0 < β ≤ α,

if α ∈] max{1/2, 2/a}, 1[ or (α = 1 and β < −2Hγ0), assumption (H5) is fulfilled. In the particular case of
Robbins–Monro algorithm, that is to say Rn = 0, σn = γn, (H5) contains for example the gains γn = σn =
γ0/nα with γ0 > 0 and α ∈] max{1/2, 2/a}, 1[ or (α = 1 and γ0 > −1/2H). The Kiefer–Wolfowitz algorithm
corresponds to the case h = V ′ where V is observable only together with a noise. For example classical gains
satisfying (H5) could be

γn =
γ0

nα
, σn = nτγn,

α

6
≤ τ <

α

2
, and γ0 > 0, σ0 > 0,

α ∈] max{1/2, 2/a}, 1[ or (α = 1 and γ0 > 2τ−1
2H ). In these examples, the optimal rate is obtained for γn = γ0/n

but leads to a condition on the initial γ0. To circumvent this condition, Koval and Schwabe [14] introduced the
stepsize, for any (p, d) ∈ N

2,

γn =
γ0

(
logp n

)d
n

, where logp n = log
(
logp−1 n

)
,

which also fulfills (H5). This stepsize leads to convergence rates very close to the ones obtained with γ0/n but
without any constraints on the initial γ0.

The main result of this paper is the following theorem, which establishes the convergence of moments in the
ASCLT for stochastic algorithms.

Theorem 2.2. Set an integer p ≥ 1. Assume that for some real m > 2p, (εn) satisfies the moment condition

sup
n≥0

E [|εn+1|m|Fn] < ∞ a.s. (2.3)

Under assumptions (H1) to (H5), one has

lim
n→∞

1
sn

n∑
k=1

γk [
√

vk (Zk − z∗)]2p =
Σ2p(2p)!

2pp!
a.s. (2.4)

lim
n→∞

1
sn

n∑
k=1

γk [
√

vk (Zk − z∗)]2p−1 = 0 a.s. (2.5)

In the particular case p = 1, the convergence (2.4) gives the quadratic strong law established by Pelletier [26].
Theorem 2.2 extends this result to all powers 	= 2. The limiting constants in (2.4) and (2.5) correspond to the
moments of the Gaussian distribution N (0, Σ2).

The classical moment problem is related to the question whether or not a given sequence uniquely determines
the associated probability distribution. The well-known Carleman theorem (see e.g. Feller [12]) gives a condition
on the moments in order to ensure the unicity of the distribution.

Theorem 2.3 (Carleman). A probability distribution is uniquely determined by its moments (mn) if

∞∑
n=1

m
−1/2n
2n = ∞.

Since the Gaussian limit distribution satisfies Carleman’s moment condition, we deduce the following corollary
from Theorem 2.2.
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Corollary 2.4 (ASCLT). Assume that (εn) is a martingale difference sequence such that, for all integer p ≥ 1,

sup
n≥0

E [|εn+1|p|Fn] < ∞ a.s.

Under assumptions (H1) to (H5), one has

1
sn

n∑
k=1

γkδ√vk(Zk−z∗) =⇒ N (
0, Σ2

)
a.s.

As a straightforward application, the following strong law holds.

Corollary 2.5. Assume that (εn) is a martingale difference sequence such that, for all integer p ≥ 1,

sup
n≥0

E [|εn+1|p|Fn] < ∞ a.s.

Moreover, assume that f stands for any almost everywhere continuous function, with polynomial growth at
infinity. Under assumptions (H1) to (H5), one has

lim
n→∞

1
sn

n∑
k=1

γkf (
√

vk (Zk − z∗)) =
∫

fdGΣ a.s.,

where GΣ denotes the N (0, Σ) distribution.

This corollary gives approximations of gaussian integral of almost everywhere continuous function with polyno-
mial growth at infinity.

The Proof of Theorem 2.2 is given in Section 4.

Remark 2.6. Assumptions (H1) to (H5) are equivalent to those of Pelletier [27] establishing the ASCLT. Here
we assume the conditional moment assumption besides to get the stronger result of convergence of moments in
the ASCLT.

