ON THE CONVERGENCE OF SEQUENCES OF FUNCTIONS WHICH ARE DISCONTINUOUS ON COUNTABLE SETS

Z. GRANDE and E. STROŃSKA

Received November 12, 2003 and, in revised form, March 17, 2004

Abstract

Let $\left(X, T_{X}\right)$ be a topological space and let $\left(Y, d_{Y}\right)$ be a metric space. For a function $f: X \rightarrow Y$ denote by $C(f)$ the set of all continuity points of f and by $D(f)=X \backslash C(f)$ the set of all discontinuity points of f. Let $C(X, Y)=\{f: X \rightarrow Y ; f$ is continuous $\}$, $H(X, Y)=\{f: X \rightarrow Y ; D(f)$ is countable $\}$, $H_{1}(X, Y)=\left\{f: X \rightarrow Y ; \exists_{h \in C(X, Y)}\{x ; f(x) \neq h(x)\}\right.$ is countable $\}$, and $H_{2}(X, Y)=H(X, Y) \cap H_{1}(X, Y)$. In this article we investigate some convergences (pointwise, uniform, quasiuniform, discrete and transfinite) of sequences of functions from $H(X, Y), H_{1}(X, Y)$ and $H_{2}(X, Y)$.

Let $\left(X, T_{X}\right)$ be a topological space and let $\left(Y, d_{Y}\right)$ be a metric space. For a function $f: X \rightarrow Y$, denote by $C(f)$ the set of all continuity points of f and by $D(f)=X \backslash C(f)$ the set of all discontinuity points of f. Let

[^0]Key words and phrases. Baire 1 class, density topology, quasiuniform convergence, discrete convergence, transfinite sequences.
$C(X, Y)=\{f: X \rightarrow Y ; f$ is continuous $\}$, $H(X, Y)=\{f: X \rightarrow Y ; D(f)$ is countable $\}$, $H_{1}(X, Y)=\{f: X \rightarrow Y$; there is $h \in C(X, Y)$ such that the set
$\{x ; f(x) \neq h(x)\}$ is countable $\}$, and
$H_{2}(X, Y)=H(X, Y) \cap H_{1}(X, Y)$.
Consider the following conditions (1) and (2):
(1) Suppose that $\left(X, T_{X}\right)$ is a T_{1} space. Then each finite set is closed and each countable set is an F_{σ}-set.

Remind that a function $f: X \rightarrow Y$ is of Baire class 1 if there is a sequence of continuous functions $f_{n}: X \rightarrow Y$ with $f=\lim _{n \rightarrow \infty} f_{n}$.
(2) Assume also that each function $f: A \rightarrow Y$ of Baire class 1 , where A is a G_{δ}-set in X, may be extended to a Baire 1 function $g: X \rightarrow Y$.

It is known that if $\left(X, \rho_{X}\right)$ is a metric space and $A \subset X$ is a nonempty G_{δ}-set in X then every function $f: A \rightarrow Y$ of Baire class 1 may be extended to a Baire 1 function $g: X \rightarrow Y$ ([4]).

Throughout the paper we assume (1) and (2).
For a given family Φ of functions $f: X \rightarrow Y$ denote by $\mathcal{B}(\Phi)\left(\mathcal{B}_{u}(\Phi)\right)$ the family of all pointwise (uniform) limits of sequences of functions from Φ.

Remark 1. Observe that if $f \in \mathcal{B}(H(X, Y))$ then there is a Baire 1 function $g: X \rightarrow Y$ such that the set $\{x \in X ; f(x) \neq g(x)\}$ is countable.

Proof. Of course, if

$$
f=\lim _{n \rightarrow \infty} f_{n}, \quad \text { where } f_{n} \in H(X, Y) \text { for } n \geq 1,
$$

then the sets $D\left(f_{n}\right)$ are countable, and consequently the union

$$
E=\bigcup_{n} D\left(f_{n}\right)
$$

is also countable. The set $A=X \backslash E$ is a G_{δ}-set and the restricted function $\left.f\right|_{A}$ is the limit of the sequence of continuous functions $\left.f_{n}\right|_{A}$, so by (2) there is a Baire 1 function $g: X \rightarrow Y$ such that $\left.g\right|_{A}=\left.f\right|_{A}$. Since the set

$$
\{x \in X ; f(x) \neq g(x)\} \subset E
$$

is countable, the proof is finished.
Similarly we can prove the following:
Remark 2. If $f \in \mathcal{B}\left(H_{1}(X, Y)\right)$ then there is a Baire 1 function $g: X \rightarrow Y$ such that the set $\{x \in X ; f(x) \neq g(x)\}$ is countable.

Theorem 1. Assume (1) and (2) and suppose that for a function $f: X \rightarrow$ Y there is a Baire 1 function $g: X \rightarrow Y$ such that the set $\{x \in X ; g(x) \neq$ $f(x)\}$ is countable. Then $f \in \mathcal{B}\left(H_{2}(X, Y)\right)$.

