ON THE CONVERGENCE OF NONLINEAR SEMI-GROUPS

ISAO MIYADERA

(Received June 14, 1968)

- 1. Introduction. Let X be a Banach space and let $\{T(\xi); \xi \ge 0\}$ be a family of (nonlinear) operators from X into itself satisfying the following conditions:
 - (i) $T(0) = I(\text{the identity}) \text{ and } T(\xi + \eta) = T(\xi) T(\eta) \text{ for } \xi, \eta \ge 0.$
 - (ii) For each $x \in X$, $T(\xi)x$ is strongly continuous in $\xi \ge 0$.

We call such a family $\{T(\xi); \xi \ge 0\}$ simply a nonlinear semi-group. If there is a non-negative constant c such that

(iii) $||T(\xi)x - T(\xi)y|| \le e^{c\xi} ||x - y||$ for $x, y \in X$ and $\xi \ge 0$, then a nonlinear semi-group $\{T(\xi); \xi \ge 0\}$ is said to be of local type. (In particular, if c = 0, it is called a nonlinear contraction semi-group.) We define the infinitesimal generator A_0 of a nonlinear semi-group $\{T(\xi); \xi \ge 0\}$ by

$$A_0 x = \lim_{\delta \to 0+} \delta^{-1}(T(\delta) - I) x$$

and the weak infinitesimal generator A' by

(1.2)
$$A'x = \operatorname{w-lim}_{\delta \to 0+} \delta^{-1}(T(\delta) - I)x,$$

if the right sides exist. (The notation " \lim " ("w- \lim ") means the strong \lim t (the weak \lim t) in X.)

REMARK. In case of *linear* semi-groups, it is well known that the weak infinitesimal generator coincides with the infinitesimal generator.

H. F. Trotter [9] proved the following convergence theorem of *linear* semi-groups.

THEOREM. Let $\{T_n(\xi); \xi \ge 0\}_{n=1,2,3,...}$ be a sequence of semi-groups (of linear operators) of class (C_0) satisfying the stability condition

$$||T_n(\xi)|| \leq Me^{\omega\xi} \text{ for } \xi \geq 0, n = 1, 2, 3, \cdots,$$

where M and ω are independent of n and ξ . Let A_n be the infinitesimal generator of $\{T_n(\xi); \xi \geq 0\}$ and define $Ax = \lim A_n x$.

Suppose that

- (a) D(A) (the domain of A) is dense in X,
- (b) for some $\lambda > \omega$, $R(\lambda A) = X$ (or $R(\lambda A) = X$). Then A (or the closure of A) generates a semi-group $\{T(\xi); \xi \geq 0\}$ of class (C_0) ; and for each $x \in X$

$$\lim_{n} T_n(\xi) x = T(\xi) x$$

for $\xi \ge 0$ and the convergence is uniform with respect to ξ in every finite interval.

In this paper we shall study the convergence of nonlinear semi-groups $\{T_n(\xi); \xi \ge 0\}$ $(n = 1, 2, 3, \cdots)$ of local type with the stability condition

(1.3)
$$||T_n(\xi)x - T_n(\xi)y|| \le e^{\omega \xi} ||x - y||;$$

and we can prove the following (see Theorem 2.1):

"Let A_n be the infinitesimal generator of $\{T_n(\xi): \xi \ge 0\}$, and let A' be the weak infinitesimal generator of a semi-group $\{T(\xi): \xi \ge 0\}$ of local type. If there exists a dense set D_0 such that for each $x \in D_0$, $\lim_n A_n x = A' x$ and $\lim_n A_n T(\xi) x = A' T(\xi) x$ for a.a. ξ (with additional conditions $T_n(\xi) x \in D(A_n)$ for a.a. ξ), then for each $x \in X$,

$$T(\xi)x = \lim_{n} T_{n}(\xi) x$$

uniformly on every finite interval."

(We note here that we may take $\bigcup_{x \in D_0} \{T(\xi) x; \lim_n A_n T(\xi) x = A'T(\xi) x\}$ as a set D in Theorem 2.1.) In particular if X^* (the adjoint space of X) is uniformly convex, then the Trotter theorem holds good for our nonlinear case (see Theorem 2.3).

For linear semi-group $\{T(\xi); \xi \ge 0\}$ of class (C_0) , it is well known that

$$T(\xi) x = \lim_{\delta \to 0+} T_{\delta}(\xi) x$$
 for $x \in X$, $\xi \ge 0$,

where $A_{\delta} = \delta^{-1}(T(\delta) - I)$ and $\{T_{\delta}(\xi); \xi \geq 0\}$ is the semi-group generated by A_{δ} . And, in this case, $T_{\delta}(\xi) (= \exp(\xi A_{\delta}))$ is continuous in $\xi \geq 0$ with respect to the uniform operator topology (see [3]). In §4 we shall give similar results for nonlinear semi-groups of local type.

