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ABSTRACT In this article we present a quanti-
tative evaluation of the convergence of the conforma-
tional coordinates of proteins, obtained by the Essen-
tial Dynamics method. Using a detailed analysis of
long molecular dynamics trajectories in combina-
tion with a statistical assessment of the significance
of the measured convergence, we obtained that
simulations of a few hundreds of picoseconds are in
general sufficient to provide a stable and statistically
reliable definition of the essential and near constraints
subspaces, at least within the nanoseconds time range.
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INTRODUCTION

In this article we used two proteins (protein L and
Cytochrome c551) to study in detail the convergence of the
definition of the generalized coordinates obtained by the
Essential Dynamics (ED) method.1 The ED method was
extensively developed in the group of Prof. H.J.C. Ber-
endsen and proved to be a powerful tool to study protein
conformational behavior. In the ED method the covariance
matrix of the atomic positional fluctuations, obtained from
molecular dynamics (MD) simulations, is constructed and
from its eigenvectors a new (generalized) coordinates
basis-set is obtained. The eigenvectors associated with
large eigenvalues define the configurational subspace
where most of the conformational fluctuations occur (essen-
tial subspace), while the other eigenvectors, associated
with nearly zero eigenvalues, correspond to approximate
mechanical-dynamical constraints defining the near con-
straints subspace. The noise in the definition of the
eigenvectors arises from the insufficient configurational
sampling of the finite time length simulations. At a given
temperature the accessible phase space is filled in by the
trajectory according to the specific equations of motion
used, and the covariance matrix, built on the ensemble of
points of the trajectory after a certain time (sampled
covariance matrix), is an estimate of the covariance matrix
which could be obtained with an ‘‘infinite’’ time length
simulation of the folded protein (the expectation covari-
ance matrix). The accuracy of this estimate depends on the
statistical relevance of the configurational subspace
sampled within the simulation. Previous articles2–5 re-
ported evidences that a few hundreds picoseconds simula-
tion is in general sufficient to obtain a reasonable conver-

gence of the essential and near constraints subspaces, but
no investigations on the statistical significance of the
measured convergence were given. Other articles6,7 re-
ported evidence of insufficient configurational sampling
even in nanoseconds time scale simulations, suggesting
that usual simulations could be unable to provide a
reliable eigenvectors set. In this article we address in a
quantitative manner the convergence and the stability of
the eigenvectors, using pairs of independent trajectories of
increasing time length for each protein. The statistical
significance of the convergence is obtained from the com-
parison of the inner products distribution of the eigenvec-
tors of one trajectory onto the eigenvectors of the other,
with ‘‘random’’ inner products distributions obtained with
two possible definitions of the random probability:

● Assuming that any pattern of square projections of one
eigenvector of a set onto the eigenvectors of the other
set, has an identical probability to occur.

● Assuming a homogeneous probability for the direction of
one eigenvector of a set, in the space defined by the
eigenvectors of the other set (homogeneous probability
for the rotation angles).

In this way for each eigenvector we can decide whether
its inner products distribution on the other eigenvectors
set can be compatible with the random distribution or not,
for a given statistical confidence, and hence evaluate the
significance of the eigenvectors sets similarity for increas-
ing simulation time. The results obtained for the two
proteins used in this articles show that simulations of a
few hundreds picoseconds can provide a stable and statisti-
cally reliable definition of the essential and near con-
straints subspaces, at least within the nanoseconds time
range, and in the conclusions we will briefly discuss how
this is not necessarily in contradiction with the incomplete
configurational sampling observed.

THE RANDOM DISTRIBUTION

In this section we will derive two possible random
probability distributions according to two different defini-
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tions of the random basic event. First we will derive the
distribution due to the assumption that for a vector any set
of square projections onto the reference axis has an
identical probability to occur. Secondly we will derive a
more usual random distribution based on the assumption
that any direction in space for a vector has the same
probability. Of course each of these assumptions, although
reasonable, is somewhat arbitrary and other possible
definitions for the random distribution could be used.
Interestingly for a high dimensional space, as in our case,
the two random distributions used provide virtually identi-
cal results.

