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Abstract. Let (X,TX) be a topological space and let (Y, dY ) be a
metric space. For a function f : X → Y denote by C(f) the set of all
continuity points of f and by D(f) = X\C(f) the set of all discontinuity
points of f . Let

C(X,Y ) = {f : X → Y ; f is continuous},
H(X,Y ) = {f : X → Y ; D(f) is countable},

H1(X,Y ) = {f : X → Y ; ∃h∈C(X,Y ) {x; f(x) 6= h(x)} is countable},

andH2(X,Y ) = H(X,Y )∩H1(X,Y ). In this article we investigate some
convergences (pointwise, uniform, quasiuniform, discrete and transfi-
nite) of sequences of functions from H(X,Y ), H1(X,Y ) and H2(X,Y ).

Let (X,TX) be a topological space and let (Y, dY ) be a metric space. For
a function f : X → Y , denote by C(f) the set of all continuity points of f
and by D(f) = X \ C(f) the set of all discontinuity points of f . Let
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C(X,Y ) = {f : X → Y ; f is continuous},
H(X,Y ) = {f : X → Y ; D(f) is countable},
H1(X,Y ) = {f : X → Y ; there is h ∈ C(X,Y ) such that the set

{x; f(x) 6= h(x)} is countable}, and
H2(X,Y ) = H(X,Y ) ∩H1(X,Y ).

Consider the following conditions (1) and (2):
(1) Suppose that (X,TX) is a T1 space. Then each finite set is closed and

each countable set is an Fσ-set.

Remind that a function f : X → Y is of Baire class 1 if there is a sequence
of continuous functions fn : X → Y with f = limn→∞ fn.

(2) Assume also that each function f : A→ Y of Baire class 1, where A is
a Gδ-set in X, may be extended to a Baire 1 function g : X → Y .

It is known that if (X, ρX) is a metric space and A ⊂ X is a nonempty
Gδ-set in X then every function f : A→ Y of Baire class 1 may be extended
to a Baire 1 function g : X → Y ([4]).

Throughout the paper we assume (1) and (2).
For a given family Φ of functions f : X → Y denote by B(Φ) (Bu(Φ)) the

family of all pointwise (uniform) limits of sequences of functions from Φ.

Remark 1. Observe that if f ∈ B(H(X,Y )) then there is a Baire 1 func-
tion g : X → Y such that the set {x ∈ X; f(x) 6= g(x)} is countable.

Proof. Of course, if

f = lim
n→∞

fn, where fn ∈ H(X,Y ) for n ≥ 1,

then the sets D(fn) are countable, and consequently the union

E =
⋃
n

D(fn)

is also countable. The set A = X \E is a Gδ-set and the restricted function
f |A is the limit of the sequence of continuous functions fn|A, so by (2) there
is a Baire 1 function g : X → Y such that g|A = f |A. Since the set

{x ∈ X; f(x) 6= g(x)} ⊂ E
is countable, the proof is finished.

Similarly we can prove the following:

Remark 2. If f ∈ B(H1(X,Y )) then there is a Baire 1 function g : X → Y
such that the set {x ∈ X; f(x) 6= g(x)} is countable.
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Theorem 1. Assume (1) and (2) and suppose that for a function f : X →
Y there is a Baire 1 function g : X → Y such that the set {x ∈ X; g(x) 6=
f(x)} is countable. Then f ∈ B(H2(X,Y )).

Proof. Since g : X → Y is of Baire class 1, there is a sequence of functions
gn ∈ C(X,Y ) such that g = limn→∞ gn. For n ≥ 1 there are closed sets An
such that

An ⊂ An+1 for n ≥ 1, and {x; g(x) 6= f(x)} =
⋃
n≥1

An.

For n ≥ 1 put

fn(x) =

{
gn(x) if x ∈ X \An
f(x) if x ∈ An.

Since the sets An, n ≥ 1, are closed and countable, and gn ∈ C(X,Y ),
n ≥ 1, we obtain that fn ∈ H2(X,Y ), n ≥ 1. Obviously, f = limn→∞ fn, so
the proof is completed.

Corollary 1. The equalites

B(H(X,Y )) = B(H1(X,Y )) = B(H2(X,Y ))

= {f : X → Y ; there is a Baire 1 function g : X → Y such that the set

{x ∈ X; f(x) 6= g(x)} is countable}

are true (under asumptions (1) and (2)).