2. Theorems. The main theorems are as follows.

THEOREM 2.1. Let $\{T_n(\xi); \xi \geq 0\}_{n=1,2,3,...}$ be a sequence of nonlinear semi-groups of local type satisfying the stability condition

$$||T_n(\xi)x - T_n(\xi)y|| \le e^{\omega \xi} ||x - y||$$

for $\xi \geq 0$, $n = 1, 2, 3, \cdots$ and $x, y \in X$, where ω is a non-negative constant independent of n, x, y, and ξ . Let A_n be the infinitesimal generator of

$$\{T_n(\xi); \xi \geq 0\}$$
 and let $\lim_n A_n x = Ax$ on a set $D \subset \bigcap_{n=1}^{\infty} D(A_n)$.

Suppose that

- (a) A(defined on D) is a restriction of the weak infinitesimal generator of some nonlinear semi-group $\{T(\xi); \xi \geq 0\}$ such that for any $\beta > 0$, $\{T(\xi); 0 \leq \xi \leq \beta\}$ is equi-Lipschitz continuous on every bounded set,
 - (b) there exists a set $D_0 \subset D$ such that for each $x \in D_0$
 - (b₁) for each n, $T_n(\xi) x \in D(A_n)$ for a.a. $\xi \ge 0$,
 - (b₂) $T(\xi) x \in D$ for a.a. $\xi \geq 0$.

Then for each $x \in \overline{D}_0$ (the strong closure of D_0) we have

(2.2)
$$T(\xi) x = \lim_{n} T_{n}(\xi) x \text{ for each } \xi \ge 0,$$

and the convergence is uniform with respect to ξ in every finite interval.

REMARKS 1. If for any bounded set B there is a positive constant M_B such that $||T(\xi)x - T(\xi)y|| \le M_B ||x-y||$ for $\xi \in [0, \beta]$ and $x, y \in B$, then the family $\{T(\xi); 0 \le \xi \le \beta\}$ is said to be *equi-Lipschitz continuous* on every bounded set.

- 2. The above theorem remains true even if the conditions " $D \subset \bigcap_{n=1}^{\infty} D(A_n)$ "
- and (b_1) are replaced by " $D \subset \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} D(A_n)$ " and the following (b_1) , respectively.
 - (b'₁) For sufficiently large n, $T_n(\xi) x \in D(A_n)$ for a. a. $\xi \ge 0$.

The proof is given in §3.

In the above theorem, if X is a reflexive Banach space and $D \supset D(A_0)$, where A_0 is the infinitesimal generator of $\{T(\xi); \xi \geq 0\}$ in the assumption (a), then the assumption (b) is automatically satisfied by taking $D_0 = D$. In fact, if $x \in D$, then $x \in D(A')$ and $x \in D(A_n)$, where A' is the weak infinitesimal generator of $\{T(\xi); \xi \geq 0\}$; and hence $T(\xi)x$ and $T_n(\xi)x$ are strongly absolutely continuous on every finite interval (see the proof of Lemma 3.3). Thus the reflexivility of X shows that $T(\xi)x$ and $T_n(\xi)x$ are

strongly differentiable at a.a. $\xi \ge 0$ (for example, see Y. Kōmura [5]), so that the semi-group property (i) (in §1) implies

$$T_n(\xi) x \in D(A_n)$$
 for a. a. $\xi \ge 0$

and

$$T(\xi) x \in D(A_0) \subset D$$
 for a. a. $\xi \ge 0$.

Thus we have the following

THEOREM 2.2. Let $\{T_n(\xi); \xi \geq 0\}_{n=1,2,3,\dots}$ be a sequence of nonlinear semi-groups in Theorem 2.1 defined on a reflexive Banach space X, and let A_n be the infinitesimal generator of $\{T_n(\xi); \xi \geq 0\}$ and assume $\lim_n A_n x = Ax$ on a set D.

If the condition (a) in Theorem 2.1 is satisfied and $D\supset D(A_0)$ (i.e., $A'\supset A\supset A_0$), then for each $x\in \overline{D}^{(1)}$ we have

$$T(\xi) x = \lim_{n} T_{n}(\xi) x$$
 for all $\xi \geq 0$,

and the convergence is uniform with respect to ξ in every finite interval.

T.Kato proved a generation theorem of nonlinear contraction semi-groups defined on a Banach space such that the adjoint space is uniformly convex (see T.Kato [4] and F. E. Browder [1]), and his result has been extended to some class of nonlinear semi-groups (which contains semi-groups of local type) by S.Oharu [8]. Using Oharu's result, we can prove the following

THEOREM 2.3. Let the adjoint space X^* of X be a uniformly convex Banach space. Let $\{T_n(\xi); \xi \geq 0\}_{n=1,2,3,...}$ be a sequence of nonlinear semi-groups in Theorem 2.1, and let A_n be the infinitesimal generator of $\{T_n(\xi); \xi \geq 0\}$ and define $Ax = \lim A_n x$.

Suppose that

- (a') D(A) (the domain of A) is dense in X,
- (b') for some $h_0 \in (0, 1/\omega)$, $R(1-h_0A) = X$.

Then A is the weak infinitesimal generator of a nonlinear semi-group $\{T(\xi); \xi \ge 0\}$ of local type and for each $x \in X$

$$(*) T(\xi) x = \lim_{n} T_{n}(\xi) x for all \xi \ge 0,$$

and the convergence is uniform with respect to ξ in every finite interval.

