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Abstract 

Monte Carlo maximum likelihood (Geyer and Thompson, 1992) can be 

used for an extremely broad class of models. Given any family { hg : IJ E 8 } 

of nonnegative integrable functions, maximum likelihood estimates in the fam

ily obtained by normalizing the the functions to integrate to one can be done 

using Monte Carlo maximum likelihood, the only regularity conditions being 

that the evaluation maps IJ H- hg( z) be lower semicontinuous for almost all 

z and upper semicontinuous for the observed z. The precise result is that 

under these conditions the Monte Carlo approximant to the log likelihood 

hypoconverges to the exact log likelihood. This implies convergence of max

imizers, of profile likelihoods, and of level sets of the likelihood. The same 

result is obtainable when there are missing data ( Gelfand and Carlin, 1991 ), 

but a Wald-type integrability condition needs to be imposed, the integrability 

being with respect to the conditional distribution of the missing data given 

the observed data. Conditions for asymptotic normality are also discussed. 



1 Normalized Families of Densities 

Suppose we have a family of nonnegative functions 

{ho: 6 E 8} 

on a probability space, all of which are integrable with respect to a measureµ and 

none integrating to zero. Let the integrals be denoted 

c(6) = j hodµ 

Then for each 6 in 8 the function Is defined by 

1 
ls(x) = c(6) hs(x) 

is a probability density with respect toµ. We we call a family {Is: 6 E 0} of this 
form a normalized family of densities. The function () ._. c( 6) is the normalizer of 

the family, and the functions ho are the unnormalized densities or the predensities 

of the family. We denote the distribution corresponding to 6 by Po, 

P,(A) = L J,(x)dµ(:,;) 

for any measurable set A, and expectation with respect to Po by Es, 

Esg(X) = j g(x)ls(x) dµ(x) 

for any integrable function g. 

· Such families are interesting because for arbitrary functions ho realizations X1, 

X2, ••• can be simulated without knowledge of the normalizer c(6) by the Hastings 

algorithm (Hastings, 1970). Moreover, maximum likelihood estimation can be car

ried out, again without knowledge of the normalizer or its derivatives, using these 

Monte Carlo simulations ( Geyer and Thompson, 1992). 

The log likelihood corresponding to an observation x we take for convenience to 

be the likelihood ratio against an arbitrary fixed parameter point 1P 

hs(x) c(6) 
1(6) = log h.,,(x) - log c(¢) 

hs(x) hs(X) 
= log h.,,(x) -logE.,, h.,,(X (1) 

since 
he(X) j hs(x) I j · c(6) 

E.,, h.,,(X) = h.,,(x)f.,,(x) dµ(x) = c(¢) he(x) dµ(x) = c(¢)" (2) 

It is not actually necessary that 1/J E 8, only that P.,, dominate Po for all() E 8 so 

that the set of points x such that h.,,(x) = 0 can be ignored in the integrals in (2). 
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Given a sample Xi, ... , X,,, from Pt/I generated by the Hastings algorithm, the 

natural Monte Carlo approximation of the lQg likelihood is 

he(x) he(X) 
171(8) = log ht/l(x) - logEn,"1 ht/l(X 

where En,"1 denotes the 'empirical' expectation with respect to Pt/I defined by 

1 " 
En,"19(X) = - Eg(Xi)• 

n i=I 

(3) 

H the Markov chain X1 , X2 , ••• generated by the Hastings algorithm is irre

ducible, then En,"19(X) converges almost surely to E"'g(X) for any integrable func

tion g. In particular, for any fixed 8, 171 (8) converges almost surely to 1(8). The 

'almost surely' here means for almost all sample paths of the Hastings algorithm. 

We a.re treating the observation x as fixed. Only the simulations X1 , X2 , ••• a.re 

treated as random. Note that the nullset of sample paths for which convergence 

fails may depend on 8. 

Let 8 be the maximizer ( assumed unique for a moment) of the true log likelihood 

l and let On be an f71-maximizer of ln 

for some sequence { fn} converging to zero. 

Geyer and Thompson (1992) show that if the normalized family in question is an 

exponential family, i. e. he(x) = exp( (t(x ), 8) ), then On converges to 8 for almost all 

sample paths of the Monte Carlo simulation. The proof relies on the fa.ct that log 

likelihoods of exponential families a.re concave. Geyer and Thomp·son remark that 

an analogous result should hold outside of exponential families. The next section 

gives such a theorem. 