Evidently, the families H(X,Y ), H1(X,Y ) and H2(X,Y ) are uniformly
closed, i.e. H = Bu(H(X,Y )), H1(X,Y ) = Bu(H1(X,Y )) and H2(X,Y ) =
Bu(H2(X,Y )).

The quasi-uniform convergence, defined as follows, is a generalization of
the uniform convergence. A sequence of functions fn : X → Y (n ≥ 1)
quasi-uniformly converges to a function f : X → Y in the sense of Predoi
([8]), if for each point x ∈ X and each real ε > 0 there is a positive integer
k such that for each integer n ≥ k there is a neighbourhood U(x) ∈ TX of x
such that for all points u ∈ U(x) the inequality dY (f(u), fn(u)) < ε is true.
It is well known ([8]) that this type of convergence preserves continuity, i.e.
if the functions fn are continuous at a point x and the sequence (fn) quasi-
uniformly converges to f (in the sense of Predoi) then f is continuous at x.
From this we obtain that

Bqu(H(X,Y )) = H(X,Y ),

where Bqu(Φ) denotes the family of all functions, which are the limits of
quasi-uniformly convergent sequences of functions from Φ. Of course, if a
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function f : X → Y is the limit of a quasi-uniformly convergent (in the sense
of Predoi) sequence of functions fn ∈ H(X,Y ) then the set

D(f) ⊂
⋃
n≥1

D(fn)

is countable, and consequently f ∈ H(X,Y ).
In the proof of the next theorem we will apply the following lemma:

Lemma 1. Suppose that a metric space Y is complete. Let A ⊂ X be a
nonempty set and let a ∈ X be an accumulation point of A. Suppose that
for functions fn : (A ∪ {a})→ Y (n ≥ 1) there exist limits

lim
A3x→a

fn(x) = bn ∈ Y

and that the sequence (fn) quasi-uniformly converges to a function f : (A ∪
{a})→ Y . Then there exists a limit

lim
A3x→a

f(x) = lim
n→∞

bn.

Proof. Fix ε > 0. Since the sequence (fn) quasi-uniformly converges to f
on A ∪ {a}, there is a positive integer k such that for each integer n ≥ k
there is a set Un ∈ TX containing a such that for each point x ∈ Un ∩A we
have

dY (f(x), fn(x)) <
ε

5
.

Fix integers n,m ≥ k. Since

lim
A3x→a

fn(x) = bn and lim
A3x→a

fm(x) = bm,

there is a set U ∈ TX containing a such that for x ∈ (U ∩A) \ {a} we have

max(dY (fn(x), bn), dY (fm(x), bm)) <
ε

5
.

Fix a point x ∈ (Un ∩ Um ∩ U ∩A) \ {a} and observe that

dY (bn, bm) ≤dY (bn, fn(x)) + dY (fn(x), f(x)) + dY (f(x), fm(x))

+ dY (fm(x), bm) <
4ε
5
< ε.

So, the sequence (bn) satisfies the Cauchy condition. Since (Y, dY ) is a
complete space, there is a point b ∈ Y such that b = limn→∞ bn. We will
prove that

(∗) lim
A3x→a

f(x) = b.
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For this, fix an integer j > k such that dY (b, bj) < ε/5 and find a set V ∈ TX
containing a such that for x ∈ (V ∩A) \ {a} the inequality

dY (fj(x), bj) <
ε

5
is true. Observe that for x ∈ (Uj ∩ V ∩A) \ {a} we obtain

dY (f(x), b) ≤ dY (f(x), fj(x)) + dY (fj(x), bj) + dY (bj , b) < 3
ε

5
< ε,

and (∗) is true. This completes the proof.

We will show that in the above lemma the hypothesis that f and fn’s are
defined on A ∪ {a} and the sequence (fn) is quasi-uniformly convergent (in
the sense of Predoi ) on A ∪ {a} is essential.

Example. Let X = Y = (0, 1], d(y1, y2) = |y1 − y2| for y1, y2 ∈ (0, 1] and
let TX be the topology introduced by the Euclidean metric d. For n ≥ 1
put

fn(x) =


0 if x ∈

(
0,

1
2nπ

]
sin

1
x

if x ∈
[

1
2nπ

, 1
]
,

f(x) = sin
1
x

for x ∈ (0, 1].