¹⁾ It is easy to see that $\overline{D} = \overline{D(A')} = \overline{D(A_0)}$.

REMARK. If we omit the condition (a'), then A is the weak infinitesimal generator of a nonlinear semi-group $\{T(\xi); \xi \ge 0\}$ of local type defined on $\overline{D(A)}$ and the convergence (*) holds on $\overline{D(A)}$.

PROOF. If we can prove the following

(2.3) $\begin{cases} \text{ the limit operator } A \text{ is the weak infinitesimal generator of a} \\ \text{ nonlinear semi-group } \{T(\xi); \ \xi \geq 0\} \text{ such that for any } \beta > 0, \ \{T(\xi); \ 0 \leq \xi \leq \beta\} \end{cases}$ is equi-Lipschitz continuous on every bounded set,

then the convergence (*) follows from Theorem 2.2 by taking D=D(A) because X is reflexive with X^* , and the convergence implies

$$||T(\xi)x - T(\xi)y|| \le e^{\omega \xi} ||x - y||$$

for $\xi \ge 0, x, y \in X$.

We shall now prove (2.3). Let x and y be elements in D(A). By Lemma 3.1, for each n, we have

$$\operatorname{Re}(A_n x - A_n y, f) \leq \omega \|x - y\|^2$$

for f = F(x - y), where F denotes the duality map from X into X*. Letting $n \to \infty$

$$(2.4) Re(Ax - Ay, f) \leq \omega ||x - y||^2$$

This means that $B = A - \omega$ is a dissipative (i.e., $\text{Re}(Bx - By, f) \leq 0$). And the assumption (b') implies

$$R(1-h_0(1-h_0\omega)^{-1}B)=X$$

so that $R(1 - \varepsilon B) = X$ for all $\varepsilon > 0$ (see S. Oharu [7], Y. Kōmura [5], T. Kato [4]). This leads

(2.5)
$$R(1 - hA) = X$$
 for all $h \in (0, 1/\omega)$.

Let $h \in (0, 1/\omega)$. Since $||x - y - h(Ax - Ay)|| ||x - y|| \ge \text{Re}(x - y - h(Ax - Ay), f) = ||x - y||^2 - h \text{Re}(Ax - Ay, f) \ge (1 - h\omega)||x - y||^2(x, y \in D(A), f = F(x - y))$ by (2. 4), we obtain

$$||x - y - h(Ax - Ay)|| \ge (1 - h\omega)||x - y||$$

for each $x, y \in D(A)$. Consequently

(2.6) for each
$$h \in (0, 1/\omega)$$
, $(1 - hA)^{-1}$ exists on X.

Now (2.3) follows from Oharu's results ([8; Theorems 4.1 and 4.2]).2) Q.E.D.

3. Proof of Theorem 2.1. We start from the following

LEMMA 3.1 If $\{T(\xi); \xi \ge 0\}$ is a nonlinear semi-group of local type with $\|T(\xi)x - T(\xi)y\| \le e^{\omega \xi} \|x - y\| (\xi \ge 0, x, y \in X)$, and if A' is its weak infinitesimal generator, then for each $x, y \in D(A')$ we have

$$\operatorname{Re}(A'x - A'y, f) \leq \omega ||x - y||^2$$

for any $f \in F(x - y)$, where F is the duality map from X into X*.

PROOF. Let $x, y \in D(A')$, and let $f \in F(x - y)$.

$$\operatorname{Re} \ (\xi^{-1}[T(\xi)x - x] - \xi^{-1}[T(\xi)y - y], f) \\
= \xi^{-1}\operatorname{Re}(T(\xi)x - T(\xi)y, f) - \xi^{-1}\operatorname{Re}(x - y, f) \\
\leq \xi^{-1}||T(\xi)x - T(\xi)y||||x - y|| - \xi^{-1}||x - y||^2 \\
\leq \xi^{-1}(e^{\omega \xi} - 1)||x - y||^2.$$

Letting $\xi \to 0 +$, we get

$$\operatorname{Re}(A'x - A'y, f) \leq \omega ||x - y||^2$$
.

Q. E .D.

LEMMA 3.2 (T.Kato [4]). Let $x(\xi)$ be an X-valued function on an interval of real numbers. Suppose $x(\xi)$ has a weak derivative $x'(\eta) \in X$ at $\xi = \eta$ and $||x(\xi)||$ is differentiable at $\xi = \eta$. Then

$$||x(\eta)|| \left[\frac{d}{d\xi} ||x(\xi)|| \right]_{\xi=\eta} = \operatorname{Re}(x'(\eta), f)$$

for any $f \in F(x(\eta))$.