2 Likelihood Convergence 

2.1 Set Convergence 

At several points we will need the concept of Painlev~Kura.towski set convergence 

(Sec 3A in Rockafellar and Wets, forthcoming; Sec 1.4.1 in Attouch, 1984). Given a 

sequence of sets Cn, the set limit superior is the set of points x such that there is a 

subsequence Xn,. -. x with Xn,. E Cn,., and the set limit inferior is the set of points 

x such that there is a sequence Xn-. x with Xn E Gn for all n after some n0• If the 

set limsup and liminf agree, then their common value is said to be the limit of the 

sequence. 

Another characterization that is valid only in a locally compact topological space 

(e. g. Rd) uses the so-called 'hit or miss' criteria (Proposition 3A.10 in Rockafella.r 

and Wets, forthcoming; Theorem 2. 75 in Attouch, 1984 ). A set C is the limit of 

the sequence Cn if and only if Cn eventually hits every open set that hits C and 
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eventually misses every compact set that misses C, i. e. for every open set O such 

that O n C is nonempty and every compact set K such that J( n C is empty, there 

is an m such that On C,,, is nonempty and Kn C,,, is empty for all n > m. 

2.2 Epiconvergence and Hypoconvergence 

Epiconvergence and hypoconvergence are types of convergence of sequences of func

tions that are useful in optimization problems. If a sequence of functions g;,, epi

converges to a limit g ( written g,,, .!. g) and x,,, minimizes g,,, then any cluster point 

of the sequence {x,,,} is a minimizer of g. Hypoconvergence is the analogous no

tion for maximization problems. Since x maximizes g if and only if it minimizes -g, 

hypoconvergence ( written g,,, A g) is defined by 9n A g if and only if (-gn) -=. ( -g ). 

A sequence of functions g,,, epiconverges to a function g if the following two 

conditions hold (Attouch, 1984, p. 30) 

(a) for every point x and for every sequence Xn --+ x 

(b) for every point x there exists a sequence Xn --+ x such that 

limsupg,,,(xn) < g(x). 
n 

Epiconvergence is a combination of one-sided uniform convergence, with something 

weaker than pointwise convergence from the other side. Condition (a) is the one

sided uniform convergence, and condition (b) follows from pointwise convergence 

( take Xn = x) but does not imply, it. An equivalent pair of conditions are the 

following (Attouch, 1984, p. 26). For every point x 

g(x) < sup liminf inf Un(Y) 
Be.N(z) n-00 11EB 

·g(x) > sup limsup inf g,,,(y) 
Be.N(:z:) n-00 11EB 

(4a) 

(4b) 

where N(x) denotes the set of neighborhoods of the point x. The right hand side 

of ( 4a) is called the epi-limit inferior and the right hand side of ( 4b) the epi-limit 

superior, but we will not need this terminology. 

Another characterization of epiconvergence that is sometimes taken as a defini

tion uses the notion of the epigraph of a function g: S --+ R, the set 

epi g = { ( x, A) E S x R : g( x) < A } 

of points in S x R lying on or above the graph. A sequence of functions g,,, epicon

verges to a function g if and only if the sequence of sets epi g,,, converges to the set 

epig. This gives us 'hit or miss' criteria for epiconvergence. A sequence of functions 

g,,, on a locally compact topological space S epiconverges to a function g if and only 
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if the sequence epi g,., eventually hits every open set in S x R that hits epi g and 

eventually misses every compact set K in S x R that misses epi g. 

The main i:eason for the importance of epiconvergence is the following proposi

tion, which is Theorem 1.10 in Attouch (1984). 

Proposition 1 Suppose g,., ..!+ g, .x,., -+ .x and 

9n(.x,.,) - inf 9n -+ 0 

(i. e . .x,., is an e,.,-minimizing sequence), then 

g(x) = inf g = lim g,.,(x,.,) 
n-00 

That is, if x,., is an e,.,-minimizer of 9n, then any convergent subsequence of {xn} 
must converge to a point .x which minimizes g and the optimal values g,.,(xn) must 

also converge to the asymptotic optimal value g( .x). Two points are worth comment 

here. First, there is no requirement that the minimizers be unique. Hg has a unique 

minimizer x, then x is the only cluster point of the sequence {xn}• Otherwise, 

there may be many cluster points, but all of them must minimize g. Second, the 

proposition does not rule out escape to infinity; it only describes what happens if 

Xn-+ x. It does say that if the sequence {.x,.,} is confined to a compact set and if g 

has a unique minimizer, then Xn converges to that minimizer. 