Then for each integer n ≥ 1 there exists limx→0+ f(x) = 0, and the sequence
(fn) quasi-uniformly converges to f on (0, 1], but the function f does not
have a limit at 0.

Theorem 2. Suppose that (Y, dY ) is a complete metric space and for each
countable set A ⊂ X the complement X \A is dense in X. Then the equality
Bqu(H1(X,Y )) = H1(X,Y ) is true.

Proof. Assume that a function f : X → Y is the limit of a quasi-uniformly
convergent sequence of functions fn ∈ H1(X,Y ), (n ≥ 1). Since fn ∈
H1(X,Y ), there are continuous functions gn : X → Y such that the sets
An = {x ∈ X : fn(x) 6= gn(x)} are countable (n ≥ 1). Consequently, the
union

A =
⋃
n≥1

{x ∈ X; fn(x) 6= gn(x)}

is also countable, and its complement X \A is dense in X. The sequence of
continuous restricted functions fn|(X\A) = gn|(X\A), (n ≥ 1) quasi-uniformly
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converges to f |(X\A), so the restricted function f |(X\A) is also continuous.
By Lemma 1, for each point x ∈ X \A there exists

lim
(X\A)3t→x

f(t) = h1(x) ∈ Y.

Evidently, the function

h(x) = f(x) for x ∈ X \A and h(x) = h1(x) for x ∈ A

is continuous and the set {x ∈ X; f(x) 6= h(x)} ⊂ A is countable. This
completes the proof.

Corollary 2. The equality Bqu(H2(X,Y )) = H2(X,Y ) is true.

In the article [2] the authors introduced the notion of discrete convergence
of sequences of functions and investigated the discrete limits in different
families, for example in the family C(X,R), where X is a nonempty set. We
will say that a sequence of functions fn : X → Y , n = 1, 2, . . . , discretely
converges to the limit f , (f = d-limn→∞ fn) if for each point x ∈ X there
exists a positive integer n(x) such that for all n > n(x) the equality fn(x) =
f(x) is true. For any family Φ of functions f : X → Y denote by Bd(Φ) the
family of all discrete limits of sequences of functions from the family Φ.

Theorem 3. Assume that for each nonempty closed set A ⊂ X and for each
continuous function h : A → Y there is a continuous function g : X → Y
such that g|A = h. If f ∈ Bd(H1(X,Y )) then there is a function g ∈
Bd(C(X,Y )) such that the set {x ∈ X; f(x) 6= g(x)} is countable.

Proof. Fix f ∈ Bd(H1(X,Y )). There are functions fn ∈ H1(X,Y ), n ≥ 1,
such that f = d-limn→∞ fn. For each positive integer n there is a continuous
function gn : X → Y such that the set An = {x ∈ X; fn(x) 6= gn(x)} is
countable. Let

A =
⋃
n

An = {a1, . . . , an, . . . } and Gn = {ak; k ≤ n} for n ≥ 1.

For n ≥ 1 put

Sn = {x ∈ X; fk(x) = f(x) for k ≥ n}

and observe that

Sn ⊂ Sn+1 for n ≥ 1 and X =
⋃
n

Sn.

Without loss of generality we can suppose that S1 6= ∅. Let

Bn = cl(Sn \A) ∪Gn for n ≥ 1.
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Observe that the sets Bn are closed for n ≥ 1. Since for k ≥ n we have

gk(x) = fk(x) = fn(x) = gn(x) for x ∈ Sn \A,

so
gk(x) = gn(x) for x ∈ cl(Sn \A) and k ≥ n.

For n ≥ 1 define

hn(x) =

{
gn(x) if x ∈ cl(Sn \A)
fn(x) if x ∈ Gn \ cl(Sn \A).

Then the functions hn : Bn → Y are continuous and there are continuous
functions φn : X → Y with φn|Bn = hn.

Observe that the sequence of (φn) discretely converges to a function
g : X → Y . Indeed, fix a point x ∈ X. If there is an index n(x) such
that x ∈ cl(Sn \A) for n ≥ n(x), then

φn(x) = hn(x) = gn(x) = gn(x)(x) for n ≥ n(x).