LEMMA 3.3. Let $\{T(\xi), \xi \ge 0\}$ be a nonlinear semi-group with the

²⁾ We note that (2.4) implies the condition (S) in his theorem.

weak infinitesimal generator A', and let for any $\beta > 0$ the family $\{T(\xi); 0 \le \xi \le \beta\}$ be equi-Lipschitz continuous on every bounded set. If $x \in D(A')$ and $T(\xi) x \in D(A')$ for a.a. $\xi \ge 0$, then $A'T(\xi) x$ is strongly measurable and essentially bounded (and hence, Bochner integrable) on every finite interval, and

$$T(\xi) x - x = \int_0^{\xi} A' T(\eta) x d\eta$$
 for all $\xi \ge 0$.

Consequently $T(\xi) x$ is strongly differentiable at a.a. ξ and

$$(d/d\xi) T(\xi) x = A'T(\xi) x$$
 for $a. a. \xi \ge 0$.

PROOF. Let $\beta > 0$ be an arbitrary given. If we put

$$B = \{T(\xi)\,x\,;\; 0 \leqq \xi \leqq 1\} \quad ext{and} \quad K = \sup_{\mathbf{0} < \delta \leqq 1} \delta^{-1} \|T(\delta)\,x - x\|,$$

then B is a bounded set and K is finite. Since the family $\{T(\xi); 0 \le \xi \le B\}$ is equi-Lipschitz continuous on B, there exists a constant M_B such that

$$||T(\xi)y - T(\xi)z|| \leq M_B ||y - z||$$

for all $y, z \in B$ and $\xi \in [0, \beta]$. Therefore, for $0 \le \xi \le \beta$ and $0 \le \delta \le 1$, we have

$$(3.1) ||T(\xi+\delta)x-T(\xi)x|| \leq M_B ||T(\delta)x-x|| \leq M_B K\delta.$$

This shows that $T(\xi) x$ is strongly absolutely continuous on $[0, \beta]$. Since $T(\xi) x \in D(A')$ for a. a. $\xi \ge 0$,

(3.2)
$$\begin{cases} A'T(\xi) x = \text{w-}\lim_{\delta \to 0+} \delta^{-1}(T(\delta) - I) T(\xi) x \\ = \text{w-}\lim_{\delta \to 0+} \delta^{-1}(T(\xi + \delta)x - T(\xi) x) \end{cases}$$

for a.a. $\xi \ge 0$; hence $A'T(\xi)x$ is strongly measurable (for example, see [3, Theorem 3.5.4]). By (3.1) and (3.2)

$$||A'T(\xi)x|| \leq M_B K$$
 for a. a. $\xi \in [0, B]$,

so that $A'T(\xi)x$ is essentially bounded on $[0,\beta]$. Consequently $A'T(\xi)x$ is Bochner integrable on $[0,\beta]$.

Let $f \in X^*$. Since $(T(\xi)x, f) = f(T(\xi)x)$ is absolutely continuous on $[0, \beta]$, $(T(\xi)x, f)$ is differentiable at a.a. $\xi \in [0, \beta]$ and

$$(T(\xi) x, f) - (x, f) = \int_0^{\xi} \frac{d}{d\eta} (T(\eta) x, f) d\eta$$

for any $\xi \in [0, \beta]$. Moreover it follows from (3.2) that

$$\frac{d}{d\xi}(T(\xi) x, f) = (A'T(\xi) x, f)$$

for a. a. $\xi \in [0, \beta]$. Thus the above equalities and the Bochner integrability of $A'T(\xi)x$ on $[0, \beta]$ show that

$$(T(\xi) x, f) - (x, f) = \int_0^{\xi} (A'T(\eta) x, f) d\eta$$
$$= \left(\int_0^{\xi} A'T(\eta) x \ d\eta, f\right)$$

for all $\xi \in [0, \beta]$. Hence we get

$$T(\xi) x - x = \int_0^{\xi} A' T(\eta) x d\eta$$
 for all $\xi \in [0, \beta]$

and $(d/d\xi)T(\xi) x = A'T(\xi) x$ for a.a. $\xi \in [0, \beta]$.

Q. E. D.

LEMMA 3.4. Under the assumptions of Theorem 2.1, for each $x \in D_0$ we have the following:

(3.3) $\begin{cases} AT(\xi) x \text{ is strongly measurable and essentially bounded on every } \\ \text{finite interval.} \end{cases}$

(3.4)
$$T(\xi) x - x = \int_0^{\xi} AT(\eta) x \, d\eta \quad \text{for all } \xi \ge 0$$

and $(d/d\xi)T(\xi) x = AT(\xi) x$ for a.a. $\xi \ge 0$.

(3.5)
$$T_n(\xi) x - x = \int_0^{\xi} A_n T_n(\eta) x d\eta \quad \text{for all } \xi \ge 0$$

and $(d/d\xi)T_n(\xi) x = A_nT_n(\xi) x$ for a.a. $\xi \ge 0$.

