On the convergence of solutions of certain third-order differential equations.

H. O. Tejumola (Ibadan, Nigeria)

Summary. - In this paper it is shown that an earlier result of Eeeilo [1] can be extended to the more general equation (1.1), and this is achieved without any extra conditions on $h^{\prime}(x)$ and $h^{\prime \prime}(x)$. A result on the existence of a unique periodic solution of (1.1) is also obtained as an application of the convergence result.

1. Introduction. - Consider the third-order differential equation

$$
\begin{equation*}
\ddot{x}+a \ddot{x}+b \dot{x}+h(x)=p(t, x, \dot{x}, \ddot{x}) \tag{1.1}
\end{equation*}
$$

in which $a>0, b>0$ are constants, the functions $h(x), p(t, x, x, x)$ are continuous for values of their respective arguments and dots denote differentiation with respret to t. Under the above conditions on h and p solutions of equation (1.1) exist for any preassigned initial conditions.

Any two solutions $x_{1}(t), x_{2}(t)$ of (1.1) are said to converge to each other if

$$
\begin{equation*}
x_{1}(t)-x_{2}(t) \rightarrow 0, \quad \dot{x}_{1}(t)-\dot{x}_{2}(t) \rightarrow 0, \quad \ddot{x}_{1}(t)-\ddot{x}_{2}(t) \rightarrow 0 \tag{1.2}
\end{equation*}
$$

as $t \rightarrow \infty$. The convergence property of solutions of equation (1.1), with $p(t, x, x, x) \equiv p(t)$, has been investigated by Ezewo [1; Chapter 6]. His result shows that if both $p(t)$ and $\int_{0}^{t} p(\tau) d \tau$ are bounded and if $h(x)$ satisfies the usual

$$
h^{\prime}(x) \leq c, \quad a b-c>0 \text { for all } x,
$$

taen, subject to some additional conditions on $h^{\prime}(x)$ and $h^{\prime \prime}(x)$, all ultimately bounded solutions of (1.1) converge. Our present investigation will show that it is possible to dispense with the extra conditions imposed on $h^{\prime}(x)$ and $h^{\prime \prime}(x)$ in [1] even when the «forcing function» $p(t, x, \dot{x}, \ddot{x})$ in (1.1) is bounded by a funetion which depends explicitily on x, \dot{x}, \ddot{x} as well as on t. As an immediate applieation of our convergence result a Theorem on the existence of a unique periodic solution of (1.1) will also be established in the case when $p(t, x, \dot{x}, \ddot{x})$ is periodic in t.
2. Statement of the main result. - It will assumed thoughout what follows that $h^{\prime}(x)$ exists and is continuous for all values of x. Our first result is as follows:

Theorem 1. - Given the equation (1.1), suppose that
(i) the function $h(x)$ is such that

$$
\begin{gather*}
h(0)=0, \quad \frac{h\left(x_{2}\right)-h\left(x_{1}\right)}{x_{2}-x_{1}} \geq \delta>0 \text { for } x_{1} \neq x_{2} \tag{2.1}\\
h^{\prime}(x) \leq c \text { for all } x, \text { where } 0<c<a b \tag{2.2}
\end{gather*}
$$

(ii) there exists a finite constant $\Delta_{*}>0$ such that
(2.3) $\left|p\left(t, x_{2}, y_{2}, z_{2}\right)-p\left(t, x_{1}, y_{1}, z_{1}\right)\right| \leq \Delta_{*}\left\{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right)^{1 / 2}$.