3. Examples of applications

Let us give here three examples of estimation for which the Theorem 2.2 apply. These examples are dif-
ferent forms of Robbins–Monro procedure, described as follows. Robbins–Monro algorithm (see Robbins and
Monro [28]) is used for solving the equation f(x) = α, where f is an R

d-valued function and α ∈ R
d. More

precisely, this algorithm is used when f can be rewritten in the form f(x) = E[F (x, X)]. Then the solution of
the equation f(x) = α can be recursively approximated by

Un+1 = Un − γn (F (Un, Xn+1) − α) ,

where γn ≥ 0 is a deterministic sequence going to zero and (Xn) is a sequence of independent and identically
distributed random variables. Obvisouly, as mentioned in the introduction, Robbins–Monro algorithm is a
particular case of model (1.3).

3.1. Translation parameter

Let (Yn) be a sample from a distribution F on R, with density f with respect to the Lebesgue measure.
The sequence of random variables (Yn) is not observable, but each Yn is supposed to be centered. We can only
observe a translation model (Xn) where Xn = Yn + θ. The real translation parameter θ is unknown. Since
E[Y1] = 0, the parameter θ is the mean of Xn, θ = E[Xn].
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Without knowing the function f , we may also assume that f is even, strictly positive and continuously
differentiable. Let us define the recursive estimator of θ defined by

θ̂n+1 = θ̂n − γn

(
11{Xn+1≤θ̂n} −

1
2

)
· (3.1)

This algorithm is a particular case of the model (1.3) with σn = γn, Rn+1 = 0 and

h(z) =
1
2
− E

[
11{Xn+1≤z}|Fn

]
,

where Fn is the σ-field of events prior to n and F
def= (Fn) is the natural filtration. Indeed, (3.1) can be rewritten as

θ̂n+1 = θ̂n + γnh
(
θ̂n

)
+ γnεn+1,

with εn+1 = E
[
11{Xn+1≤θ̂n}|Fn

] − 11{Xn+1≤θ̂n}. Obviously, assumptions (H4) and (2.3) for all integer p are
satisfied, as well as (H3) with σ2 = 1/4. It remains to trust (H2). Since Xn+1 is independent of Fn, one has

h(z) =
1
2
− P (Xn+1 ≤ z) =

1
2
− P (Yn+1 ≤ z − θ) .

The function f is continuous and strictly positive hence h is differentiable and h′(z) = −f(z − θ). Moreover θ
is a zero of h. Taylor-Young formula leads to

h(z) − h(θ) = −f(0)(z − θ) + O ((z − θ)2
)
,

with f(0) > 0. Thus (H2) holds. Consequently, for any integer p, assuming (H1) and choosing the steps (γn)
such that (H5) holds, Theorem 2.2 gives the asymptotic results on the estimation errors. The sequence of
estimates (θ̂n) satisfies

lim
n→∞

1
sn

n∑
k=1

1
γp−1

k

(
θ̂k − θ

)2p

=
Σ2p(2p)!

2pp!
a.s.

lim
n→∞

1
sn

n∑
k=1

1
γk

p− 3
2

(
θ̂k − θ

)2p−1

= 0 a.s.,

with Σ2 =
[
4
(
2f(0) − αξ

)]−1 and the ASCLT for (θ̂n) holds:

1
sn

n∑
k=1

γkδ 1√
γk

(θ̂k−θ) =⇒ N (
0, Σ2

)
a.s.

3.2. Recursive estimation of quantiles

More generally, with a procedure of estimation analogous to the preceding one, we can give asymptotic
convergence results on the error of quantile’s estimation. We consider a sample (Yn) with a strictly increasing
distribution function F . Let us define q the quantile of order δ, that is to say δ

def= F (q). Without knowing the
function F , we may also assume that the density f = F ′ is continuously differentiable.