Proof. Since $g: X \rightarrow Y$ is of Baire class 1 , there is a sequence of functions $g_{n} \in C(X, Y)$ such that $g=\lim _{n \rightarrow \infty} g_{n}$. For $n \geq 1$ there are closed sets A_{n} such that

$$
A_{n} \subset A_{n+1} \text { for } n \geq 1, \quad \text { and } \quad\{x ; g(x) \neq f(x)\}=\bigcup_{n \geq 1} A_{n}
$$

For $n \geq 1$ put

$$
f_{n}(x)= \begin{cases}g_{n}(x) & \text { if } x \in X \backslash A_{n} \\ f(x) & \text { if } x \in A_{n}\end{cases}
$$

Since the sets $A_{n}, n \geq 1$, are closed and countable, and $g_{n} \in C(X, Y)$, $n \geq 1$, we obtain that $f_{n} \in H_{2}(X, Y), n \geq 1$. Obviously, $f=\lim _{n \rightarrow \infty} f_{n}$, so the proof is completed.

Corollary 1. The equalites

$$
\mathcal{B}(H(X, Y))=\mathcal{B}\left(H_{1}(X, Y)\right)=\mathcal{B}\left(H_{2}(X, Y)\right)
$$

$=\{f: X \rightarrow Y$; there is a Baire 1 function $g: X \rightarrow Y$ such that the set $\{x \in X ; f(x) \neq g(x)\}$ is countable $\}$
are true (under asumptions (1) and (2)).

Evidently, the families $H(X, Y), H_{1}(X, Y)$ and $H_{2}(X, Y)$ are uniformly closed, i.e. $H=\mathcal{B}_{u}(H(X, Y)), H_{1}(X, Y)=\mathcal{B}_{u}\left(H_{1}(X, Y)\right)$ and $H_{2}(X, Y)=$ $\mathcal{B}_{u}\left(H_{2}(X, Y)\right)$.

The quasi-uniform convergence, defined as follows, is a generalization of the uniform convergence. A sequence of functions $f_{n}: X \rightarrow Y(n \geq 1)$ quasi-uniformly converges to a function $f: X \rightarrow Y$ in the sense of Predoi ([8]), if for each point $x \in X$ and each real $\varepsilon>0$ there is a positive integer k such that for each integer $n \geq k$ there is a neighbourhood $U(x) \in T_{X}$ of x such that for all points $u \in U(x)$ the inequality $d_{Y}\left(f(u), f_{n}(u)\right)<\varepsilon$ is true. It is well known ([8]) that this type of convergence preserves continuity, i.e. if the functions f_{n} are continuous at a point x and the sequence $\left(f_{n}\right)$ quasiuniformly converges to f (in the sense of Predoi) then f is continuous at x. From this we obtain that

$$
\mathcal{B}_{q u}(H(X, Y))=H(X, Y)
$$

where $\mathcal{B}_{q u}(\Phi)$ denotes the family of all functions, which are the limits of quasi-uniformly convergent sequences of functions from Φ. Of course, if a
function $f: X \rightarrow Y$ is the limit of a quasi-uniformly convergent (in the sense of Predoi) sequence of functions $f_{n} \in H(X, Y)$ then the set

$$
D(f) \subset \bigcup_{n \geq 1} D\left(f_{n}\right)
$$

is countable, and consequently $f \in H(X, Y)$.
In the proof of the next theorem we will apply the following lemma:

Lemma 1. Suppose that a metric space Y is complete. Let $A \subset X$ be a nonempty set and let $a \in X$ be an accumulation point of A. Suppose that for functions $f_{n}:(A \cup\{a\}) \rightarrow Y(n \geq 1)$ there exist limits

$$
\lim _{A \ni x \rightarrow a} f_{n}(x)=b_{n} \in Y
$$

and that the sequence $\left(f_{n}\right)$ quasi-uniformly converges to a function $f:(A \cup$ $\{a\}) \rightarrow Y$. Then there exists a limit

$$
\lim _{A \ni x \rightarrow a} f(x)=\lim _{n \rightarrow \infty} b_{n} .
$$

Proof. Fix $\varepsilon>0$. Since the sequence $\left(f_{n}\right)$ quasi-uniformly converges to f on $A \cup\{a\}$, there is a positive integer k such that for each integer $n \geq k$ there is a set $U_{n} \in T_{X}$ containing a such that for each point $x \in U_{n} \cap A$ we have

$$
d_{Y}\left(f(x), f_{n}(x)\right)<\frac{\varepsilon}{5} .
$$

Fix integers $n, m \geq k$. Since

$$
\lim _{A \ni x \rightarrow a} f_{n}(x)=b_{n} \quad \text { and } \quad \lim _{A \ni x \rightarrow a} f_{m}(x)=b_{m},
$$

there is a set $U \in T_{X}$ containing a such that for $x \in(U \cap A) \backslash\{a\}$ we have

$$
\max \left(d_{Y}\left(f_{n}(x), b_{n}\right), d_{Y}\left(f_{m}(x), b_{m}\right)\right)<\frac{\varepsilon}{5} .
$$