2.3 Hypoconvergence of the Monte Carlo Likelihood 

Let us now specialize these results to Monte Carlo likelihood. Since we are maxi

mizing rather than minimizing we want to show that the Monte Carlo log likelihood 

(3) hypoconverges to the true log likelihood (1). 

Theorem 1 For a normalized family of densities determined by unnormalized den

sities { hs : fJ E 0 } indexed by a parameter set 0 which is a second countable topo

logical space (e.g., R2 
), if the evaluation maps()....., hs(x) are lower semicontinuous 

for all .x except a Pt/, nullset and upper .semicontinuous for the observed x and if the 

Hastings algorithm is in-educible, then the Monte Carlo log likelihood (9) hypocon

verges to the true log likelihood ( 1) with probability one. Also the true log likelihood 

is upper semicontinuous and the normalizer of the family is lower semicontinuous. 

PROOF. What is to be shown is the hypoconvergence equivalent of ( 4) 

l( 0) < inf lim infsup In( c,o) 
BE.N'(B) n-co v>EB 

l(fJ) ~ inf limsupsup ln(t,o) 
Be.N'(B) n-00 v>EB 

(Sa) 

(Sb) 

By assumption there is a countable base B for the topology of 0. Hence 0 also 

has a countable dense set 0c (just take a point in each member of 8). We will need 

. hs(X) hs(X) c(fJ) 
J~ En,t/1 h"'(X) = Et/I h"'(X) = c(tp) 

(6) 
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and 

Ii E 
. f hc,(X) E . f hc,(X) 

m n,,; 1n h (X) = "' m h (X) n-oo cpEB t/, cpEB t/, 
(7) 

to hold simultaneously for all 6 E 0c and all B E 8. This follows from the ir

reducibility assumption, since the union of a countable number of nullsets ( one 

exception set for each limit) is still a nullset. 

First we tackle (5a). If BE Band IJ EB n 0c 

l( IJ) = lim ln( IJ) < lim inf sup ln( '()) 
n-oo n-oo cpEB 

by (6). So 

sup l(cp) < liminf sup ln('P) 
cpEBn8c n-oo cpEB 

and 

inf sup l( cp) < inf lim inf sup ln( cp) 
Be.Af(B) cpEBn8c Be.Af(B) n-oo cpEB 

The left hand side is equal to I( 0) if and only if I is upper semicontinuous. Hence 

upper semicontinuity of I implies (5a). Since O ....,. he(x) is assumed to be upper 

semicontinuous for the observed x and since a sum of functions is upper semicon

tinuous if both functions are, it remains only to be shown that - log[ c( 0) / c( ,t,)] is 

upper semicontinuous, which is true if the normalizer c( IJ) is lower semicontinuous, 

which follows from Fatou's lemma and the lower semicontinuity of O -+ he(x): if 

(Jk-+ 6 

c(O) = j (liminf he1c(x)) dµ(x) < liminfj he1c(x)dµ(x) = liminf c(/Jk) 
k-oo Jc-oo k-oo 

This establishes (5a) and the assertions about upper and lower semicontinuity of 

the log likelihood and the normalizer. 

Now 

inf lim sup sup In( <p) < . inf (sup hhtJ>((x )) - lim inf inf log En,,; hht/>((XX))) 
Be.Af(B) n-oo cpEB Be.Af(B) cpEB tJ, X n-00 cpEB ,J, 

hs(x) • • htJ>(X) 
= -h ( ) - log sup bm En,t/1 mf h (X) 

f/1 X Be.Af(B) n-oo cpEB ,J, 

he(x) . h~(X) 
-+ -- - log sup E,; inf -"'--

hv,( x) Be.Af(B) c,eB hv,(X) 

where the equality follows from the upper semicontinuity of O....,. hs(x) and the limit 

follows from (7). The limit will be equal to l(O) and establish (5b) if 

E ·m hq,(X) c(O) 
s!~s) "'~eB hv,(X) = c(,t,) 