In the opposite case, for sufficiently large n we have x ∈ A \ cl(Sn \A) and
φn(x) = fn(x). Since the sequence (fn) discretely converges to f , there is a
positive integer n(x) such that fn(x) = f(x) for n ≥ n(x). So for n ≥ n(x)
we have

φn(x) = fn(x) = f(x),

and the sequence (φn) is discretely convergent. Denote its limit by g ∈
Bd(C(X,Y )). From the construction of φn it follows that if x ∈ X \ A =⋃
n Sn \ A then for sufficiently large n the equalities φn(x) = fn(x) = f(x)

are true, and consequently, the set {x ∈ X; f(x) 6= g(x)} is countable. This
completes the proof.

Theorem 4. Suppose that f : X → Y . If there is a function g ∈
Bd(C(X,Y ))) such that the set {x ∈ X; g(x) 6= f(x)} is countable then
f ∈ Bd(H2(X,Y )).

Proof. Assume that there is a function g ∈ Bd(C(X,Y )) such that A =
{x ∈ X; f(x) 6= g(x)} is countable, i.e. A = {an; n ≥ 1}. There are
continuous functions gn : X → Y with g = d-limn→∞ gn. For n ≥ 1 define

fn(x) =

{
f(x) for x ∈ {ak; k ≤ n}
gn(x) otherwise on X.

Then fn ∈ H2(X,Y ) for n ≥ 1 and f = d-limn→∞ fn. So, f ∈ Bd(H2(X,Y ))
and the proof is completed.
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Theorem 5. Let (X,TX) be an uncountable space and let f : X → Y . If
f ∈ Bd(H(X,Y )), there is a countable set A ⊂ X such that f |(X\A) ∈
Bd(C(X \A, Y )).

Proof. Since f ∈ Bd(H(X,Y )), there are functions fn ∈ H(X,Y ) (n ≥ 1)
such that f = d-limn→∞ fn. The sets D(fn) are countable. Let

A =
∞⋃
n=1

D(fn).

Then A is countable and the sequence of continuous functions fn|(X\A)
discretely converges to f |(X\A).

Theorem 6. Suppose that for each countable set A ⊂ X, the complement
X \A is dense in X and that (Y, dY ) is a compact metric space. Let f : X →
Y . If there is a countable set E ⊂ X such that f |(X\E) ∈ Bd(C(X \ E, Y ))
then f ∈ Bd(H(X,Y )).

Proof. Since f |(X\E) ∈ Bd(C(X \ E, Y )), there are continuous functions
gn : (X \E)→ Y such that

f |(X\E) = d− lim
n→∞

gn.

Since the set X \ E is dense in X and (Y, dY ) is compact, for each integer
n ≥ 1 and each point x ∈ E there is an an(x) ∈ Y such that for each
ε > 0 and each set U ∈ TX containing x there is a point un,U ∈ U \ E
such that dY (gn(un,U ), an(x)) < ε. Such a point an(x) may be chosen in the
product of all closures cl(gn(U \ {x})), where U ∈ TX are arbitrary open
sets containing x.

Let

E = {bn; n ≥ 1} and En = {bk; k ≤ n} for n ≥ 1.

For n ≥ 1 define

hn(x) =

{
gn(x) if x ∈ X \ E
an(x) if x ∈ E,

and

fn(x) =

{
hn(x) if x ∈ X \ En
f(x) if x ∈ En.

Then
D(fn) ⊂ D(hn) ∪ En ⊂ E for n ≥ 1,

and consequently, fn ∈ H(X,Y ). Evidently f = d-limn→∞ fn, so the proof
is completed.
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Problem. Is Theorem 6 true for a σ-compact metric spaces (Y, ρY )?

Theorem 7. Suppose that for each countable set A ⊂ X, the complement
X \A is dense in X and that Y = R is endowed with the metric dY (x, y) =
|x − y| for x, y ∈ R. Let f : X → Y be a function. If there is a countable
set E ⊂ X such that f |(X\E) ∈ Bd(C(X \ E, Y )) then f ∈ Bd(H(X,Y )).

Proof. Since f ∈ Bd(C(X \ E, Y )), there are continuous functions
φn : (X \ E)→ Y such that

f |(X\E) = d− lim
n→∞

φn.