Let us define the recursive estimator

q̂n+1 = q̂n − γn

(
11{Yn+1≤q̂n} − δ

)
. (3.2)

Again, the sequence (q̂n) is a particular case of (1.3) with σn = γn, Rn+1 = 0,

h(z) = δ − E
[
11{Yn+1≤z}|Fn

]
= δ − F (z),
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and εn+1 = E
[
11{Yn+1≤q̂n}|Fn

]−11{Yn+1≤q̂n}. Obviously, assumptions (H4) and (2.3) for all integer p are satisfied,
as well as (H3) with σ2 = δ(1 − δ). Moreover, the function h clearly satisfies (H2) for the zero q of h. Conse-
quently, for any integer p, assuming (H1) and choosing the steps such that (H5) holds, Theorem 2.2 leads to

lim
n→∞

1
sn

n∑
k=1

1
γp−1

k

(q̂k − q)2p =
Σ2p(2p)!

2pp!
a.s.

lim
n→∞

1
sn

n∑
k=1

1
γk

p− 3
2

(q̂k − q)2p−1 = 0 a.s.,

with Σ2 = δ(1 − δ)/[2f(q) − αξ]. Moreover we have

1
sn

n∑
k=1

γkδ 1√
γk

(q̂k−q) =⇒ N (
0, Σ2

)
a.s.

3.3. Recursive estimation of the mean

Let (Yn) be a sequence of independent and identically distributed real random variables with mean μ and
variance σ2. Set an integer p ≥ 1. Assume that for some real m > 2p, (Yn) satisfies the moment condition

sup
n≥0

E [|Yn+1|m|Fn] < ∞ a.s.

Let us consider the recursive estimator of the mean μ defined by

μ̂n+1 = μ̂n + γn (Yn+1 − μ̂n) .

This model is again a particular case of the model (1.3) with h(z) = μ − z and εn+1 = Yn+1 − μ. Assump-
tions (H2), (H3), (H4) and (2.3) are satisfied. Consequently, assuming (H1) and choosing the steps such
that (H5) holds, the cumulated estimation error satisfies

lim
n→∞

1
sn

n∑
k=1

1
γp−1

k

(μ̂k − μ)2p =
Σ2p(2p)!

2pp!
a.s.

lim
n→∞

1
sn

n∑
k=1

1
γk

p− 3
2

(μ̂k − μ)2p−1 = 0 a.s.,

with Σ2 = σ2/(2 − αξ), as well as the ASCLT

1
sn

n∑
k=1

γkδ 1√
γk

(μ̂k−μ) =⇒ N (
0, Σ2

)
a.s.

4. Proof of Theorem 2.2

Remark 4.1. Assumption (H5) implies that vn ∈ GS(−α + 2β), since vn = γnσ−2
n , γn ∈ GS(−α) and σn ∈

GS(−β). Consequently one has

1 − vn−1

vn
=

−α + 2β

n
+ o

(
1
n

)
= ξγn (−α + 2β) + o (γn) .

Finally it comes
vn−1

vn
= 1 − γnξ(2β − α) + o (γn) . (4.1)

This remark is very helpful for the proof of Theorem 2.2 and (4.1) is widely used.
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First, the convergence is established for even moments, by induction on the power p. The recursive
equation (1.3) yields

Zn+1 − z∗ = Yn+1 + σnεn+1 where Yn+1
def= Zn − z∗ + γn [h (Zn) + Rn+1] . (4.2)

In view of assumptions (H2) and (H4), the sequence Yn+1 satisfies

Yn+1 = (Zn − z∗) [1 + Hγn] + γnrn+1 + O
(
γn |Zn − z∗|2

)
.

In order to prove Theorem 2.2, we shall apply several times the following lemma, established in Mokkadem and
Pelletier [25].

Lemma 4.2. Assuming that there exists m > 2 such that (2.3) holds, under assumptions (H1) to (H5), the
stepsized stochastic algorithm (Zn) satisfies

|Zn − z∗| = O
(√

v−1
n log sn

)
a.s. (4.3)

In particular, Lemma 4.2 consequently leads to

Yn+1 = (Zn − z∗) [1 + Hγn] + o
(
γnv−1/2

n (log sn)−q
)

a.s. (4.4)

for all q ≥ 0.