Fix a point $x \in\left(U_{n} \cap U_{m} \cap U \cap A\right) \backslash\{a\}$ and observe that

$$
\begin{aligned}
d_{Y}\left(b_{n}, b_{m}\right) \leq & d_{Y}\left(b_{n}, f_{n}(x)\right)+d_{Y}\left(f_{n}(x), f(x)\right)+d_{Y}\left(f(x), f_{m}(x)\right) \\
& +d_{Y}\left(f_{m}(x), b_{m}\right)<\frac{4 \varepsilon}{5}<\varepsilon .
\end{aligned}
$$

So, the sequence $\left(b_{n}\right)$ satisfies the Cauchy condition. Since $\left(Y, d_{Y}\right)$ is a complete space, there is a point $b \in Y$ such that $b=\lim _{n \rightarrow \infty} b_{n}$. We will prove that

$$
\begin{equation*}
\lim _{A \ni x \rightarrow a} f(x)=b . \tag{*}
\end{equation*}
$$

For this, fix an integer $j>k$ such that $d_{Y}\left(b, b_{j}\right)<\varepsilon / 5$ and find a set $V \in T_{X}$ containing a such that for $x \in(V \cap A) \backslash\{a\}$ the inequality

$$
d_{Y}\left(f_{j}(x), b_{j}\right)<\frac{\varepsilon}{5}
$$

is true. Observe that for $x \in\left(U_{j} \cap V \cap A\right) \backslash\{a\}$ we obtain

$$
d_{Y}(f(x), b) \leq d_{Y}\left(f(x), f_{j}(x)\right)+d_{Y}\left(f_{j}(x), b_{j}\right)+d_{Y}\left(b_{j}, b\right)<3 \frac{\varepsilon}{5}<\varepsilon,
$$

and $(*)$ is true. This completes the proof.
We will show that in the above lemma the hypothesis that f and f_{n} 's are defined on $A \cup\{a\}$ and the sequence $\left(f_{n}\right)$ is quasi-uniformly convergent (in the sense of Predoi) on $A \cup\{a\}$ is essential.

Example. Let $X=Y=(0,1], d\left(y_{1}, y_{2}\right)=\left|y_{1}-y_{2}\right|$ for $y_{1}, y_{2} \in(0,1]$ and let T_{X} be the topology introduced by the Euclidean metric d. For $n \geq 1$ put

$$
\begin{aligned}
& f_{n}(x)= \begin{cases}0 & \text { if } x \in\left(0, \frac{1}{2 n \pi}\right] \\
\sin \frac{1}{x} & \text { if } x \in\left[\frac{1}{2 n \pi}, 1\right]\end{cases} \\
& f(x)=\sin \frac{1}{x} \quad \text { for } x \in(0,1]
\end{aligned}
$$

Then for each integer $n \geq 1$ there exists $\lim _{x \rightarrow 0^{+}} f(x)=0$, and the sequence $\left(f_{n}\right)$ quasi-uniformly converges to f on $(0,1]$, but the function f does not have a limit at 0 .

Theorem 2. Suppose that $\left(Y, d_{Y}\right)$ is a complete metric space and for each countable set $A \subset X$ the complement $X \backslash A$ is dense in X. Then the equality $\mathcal{B}_{q u}\left(H_{1}(X, Y)\right)=H_{1}(X, Y)$ is true.

Proof. Assume that a function $f: X \rightarrow Y$ is the limit of a quasi-uniformly convergent sequence of functions $f_{n} \in H_{1}(X, Y),(n \geq 1)$. Since $f_{n} \in$ $H_{1}(X, Y)$, there are continuous functions $g_{n}: X \rightarrow Y$ such that the sets $A_{n}=\left\{x \in X: f_{n}(x) \neq g_{n}(x)\right\}$ are countable $(n \geq 1)$. Consequently, the union

$$
A=\bigcup_{n \geq 1}\left\{x \in X ; f_{n}(x) \neq g_{n}(x)\right\}
$$

is also countable, and its complement $X \backslash A$ is dense in X. The sequence of continuous restricted functions $\left.f_{n}\right|_{(X \backslash A)}=\left.g_{n}\right|_{(X \backslash A)},(n \geq 1)$ quasi-uniformly
converges to $\left.f\right|_{(X \backslash A)}$, so the restricted function $\left.f\right|_{(X \backslash A)}$ is also continuous. By Lemma 1, for each point $x \in X \backslash A$ there exists

$$
\lim _{(X \backslash A) \ni t \rightarrow x} f(t)=h_{1}(x) \in Y .
$$

Evidently, the function

$$
h(x)=f(x) \text { for } x \in X \backslash A \quad \text { and } \quad h(x)=h_{1}(x) \text { for } x \in A
$$

is continuous and the set $\{x \in X ; f(x) \neq h(x)\} \subset A$ is countable. This completes the proof.

Corollary 2. The equality $\mathcal{B}_{q u}\left(H_{2}(X, Y)\right)=H_{2}(X, Y)$ is true.
In the article [2] the authors introduced the notion of discrete convergence of sequences of functions and investigated the discrete limits in different families, for example in the family $C(X, \mathbb{R})$, where X is a nonempty set. We will say that a sequence of functions $f_{n}: X \rightarrow Y, n=1,2, \ldots$, discretely converges to the limit $f,\left(f=d\right.$ - $\left.\lim _{n \rightarrow \infty} f_{n}\right)$ if for each point $x \in X$ there exists a positive integer $n(x)$ such that for all $n>n(x)$ the equality $f_{n}(x)=$ $f(x)$ is true. For any family Φ of functions $f: X \rightarrow Y$ denote by $\mathcal{B}_{d}(\Phi)$ the family of all discrete limits of sequences of functions from the family Φ.