For n ≥ 1 put

gn(x) =


φn(x) if |φn(x)| ≤ n
n if φn(x) ≥ n
−n if φn(x) ≤ −n.

Then evidently gn : (X \ E)→ [−n, n] are continuous for n ≥ 1, and

f |(X\E) = d− lim
n→∞

gn.

Since the set X \ E is dense in X and ([−n, n], dY ) is compact, for each
integer n ≥ 1 and each point x ∈ E there is an an(x) ∈ Y such that for
each ε > 0 and each set U ∈ TX containing x there is a point un,U ∈ U \E
such that |gn(un,U ) − an(x)| < ε. Then we define the sets E, En (n ≥ 1)
and functions hn, fn (n ≥ 1) as in the proof of Theorem 6. Consequently,
fn ∈ H(X,Y ) (n ≥ 1) and

f = d− lim
n→∞

fn,

which completes the proof.

Remark 3. The inclusion Bd(H1(X,Y )) ⊂ Bd(H(X,Y )) holds.

Proof. Of course, if f ∈ Bd(H1(X,Y )) then there are functions fn ∈
H1(X,Y ), (n ≥ 1) such that f = d-limn→∞ fn. For each integer n ≥ 1
there is a continuous function gn : X → Y such that An = {x ∈ X; gn(x) 6=
fn(x)} is countable. The set

A =
∞⋃
n=1

An is also countable, so let A = {a1, a2, . . . }.

For n ≥ 1 put
An = {ak; k ≤ n}
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and

hn =

{
f(x) if x ∈ An
gn(x) if x ∈ X \An.

Then D(hn) ⊂ An, and hn ∈ H(X,Y ) and f = d-limn→∞ hn, so the proof
is finished.

Observe that if f ∈ Bd(H1(X,Y )) then there are continuous functions
fn : X → Y , (n ≥ 1) whose graphs Gr(fn) = {(x, fn(x)); x ∈ X} cover the
graph Gr(f) of the function f , i.e.

Gr(f) ⊂
∞⋃
n=1

Gr(fn).

Indeed, if f ∈ Bd(H1(X,Y )) then there are functions gn ∈ H1(X,Y ) such
that f = d-limn→∞ gn. For each integer n ≥ 1 there is a continuous function
hn : X → Y such that An = {x; gn(x) 6= hn(x)} is countable and so, the
union

A =
⋃
n

An

is countable. Then
Gr(f |(X\A)) ⊂

⋃
n

Gr(hn),

and the graph Gr(f |A) may be covered by a countable family of the graphs
of constant functions.

Meanwhile in [2] the authors observed that if f : R → R is a stricly
increasing function whose D(f) of discontinuity points is dense (with respect
to the Euclidean topology in R) then for each countable family of continuous
functions fn : R→ R we have

Gr(f) \
∞⋃
n=1

Gr(fn) 6= ∅.

This example shows that in the case where X = Y = R and the topology
TX is introduced by the metric dY (x, y) = |x− y| for x, y ∈ R, the following
is true:

H(X,Y ) \ Bd(H1(X,Y )) 6= ∅.
Finishing we consider the transfinite convergence. For this let ω1 denote

the first uncountable ordinal. A transfinite sequence of functions fα : X →
Y , α < ω1, converges to a function f : X → Y (f = limα<ω1 fα) if for each
point x ∈ X there is a countable ordinal α(x) such that fα(x) = fα(x)(x)
for all countable ordinals α > α(x) ([3, 11]). For given family Φ of functions
f : X → Y denote by Btr(Φ) the family of all transfinite limits of transfinite
sequences of functions from Φ.
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Observe that, if (X, ρX) is a dense in itself metric space for which there
exists a subset A = {xα; α < ω1} ⊂ X such that for all different points
x, y ∈ A we have ρX(x, y) ≥ 1 holds, then the functions

fα(xβ) = 1 for β ≤ α < ω1 and fα(x) = 0 otherwise on X

belong to H2(X,Y ) and the transfinite sequence (fα)α<ω1 converges to the
function f given by

f(x) = 1 for x ∈ A and f(x) = 0 otherwise on X,

which does not belong to H(X,Y ) ∪H1(X,Y ).
However, the following theorem is true:

Theorem 8. Suppose that (X,TX) is a topological space and (Y, ρY ) is a
metric space such that every nonempty subset of the product space X×Y is
a topological separable space. If a transfinite sequence of functions fα : X →
Y , α < ω1, belonging to H(X,Y ), converges to a function f : X → Y , then
f ∈ H(X,Y ).