Furthermore, let

$$
\begin{equation*}
B=\min \left[\frac{\delta d}{16 a^{2}(a+1)}, \frac{a \delta d^{2}}{4 b c(a+1+d / 2 c)^{2}}\right], \quad d=a b-c . \tag{2.4}
\end{equation*}
$$

Then, there exists a finite constant $\varepsilon_{*}>0$ such that if the constant Δ_{*} in (2.3) satisfies $د_{*}<\varepsilon_{*}$, then any two distinct solutions $x_{1}(t), x_{2}(t)$ of (1.1) for which

$$
\begin{equation*}
\left[h\left(x_{2}-x_{1}\right)-\left\{h\left(x_{2}\right)-h\left(x_{1}\right)\right\}\right]^{2} \leq B\left(x_{2}-x_{1}\right)^{2} \tag{2.5}
\end{equation*}
$$

for all $t \geq t_{0}\left(0<t_{0}<\infty\right)$ necessarily converge.
It ought to be pointed out that the constant B, given by (2.4), is not necessarily the best possible; an indication on how to obtain a more general, and probably better, estimate will be given at the end of $\S 3$.

The condition (2.3) can be improved to the form

$$
\begin{equation*}
\left.\left|p\left(t, x_{2}, y_{2}, z_{2}\right)-p\left(t, x_{1}, y_{1}, z_{1}\right)\right| \leq \Phi(t)\left[x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]^{1 / 2} \tag{2.6}
\end{equation*}
$$

where, for some constant k_{2} in the range $1 \leq k_{2} \leq 2$, the function $\Phi(t) \geq 0$ is such that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \Phi^{k_{2}}(t) d t<\infty . \tag{2.7}
\end{equation*}
$$

It will however be convenient to deal first with Theorem 1 in its present form, and then. later (see §5), to indicate what modifications are necessary to convert our methods to the case in which $p(t, x, y, z)$ satisfies (2.6).

In the cases where the solutions $x_{1}(t), x_{2}(t)$ of (1.1) are bounded, say $\left|x_{i}(t)\right| \leq R(i=1,2)$, it would be clear that there exists a finitite constant $H=H(R)$ such that

$$
\begin{equation*}
\left|h\left(x_{2}-x_{1}\right)-\left\{h\left(x_{2}\right)-h\left(x_{1}\right)\right\}\right| \leq H(R)\left|x_{2}-x_{1}\right| \quad \text { if } \quad\left|x_{i}\right| \leq R \quad(i=1,2) . \tag{2.8}
\end{equation*}
$$

For, since $h(0)=0$ and $h^{\prime}(x)$ exists and is continuous,

$$
\begin{gathered}
h\left(x_{2}-x_{1}\right)=\left(x_{2}-x_{1}\right) h^{\prime}\left(\theta_{1}\left(x_{2}-x_{1}\right)\right), \quad 0<\theta_{1}<1, \\
h\left(x_{2}\right)-h\left(x_{1}\right)=\left(x_{2}-x_{1}\right) h^{\prime}(\xi), \quad \xi=x_{1}+\theta_{2}\left(x_{2}-x_{1}\right), \quad 0<\theta_{2}<1
\end{gathered}
$$

by the mean - value theorem, and so

$$
h\left(x_{2}-x_{2}\right)-\left\{h\left(x_{2}\right)-h\left(x_{1}\right)\right\}=\left(x_{2}-x_{1}\right)\left\{h^{\prime}\left(\theta_{1}\left(x_{2}-x_{1}\right)-h^{\prime}(\xi)\right\},\right.
$$

where $\left.h^{\prime} \theta^{\prime}\left(x_{2}-x_{1}\right)\right)-h^{\prime}(\xi)$ is bounded if x_{1}, x_{2} are bounded. Thus, in cases where solutions of (1.1) are altimately bounded, (2.5) is not an extra condition on the existence of the constant on the right-hand side of (2.5), but rather a condition on the smallness of the constant.