The Homogeneous Square Projections Distribution

Let’s consider a complete set of eigenvectors which
define the whole configurational space, and call these the
reference set. In such a multidimensional space we can
now consider a new unit vector and evaluate which is the
probability distribution of its projection onto a specific
subspace of the reference set, if any pattern of square
projections of the unit vector has exactly the same probabil-
ity. If the dimension of the space is M and the subspace
dimension is m1, the probability density of finding a value s
of the square projection of the unit vector on the subspace
is:

r(s, m1, M) 5 A0I(s, n1)I(1 2 s, n2) (1)

where n1 5 m1 2 1, n2 5 M 2 m1 2 1, and

I(s, n1) 5 e
0
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· e
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A0 is the normalization constant and the x variables are
the square projections of the unit vector on the axis
(eigenvectors) of the M dimensional space. Note that the
multiple integrals provide the ‘‘number of ways’’ in which
the unit vector gives a square projection s on the chosen m1

dimensional subspace and hence a square projection 1 2 s
on its complement. From the previous equations it follows:

e
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rds 5 A0 e

0
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ds 5
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hence A0 5 (n1 1 n2 1 1)! and:

r 5 (n1 1 n2 1 1)!
sn1(1 2 s)n2

n1!n2!
. (5)

The mode of the distribution (s value corresponding to the
maximum of the probability density) is clearly given by:

dr
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5

(n1 1 n2 1 1)!

n1!n2!

· sn121(1 2 s)n221[n1 2 (n1 1 n2)s] 5 0 (6)

and hence
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Finally the average (expectation) value of s is:
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and to evaluate the value of s that define a tail of a given
total probability, for instance 1 percent, we can use the
integral of the probability density:

P(s8) 5 e
0

s8
rds 5 0.99. (9)

In the results section we will use this 1 percent criterion to
decide whether the square projection of one eigenvector
onto a subspace of the reference set is statistically signifi-
cant (s . s8) or can still be considered compatible with the
random distribution (s , s8).

The Homogeneous Rotation Angles Distribution

We can derive another random probability density of the
square projection s if we assume an homogeneous probabil-
ity for the rotation angles of the unit vector. If u is the angle
of the unit vector with respect to the m1 dimensional
subspace, the probability density in u is:

r(u, m1, M) 5 C 0cos u 0m121 0sin u 0M2m121 (10)

where C is the normalization constant. In this last equa-
tion we simply used the fact that the probability density in
u is proportional to the product of the surface areas of the
m1 and M 2 m1 dimensional spheres with respectively the
absolute values of cos u and sin u as radii. Hence transform-
ing from u to the square projection s 5 (cos u)2, via the
usual relation for probability density transformations:

r(s, m1, M) 5 r(u, m1, M)
du

ds

we obtain the probability density in s due to Eq. (10):

r(s, m1, M) 5 C8 s(n121) / 2 (1 2 s)(n221) / 2 (11)
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with again C8 the normalization constant. It is interesting
to note that this new probability density is equivalent to
the previous one with n1 and n2 changed to n81 5 (n1 2 1)/2
and n82 5 (n2 2 1)/2 respectively. Hence substituting in the
equations of the previous probability density n1 and n2

with n81 and n82, we have:

7s8 5
n81 1 1

n81 1 1 1 n82 1 1
5

m1

M
(12)

sm 5
n81

n81 1 n82
5

m1 2 2

M 2 4
(13)

showing that the new random probability density has the
same average s value of the previous probability density,
but a slightly different mode. In practice for large M, as in
our case, the two probability densities are very similar and

Fig. 1. Root mean square inner product of the essential subspaces
(10 eigenvectors), obtained from two independent subparts of the simula-
tion, for protein L (upper panel ) and Cytochrome (lower panel ).

Fig. 2. Overlap between the essential subspaces of subsequent 50-ps
slices, for protein L (upper panel ) and Cytochrome (lower panel ).