Theorem 3. Assume that for each nonempty closed set $A \subset X$ and for each continuous function $h: A \rightarrow Y$ there is a continuous function $g: X \rightarrow Y$ such that $\left.g\right|_{A}=h$. If $f \in \mathcal{B}_{d}\left(H_{1}(X, Y)\right)$ then there is a function $g \in$ $\mathcal{B}_{d}(C(X, Y))$ such that the set $\{x \in X ; f(x) \neq g(x)\}$ is countable.

Proof. Fix $f \in \mathcal{B}_{d}\left(H_{1}(X, Y)\right)$. There are functions $f_{n} \in H_{1}(X, Y), n \geq 1$, such that $f=d$ - $\lim _{n \rightarrow \infty} f_{n}$. For each positive integer n there is a continuous function $g_{n}: X \rightarrow Y$ such that the set $A_{n}=\left\{x \in X ; f_{n}(x) \neq g_{n}(x)\right\}$ is countable. Let

$$
A=\bigcup_{n} A_{n}=\left\{a_{1}, \ldots, a_{n}, \ldots\right\} \quad \text { and } \quad G_{n}=\left\{a_{k} ; k \leq n\right\} \quad \text { for } n \geq 1
$$

For $n \geq 1$ put

$$
S_{n}=\left\{x \in X ; f_{k}(x)=f(x) \text { for } k \geq n\right\}
$$

and observe that

$$
S_{n} \subset S_{n+1} \text { for } n \geq 1 \quad \text { and } \quad X=\bigcup_{n} S_{n} .
$$

Without loss of generality we can suppose that $S_{1} \neq \emptyset$. Let

$$
B_{n}=\operatorname{cl}\left(S_{n} \backslash A\right) \cup G_{n} \quad \text { for } n \geq 1
$$

Observe that the sets B_{n} are closed for $n \geq 1$. Since for $k \geq n$ we have

$$
g_{k}(x)=f_{k}(x)=f_{n}(x)=g_{n}(x) \quad \text { for } x \in S_{n} \backslash A,
$$

so

$$
g_{k}(x)=g_{n}(x) \quad \text { for } x \in \operatorname{cl}\left(S_{n} \backslash A\right) \text { and } k \geq n .
$$

For $n \geq 1$ define

$$
h_{n}(x)= \begin{cases}g_{n}(x) & \text { if } x \in \operatorname{cl}\left(S_{n} \backslash A\right) \\ f_{n}(x) & \text { if } x \in G_{n} \backslash \operatorname{cl}\left(S_{n} \backslash A\right) .\end{cases}
$$

Then the functions $h_{n}: B_{n} \rightarrow Y$ are continuous and there are continuous functions $\phi_{n}: X \rightarrow Y$ with $\phi_{n} \mid B_{n}=h_{n}$.

Observe that the sequence of $\left(\phi_{n}\right)$ discretely converges to a function $g: X \rightarrow Y$. Indeed, fix a point $x \in X$. If there is an index $n(x)$ such that $x \in \operatorname{cl}\left(S_{n} \backslash A\right)$ for $n \geq n(x)$, then

$$
\phi_{n}(x)=h_{n}(x)=g_{n}(x)=g_{n(x)}(x) \quad \text { for } n \geq n(x) \text {. }
$$

In the opposite case, for sufficiently large n we have $x \in A \backslash \operatorname{cl}\left(S_{n} \backslash A\right)$ and $\phi_{n}(x)=f_{n}(x)$. Since the sequence $\left(f_{n}\right)$ discretely converges to f, there is a positive integer $n(x)$ such that $f_{n}(x)=f(x)$ for $n \geq n(x)$. So for $n \geq n(x)$ we have

$$
\phi_{n}(x)=f_{n}(x)=f(x),
$$

and the sequence $\left(\phi_{n}\right)$ is discretely convergent. Denote its limit by $g \in$ $\mathcal{B}_{d}(C(X, Y))$. From the construction of ϕ_{n} it follows that if $x \in X \backslash A=$ $\bigcup_{n} S_{n} \backslash A$ then for sufficiently large n the equalities $\phi_{n}(x)=f_{n}(x)=f(x)$ are true, and consequently, the set $\{x \in X ; f(x) \neq g(x)\}$ is countable. This completes the proof.

Theorem 4. Suppose that $f: X \rightarrow Y$. If there is a function $g \in$ $\left.\mathcal{B}_{d}(C(X, Y))\right)$ such that the set $\{x \in X ; g(x) \neq f(x)\}$ is countable then $f \in \mathcal{B}_{d}\left(H_{2}(X, Y)\right)$.