PROOF. If we denote the weak infinitesimal generator of $\{T(\xi); \xi \ge 0\}$ by A', then the condition (a) is as follows;

$$(3.6) D \subset D(A') \text{ and } Ax = A'x \text{ for } x \in D.$$

Let $x \in D_0$. By (3.6) and (b_2)

$$x \in D(A'), T(\xi) x \in D(A') \text{ and } A'T(\xi) x = AT(\xi) x$$

for a.a. $\xi \ge 0$. Therefore it follows from Lemma 3.3 that $AT(\xi)x$ (= $A'T(\xi)x$ a.a.) is strongly measurable and essentially bounded on every finite interval, and

$$T(\xi) \, x - x = \int_0^{\xi} A T(\eta) \, x \, d\eta$$
 for all $\xi \ge 0$,

$$(d/d\xi)T(\xi) x = AT(\xi) x$$
 for a.a. $\xi \ge 0$.

We remark that for any $\beta > 0$, $\{T_n(\xi); 0 \le \xi \le \beta\}$ is equi-Lipschitz continuous on X, because it is of local type. Since $x \in D(A_n)$ and $T_n(\xi)x \in D(A_n)$ for a.a. $\xi \ge 0$ (see $M(b_1)$), (3.5) also follows from Lemma 3.3. O. E. D.

PROOF OF THEORE 2.1. Let $x \in D_0$ and put

(3.7)
$$z_n(\xi) = T_n(\xi) x - T(\xi) x.$$

By Lemma 3.4

$$z_n(\xi) = \int_0^{\xi} (A_n T_n(\eta) x - AT(\eta) x) d\eta,$$

and each $z_n(\xi)$ has the strong derivative

$$z'_n(\xi) = A_n T_n(\xi) x - A T(\xi) x$$
 for a.a. $\xi \ge 0$;

moreover each $||z_n(\xi)||$ is differentiable at a.a. $\xi \ge 0$ since $||z_n(\xi)||$ is absolutely continuous in $\xi \ge 0$. Therefore it follows from Lemma 3.2 that for a.a. $\xi \ge 0$

(3.8)
$$\left\{ \begin{array}{l} \|z_n(\xi)\| \left[(d/d \xi) \|z_n(\xi)\| \right] = \operatorname{Re}(z'_n(\xi), f_{\xi}) \\ = \operatorname{Re}(A_n T_n(\xi) x - A T(\xi) x, f_{\xi}) \end{array} \right.$$

for every $f_{\xi} \in F(z_n(\xi))$. And

(3.9)
$$\|z_n(\xi)\|^2 = \int_0^{\xi} (d/d\eta) \|z_n(\eta)\|^2 d\eta = 2 \int_0^{\xi} \|z_n(\eta)\| \left[(d/d\eta) \|z_n(\eta)\| \right] d\eta$$

for all $\xi \geq 0$.

Let $\beta > 0$ be arbitrarily given. We shall show that the sequence $\{\|z_n(\xi)\| [(d/d\xi)\|z_n(\xi)\|]\}$ is uniformly (essentially) bounded on $[0, \beta]$. Put

$$K_1 = \operatorname*{ess\ sup}_{0 \leq \xi \leq \beta} \|AT(\xi) x\| \ (< \infty)$$

(see (3.3)). Since $\|A_nT_n(\xi)x\| = \lim_{\delta \to 0+} \|\delta^{-1}(T_n(\xi+\delta)x - T_n(\xi)x)\| \le e^{\omega \xi} \lim_{\delta \to 0+} \delta^{-1} \|T_n(\delta)x - x\| = e^{\omega \xi} \|A_nx\| \text{ (a.a. } \xi) \text{ and since } \lim_n A_nx = Ax, \text{ there is a constant } K_2 \text{ independent of } n \text{ such that}$

$$\operatorname{ess \, sup}_{0 \le \xi \le \beta} \|A_n T_n(\xi) x\| \le K_2.$$

Consequently, for all n, we get

$$\underset{0 \leq \xi \leq \beta}{\operatorname{ess}} \ \|z_{n}'(\xi)\| = \underset{0 \leq \xi \leq \beta}{\operatorname{ess}} \ \|A_{n}T_{n}(\xi)x - AT(\xi)\,x\| \leqq K_{1} + K_{2}$$

and

(3.10)
$$\|z_n(\xi)\| \leq \int_0^{\xi} \|A_n T_n(\eta) x - A T(\eta) x \| d\eta \leq (K_1 + K_2) \beta$$

for every $\xi \in [0, \beta]$. Hence by (3.8)

$$|\|z_n(\xi)\| [(d/d\xi)\|z_n(\xi)\|] | \leq \|z'_n(\xi)\| \|f_{\xi}\| = \|z'_n(\xi)\| \|z_n(\xi)\|$$

$$\leq (K_1 + K_2)^2 \beta$$

for a.a. $\xi \in [0, \beta]$; so that $\{\|z_n(\xi)\| [(d/d\xi)\|z_n(\xi)\|]\}$ is uniformly (essentially) bounded on $[0, \beta]$. Thus by the Lebegue convergence theorem

(3. 11)
$$\begin{cases} \limsup_{n \to \infty} \|z_n(\xi)\|^2 = \limsup_{n \to \infty} 2 \int_0^{\xi} \|z_n(\eta)\| [(d/d\eta)\|z_n(\eta)\|] d\eta \\ \leq 2 \int_0^{\xi} \limsup_{n \to \infty} \|z_n(\eta)\| [(d/d\eta)\|z_n(\eta)\|] d\eta \end{cases}$$

for all $\xi \in [0, \beta]$.