4.1. Even moments

Elevating (4.2) to the power 2p it comes

(Zn+1 − z∗)2p =
2p∑

�=0

C�
2pσ

�
nε�

n+1Y
2p−�
n+1 .

Setting Vn+1
def=

√
vn

(
Zn+1 − z∗

)
, we get

V 2p
n+1 − V 2p

n = vp
nY 2p

n+1 − V 2p
n + γp

nε2p
n+1 +

2p−1∑
�=1

C�
2pγ

�/2
n (

√
vnYn+1)

2p−�
ε�

n+1. (4.5)

From the obvious equality

V 2p
n+1 =

n∑
k=1

(
V 2p

k+1 − V 2p
k

)
+ V p

1 ,

and from the recursive equation (4.5), one gets for any n ≥ 1,

V 2p
n+1 = V 2p

1 + A(p)
n+1 + W(p)

n+1 +
2p−1∑
�=1

C�
2pB(p)

n+1(�), (4.6)

where

W(p)
n+1

def=
n∑

k=1

γp
kε2p

k+1, A(p)
n+1

def=
n∑

k=1

(
vp

kY 2p
k+1 − V 2p

k

)
,

B(p)
n+1(�)

def=
n∑

k=1

γ
�/2
k (

√
vkYk+1)

2p−�
ε�

k+1.



ON THE CONVERGENCE OF MOMENTS IN THE ASCLT FOR APPROXIMATION ALGORITHMS 187

4.1.1. Case p = 1

Clearly equation (4.6) can be rewritten as

A(1)
n+1 = −W(1)

n+1 + V 2
n+1 − V 2

1 − 2B(1)
n+1(1). (4.7)

Since the noise (εn) satisfies (H3) and assumption (2.3) for a real number m > 2, let us note that Chow’s lemma
(see e.g. Duflo [10], p. 22) yields

lim
n→∞

1
sn

W(1)
n+1 = σ2 a.s. (4.8)

Let us assume that
1
sn

[
V 2

n+1 − V 2
1 − 2B(1)

n+1(1)
]

= o(1) + o
(
s−1

n A(1)
n+1

)
a.s. (4.9)

We first show how the combination of (4.8) and (4.9) gives the convergence (2.4) for p = 1. From equality (4.4)
one has

Y 2
n+1 = (Zn − z∗)2 (1 + 2γnH + o (γn)) + o

(
γ2

nv−1
n (log sn)−2q

)
+ o

(
|Zn − z∗| γnv−1/2

n (log sn)−q
)

= (Zn − z∗)2 (1 + 2γnH + o (γn)) + o
(
v−1

n γn (log sn)−q+1/2
)

,

the second equality resulting from Lemma 4.2. Consequently, applying this equality for q = 1/2 and denoting
Un

def=
√

vn(Zn − z∗), the general term of A(1)
n+1 is of the form

U2
n

(
1 − vn−1

vn
+ 2γnH + o (γn)

)
+ o (γn) a.s.

Hence we deduce from (4.1) by applying Kronecker lemma that

lim
n→∞

1
sn

n∑
k=1

γkU2
k =

1
2H + ξ(2β − α)

lim
n→∞

1
sn

A(1)
n+1 a.s. (4.10)

Then the combination of (4.7)–(4.10) leads to (2.4).
It remains to prove (4.9). Obviously since sn increases to infinity, almost surely V 2p

1 = o(sn). Moreover, from
Lemma 4.2, we have a.s. V 2

n+1 = o(sn). To conclude we have to study the asymptotic behavior of B(1)
n+1(1). We

easily deduce from Kronecker lemma and from the decomposition (4.4) that we only have to show that

n∑
k=1

√
γkUkεk+1 = o

(
A(1)

n+1

)
a.s. and

n∑
k=1

γ
3/2
k εk+1 = o (sn) a.s.