Now the integrand here satisfies 

0 < inf hc,(x) < he(x) 
- c,EB hv,(x) - h,;(x)' 
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(since I) E B). Since the right hand side is integrable by (2) and the evaluation 

maps are assumed lower semicontinuous, dominated convergence implies 

E 
"nf h,,o(X) E .nf hv,(X) E h8(X) c(6) 

sup t/1 1 --t t/1 sup 1 = t/1 = --
Be.N'(B) v,EB h,,,(X) Be.N(B) v,eB h,µ(X) h,µ(X) c( 1P) 

(The apparent uncountable sup over the whole neighborhood filter .N(6) is the same 

as the sup over the countable neighborhood base .N(6) n B.) This completes the 

proof. o 

2.4 Convergence of the MLE Calculation 

Corollary 1 If a sequence { Bn} of en-maximizers of the Monte Carlo log likelihood 

is bounded (i. e. contained in a compact set) almost surely (resp. in probability) and 

there is a unique maximum likelihood estimate iJ, then On --t iJ almost surely (resp. in 

probability). 

PROOF. The assertion about almost sure convergence follows directly from the 

theorem and Proposition 1. If { Bn} is contained in a compact set, then every sub

sequence has a convergent subsubsequence, and each such subsubsequence must 

converge to iJ. Hence the whole sequence converges to iJ. 
The assertion about convergence in probability follows by almost the same ar

gument. A sequence bounded in probability is tight, hence every subsequence has 

a subsubsequence which converges in distribution by Prohorov's theorem. By Sko

rohod representation, the convergence can be considered almost sure, in which case 

the only possible limit is iJ. Hence the whole sequence converges in distribution to 

the point mass at iJ, which is the same as convergence in probability to 6. o 

The corollary applies trivially when the whole parameter space 0 is a compact 

set. This is the usual way in which proofs of this sort proceed, following Wald 

(1949), who used the one-point compactification, Kiefer and Wolfowitz, (1956), who 

used more general compactifications, and Bahadur (1971 ), who gives a very general 

formulation, showing that most models are compactifiable in the appropriate topol

ogy (the one induced by vague convergence of the associated probability measures). 

Lacking a suitable compactification, it would be necessary to est·ablish by ad hoc 

methods a uniform upper bound on the sup of Zn outside some very large ball. 

2.5 Convergence _of Profile Likelihoods and Level Sets 

Suppose 0 is a subset of Rd and I) can be divided I) = ( </>, 1/) into a 'parameter of 

interest' </> and a 'nuisance parameter' 1/ ( </> = (61, ... , Ok) and 1/ = (Ok+t, ••. , Od). 
Then the profile likelihood for </> is · 

l,,( </>) = sup l ( ( </>, 1/)) 

" 
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Corollary 2 If the Monte Carlo log likelihood hypoconverges to the true log like

lihood, then any Monte Carlo profile log likelihood also hypoconverges to the true 

profile log likelihood. 

PROOF. For this we use the 'hit or miss' criteria. Fix an open set O in Rk that 

hits the hypograph of 1,,. Then the preimage of O under the projection 

is open in Rd and hits the hypograph of l. Hence the preimage is eventually hit by 

the hypograph of l," which implies that O is eventually hit by the hypograph of ln,p• 

Now fix a compact set set I( in Rk that misses the hypograph of z,,. Then for any 

value f/ of the nuisance parameter, the set 

K,, = { (</>,'I) E 0 : <J, E K} 

is compact in Rd and misses the hypograph of l, which implies that K,, is eventually 

missed by the hypograph of ln. Since this holds for all rJ, the whole preimage of 

J( under the projection is eventually missed by the hypograph of In, which implies 

that K is eventually missed by the hypograph of ln,p• D 

It is perhaps worth a remark that none of the linear structure of Rd was used in 

the proof, only its structure as a locally compact group under addition. It would be 

enough for 0 to be a subset of a locally compact group G with a subspace Hand 

homogeneous space G/ H, the parameter of interest being the.projection on G/ H. 
(The need for local compactness arises from the use of the hit or miss criteria). 

Hypoconvergence also implies a type of convergence for level sets of the of the 

log likelihood 

lev a l = { 8 : l( 8) ~ a } 

This is a direct consequence of Theorem 3.Cll in Rockafellar and Wets (forthcom

ing), which we state here as follows. 