The following result follows immediately from Theorem 1.
Theorem 2. - Let the conditions of Theorem 1 hold and let H be the function defined by (2.8). Then there exists a constant $\beta, 0<\beta<\infty$, such that if

$$
\begin{equation*}
H(\beta) \leq B^{1 / 2} \tag{2.9}
\end{equation*}
$$

then all solutions of (1.1) converge provided that $\Delta_{*}<\varepsilon^{*}$.
Indeed, in the case $n=1$, the result [4; corollary 3] implies that under the hypoteses (i) and (ii) of Theorem 1 every solution $x(t)$ of (1.1) ultimately satisfies

$$
\begin{equation*}
|x(t)| \leq D_{1}, \quad \dot{x}(t)\left|\leq D_{1}, \quad\right| \ddot{x}(t) \mid \leq D_{1} \tag{2.10}
\end{equation*}
$$

provided $\Delta_{*}<\varepsilon_{1}^{*}\left(0<\varepsilon_{1}^{*}<\infty\right)$. Thus, if the constant β is chosen such that $\beta \geq D_{1}$ and if $\Delta_{*}<\varepsilon^{*}, \varepsilon^{*}=\min \left(\varepsilon_{1}^{*}, \varepsilon_{*}\right)$, then, by (2.8) and (2.9), for any two distinct solutions $x_{1}(t), x_{2}(t)$ of (1.1),

$$
\left[h\left(x_{2}-x_{1}\right)-\left\{h\left(x_{2}\right)-h\left(x_{1}\right)\right]\right]^{2} \leq B\left(x_{2}-x_{1}\right)^{2}
$$

for all $t \geq t_{0}$, and the corollary would then follow from Theorem 1 .
3. Preliminary. - We shall consider, instaed of (1.1), the system

$$
\begin{equation*}
\dot{x}=y, \quad \dot{y}=z, \quad \dot{z}=-a z-b y-h(x)+p(t, x, y, z) \tag{3.1}
\end{equation*}
$$

which is obtained from (1.1) by setting $\dot{x}=y, \dot{y}=z$. Let $\left(x_{1}(t), y_{1}(t), z_{1}(t)\right.$,

380 H. O. Tejumola, On the convergence of solutions of certain third-order, etc.
$\left(x_{2}(t), y_{2}(t), z_{2}(t)\right)$ be two distinct solutions of (3.1) such that

$$
\begin{equation*}
\left[h\left(x_{2}-x_{1}\right)-\left|h\left(x_{2}\right)-h\left(x_{1}\right)\right|\right]^{2} \leq B\left(x_{2}-x_{1}\right)^{2} \tag{3.2}
\end{equation*}
$$

for all $t \geq t_{0}\left(0<t_{0}<\infty\right)$, where B is given by (2.4). Then, in view of definition (1.2), it is enough, in order to prove Theorem 1, to show that

$$
\begin{equation*}
x_{2}(t)-x_{1}(t) \longrightarrow 0, \quad y_{2}(t)-y_{1}(t) \longrightarrow 0, \quad z_{2}(t)-z_{1}(t) \longrightarrow 0 \tag{3.3}
\end{equation*}
$$

as $t \rightarrow \infty$. Our proof of this will rest mainly on the properties of a certain function $W\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)$ which is derived from the function $W(x, y, z)[2 ; \S 2]$ by replacing x, y, z with $x_{2}-x_{1}, y_{2}-y_{1}$ and $z_{2}-z_{1}$ respectively. The function $W=W\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)$ is defined as follows:

$$
\begin{align*}
& 2 W=2(a+1) \int_{0}^{x_{2}-x_{1}} h(\xi) d \xi+2\left(\delta_{1}+1\right)\left(y_{2}-y_{1}\right) h\left(x_{2}-x_{1}\right)+b \delta_{2}\left(x_{2}-x_{1}\right)^{2}+ \\
& \quad+\left\{a+\delta_{1} b+a^{2}+b-\delta_{2}\right\}\left(y_{2}-y_{1}\right)^{2}+\left(\delta_{1}+1\right)\left(z_{2}-z_{2}\right)^{2}+ \tag{3.4}\\
& +2 a \delta_{2}\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)+2(a+1)\left(y_{2}-y_{1}\right)\left(z_{2}-z_{1}\right)+2 \delta_{2}\left(x_{2}-x_{1}\right)\left(z_{2}-z_{1}\right),
\end{align*}
$$

where δ_{1}, δ_{2} are two fixed constants such that

$$
\begin{equation*}
\frac{1}{a}<\delta_{1}<\frac{b}{c}, \quad a b-c>a \delta_{2}>0 . \tag{3.5}
\end{equation*}
$$