The standard strong law of large numbers for regressive series (see e.g. Duflo [10], p. 26) yields∣∣∣∣∣
n∑

k=1

√
γkUkεk+1

∣∣∣∣∣ = o

(
n∑

k=1

γkU2
k

)
+ O(1) a.s.∣∣∣∣∣

n∑
k=1

γ
3/2
k εk+1

∣∣∣∣∣ = O
(

n∑
k=1

γ3
k

)
= o (sn) a.s.

Since from (4.10), one has

o

(
n∑

k=1

γkvk (Zk − z∗)2
)

= o
(
A(1)

n+1

)
a.s.,
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it comes
B(1)

n+1(1) = o
(
A(1)

n+1

)
+ o (sn) a.s., (4.11)

which concludes the proof of (4.9).

4.1.2. Case p ≥ 2

Now, let p ≥ 2 and assume that the convergence (2.4) holds for any power q with 1 ≤ q ≤ p − 1. First, we
prove that

lim
n→∞

1
sn

n∑
k=1

γkU2p
k =

−Σ2

pσ2
lim

n→∞
1
sn

A(p)
n+1 a.s. (4.12)

From the decomposition (4.4) together with the result (4.3) of Lemma 4.2, it is easy to see that, for all q ≥
−p + 1/2

Y 2p
n+1 = (Zn − z∗)2p (1 + 2pHγn + o (γn)) + o

(
γnv−p

n (log sn)−q
)

.

In particular for q = 0, one has

vp
nY 2p

n+1 − V 2p
n = vp

n (Zn − z∗)2p

[
1 − vp

n−1

vp
n

+ 2pHγn + o (γn)
]

+ o (γn) a.s.

Since vn ∈ GS(2β − α), the sequence vp
n belongs to GS(p(2β − α)

)
and hence

1 − vp
n−1

vp
n

= p(2β − α)ξγn + o (γn) .

Finally, we get
vp

nY 2p
n+1 − V 2p

n = pγnU2p
n [ξ(2β − α) + 2H ] (1 + o(1)) + o (γn) ,

and (4.12) is a straightforward application of Kronecker lemma. Thus, we have to show that

lim
n→∞

1
sn

A(p)
n+1 = −pσ2(2p − 1)g [2(p − 1)] a.s. (4.13)

The proof of (4.13) is constructed in the following way. Let us note that Lemma 4.2 implies that V 2p
n+1 = o(sn).

First we establish the convergence of s−1
n W(p)

n+1 to zero. Then we show that

∀� ∈ {1, . . . , 2p− 1}\{2} B(p)
n+1(�) = o

(
A(p)

n+1

)
+ o(sn) a.s.

lim
n→∞B(p)

n+1(2) = g [2(p − 1)]σ2 a.s.

The decomposition (4.6) will lead to convergence (4.13).
Since the noise (εn) satisfies (2.3), by applying Chow’s lemma it comes

W(p)
n+1 = O

(
n∑

k=1

γp
k

)
a.s.

In addition, γn converges almost surely to zero, hence γp
n = o(γn) a.s. Consequently, one gets from Kronecker’s

Lemma
W(p)

n+1 = o (sn) a.s. (4.14)
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For establishing the asymptotic behavior of B(p)
n+1, let us split it into two terms, B(p)

n+1(�) = C(p)
n+1(�)+D(p)

n+1(�)
with

C(p)
n+1(�)

def=
n∑

k=1

γ
�/2
k (

√
vkYk+1)

2p−�
ek+1(�),

D(p)
n+1(�)

def=
n∑

k=1

γ
�/2
k (

√
vkYk+1)

2p−�
E
[
ε�

k+1|Fk

]
,

and en+1(�)
def= ε�

n+1 − E
[
ε�

n+1|Fn

]
. First, we claim that for any 3 ≤ � ≤ 2p− 1,∣∣∣D(p)

n+1(�)
∣∣∣ = o (sn) a.s. (4.15)

One can easily see from the Hölder inequality and from the moment assumption (2.3) that each moment∣∣E[ε�
n+1|Fn

]∣∣ is almost surely bounded and consequently

∣∣∣D(p)
n+1(�)

∣∣∣ = O
(

n∑
k=1

γ
�/2
k (

√
vkYk+1)

2p−�

)
a.s.