Fig. 3. Probability density (full lines) and total probability (dashed
lines) obtained assuming a random square projection distribution of an
eigenvector onto a 10-dimensional subspace, for protein L (upper panel )
and Cytochrome (lower panel ).

Fig. 4. Square projection, s, of eigenvector 1, obtained from subparts
of 5, 500, and 1000 ps, onto the subsequent 10-dimensional subspaces of
the reference set, for protein L (upper panel ) and Cytochrome (lower
panel ). The values s8 (full line) and sm (dashed line) are also shown.
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provide s8 values for the 1 percent criterion, which are
virtually identical. For this reason in the analysis de-
scribed in the results section we only used the probability
density given in Eq. (5).

SIMULATION METHODS

The initial proteins configurations were taken from PDB
entries 2ptl8 and 351C for protein L and Cytochrome c 551,
respectively.9 All simulations were performed with the
GROMACS simulation package.10 A modification of the
GROMOS8711 force field was used with additional terms
for aromatic hydrogens12 and improved carbon-oxygen
interaction parameters.13 The SHAKE algorithm14 was
used to constrain bond lengths. Each system was im-
mersed in a pre-equilibrated box of simple point charge
(SPC) water.15 There were 1,971 water molecules for
protein L and 2,955 for Cytochrome c 551. Both simula-
tions were 2.3 ns long, and the first 0.30 ns of each
simulation were discarded in order to ensure equilibra-
tion. Molecular dynamics simulations were initiated as
follows: using a restraining harmonic potential, all heavy
atoms of the protein were constrained to their initial
positions, while surrounding SPC water molecules were
first minimized and then submitted to 5 ps of constant
volume MD at 300 K. The resulting system was then
minimized, without any constraints, before starting con-
stant temperature and constant volume molecular dynam-

ics. A nonbonded cutoff of 1.2 nm was used for both
Lennard-Jones and Coulomb potentials. The pair lists
were updated every ten steps. A constant temperature of
300 K was maintained by coupling to an external bath16

using a coupling constant (t 5 0.002 ps) equal to the
integration time step.

RESULTS AND CONCLUSIONS

For each of the two proteins (protein L and Cytochrome c
551) we used a 2-ns simulation from which different types
of analyses were performed. The eigenvectors were always
obtained from the covariance matrix of the alpha carbons
only. To evaluate the convergence of the essential eigenvec-
tors in time we divided the whole trajectory into two
halves, from which pairs of subparts of increasing time
length were taken. In order to prevent any correlation we
always compared subparts from the first half starting from
the initial point of the trajectory, with the subparts of the
second half ending in the last point of the trajectory. In
Figure 1 the overlap of the essential subspaces obtained
from pairs of subparts ranging from 5 ps to the whole half
(1 ns), is shown for the two proteins. As usual the essential
subspace of each subpart was defined by the ten eigenvec-
tors with the largest eigenvectors, and the overlap be-
tween the essential subspaces was obtained from the root
mean square inner product (RMSIP) of the essential
eigenvectors of one subpart with the essential eigenvectors

Fig. 5. Square projection, s, of eigenvector 2, obtained from subparts
of 5, 500, and 1000 ps, onto the subsequent 10 dimensional subspaces of
the reference set, for protein L (upper panel ) and Cytochrome (lower
panel ). The values s8 (full line) and sm (dashed line) are also shown.

Fig. 6. Square projection, s, of eigenvector 3, obtained from subparts
of 5, 500, and 1000 ps, onto the subsequent 10-dimensional subspaces of
the reference set, for protein L (upper panel ) and Cytochrome (lower
panel ). The values s8 (full line) and sm (dashed line) are also shown.
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of the other subpart