Note that subject to the hypothesis (1) of Theorem 1, the function W is positive definite in $x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}$. Indeed by [2; Lemma 1] the function $W\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)$ satisfies

$$
\begin{equation*}
W\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right) \geq D_{2}\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right] \tag{3.6}
\end{equation*}
$$

where $D_{2}=D_{2}\left(a, b, c, \delta_{1}, \delta_{2}\right)>0$ is a finite constant. Our efforts will now be directed to the proof of the following result: for any two distinct solutions $\left(x_{1}(t), y_{1}(t), z_{1}(t)\right),\left(x_{2}(t), y(t), z_{2}(t)\right)$ of (3.1) such that (3.2) holds, the function $W(t) \equiv W\left(x_{2}(t)-x_{1}(t), y_{2}(t)-y_{1}(t), z_{2}(t)-z_{1}(t)\right)$ satisfies

$$
\begin{equation*}
W(t) \rightarrow 0 \text { as } t \rightarrow \infty . \tag{3.7}
\end{equation*}
$$

After this had been proved, the result (3.3) would follow since $W(t)$ is positive definite. The proof of (3.7) will be based on the following properties of the function W.

Lemma 1. - Let the conditions of Theorem 1 hold and let $\left(x_{1}(t), y_{1}(t), z_{1}(t)\right)$, $\left(x_{2}(t), y_{2}(t), z_{2}(t)\right)$ be any two distinct solutions of (3.1) such that

$$
\begin{equation*}
\left[h\left(x_{2}-x_{1}\right)-\left\{h\left(x_{2}\right)-h\left(x_{1}\right)\right\}\right]^{2} \leq B\left(x_{2}-x_{1}\right)^{2} \tag{3.8}
\end{equation*}
$$

for all $t \geq t_{0}\left(0<t_{0}<\infty\right)$, where B is given by (2.4). Then, there exist constants $\varepsilon_{*}>0, D_{s}$ such that if the constant Δ_{*} in (2.3) satisfies $\Delta_{*}<\varepsilon_{*}$, then the function $W(t) \equiv W\left(x_{2}(t)-x_{1}(t), y_{2}(t)-y_{1}(t), z_{2}(t)-z_{1}(t)\right)$ satisfies

$$
\begin{equation*}
\dot{W}(t)+D_{3} W(t) \leq 0 \tag{3.9}
\end{equation*}
$$

for all $t \geq t_{0}$.
Proof of Lemma 1. - Let $\left(x_{2}(t), y_{2}(t), z_{2}(t)\right),\left(x_{1}(t), y_{1}(t), z_{1}(t)\right)$ be any two distinct solutions of (3.1), and consider the function $W(t) \equiv W\left(x_{2}(t)-x_{1}(t)\right.$, $\left.y_{2}(t)-y_{1}(t), z_{2}(t)-z_{1}(t)\right)$. On differntiating this with respect to t and using

$$
\dot{x}_{i}=y_{i}, \quad \dot{y}_{i}=z_{i}, \quad \dot{z}_{i}=-a z_{i}-b y_{i}-h\left(x_{i}\right)+p\left(t, x_{i}, y_{i}, z_{i}\right) . \quad(i=1,2)
$$

we have, after further simplification, that

$$
\begin{equation*}
\dot{W}(t)-\eta+\left[\delta_{2}\left(x_{2}-x_{1}\right)+(a+1)\left(y_{2}-y_{1}\right)+\left(1+\delta_{1}\right)\left(z_{2}-z_{1}\right)\right] \theta, \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta=p\left(t, x_{2}, y_{2}, z_{2}\right)-p\left(t, x_{1}, y_{1}, z_{1}\right) ; \tag{3.11}
\end{equation*}
$$