If � is even, for all q ≥ 0, (4.4) leads to,

γ�/2
n (

√
vnYn+1)

2p−� = γ�/2
n

[
Un(1 + o(1)) + o

(
γn (log sn)−q

)]2p−�

= γ�/2
n

[
U2p−�

n (1 + o(1)) + o
(
γnU2p−�−1

n (log sn)−q
)]

= γ�/2
n U2p−�

n [1 + o(1)] + o
(
γ�/2+1

n (log sn)−q+p−�/2−1/2
)

.

Then the induction assumption together with Kronecker lemma yield

n∑
k=1

γ
�/2
k (

√
vkYk+1)

2p−� = o (sn) a.s.

Consequently the convergence (4.15) holds for � even such that 3 ≤ � ≤ 2p− 1. Otherwise in the case when � is
odd and � ≥ 3 (since Dn+1(1) = 0 is a trivial case), applying the Cauchy–Schwarz inequality it comes

∣∣∣D(p)
n+1(�)

∣∣∣2 = O
((

n∑
k=1

γk (
√

vkYk+1)
2p−2

)(
n∑

k=1

γ�−1
k (

√
vkYk+1)

2(p−�+1)

))
a.s.

Again the induction assumption and Kronecker’s lemma lead to (4.15). For the last term D(2)
n+1(�), the conver-

gence

lim
n→∞

1
sn

D(p)
n+1(2) = g [2(p − 1)] σ2 (4.16)

is a consequence of the induction assumption and Kronecker lemma too.
It remains to study the asymptotic behavior of C(p)

n+1(�) for any 1 ≤ � ≤ 2p − 1. We claim that∣∣∣C(p)
n+1(�)

∣∣∣ = o (sn) + o
(
A(p)

n+1

)
a.s. (4.17)
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We easily deduce from (4.4) and from Kronecker lemma that we only have to show that
n∑

k=1

γ
�/2
k U2p−�

k ek+1(�) = o (sn) + o
(
A(p)

n+1

)
a.s.

n∑
k=1

γ
1+�/2
k ek+1(�) = o (sn) a.s.

According to the standard strong law of large numbers for regressive series one has, for any δ > 0,∣∣∣∣∣
n∑

k=1

γ
�/2
k U2p−�

k ek+1(�)

∣∣∣∣∣
2

= o

⎛⎝ n∑
k=1

γ�
kU

2(2p−�)
k

[
log

n∑
k=1

γ�
kU

2(2p−�)
k

]1+δ
⎞⎠ a.s.

∣∣∣∣∣
n∑

k=1

γ
1+�/2
k ek+1(�)

∣∣∣∣∣ = o

(
n∑

k=1

γ2+�
k

)
a.s.

Since γn decreases to zero, it comes in particular∣∣∣∣∣
n∑

k=1

γ
1+�/2
k ek+1(�)

∣∣∣∣∣ = o (sn) a.s.

First, assume that 1 ≤ � ≤ p − 1. Since
n∑

k=1

γ�
kU

2(2p−�)
k = O

(
sup

1≤k≤n
U2p

k

n∑
k=1

γ�
kU

2(p−�)
k

)
a.s.,

the conjonction of Lemma 4.2 and the induction assumption leads to∣∣∣∣∣
n∑

k=1

γ
�/2
k U2p−�

k ek+1(�)

∣∣∣∣∣ = o(sn) a.s.

The particular case � = p is also a consequence of both the strong law of large numbers and Kronecker lemma
and one has

n∑
k=1

γp
kU2p

k = o
(
A(p)

n+1

)
a.s.

Consequently Kronecker lemma leads to (4.17).
Now assume that p < � ≤ 2p− 1. According to Chow’s lemma, one has∣∣∣∣∣

n∑
k=1

γ
�/2
k U2p−�

k ek+1(�)

∣∣∣∣∣ = o (νn(�)) a.s. with νn(�) def=
n∑

k=1

∣∣∣γ�/2
k U2p−�

k

∣∣∣2p/�

.