Proof. Assume that there is a function $g \in \mathcal{B}_{d}(C(X, Y))$ such that $A=$ $\{x \in X ; f(x) \neq g(x)\}$ is countable, i.e. $A=\left\{a_{n} ; n \geq 1\right\}$. There are continuous functions $g_{n}: X \rightarrow Y$ with $g=d$ - $\lim _{n \rightarrow \infty} g_{n}$. For $n \geq 1$ define

$$
f_{n}(x)= \begin{cases}f(x) & \text { for } x \in\left\{a_{k} ; k \leq n\right\} \\ g_{n}(x) & \text { otherwise on } X .\end{cases}
$$

Then $f_{n} \in H_{2}(X, Y)$ for $n \geq 1$ and $f=d$ - $\lim _{n \rightarrow \infty} f_{n}$. So, $f \in \mathcal{B}_{d}\left(H_{2}(X, Y)\right)$ and the proof is completed.

Theorem 5. Let $\left(X, T_{X}\right)$ be an uncountable space and let $f: X \rightarrow Y$. If $f \in \mathcal{B}_{d}(H(X, Y))$, there is a countable set $A \subset X$ such that $\left.f\right|_{(X \backslash A)} \in$ $\mathcal{B}_{d}(C(X \backslash A, Y))$.

Proof. Since $f \in \mathcal{B}_{d}(H(X, Y))$, there are functions $f_{n} \in H(X, Y)(n \geq 1)$ such that $f=d-\lim _{n \rightarrow \infty} f_{n}$. The sets $D\left(f_{n}\right)$ are countable. Let

$$
A=\bigcup_{n=1}^{\infty} D\left(f_{n}\right)
$$

Then A is countable and the sequence of continuous functions $\left.f_{n}\right|_{(X \backslash A)}$ discretely converges to $\left.f\right|_{(X \backslash A)}$.

Theorem 6. Suppose that for each countable set $A \subset X$, the complement $X \backslash A$ is dense in X and that $\left(Y, d_{Y}\right)$ is a compact metric space. Let $f: X \rightarrow$ Y. If there is a countable set $E \subset X$ such that $\left.f\right|_{(X \backslash E)} \in \mathcal{B}_{d}(C(X \backslash E, Y))$ then $f \in \mathcal{B}_{d}(H(X, Y))$.

Proof. Since $\left.f\right|_{(X \backslash E)} \in \mathcal{B}_{d}(C(X \backslash E, Y))$, there are continuous functions $g_{n}:(X \backslash E) \rightarrow Y$ such that

$$
\left.f\right|_{(X \backslash E)}=d-\lim _{n \rightarrow \infty} g_{n} .
$$

Since the set $X \backslash E$ is dense in X and $\left(Y, d_{Y}\right)$ is compact, for each integer $n \geq 1$ and each point $x \in E$ there is an $a_{n}(x) \in Y$ such that for each $\varepsilon>0$ and each set $U \in T_{X}$ containing x there is a point $u_{n, U} \in U \backslash E$ such that $d_{Y}\left(g_{n}\left(u_{n, U}\right), a_{n}(x)\right)<\varepsilon$. Such a point $a_{n}(x)$ may be chosen in the product of all closures $\operatorname{cl}\left(g_{n}(U \backslash\{x\})\right)$, where $U \in T_{X}$ are arbitrary open sets containing x.

Let

$$
E=\left\{b_{n} ; n \geq 1\right\} \quad \text { and } \quad E_{n}=\left\{b_{k} ; k \leq n\right\} \quad \text { for } n \geq 1 .
$$

For $n \geq 1$ define

$$
h_{n}(x)= \begin{cases}g_{n}(x) & \text { if } x \in X \backslash E \\ a_{n}(x) & \text { if } x \in E,\end{cases}
$$

and

$$
f_{n}(x)= \begin{cases}h_{n}(x) & \text { if } x \in X \backslash E_{n} \\ f(x) & \text { if } x \in E_{n}\end{cases}
$$

Then

$$
D\left(f_{n}\right) \subset D\left(h_{n}\right) \cup E_{n} \subset E \text { for } n \geq 1,
$$

and consequently, $f_{n} \in H(X, Y)$. Evidently $f=d-\lim _{n \rightarrow \infty} f_{n}$, so the proof is completed.

Problem. Is Theorem 6 true for a σ-compact metric spaces $\left(Y, \rho_{Y}\right)$?
Theorem 7. Suppose that for each countable set $A \subset X$, the complement $X \backslash A$ is dense in X and that $Y=\mathbb{R}$ is endowed with the metric $d_{Y}(x, y)=$ $|x-y|$ for $x, y \in \mathbb{R}$. Let $f: X \rightarrow Y$ be a function. If there is a countable set $E \subset X$ such that $\left.f\right|_{(X \backslash E)} \in \mathcal{B}_{d}(C(X \backslash E, Y))$ then $f \in \mathcal{B}_{d}(H(X, Y))$.