$U=\left(a \delta_{1}-1\right)\left(z_{2}-z_{1}\right)^{2}+\left\{a b-a \delta_{2}+b-\left(1+\delta_{1}\right) h^{\prime}\left(x_{2}-x_{1}\right)\right\}\left(y_{2}-y_{1}\right)^{2}+$
$+\delta_{2}\left(x_{2}-x_{1}\right)\left(h\left(x_{2}\right)-h\left(x_{1}\right)\right\}-\left\{(a+1)\left(y_{2}-y_{1}\right)+\left(1+\delta_{1}\right)\left(z_{2}-z_{1}\right)\right]\left[h\left(x_{2}-x_{1}\right\}-\left\{h\left(x_{2}\right)-h\left(x_{1}\right)\right\}\right]$.
Clearly, by (2.1) and (2.2),

$$
\begin{gathered}
h\left(x_{2}\right)-h\left(x_{1}\right) \geq \delta\left(x_{2}-x_{1}\right), \\
a b-a \delta_{2}+b-\left(1+\delta_{1}\right) h^{\prime}\left(x_{2}-x_{1}\right) \geq a b-a \delta_{2}+b-\left(1+\delta_{1}\right) c,
\end{gathered}
$$

and thus,

$$
\begin{align*}
U \geq & D_{4}\left(x_{2}-x_{1}\right)^{2}+D_{5}\left(y_{2}-y_{1}\right)^{2}+D_{6}\left(z_{2}-z_{1}\right)^{2} \tag{3.12}\\
& -\left(D_{7}\left(y_{2}-y_{1}\right)+D_{8}\left(z_{2}-z_{1}\right)\right\} H\left(x_{2}, x_{1}\right),
\end{align*}
$$

where

$$
H\left(x_{2}, x_{1}\right)=h\left(x_{2}-x_{1}\right)-\left\{h\left(x_{2}\right)-h\left(x_{1}\right)\right\}
$$

382 H. O. Tejumola, On the convergence of solutions of certain third-order, etc.
and

$$
\begin{gather*}
D_{4} \equiv \delta \delta_{2}>0, \quad D_{5} \equiv\left(a b-c-a \delta_{2}\right)+\left(b-\delta_{1} c\right)>0, \tag{3.13}\\
D_{6} \equiv a \delta_{1}-1>0, \quad D_{7} \equiv a+1>0, \quad D_{8} \equiv 1+\delta_{1}>0
\end{gather*}
$$

by (3.5). The inequality (3.12) can be reset in the form

$$
\begin{equation*}
U \geq \frac{1}{2} D_{4}\left(x_{2}-x_{1}\right)^{2}+\frac{3}{4}\left\{D_{5}\left(y_{2}-y_{1}\right)^{2}+D_{6}\left(z_{2}-z_{1}\right)^{2}\right\}+U_{1}+U_{2} \tag{3.14}
\end{equation*}
$$

where

$$
\begin{aligned}
& U_{1}=\frac{1}{4}\left\{D_{4}\left(x_{2}-x_{1}\right)^{2}+D_{5}\left(y_{2}-y_{1}\right)^{2}\right\}-D_{7}\left(y_{2}-y_{1}\right) H\left(x_{2}, x_{1}\right), \\
& U_{2}=\frac{1}{4}\left\{D_{4}\left(x_{2}-x_{1}\right)^{2}+D_{8}\left(z_{2}-z_{1}\right)^{2}\right\}-D_{8}\left(z_{2}-z_{1}\right) H\left(x_{2}, x_{1}\right) .
\end{aligned}
$$