Applying Hölder inequality with the exponents �/p and �/(�−p), the induction assumption implies νn(�) = o(sn),
which concludes the proof of (4.17).

Finally the conjonction of the convergences (4.14)–(4.17), leads to

lim
n→∞

1
sn

[
A(p)

n+1 + W(p)
n+1 +

2p−1∑
�=1

C�
2pB(p)

n+1(�)

]
= lim

n→∞
1
sn

A(p)
n+1 + C2

2pσ
2g [2(p − 1)] a.s.

So, from the decomposition (4.6) we get

lim
n→∞

1
sn

A(p)
n+1 = −C2

2pσ
2g [2(p − 1)] a.s.,

which concludes the proof of (2.4).
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4.2. Odd moments

Now let us deal with the odd moments with the proof of (2.5). Elevating equation (4.2) to power 2p− 1 and
proceeding exactly as in the case of even moments, it comes

V 2p−1
n+1 = V 2p−1

1 + A
(p)
n+1 + W

(p)
n+1 +

2p−2∑
�=1

C�
2p−1B

(p)
n+1(�), (4.18)

where

W
(p)
n+1

def=
n∑

k=1

γ
p−1/2
k ε2p−1

k+1 , A
(p)
n+1

def=
n∑

k=1

(
v

p−1/2
k Y 2p−1

k+1 − V 2p−1
k

)
,

B
(p)
n+1(�)

def=
n∑

k=1

γ
�/2
k (

√
vkYk+1)

2p−�−1
ε�

k+1.

4.2.1. Case p = 1

For p = 1, the decomposition (4.18) can be rewritten as

A
(1)
n+1 = Vn+1 − V1 − W

(1)
n+1. (4.19)

An application of the standard strong law of large numbers for regressive series leads to∣∣∣W (1)
n+1

∣∣∣ = o (sn) a.s.

Clearly V1 = o
(
sn

)
since sn increases to infinity and again from Lemma 4.2, one has Vn+1 = o(sn) a.s. Hence

we deduce from (4.19) that An+1 = o(sn) a.s.
Moreover, due to the decomposition (4.4) the general term of An+1 satisfies for all q ≥ 0,

√
vnYn+1 − Vn = Un

[
1 + Hγn −

√
vn−1

vn

]
+ o

(
γn (log sn)−q

)
a.s. (4.20)

Since vn ∈ GS(2β − α),
√

vn ∈ GS(β − α/2) and consequently

1 −
√

vn−1

vn
= ξγn(β − α/2) + o (γn) .

In particular for q = 0, the equation (4.20) yields

√
vnYn+1 − Vn = γnUn [H + ξ(β − α/2)] (1 + o(1)) + o (γn) a.s.,

which clearly leads to (2.5) from Kronecker lemma, since

lim
n→∞

1
sn

n∑
k=1

γkUk =
1

H + ξ(β − α/2)
lim

n→∞
1
sn

A
(1)
n+1 = 0 a.s.

4.2.2. Case p ≥ 2

Now let p ≥ 2 and assume that convergence (2.5) holds for any power q with 1 ≤ q ≤ p− 1. The structure of
the proof is the same as in the case of even moments. It consists in establishing the convergence A

(p)
n+1 = o(sn)

from the decomposition (4.18).
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First, Chow’s Lemma implies

W
(p)
n+1 = O

(
n∑

k=1

γ
p−1/2
k

)
a.s.

Since p ≥ 2 and γn goes to zero, one gets

W
(p)
n+1 = o (sn) a.s. (4.21)

Moreover, clearly we have V p
1 = o(sn) a.s. and V p

n+1 = o(sn) a.s. from Lemma 4.2. Let us split B
(p)
n+1(�) into

two terms, B
(p)
n+1(�) = C

(p)
n+1(�) + D

(p)
n+1(�) with

C
(p)
n+1(�)

def=
n∑

k=1

γ
�/2
k (

√
vkYk+1)

2p−�−1
ek+1(�),

D
(p)
n+1(�)

def=
n∑

k=1

γ
�/2
k (

√
vkYk+1)

2p−�−1
E
[
ε�

k+1|Fk

]
.