Since $T(\xi) x \in D \subset D(A_n)$ and $T_n(\xi) x \in D(A_n)$ for a.a. ξ , it follows from

Lemma 3.1 that for a.a. $\xi \ge 0$

(3. 12)
$$\operatorname{Re}(A_n T_n(\xi) x - A_n T(\xi) x, f_{\xi}) \leq \omega \|z_n(\xi)\|^2$$

for every $f_{\xi} \in F(z_n(\xi))$. Combining this with (3.8), for a.a. $\xi \in [0, \beta]$

$$\begin{split} \|z_n(\xi)\| & \left[(d/d\,\xi)\|z_n(\xi)\| \right] \leq \operatorname{Re}(A_nT(\xi)\,x - AT(\xi)\,x, f_{\xi}) + \omega \|z_n(\xi)\|^2 \\ & \leq \|A_nT(\xi)\,x - AT(\xi)\,x\| \, \|z_n(\xi)\| + \omega \|z_n(\xi)\|^2 \\ & \leq (K_1 + K_2)\beta \|A_nT(\xi)\,x - AT(\xi)x\| + \omega \|z_n(\xi)\|^2 \, (\text{see } (3.10)) \, ; \end{split}$$

and hence

(3. 13)
$$\lim_{n\to\infty} \sup \|z_n(\xi)\| [(d/d\xi)\|z_n(\xi)\|] \le \omega \lim_{n\to\infty} \sup \|z_n(\xi)\|^2$$

for a.a. $\xi \in [0, \beta]$. If we put

$$g(\xi) = \limsup_{n \to \infty} \| z_n(\xi) \|^2 \quad \text{ for } \xi \in [0, oldsymbol{eta}],$$

then $0 \le g(\xi) \le (K_1 + K_2)^2 \beta^2$ on $[0, \beta]$ (see (3.10)), and from (3.11) and (3.13) we obtain

$$0 \leq g(\xi) \leq 2\omega \int_0^{\xi} g(\eta) \ d\eta$$

for every $\xi \in [0, \beta]$. It is easy to see that the above inequality implies $g(\xi) = 0$ for $\xi \in [0, \beta]$. Thus we get

$$\lim_{n} \|T_{n}(\xi) x - T(\xi) x\| (= \lim_{n} \|z_{n}(\xi)\|) = 0$$

for all $\xi \in [0, \beta]$. We shall show that the above convergence is uniform. Since

$$\|z_{n}(\xi)\|^{2} \leq 2 \int_{0}^{\xi} \|z'_{n}(\eta)\| \|z_{n}(\eta)\| \ d\eta$$

(see (3.8) and (3.9)),

$$\sup_{0 \leq \xi \leq \beta} \| \boldsymbol{z}_{\boldsymbol{n}}(\xi) \|^2 \leq 2 \int_0^\beta \| \boldsymbol{z'}_{\boldsymbol{n}}(\eta) \| \ \| \boldsymbol{z}_{\boldsymbol{n}}(\eta) \| \ d\eta \to 0$$

as $n \to \infty$, because the integrand converges boundedly to zero. Thus the theorem holds for $x \in D_0$.

Finally let $x \in D_0$. There is a sequence $\{x_k\}$ $(x_k \in D_0)$ such that $\lim_k x_k = x$. Now

$$\begin{split} \|T_{n}(\xi) \, x - T(\xi) x\| & \leq \|T_{n}(\xi) \, x - T_{n}(\xi) \, x_{k}\| \\ & + \|T_{n}(\xi) \, x_{k} - T(\xi) \, x_{k}\| + \|T(\xi) \, x_{k} - T(\xi) \, x\| \\ & \leq e^{\omega \xi} \|x - x_{k}\| + \|T_{n}(\xi) \, x_{k} - T(\xi) \, x_{k}\| + M_{B} \|x_{k} - x\| \end{split}$$

for $\xi \in [0, \beta]$. (Note there is a constant M_B such that $\|T(\xi) x_k - T(\xi) x\| \le M_B \|x_k - x\|$ for $\xi \in [0, \beta]$ and k, since the set $B = \{x, x_1, x_2, \cdots\}$ is bounded and the family $\{T(\xi); 0 \le \xi \le \beta\}$ is equi-Lipschitz continuous on bounded set.) Hence we get

$$\lim_{n} \|T_{n}(\xi) x - T(\xi) x\| = 0$$

uniformly on $[0, \beta]$.

Q. E. D.

4. Approximation of semi-groups. Let $\{T(\xi); \xi \ge 0\}$ be a nonlinear semi-group of local type with $\|T(\xi)x - T(\xi)y\| \le e^{\omega \xi} \|x - y\|$, and let A_0 be its infinitesimal generator, and put

$$A_{\delta} = \delta^{-1}(T(\delta) - I)$$
 for $\delta > 0$.