By a simple rearrangement of terms, it is clear that

$$
\begin{aligned}
U_{1}=\frac{1}{4} D_{4}\left(x_{2}-x_{1}\right)^{2} & +\frac{D_{5}}{4}\left\{\left(y_{2}-y_{1}\right)-\frac{2 D_{7}}{D_{5}} H\left(x_{2}, x_{1}\right)\right\}^{2}-\frac{D_{7}^{2}}{D_{5}} H^{2}\left(x_{2}, x_{1}\right) \\
& \geq \frac{1}{4} D_{4}\left(x_{2}-x_{1}\right)^{2}-\frac{D_{7}^{2}}{D_{5}} H^{2}\left(x_{2}, x_{1}\right),
\end{aligned}
$$

and also that

$$
U_{2} \geq \frac{1}{4} D_{4}\left(x_{2}-x_{1}\right)^{2}-\frac{D_{8}^{2}}{D_{6}} H^{2}\left(x_{2}, x_{1}\right) .
$$

Hence $U_{1} \geq 0, U_{2} \geq 0$ provided that

$$
\begin{equation*}
H^{2}\left(x_{2}-x_{1}\right) \leq \min \left[\frac{D_{4} D_{5}}{4 D_{7}^{2}}, \frac{D_{4} D_{6}}{4 D_{8}^{2}}\right]\left(x_{2}-x_{1}\right)^{2}, \tag{3.15}
\end{equation*}
$$

and thus, from (3.14), we have that

$$
\begin{equation*}
U \geq \frac{1}{4} D_{4}\left(x_{2}-x_{1}\right)^{2}+\frac{3}{4}\left\{D_{5}\left(y_{2}-y_{1}\right)^{2}+D_{6}\left(z_{2}-z_{1}\right)^{2}\right\} \tag{3.16}
\end{equation*}
$$

provided (3.14), holds. On combining this with (3.9), we have, in view of (3.10) and (2.3), that

$$
\dot{W}(t) \leq-\left\{D_{8}-D_{9} \Delta_{*}\right\}\left\{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right\}
$$

provided $H\left(x_{2}, x_{1}\right)$ satisfies (3.14), where $D_{8}=\frac{1}{2} \min \left(D_{4}, D_{8}, D_{6}\right)$ and $D_{9}=$ $=3^{1 / 2} \max \left(\delta_{2},(a+1), 1+\delta_{1}\right)$. Now let

$$
\begin{equation*}
\hat{\varepsilon}_{*}=\frac{D_{\mathrm{s}}}{D_{\mathrm{s}}} . \tag{3.17}
\end{equation*}
$$

Then provided $\Delta_{*}<\varepsilon_{*}$, there exists a constant D_{10} such that if (3.15) is satisfied, then

$$
\dot{W}(t) \leq-D_{10}\left\{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right\}
$$

and, in view of (3.6), this implies

$$
\begin{equation*}
\dot{W}(t) \leq-D_{11} W(t) \tag{3.18}
\end{equation*}
$$

for some constant D_{11}.
So far we have not used the condition (3.8). To facilitate the use of this, it is convenient to reset the right-hand side of (3.15) differently.
Let $d \equiv a b-c$, then by (3.5), there are constants $\alpha_{1}>0, \alpha_{2}>0$ such that

$$
\begin{array}{ll}
\alpha \delta_{1}=1+\alpha_{1}, & 0<\alpha_{1}<d / c \tag{3.19}\\
\delta_{2}=\frac{d}{a}-\alpha_{2}, & 0<\alpha_{2}<d / a .
\end{array}
$$

From these and (3.13), it is readly seen that

$$
\frac{D_{4} D_{6}}{4 D_{6}^{2}}=\frac{a \delta \alpha_{1}\left(d-a \alpha_{2}\right)}{4\left(1+a+\alpha_{1}\right)^{2}} \quad \frac{D_{4} D_{5}}{4 D_{7}^{2}}=\frac{\delta\left(d-a \alpha_{2}\right)\left(d+a^{2} \alpha_{2}-c \alpha_{1}\right)}{4 \alpha^{2}(a+1)^{2}}
$$

and the right-hand side of (3.15) now becomes

$$
B^{*}=\min \left[\frac{\delta\left(d-a \alpha_{2}\right)\left(d+a^{2} \alpha_{2}-c \alpha_{1}\right)}{4 a^{2}(a+1)^{2}} ; \frac{a \delta \alpha_{1}\left(d-a \alpha_{2}\right)}{4\left(1+a+\alpha_{1}\right)^{2}}\right]
$$