Proposition 2 A sequence of functions ln on a locally compact space hypoconverges 

to l, if and only if both of the following conditions hold 

(a) for every sequence an-+ a 

lim sup (lev an ln) C lev O l 
n 

(b} for some sequence an -+ a 

lim inf (lev an In) :> lev a l 
n 

The useful conclusion of the theorem is (b), since we want to contain the true 

level set. The 'for some sequence' in (b) is not useful, since we have no way to 

determine the sequence. These considerations lead to the following. 
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Corollary 3 If the Monte Carlo log likelihood hypoconverges to the true log likeli

hood, then 

and if 

also holds, then 

lim sup lever Zn C lever l 
n 

lim inf lever Zn :> levp l, 
n 

LJ levp l = lever l, 
/J>er 

fJ > a, 

(8) 

(9) 

PROOF. The first assertion is a direct consequence of the proposition. The second 
follows from the nesting of level sets and the fact that set liminfs ( and limsups) are 

closed (lever l is closed because a hypo-limit is always upper semicontinuous). o 

Instead of looking at a fixed level a, we might instead look at a fixed distance 'Y 

down from the maximum, i. e., we might consider the sets 

Sn,Af = { 6 E 8 : ln(6) ~ ln(B,.) - 'Y} 

and 

SA/ = { 6 E 8 : l ( 6) < sup l - 'Y } • 

But this brings up the question of whether l,.(Bn) -. sup l. It does under the 

conditions of Corollary 1, but need not otherwise. So we state a corollary with this 

as a condition (the proof is the same). 

Corollary 4 If the Monte Carlo log likelihood hypoconverges to the true log likeli

hood, and if ln(B,.) _. sup l, then 

lim sup Sn,Af C S.Af 
n 

liminf Sn,-y :> S6, 
fl 

6 > 'Y, 

and if (8} also holds for a = sup l - 'Y, then 

Ii~ Sn,Af = SA/ 

Before leaving the subject of likelihood convergence it is perhaps worth pausing 

for a moment and comparing the results obtained here with the results that are 

obtainable for the exponential family case (Geyer, 1990, Geyer and Thompson, 

1992). The log likelihood and Monte Carlo log likelihood for an exponential family 

are concave, and this has two consequences that improve the preceding results. 

First, the boundedness assumptions of Corollary 1 are unnecessary. If concave 

functions hypoconverge to a concave function that has no directions of recession, 

then the sequence is equi-level-bounded, that is, eventually dominated by a function 

with compact level sets (Rockafellar and Wets, forthcoming, Propositions 3C.21 and 

3C.22). Hence the sequence of Monte Carlo MLEs is eventually contained in any of 

these compact level sets for levels below l(t/J). The second difference is that (8) is 

true for any concave function for any level below the maximum (Rockafellar, 1970, 

Theorem 7.6). So (9) holds automatically for a< sup l. 
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3 Missing Data 

Gelfand and Carlin (1991) have proposed an extension of the methods described 

above to the case of missing data. Suppose that the rando~ variable X for which 

hs gives densities is not observed, but just some function of it X o6a. Then the log 

likelihood, obtained by integrating over the missing data is 

( 
hs(X) ) hs(X) 

1(8) = logE,1, h,1,(X) X 0 6. - logE,1, h,1,(X) (10) 

and its natural Monte Carlo approximation is 

( 
hs(X) ) · hs(X) 

ln(6) = log En,,/, h,1,(X) Xo6a - log En,,/, h,1,(X), (11) 

where En,,J,, as before, denotes an average over samples from P,1, generated by the 

Hastings algorithm and En,,1,( · IXo6a) denotes an average over a second set of samples 

generated by another Hastings algorithm simulating the conditional distribution of 

· X given Xoh•· Gelfand and Carlin suggest maximizing (11) to obtain an approxi

mation to the MLE. 

H we attempt to apply the program of the last section, we find it doesn't work 

without additional assumptions. As before, the second term in (11) hypoconverges 

to the second term in (10), and the same program applied to the first term shows 

that the first term in (11) epiconverges to the first term in (10), but that doesn't do 

us any good. We need some control on the supremum of the first term uniformly 

on compact sets, and a <:lominated convergence argument won't give such control, 

since the assumptions of Theorem 1 don't imply a dominating function. 

So to get a theorem we need to impose a Wald-type integrability condition fol

lowing Wald (1949) .. This gives uniform convergence for the first term and hypocon

vergence for the second term, which implies hypoconvergence for the sum (Exercise 

3D.8, in Rockafellar and Wets, forthcoming). This gives the following theorem. The 

proof is omitted, since it is just a combination of the proof of Theorem 1 with the 

methods of Wald (1949) along the lines just described. 