Proof. Since $f \in \mathcal{B}_{d}(C(X \backslash E, Y))$, there are continuous functions $\phi_{n}:(X \backslash E) \rightarrow Y$ such that

$$
\left.f\right|_{(X \backslash E)}=d-\lim _{n \rightarrow \infty} \phi_{n} .
$$

For $n \geq 1$ put

$$
g_{n}(x)= \begin{cases}\phi_{n}(x) & \text { if }\left|\phi_{n}(x)\right| \leq n \\ n & \text { if } \phi_{n}(x) \geq n \\ -n & \text { if } \phi_{n}(x) \leq-n\end{cases}
$$

Then evidently $g_{n}:(X \backslash E) \rightarrow[-n, n]$ are continuous for $n \geq 1$, and

$$
\left.f\right|_{(X \backslash E)}=d-\lim _{n \rightarrow \infty} g_{n} .
$$

Since the set $X \backslash E$ is dense in X and ($[-n, n], d_{Y}$) is compact, for each integer $n \geq 1$ and each point $x \in E$ there is an $a_{n}(x) \in Y$ such that for each $\varepsilon>0$ and each set $U \in T_{X}$ containing x there is a point $u_{n, U} \in U \backslash E$ such that $\left|g_{n}\left(u_{n, U}\right)-a_{n}(x)\right|<\varepsilon$. Then we define the sets $E, E_{n}(n \geq 1)$ and functions $h_{n}, f_{n}(n \geq 1)$ as in the proof of Theorem 6. Consequently, $f_{n} \in H(X, Y)(n \geq 1)$ and

$$
f=d-\lim _{n \rightarrow \infty} f_{n},
$$

which completes the proof.

Remark 3. The inclusion $\mathcal{B}_{d}\left(H_{1}(X, Y)\right) \subset \mathcal{B}_{d}(H(X, Y))$ holds.

Proof. Of course, if $f \in \mathcal{B}_{d}\left(H_{1}(X, Y)\right)$ then there are functions $f_{n} \in$ $H_{1}(X, Y), \quad(n \geq 1)$ such that $f=d$-lim $_{n \rightarrow \infty} f_{n}$. For each integer $n \geq 1$ there is a continuous function $g_{n}: X \rightarrow Y$ such that $A_{n}=\left\{x \in X ; g_{n}(x) \neq\right.$ $\left.f_{n}(x)\right\}$ is countable. The set

$$
A=\bigcup_{n=1}^{\infty} A_{n} \text { is also countable, so let } A=\left\{a_{1}, a_{2}, \ldots\right\}
$$

For $n \geq 1$ put

$$
A_{n}=\left\{a_{k} ; k \leq n\right\}
$$

and

$$
h_{n}= \begin{cases}f(x) & \text { if } x \in A_{n} \\ g_{n}(x) & \text { if } x \in X \backslash A_{n} .\end{cases}
$$

Then $D\left(h_{n}\right) \subset A_{n}$, and $h_{n} \in H(X, Y)$ and $f=d$ - $\lim _{n \rightarrow \infty} h_{n}$, so the proof is finished.

Observe that if $f \in \mathcal{B}_{d}\left(H_{1}(X, Y)\right)$ then there are continuous functions $f_{n}: X \rightarrow Y,(n \geq 1)$ whose graphs $\operatorname{Gr}\left(f_{n}\right)=\left\{\left(x, f_{n}(x)\right) ; x \in X\right\}$ cover the graph $\operatorname{Gr}(f)$ of the function f, i.e.

$$
G r(f) \subset \bigcup_{n=1}^{\infty} G r\left(f_{n}\right) .
$$

Indeed, if $f \in \mathcal{B}_{d}\left(H_{1}(X, Y)\right)$ then there are functions $g_{n} \in H_{1}(X, Y)$ such that $f=d$ - $\lim _{n \rightarrow \infty} g_{n}$. For each integer $n \geq 1$ there is a continuous function $h_{n}: X \rightarrow Y$ such that $A_{n}=\left\{x ; g_{n}(x) \neq h_{n}(x)\right\}$ is countable and so, the union

$$
A=\bigcup_{n} A_{n}
$$

is countable. Then

$$
G r\left(\left.f\right|_{(X \backslash A)}\right) \subset \bigcup_{n} G r\left(h_{n}\right),
$$

and the graph $\operatorname{Gr}\left(\left.f\right|_{A}\right)$ may be covered by a countable family of the graphs of constant functions.

Meanwhile in [2] the authors observed that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a stricly increasing function whose $D(f)$ of discontinuity points is dense (with respect to the Euclidean topology in \mathbb{R}) then for each countable family of continuous functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ we have

$$
G r(f) \backslash \bigcup_{n=1}^{\infty} G r\left(f_{n}\right) \neq \emptyset .
$$

This example shows that in the case where $X=Y=\mathbb{R}$ and the topology T_{X} is introduced by the metric $d_{Y}(x, y)=|x-y|$ for $x, y \in \mathbb{R}$, the following is true:

$$
H(X, Y) \backslash \mathcal{B}_{d}\left(H_{1}(X, Y)\right) \neq \emptyset .
$$

Finishing we consider the transfinite convergence. For this let ω_{1} denote the first uncountable ordinal. A transfinite sequence of functions $f_{\alpha}: X \rightarrow$ $Y, \alpha<\omega_{1}$, converges to a function $f: X \rightarrow Y\left(f=\lim _{\alpha<\omega_{1}} f_{\alpha}\right)$ if for each point $x \in X$ there is a countable ordinal $\alpha(x)$ such that $f_{\alpha}(x)=f_{\alpha(x)}(x)$ for all countable ordinals $\alpha>\alpha(x)([3,11])$. For given family Φ of functions $f: X \rightarrow Y$ denote by $\mathcal{B}_{t r}(\Phi)$ the family of all transfinite limits of transfinite sequences of functions from Φ.