For the special values of α_{1}, α_{2} chosen, in view of (3.19), such that

$$
\alpha_{1}=d / 2 c, \quad \alpha_{2}=d / 2 a,
$$

B^{*} reduces to (2.4) and so, by (3.8), $H\left(x_{2}, x_{1}\right)$ satisfies (3.15) for all $t \geq t_{0}$. Thus, the inequality (3.18) holds for all $t \geq t_{0}$, and this completes the proof of the lemma with ε_{*} given by (3.17).

The estimate (2.4) can be considerably improved by choosing α_{1}, α_{2} to make B^{*} a maximum.
4. Completion of the proof of Theorem 1. - Let $\varepsilon^{*}>0$ and let t_{0} $\left(0<t_{0}<0\right)$ be fixed as in Lemma 1. Then, by Lemma 1, for any two distinct solations $\left(x_{1}(t), y_{1}(t), z_{1}(t)\right),\left(x_{2}(t), y_{2}(t), z_{2}(t)\right)$ of (3.1) for which (3.8) holds, the function $W(t) \equiv W\left(x_{2}(t)-x_{1}(t), y_{2}(t)-y_{1}(t), z_{2}(t)-z_{1}(t)\right)$ satisfies

$$
\dot{W}(t)+D_{3} W(t) \leq 0
$$

for all $t \geq t_{0}$ provided $\Delta_{*}<\varepsilon_{*}$. On integrating this between t_{0} and t, we have that

$$
W(t) \leq W\left(t_{0}\right) e^{-D_{s}\left(t-t_{0}\right)}, \quad t \geq t_{0}
$$

which implies

$$
W(t) \rightarrow 0 \text { as } t \rightarrow \infty
$$

since $W\left(t_{0}\right)$ is bounded and the function W is positive definite. In view of the preceding remarks in $\S 3$, this proves (3.3) and thus the theorem is proved with ε_{*} given by (3.17).
5. We now turn to the case mentioned in $\S 2$ in which $p(t, x, y, z)$ satisfies (2.6). The proof of Theorem 1 in this case follows the lines indicated in § $3-\S 4$ except for some minor modifications which we now outline. Assume that (2.5) holds. Then by (3.10), (3.11), (3.16) and (3.6) $\dot{W}(t)$ satisfies

$$
\begin{equation*}
\dot{W}(t) \leq-2 D_{12} W(t)+D_{13}(W(t))^{1 / 2}|\Phi| \tag{5.1}
\end{equation*}
$$

where

$$
\Phi=p\left(t, x_{2}, y_{2}, z_{2}\right)-p\left(t, x_{1}, y_{1}, z_{1}\right) .
$$

Let k_{2} be any constant in the range $1 \leq k_{2} \leq 2$. Then, by proceeding as in $[3, \S 2]$, using (2.6), it can be shown that

$$
-D_{12} W(t)+D_{13}\{W(t)\}^{1 / 2}|\Phi| \leq D_{14} \varphi^{k_{2}}(t) W(t)
$$

for some constant D_{14}. On combining this with (5.1), we have that

$$
\begin{equation*}
\dot{W}(t)+D_{12} W(t) \leq D_{14} \varphi^{k_{2}}(t) W(t) \tag{5.2}
\end{equation*}
$$

for all $t \geq t_{0}$. A straightforward integration of (5.2) between t_{0} and t now yelds

$$
W(t) \exp \left[D_{12} t-D_{14} \int_{0}^{t} \varphi^{k_{2}}(\tau) d \tau\right] \leq W\left(t_{0}\right) \exp \left[D_{12} t_{0}-D_{14} \int_{0}^{t_{0}} \varphi^{k_{2}}(\tau) d \tau\right], \quad t \geq t_{0}
$$