Theorem 2 For a normalized family of densities determined by unnormalized den

sities { hs : () E 0 } indexed by a parameter set 0 which is a second countable 

topological space, if the evaluation maps() r-+ hs(x) are lower semicontinuous semi

continuous for all x except a P,1, nullset and upper semico.ntinuous for all x except 

a P,1,( · IXoba) nullset, if the Hastings algorithm is irreducible, and if for every (J E 0 
there is a neighborhood B of fJ such that 

( 
ht1>(X) ) 

E,1, :~t h,1,(X) Xo6a < 00 

then the Monte Carlo log likelihood {10} hypoconverges to the true log likelihood {11) 
with probability one. 

Since Corollaries 1, 2, and 3 used only hypoconvergence, they apply to the missing 

data case as well. 
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4 A Central Limit Theorem 

In contrast to mere convergence, for which the required conditions are very weak, a 

central limit theorem for y'n( 8,,, - 8) is problematical. We can easily copy one of the 

1:1sual proofs for the asymptotics of maximum likelihood, making the appropriate 

changes. But the resulting regularity conditions are not easy to verify, except in 

special cases. 

Theorem 3 Suppose the following assumptions hold 

( a) The MLE 8 is unique and the parameter space 0 contains an open neighborhood 

of iJ in Rd. 

(b) The Monte Carlo MLE 8,,, converges in probability to 8. 

(c} c(IJ) = f hs dµ can be differentiated twice under the integral sign. 

{d} vn,Vl,,,(8)-.£+ N(O,A) for some covariance matrix A. 

(e) B = -"\121(8) is positive definite. 

(f) "\131,,,(8) is bounded in probability uniformly in a neighborhood of iJ. 

then 

vn,(8,,, - 8) -.£+ N(O, B-1 AB-1
) 

A proof would be entirely classical and is omitted. 

All of the conditions except (d) are fairly straightforward, and one can imagine 

verifying them (if they hold) by standard methods. The matrix Bin condition (e) 

cannot be calculated analytically, but -V2ln( 8) is a consistent estimate under these 

conditions. Condition ( e) and be verified using dominated convergence and ergod

icity if an integrable function can be found that dominates third partial derivatives 

with respect to theta of hs/hq,. 

Condition (d) is hard, if Markov chain Monte Carlo is being used for the simu

lations, because it involves a Markov chain central limit theorem. General Markov 

chain central limit theorems do exist (Nummelin, 1984), but they seem difficult to 

apply in practice. Some work in this direction has been done in the context of 

Markov chain Monte Carlo (Shervish and Carlin, 1990; Chan, 1991; Liu, Wong and 

Kong, 1991; Tierney, 1991 ), but it seems that it is difficult to show that a central 

limit theorem holds for practical models in which the sample space is not finite. If 
the sample space is finite, the central limit theorem is classical (see, for example, 

Chung, 1967, p. 99 ff.) 
Even assuming that ( d) holds, the variance A cannot be calculated using available 

theory and must be estimated by Monte Carlo. 

( ) 
E Vhp(X) 

Vl,.(O) = Vh, X - "·"' ~ 
hs(x) En,tJ, h~(X) 

En,tJ, [(ts(x)- ts(X))~] 
= he(X) 

En,,/, htJ,(X) 

(12) 
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where te(X) = Vhe(X)/h1J,(X). Using assumption (c) to differentiate under the 
integral sign 

Vl(O) = Vhs(x) _ Vc(O) 
he(x) c(O) 

= Vhs(x) -j Vhs(x) hs(x) d (x) 
hs(x) hs(x) c(O) µ 

= t,(x) - Ests(X), 

and this is zero when (J = 0. The denominator in (12) converges to c(O)/c(1/,); the 

expectation of the numerator with respect to P 1/1 is 

( ) 
hs(X) c(IJ) j( ) 

E"' ts(x) - ts(X) htJ,(X) = c(t/J) t,(x) - ts(y) fs(y) dµ(y) 

c(IJ) ( ) = c('lf,) t,(x) - Ests(X) , 

which is also zero when () = /J. Thus the numerator is the sample mean for a 

functional of the Markov chain 

) 
hs(X) 

z1(X) = (t,(:r:) - t,(X) h.,,(X 

which has expectation zero under the stationary distribution. Hence by the contin

uous mapping theorem 

1 n t, c( 1P) 
. ~ ~ zs(Xi) ..-. (O) N(O, A) 
yn •=l C 

Then, if the zs(Xi)2 are uniformly integrable, 

where "'Y(t) = "'Y(-t) is the lag t autocovariance of the chain at stationarity, i.e. 