THEOREM 4.1. I. Each A_{δ} is the infinitesimal generator of a semi-group $\{T_{\delta}(\xi); \xi \geq 0\}$ of local type satisfying the following conditions:

- (a) For each $x \in X$, $T_{\delta}(\xi) x \in C^{1}([0, \infty); X)^{\mathfrak{z})}$ and $(d/d \xi)T_{\delta}(\xi) x = A_{\delta}T_{\delta}(\xi) x \quad \text{for all } \xi \geq 0.$
- (b) For each $\xi \ge 0$ $\sup_{x \ne y} \|T_{\delta}(\xi + h) x T_{\delta}(\xi + h) y (T_{\delta}(\xi) x T_{\delta}(\xi) y) \|/\|x y\| \to 0 \text{ as } h \to 0.$
- II. Suppose that
- $(4.1) \quad \left\{ \begin{array}{ll} \text{there exists a set D_0 such that $D_0 \subset D(A_0)$ and for any $x \in D_0$,} \\ T(\xi) \ x \in D(A_0) \ \text{for a.a.} \ \xi \geqq 0. \end{array} \right.$

³⁾ $C^1([0,\infty);X)$ denotes the set of all strongly continuously differentiable X-valued functions defined on $[0,\infty)$.

Then for each $x \in \overline{D_0}$ we have

(4.2)
$$T(\xi) x = \lim_{\delta \to 0+} T_{\delta}(\xi) x \quad \text{for all } \xi \ge 0,$$

and the convergence is uniform with respect to ξ in every finite interval.

REMARK. In case of nonlinear contraction semi-groups, the theorem has been proved by the author [6] (see also J. R. Dorroh [2]).

If X is a reflexive Banach space, then the assumption (4.1) is satisfied by taking $D_0 = D(A_0)$. (For, if $x \in D(A_0)$, then $T(\xi)x$ is strongly absolutely continuous on every finite interval. It follows from the reflexivility of X that $T(\xi)x$ is strongly differentiable at a.a. ξ and a fortiori $T(\xi)x \in D(A_0)$ for a.a. $\xi \ge 0$.) Thus we have the following

COROLLARY 4.2. If $\{T(\xi); \xi \ge 0\}$ is a nonlinear semi-group of local type defined on a reflexive Banach space, then for each $x \in \overline{D(A_0)}$

$$T(\xi) x = \lim_{\delta \to 0+} T_{\delta}(\xi) \quad \text{for all } \xi \geq 0,$$

and the convergence is uniform with respect to ξ in every finite interval.

We shall now prove Theorem 4.1.

PROOF. I. Fix $\delta > 0$. Since the map $x \to A_{\delta} x$ is Lipschitz continuous, uniformly in $x \in X$ (in fact, $||A_{\delta}x - A_{\delta}y|| \le \delta^{-1}(e^{\omega\delta} + 1)||x - y||$ for $x, y \in X$), the equation

$$\begin{cases} (d/d\,\xi)\,u(\xi\,;\,\,x)=A_\delta u(\xi\,;\,\,x) & \text{for }\,\xi\geqq 0\\ u(0\,;\,\,x)=x \end{cases}$$

has a unique solution $u(\xi; x) \in C^1([0, \infty); X)$ for any $x \in X$. If we define $T_{\delta}(\xi)$ by

$$T_{\delta}(\xi) x = u(\xi; x)$$
 for $\xi \ge 0, x \in X$,

then $\{T_{\delta}(\xi); \xi \geq 0\}$ is a nonlinear semi-group satisfying the condition (a) and its infinitesimal generator is A_{δ} .

We shall now prove that $\{T_{\delta}(\xi); \xi \ge 0\}$ is of local type. Fix $x, y \in X$ and put

$$z(\xi) = T_{\delta}(\xi) x - T_{\delta}(\xi) y.$$

Clearly $z(\xi) \in C^1([0,\infty); X)$ and

$$\left\{ \begin{array}{l} (d/d\,\xi)\,z(\xi) = A_{\delta}T_{\delta}(\xi)\,x - A_{\delta}T_{\delta}(\xi)\,y \\ \\ z(0) = x - y. \end{array} \right.$$

Since $\|z(\xi)\|$ is absolutely continuous, $\|z(\xi)\|$ is differentiable at a.a. $\xi \ge 0$. By Lemma 3.2, for a.a. $\xi \ge 0$

$$\begin{aligned} \|z(\xi)\| \left[(d/d \xi) \|z(\xi)\| \right] &= \operatorname{Re}(z'(\xi), f_{\xi}) \\ &= \operatorname{Re}(A_{\delta} T_{\delta}(\xi) x - A_{\delta} T_{\delta}(\xi) \gamma, f_{\xi}) \end{aligned}$$

for every $f_{\xi} \in F(z(\xi))$. Note that for each $u, v \in X$

$$\operatorname{Re}(A_{\delta}u - A_{\delta}v, f) \leq \delta^{-1}(e^{\omega\delta} - 1) \|u - v\|^{2}$$

for all $f \in F(u - v)$. Hence

$$||z(\xi)|| [(d/d \xi) ||z(\xi)||] \le c_{\delta} ||z(\xi)||^2$$
 for a.a. $\xi \ge 0$,