For the first term C
(p)
n+1, we deduce from (4.4) and from Kronecker lemma that it suffices to show that

n∑
k=1

γ
�/2
k U2p−�−1

k ek+1(�) = o (sn) a.s. (4.22)

n∑
k=1

γ
1+�/2
k ek+1(�) = o (sn) a.s.

Once again, one gets from the strong law of large numbers that for all δ > 0,∣∣∣∣∣
n∑

k=1

γ
�/2
k U2p−�−1

k ek+1(�)

∣∣∣∣∣
2

= o

⎛⎝ n∑
k=1

γ�
kU

2(2p−�−1)
k

[
log

n∑
k=1

γ�
kU

2(2p−�−1)
k

]1+δ
⎞⎠ a.s.

∣∣∣∣∣
n∑

k=1

γ
1+�/2
k ek+1(�)

∣∣∣∣∣ = o

(
n∑

k=1

γ2+�
k

)
= o (sn) a.s.

First, assume that � ≥ p − 1. The convergence (2.4) implies

n∑
k=1

γkU
2(2p−�−1)
k = O (sn) a.s.

Hence, (4.22) is proven since γn goes to zero. Now let 1 ≤ � < p − 1. Since

n∑
k=1

γ�
kU

2(2p−�−1)
k = O

(
sup

1≤k≤n
U

2(p−�−1)
k

n∑
k=1

γ�
kU2p

k

)
a.s.,

the conjonction of Lemma 4.2 and convergence (2.4) leads to (4.22). Finally, we have established that

C
(p)
n+1(�) = o (sn) a.s. (4.23)

Let us now study the asymptotic behavior of Dn+1(�) in the following three cases.
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Case 1. � = 2. It is easy to see from the decomposition (4.4) and assumption (H3) that the general term of
D

(p)
n+1(2) is of the form

σ2γkU2p−3
k [1 + o(1)] + o (sk) a.s.

Then, the induction assumption together with Kronecker lemma lead to

lim
n→∞

1
sn

D
(p)
n+1(2) = 0 a.s.

Case 2. � is even and such that 4 ≤ � ≤ 2(p − 1). Let us remind that for each �, the conditional moment
|E[ε�

n+1|Fn]| is almost surely bounded. Hence, one has

D
(p)
n+1(�) = O

(
n∑

k=1

γ
�/2
k (

√
vkYk+1)

2p−�−1

)
a.s.

Then the decomposition (4.4) together with the induction assumption imply that D
(p)
n+1(�) = o(sn) a.s.

Case 3. � is odd and such that 3 ≤ � ≤ 2p − 3. Again since for each �, the conditional moment |E[ε�
n+1|Fn]| is

almost surely bounded, one has

D
(p)
n+1(�) = O

(
n∑

k=1

γ
�/2
k (

√
vkYk+1)

2p−�−1

)
a.s.

Once again, (4.4) and (2.4) imply that D
(p)
n+1(�) = o(sn) a.s.

Finally, we have proven that

lim
n→∞ s−1

n A(p)
n = 0 a.s.

Moreover, due to (4.4), the general term of A
(p)
n satisfies

vp−1/2
n Y 2p−1

n+1 − V 2p−1
n = U2p−1

n

[
1 − v

p−1/2
n−1

v
p−1/2
n

+ (2p − 1)Hγn + o (γn)

]
a.s.

Since vn ∈ GS(2β − α), one has v
p−1/2
n ∈ GS((2β − α)(p − 1/2)

)
and consequently

1 − v
p−1/2
n−1

v
p−1/2
n

= ξγn

(
p − 1

2

)
(2β − α) + o (γn) a.s.

Then it comes

vp−1/2
n Y 2p−1

n+1 − V 2p−1
n =

(
p − 1

2

)
U2p−1

n γn [2H + ξ(2β − α)] (1 + o(1)) + o (γn) a.s.,

which leads to (2.5) by applying Kronecker Lemma.
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