"'Y(t) = Cov (zs(Xo), zs(Xt)) 

if the starting position X0 of the Markov chain is a realization from Pt/I. Hence 

both terms of which can be estimated, c(IJ)/c('l/J) by the denominator in (12), and 

the sum by standard time series methods as 

(n-1) 

E w(t)-r(t) 
t=-(n-1) 

11 



where 

and w is a so-called 'lag window' chosen so that w(t) = 1 for small ltl, w(t) = 0 for 
large ltl, and w makes a smooth transition from one to the other (see, e.g. Priestly, 
1981, pp. 323-324 and 429-435 for a discussion of these issues). 

5 Discussion 

Some apology should perhaps made for the use of epiconvergence and hypoconver

gence, tools that are not part of the working knowledge of most statisticians. One 

reason is that hypoconvergence clarifies the role played by compactification of the 

parameter space in Wald-type theorem_s. Theorem 1 can be stated without refer

ence to a compactification or to other technical means of controlling the oscillations 

at infinity. Another reason is that there are important consequences that follow 

from hypoconvergence alone, e. g., Corollary 3. Moreover, these consequences are 

well-known in optimization theory; once hypoconvergence is established, a wealth 

of immediate corollaries present themselves. 

Theorem 1 differs from Wald-type theorem in another important respect: there 

is no integrability condition (such as Theorem 2 and Wald (1949) require). This 

arises from the simple difference in the problems that the randomness is in the 

denominator in the problem of convergence of Monte Carlo likelihood calculations 

and in the numerator for problem of consistency of maximum likelihood under re

peated sampling, so that for Monte Carlo we need to control an infimum rather 

than a supremum. Though the difference is trivial it has surprising consequences 

(surprising to me, at least). The analogy between the Monte Carlo and the repeated 

sampling problems is very strong, but this one trivial difference makes a huge dif

ference in the regularity conditions that must be imposed to get the result. The 

question of convergence of Monte Carlo maximum likelihood calculations is essen

tially resolved. It 'always' works. The only regularity conditions are the minimal 

amount of continuity required for the topology of the parameter space to have some 

connection with the probabilities induced by the model. Consistency of maximum 

likelihood, on the other hand, is plagued by pathological counterexamples like that 

of Bahadur (1958), and a large literature has been produced about various ways to 

weaken Wald's integrability condition. 

Monte Carlo calculations run into the same difficulty when any randomness ap

pears 'in the numerator' as with the missing data case. Then something like a 

Wald-type integrability condition must be imposed. Another kind of Monte Carlo 

calculation where the same need arises is the 'mixture of complete data likelihoods' 

estimator of the posterior density (Gelfand and Smith, 1990). With such an in

tegrability condition _the Monte Carlo approximation to the posterior density will 

converge to the exact posterior uniformly on compact sets, which implies conver

gence in total variation of the associated probability distributions. 
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As mentioned in Section 1 there is no need that the distribution P.,,, from which 

we sample actually be a distribution in the model. There are good reasons for not 

using a distribution in the model, what Professor Green called sampling from the 

'wrong' model in his discussion of Geyer and Thompson (1992). Other schemes for 
sampling from the 'wrong' model are given by Sheehan and Thomas (1991) and 

Geyer (1991). Choosing P.,,, well can make a tremendous difference in the efficiency 

of sampling ( as measured by the variance calculated as described in Section 4), so 

the choice is important. 

'Normalized families of densities' are an important class of statistical models. 
We now have two interesting properties that hold for the whole class. The Hastings 

algorithm can be used to simulate realizations from any distribution in the model, 

and Monte Carlo likelihood approximation can be used to do likelihood-based sta

tistical inference. Since the class is extremely flexible, it allows a very wide scope 

for modeling and supports the noti_on of a 'model liberation movement' called for by 

Professor A. F. M. Smith in his discussion of Geyer and Thompson (1992). There is 

no need for reasons of mathematical tractability to interfere with using models that 

are scientifically correct. 
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