where $c_{\delta}=\delta^{-1}(e^{\omega\delta}-1)$; and

$$\begin{split} \|z(\xi)\|^2 &= \|z(0)\|^2 + \int_0^{\xi} \left[(d/d\eta) \|z(\eta)\|^2 \right] d\eta \\ &= \|z(0)\|^2 + 2 \int_0^{\xi} \|z(\eta)\| \left[(d/d\eta) \|z(\eta)\| \right] d\eta \\ &\leq \|z(0)\|^2 + 2c_{\delta} \int_0^{\xi} \|z(\eta)\|^2 d\eta \end{split}$$

for any $\xi \ge 0$. This leads the following inequality

$$\|z(\xi)\|^2 \leq \|z(0)\|^2 \sum_{k=0}^n (2c_{\delta}\xi)^k/k! + [(2c_{\delta})^{n+1}/n!] \int_0^{\xi} (\xi-\eta)^n \|z(\eta)\|^2 d\eta$$

for all n and $\xi \ge 0$. Letting $n \to \infty$, we get $\|z(\xi)\|^2 \le e^{2c_0\xi} \|z(0)\|^2$, i.e.,

$$(4.3) ||T_{\delta}(\xi)x - T_{\delta}(\xi)y|| \leq e^{c_{\delta}\xi}||x - y|| \text{for all } \xi \geq 0,$$

so that $\{T_{\delta}(\xi); \xi \geq 0\}$ is of local type.

We shall show (b). Since $||A_{\delta}x - A_{\delta}y|| \le \delta^{-1}(e^{\omega\delta} + 1) ||x - y||$ for all $x, y \in X$,

$$egin{align*} &\|T_{\delta}(\xi+h)x-T_{\delta}(\xi+h)y-(T_{\delta}(\xi)\,x-T_{\delta}(\xi)\,y)\| \ &=\|\int_{\xi}^{\xi+h}(A_{\delta}T_{\delta}(\eta)\,x-A_{\delta}T_{\delta}(\eta)\,y)\,d\eta\| \ &\leq \delta^{-1}(e^{\omega\delta}+1)\,|\int_{\xi}^{\xi+h}\|T_{\delta}(\eta)\,x-T_{\delta}(\eta)\,y\|\,d\eta\| \ &\leq \delta^{-1}(e^{\omega\delta}+1)\,e^{c_{\delta}(\xi+|h|)}\|x-y\|\,|h|\,. \end{split}$$

Hence we obtain (b).

II. Since $c_{\delta} = \delta^{-1}(e^{\omega\delta} - 1) \to \omega$ as $\delta \to 0+$, there is a constant c > 0 such that $c_{\delta} \leq c$ for $0 < \delta \leq 1$. Hence by (4.3) we obtain

$$(4.4) ||T_{\delta}(\xi) x - T_{\delta}(\xi) y|| \le e^{c\xi} ||x - y||$$

for every $x, y \in X, \xi \ge 0$ and $\delta \in (0, 1]$.

Let $\{\delta_n\}$ be a sequence such that $\delta_n \to 0 +$. Put

$$T_n(\xi) = T_{\delta_n}(\xi)$$
 and $A_n = A_{\delta_n}(= \delta_n^{-1}(T(\delta_n) - I)).$

Since $\lim_{n} A_{\delta n} x = A_0 x$ on $D(A_0)$ and $D(A_n) = X$, the assumptions in Theorem 2.1 are satisfied by taking $A = A_0$ and $D = D(A_0)$. Therefore for each $x \in \overline{D}_0$ we have

$$T(\xi) x = \lim_{x \to \infty} T_{\delta_n}(\xi) x$$
 for each $\xi \ge 0$,

and the convergence is uniform with respect to ξ in every finite interval.

Q. E. D.

REFERENCES

- F. E. BROWDER, Nonlinear equations of evolutions and nonlinear accretive operators in Banach spaces, Bull. Amer. Math. Soc., 73(1967), 867-874.
- [2] J. R. DORROH, Semigroups of nonlinear transformations, Notices Amer. Math. Soc., 15(1968), 128.
- [3] E. HILLE AND R. S. PHILLIPS, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 1957.

I. MIYADERA

- [4] T. KATO, Nonlinear semi-groups and evolution equations, J. Math. Soc. Japan, 19 (1967), 508-520.
- [5] Y. KOMURA, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19(1967), 493-507.
- [6] I. MIYADERA, Note on nonlinear contraction semi-groups, Proc. Amer. Math. Soc., 21 (1969), 219-225.
- [7] S. OHARU, Note on the representation of semi-groups of nonlinear operators, Proc. Japan Acad., 42(1966), 1149-1154.
- [8] S. OHARU, Nonlinear semi-groups in Banach spaces, to appear.
- [9] H. F. TROTTER, Approximation of semi-groups of operators, Pacific J. Math., 8(1958), 887-919.

DEPARTMENT OF MATHEMATICS WASEDA UNIVERSITY TOKYO, JAPAN

AND

DEPARTMENT OF MATHEMATICS GEORGETOWN UNIVERSITY WASHINGTON, D. C., U. S. A.