Observe that, if $\left(X, \rho_{X}\right)$ is a dense in itself metric space for which there exists a subset $A=\left\{x_{\alpha} ; \alpha<\omega_{1}\right\} \subset X$ such that for all different points $x, y \in A$ we have $\rho_{X}(x, y) \geq 1$ holds, then the functions

$$
f_{\alpha}\left(x_{\beta}\right)=1 \text { for } \beta \leq \alpha<\omega_{1} \quad \text { and } \quad f_{\alpha}(x)=0 \text { otherwise on } X
$$

belong to $H_{2}(X, Y)$ and the transfinite sequence $\left(f_{\alpha}\right)_{\alpha<\omega_{1}}$ converges to the function f given by

$$
f(x)=1 \text { for } x \in A \quad \text { and } \quad f(x)=0 \text { otherwise on } X,
$$

which does not belong to $H(X, Y) \cup H_{1}(X, Y)$.
However, the following theorem is true:
Theorem 8. Suppose that $\left(X, T_{X}\right)$ is a topological space and $\left(Y, \rho_{Y}\right)$ is a metric space such that every nonempty subset of the product space $X \times Y$ is a topological separable space. If a transfinite sequence of functions $f_{\alpha}: X \rightarrow$ $Y, \alpha<\omega_{1}$, belonging to $H(X, Y)$, converges to a function $f: X \rightarrow Y$, then $f \in H(X, Y)$.

Proof. Assume, to a contradiction, that the set $D(f)$ is uncountable. The graph $\operatorname{Gr}(f)$ is a separable subspace of $X \times Y$, so there is a countable set $B \subset G r(f)$ dense in $\operatorname{Gr}(f)$. Let $E=\operatorname{Pr}_{X}(B)=\{x \in X ;(x, f(x)) \in B\}$. Then the set E is countable and consequently, there is a countable ordinal β such that

$$
f_{\alpha}(x)=f(x) \quad \text { for } x \in E \text { and } \beta \leq \alpha<\omega_{1} .
$$

Since the set B is dense in $\operatorname{Gr}(f)$ and $f(x)=f_{\beta}(x)$ for $x \in E$, we obtain $D(f) \subset D\left(f_{\beta}\right)$. So the set $D\left(f_{\beta}\right)$ is uncountable, a contradiction with $f_{\beta} \in H(X, Y)$.

If the Continuum Hypothesis CH is true and if $\left(X, T_{X}\right)$ is a topological space of the cardinality ω_{1} then each real function $f: X \rightarrow \mathbb{R}$ is the limit of a transfinite sequence of functions $f_{\alpha}: X \rightarrow \mathbb{R}, \alpha<\omega_{1}$, such that the sets $\{x \in$ $\left.X ; f_{\alpha}(x) \neq 0\right\}$ are countable for $\alpha<\omega_{1}$. Such functions $f_{\alpha} \in H_{1}(X, \mathbb{R})$, so the last theorem does not hold in this case of the family $H_{1}(X, \mathbb{R})$.

In [3] Lipiński proved that CH implies that each Baire 1 function $f: \mathbb{R} \rightarrow \mathbb{R}$ is the limit of a transfinite sequence of approximately continuous functions $f_{\alpha}: \mathbb{R} \rightarrow \mathbb{R}, \alpha<\omega_{1}$. Since there are Baire 1 functions $g: \mathbb{R} \rightarrow \mathbb{R}$ approximately discontinuous at all points of some uncountable subsets, this shows that in this case

$$
\mathcal{B}_{t r}(A(\mathbb{R}, \mathbb{R})) \backslash H_{1}(\mathbb{R}, \mathbb{R}) \neq \emptyset,
$$

where $A(\mathbb{R}, \mathbb{R})$ denotes the family of all approximately continuous functions from \mathbb{R} to \mathbb{R}.

Theorem 9. Let $\left(X, T_{X}\right)$ be a topological space and let $\left(Y, \rho_{Y}\right)$ be a metric space. Suppose that
(a) each nonempty subset $A \subset X \times Y$ with the restricted topology is a separable topological subspace of $X \times Y$, and
(b) each nonempty set $U \in T_{X}$ is uncountable.

Then $\mathcal{B}_{t r}\left(H_{2}(X, Y)\right)=H_{2}(X, Y)$.