which, in view (2.7), implies that

$$
W(t) \leq D_{15} W\left(t_{0}\right) e^{-D_{12}\left(t-t_{0}\right)}, \quad t \geq t_{0}
$$

for some constant $D_{15} \Delta<D_{15}<\infty$. The proof of the theorem may now be completed by proceeding as in $\S 4$.
6. With the convergence result, Theorem 1 , out of the way, we are now in a position to prove the following result on the existence of a unique periodic solution of (1.1).

Theormm 3. - Further to the condition of Theorem 1 let $p(t, x, y, z)$ be periodic in t, with pediod ω uniformly with respect to x, y, z. Suppose that
(i) for any constant $R(0<R<\infty)$ the function $H=H(R)$ is defined by (2.9);
(ii) the constant β appearing in Corollary 1 is fixed such that

$$
\begin{equation*}
\beta \geq D_{1} \tag{6.1}
\end{equation*}
$$

where D_{1} is the constant in (2.10).
Then, if

$$
\begin{equation*}
H(\beta) \leq B^{1 / 2} \tag{6.2}
\end{equation*}
$$

there exists a unique periodic solution of (1.1) of period ω provided $\Delta_{*}<\varepsilon_{*}$.
Proof of Theorem 3. - First assume that the conditions of Theorem 1 hold. Then, by specializing the result [4; Theorem 2] to the case $n=1$, there exists a constant $\varepsilon_{1}^{*}\left(0<\varepsilon_{1}^{*}<\infty\right)$ such that if $\Delta_{*}<\varepsilon_{1}^{*}$, then equation (1.1) has at east one periodic solution of period ω. Next, assume that the hypotheses (i) and (ii) of Theorem 3 hold and that the function $H(\beta)$ satisfies (6.2). Then, by Theorem 2, all solutions of (1.1) converge provided that $\Delta_{*}<\varepsilon^{*}, \varepsilon^{*}=$ $=\left(\varepsilon_{1}^{*}, \varepsilon_{*}\right)$, where ε_{*} is given by (3.17). From these, it now follows that if $\Delta_{*}<\varepsilon^{*}$ the equation (1.1) has a unique periodic solution of period ω. For otherwise, (1.1) would have at least two distinct periodic salutions $x_{1}(t), x_{2}(t)$,

386 H. O. Tejumola, On the convergence of solutions of certain third-arder, etc.
say, of period ω, satisfying

$$
\begin{equation*}
x_{1}(t)-x_{2}(t) \rightarrow 0, \quad \dot{x}_{1}(t)-\dot{x}_{2}(t) \rightarrow 0, \quad \ddot{x}_{1}(t)-\ddot{x}_{2}(t) \rightarrow 0 \tag{6.3}
\end{equation*}
$$

as $t \rightarrow \infty$, and by the periodicity of $x_{i}(t), \dot{x}_{i}(t), \ddot{x}_{i}(t)(i=1,2),(6.3)$ would imply

$$
x_{1}(t)=x_{2}(t), \quad \dot{x}_{1}(t)=\dot{x}_{2}(t), \quad \ddot{x}_{1}(t)=\ddot{x}_{2}(t)
$$

for all t. Thus the theorem is proved with ε^{*} given by $\varepsilon^{*}=\min \left(\varepsilon_{1}^{*}, \varepsilon_{*}\right)$.

BIBLIOGRAPHY

[1] J. O. C. Ezbilo, Ph. D. Thesis 1958.
[2] — -, Proc. Camb. Philos Soc. 59 (1963), 111-116.
[3] - -, Ann. Math. Pura Appl. IV Vol. LXVI 1964, 233.250.
[4] J. O. C. Ezeilo and H. O. Tejumola Ann. Mat. Pura Appl. IV Vol. LXXIV 1966, 283-316.