Proof. Assume, to a contradiction, that the set D(f) is uncountable. The
graph Gr(f) is a separable subspace of X × Y , so there is a countable set
B ⊂ Gr(f) dense in Gr(f). Let E = PrX(B) = {x ∈ X; (x, f(x)) ∈ B}.
Then the set E is countable and consequently, there is a countable ordinal
β such that

fα(x) = f(x) for x ∈ E and β ≤ α < ω1.

Since the set B is dense in Gr(f) and f(x) = fβ(x) for x ∈ E, we obtain
D(f) ⊂ D(fβ). So the set D(fβ) is uncountable, a contradiction with
fβ ∈ H(X,Y ).

If the Continuum Hypothesis CH is true and if (X,TX) is a topological
space of the cardinality ω1 then each real function f : X → R is the limit of a
transfinite sequence of functions fα : X → R, α < ω1, such that the sets {x ∈
X; fα(x) 6= 0} are countable for α < ω1. Such functions fα ∈ H1(X,R), so
the last theorem does not hold in this case of the family H1(X,R).

In [3] Lipiński proved that CH implies that each Baire 1 function
f : R → R is the limit of a transfinite sequence of approximately contin-
uous functions fα : R → R, α < ω1. Since there are Baire 1 functions
g : R → R approximately discontinuous at all points of some uncountable
subsets, this shows that in this case

Btr(A(R,R)) \H1(R,R) 6= ∅,
where A(R,R) denotes the family of all approximately continuous functions
from R to R.
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Theorem 9. Let (X,TX) be a topological space and let (Y, ρY ) be a metric
space. Suppose that

(a) each nonempty subset A ⊂ X × Y with the restricted topology is a
separable topological subspace of X × Y , and

(b) each nonempty set U ∈ TX is uncountable.
Then Btr(H2(X,Y )) = H2(X,Y ).

Proof. The inclusionH2(X,Y ) ⊂ Btr(H2(X,Y )) is evident. From Theorem
8 it follows that Btr(H2(X,Y )) ⊂ H(X,Y ). Let fα : X → Y , α < ω1, be
a transfinite sequence of functions from H2(X,Y ) convergent to a function
f : X → Y . Since f ∈ Btr(H2(X,Y )) ⊂ H(X,Y ), the set D(f) is countable.
Let N be the set of all positive integers and let

A = {(xn, f(xn)); n ∈ N0 ⊂ N} ⊂ Gr(f)

be a countable set dense in Gr(f) such that D(f) ⊂ {xn; n ∈ N0}. But
limα<ω1 fα = f , so there is a countable ordinal β such that

fα(xn) = f(xn) for n ∈ N0 and ω1 > α > β.

For each countable ordinal α > β there is a continuous function gα : X → Y
such that the set

Bα = {x ∈ X; fα(x) 6= gα(x)}
is countable. Observe that for a countable ordinal α > β we have

fα(x) = gα(x) = f(x) for x ∈ C(fα) ∩ C(f).

So, for countable ordinals α1 > α2 > β, the equality gα1 = gα2 is true.
Indeed, if there is a point u ∈ X with gα1(u) 6= gα2(u) then there is a set U ∈
TX containing u such that gα1(v) 6= gα2(v) for all v ∈ U . But the set U is
uncountable, so there is a point w ∈ U \(Bα1∪Bα2∪D(fα1)∪D(fα2)∪D(f)).
Consequently, f(w) = fα1(w) = gα1(w) 6= gα2(w) = fα2(w) = f(w) and this
contradiction proves that gα1 = gα2 .

Fix a countable ordinal α > β. Since

{x ∈ X; f(x) 6= gα(x)} ⊂ Bα ∪D(f) ∪D(fα),

we obtain f ∈ H1(X,Y ). This finishes the proof.

Remark 4. Evidently, if the space X is countable then each function
f : X → Y belongs to H2(X,Y ) and Btr(H2(X,Y )) = H2(X,Y ).

Problem. Is Theorem 9 true without the hypothesis (b)?
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