Proof. The inclusion $H_{2}(X, Y) \subset \mathcal{B}_{t r}\left(H_{2}(X, Y)\right)$ is evident. From Theorem 8 it follows that $\mathcal{B}_{t r}\left(H_{2}(X, Y)\right) \subset H(X, Y)$. Let $f_{\alpha}: X \rightarrow Y, \alpha<\omega_{1}$, be a transfinite sequence of functions from $H_{2}(X, Y)$ convergent to a function $f: X \rightarrow Y$. Since $f \in \mathcal{B}_{t r}\left(H_{2}(X, Y)\right) \subset H(X, Y)$, the set $D(f)$ is countable. Let \mathbb{N} be the set of all positive integers and let

$$
A=\left\{\left(x_{n}, f\left(x_{n}\right)\right) ; n \in \mathbb{N}_{0} \subset \mathbb{N}\right\} \subset G r(f)
$$

be a countable set dense in $\operatorname{Gr}(f)$ such that $D(f) \subset\left\{x_{n} ; n \in \mathbb{N}_{0}\right\}$. But $\lim _{\alpha<\omega_{1}} f_{\alpha}=f$, so there is a countable ordinal β such that

$$
f_{\alpha}\left(x_{n}\right)=f\left(x_{n}\right) \quad \text { for } n \in \mathbb{N}_{0} \text { and } \omega_{1}>\alpha>\beta .
$$

For each countable ordinal $\alpha>\beta$ there is a continuous function $g_{\alpha}: X \rightarrow Y$ such that the set

$$
B_{\alpha}=\left\{x \in X ; f_{\alpha}(x) \neq g_{\alpha}(x)\right\}
$$

is countable. Observe that for a countable ordinal $\alpha>\beta$ we have

$$
f_{\alpha}(x)=g_{\alpha}(x)=f(x) \quad \text { for } x \in C\left(f_{\alpha}\right) \cap C(f) .
$$

So, for countable ordinals $\alpha_{1}>\alpha_{2}>\beta$, the equality $g_{\alpha_{1}}=g_{\alpha_{2}}$ is true. Indeed, if there is a point $u \in X$ with $g_{\alpha_{1}}(u) \neq g_{\alpha_{2}}(u)$ then there is a set $U \in$ T_{X} containing u such that $g_{\alpha_{1}}(v) \neq g_{\alpha_{2}}(v)$ for all $v \in U$. But the set U is uncountable, so there is a point $w \in U \backslash\left(B_{\alpha_{1}} \cup B_{\alpha_{2}} \cup D\left(f_{\alpha_{1}}\right) \cup D\left(f_{\alpha_{2}}\right) \cup D(f)\right)$. Consequently, $f(w)=f_{\alpha_{1}}(w)=g_{\alpha_{1}}(w) \neq g_{\alpha_{2}}(w)=f_{\alpha_{2}}(w)=f(w)$ and this contradiction proves that $g_{\alpha_{1}}=g_{\alpha_{2}}$.

Fix a countable ordinal $\alpha>\beta$. Since

$$
\left\{x \in X ; f(x) \neq g_{\alpha}(x)\right\} \subset B_{\alpha} \cup D(f) \cup D\left(f_{\alpha}\right),
$$

we obtain $f \in H_{1}(X, Y)$. This finishes the proof.

Remark 4. Evidently, if the space X is countable then each function $f: X \rightarrow Y$ belongs to $H_{2}(X, Y)$ and $\mathcal{B}_{\text {tr }}\left(H_{2}(X, Y)\right)=H_{2}(X, Y)$.

Problem. Is Theorem 9 true without the hypothesis (b)?

Acknowledgment. The authors are grateful to the Referees for their suggestions and corrections.

References

[1] Bruckner, A. M., Differentiation of Real Functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin, 1978.
[2] Császár, A., Laczkovich, M., Discrete and equal convergence, Studia Sci. Math. Hungar. 10 (1975), 463-472.
[3] Lipiński, J., On transfinite sequences of mappings, Časopis Pěst. Mat. 101 (1976), 153-158.
[4] Lukeš J., Malý J., Zajiček L., Fine Topology Methods in Real Analysis and Potential Theory, Lectures Notes in Math. 1189, Springer-Verlag, Berlin, 1986.
[5] Neubrunn T., Quasi-continuity, Real Anal. Exchange 14(2) (1988-89), 259-306.
[6] O'Malley, R. J., Approximately differentiable functions. The r topology, Pacific J. Math. 72 (1977), 207-222.
[7] Petruska, G., Laczkovich, M., Baire 1 functions, approximately continuous functions and derivatives, Acta Math. Acad. Sci. Hungar. 25 (1974), 189-212.
[8] Predoi, M., Sur la convergence quasi-uniforme, Period. Math. Hungar. 19 (1979), 31-40.
[9] Preiss, D., Limits of approximately continuous functions, Czechoslovak Math. J. 96 (1971), 371-372.
[10] Tall, F. D., The density topology, Pacific J. Math. 62 (1976), 275-283.
[11] Sierpiński, W., Sur les suites transfinies convergentes de fonctions de Baire, Fund. Math. 1 (1920), 132-141.

Zbigniew Grande
The University of Computer Science
and Economics
TWP Olsztyn
Wyzwolenia 30
Ewa Strońska

10-106 Olsztyn, Poland
E-MAIL: GRANDE@UKW.EDU.PL

Institute of Mathematics Kazimierz Wielki University
Pl. Weyssenhoffa 11
85-072 Bydgoszcz, Poland

[^0]: 2000 Mathematics Subject Classification. 26A15.