RMSIP 5 1 1

10 o
i51

10

o
j51

10

(hi · nj)22
1/2

where hi and nj are the eigenvectors of the two subparts.
Figure 1 clearly shows that within 50 to 100 ps a relevant
convergence was reached with an overlap of about 0.6,
while in the range from 100 ps to 1 ns a much slower
further convergence was present reaching a final overlap
of about 0.75. Interestingly for both proteins 5 ps were
enough to obtain an overlap of about 0.4 meaning that for
the essential eigenvectors the initial convergence was
extremely fast. This is in agreement with recent results on
the kinetics of the essential coordinates.17

To investigate the reproducibility of these results we
calculated the overlap between the essential subspaces of
contiguous 50-ps slices of the whole trajectory (comparison
of not contiguous 50-ps slices was also done giving identi-
cal results). In Figure 2 these overlaps (RMSIP) are shown
for both proteins, demonstrating that the amount of over-
lap between two 50 ps simulations is stable at about 0.6, as
also obtained comparing the first and the last 50 ps of the
trajectory (see Fig. 1). These results show very clearly that
the definitions of the essential and near constraints sub-
spaces converge at least up to the nanoseconds time range.

As described in the previous section, in this article we
addressed in a quantitative way the problem of the statis-

tical significance of the observed convergence of the eigen-
vectors sets. We used for both proteins the complete first
half of the trajectory (1 ns) to obtain a reference set, that
we compared with the eigenvectors obtained from the
subparts of increasing time length, taken from the second
half. We analyzed the square projections of a single
eigenvector of a subpart, on the subsequent 10 dimen-
sional subspaces of the reference set. In Figure 3 the
probability density, with m1 5 10, and its integral (total
probability) are shown for the two proteins. Note that the
dimension M of the space is M 5 186 and M 5 246 for
protein L and Cytochrome c551 respectively. In Figures
4–9 we show, for the two proteins, the square projections s
of eigenvectors 1, 2, 3, 15, 35, and 65, obtained from
subparts of 5,500, 1000 ps, onto consecutive 10-dimen-
sional subspaces of the reference set. Note that the eigen-
vectors are ordered according to the size of the correspond-
ing eigenvalue, and hence the first 10 dimensional subspace
is the essential subspace. In the figures the value s8
corresponding to the 1 percent criterion, and the mode
value sm are also shown. From these figures it is evident
that the eigenvectors of the 500- and 1000-ps subparts
have always an s value much larger than s8 only in the
corresponding subspace of the reference set, the 10 dimen-
sional subspace which contains the reference set eigenvec-
tor with the same index of the eigenvector of the subpart,
or in its neighbor subspaces. In all the other subspaces the

Fig. 7. Square projection, s, of eigenvector 15, obtained from subparts
of 5, 500, and 1000 ps, onto the subsequent 10-dimensional subspaces of
the reference set, for protein L (upper panel ) and Cytochrome (lower
panel ). The values s8 (full line) and sm (dashed line) are also shown.

Fig. 8. Square projection, s, of eigenvector 35, obtained from subparts
of 5, 500, and 1000 ps, onto the subsequent 10-dimensional subspaces of
the reference set, for protein L (upper panel ) and Cytochrome (lower
panel ). The values s8 (full line) and sm (dashed line) are also shown.
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s value is lower or very close to s8. This clearly means that
using the 1 percent confidence, within the 10-dimensional
subspace sensitivity, we must consider the convergence for
simulations of 500 ps or more as statistically significant,
and that simulations of a few hundreds of picoseconds can
provide a statistically reliable approximation of the eigen-
vectors which can be obtained by a simulation of a few
nanoseconds. Interestingly, for the subparts of only 5 ps
most of the eigenvectors have s values on all the subspaces
around the mode sm.

All the results described show that the eigenvectors
converge in time toward a ‘‘stable’’ set, at least up to the
nanoseconds time range, and that such a convergence is
statistically significant. Whether this ‘‘stable’’ set is really
stable beyond the nanoseconds time range, and coincides
with the expectation set, is still an open question. However
it seems reasonable to the authors that such a clear and
statistically significant covergence of the eigenvectors up
to the nanoseconds range, is indicative of the fact that
simulations in the range from a few hundreds of picosec-
onds to a few nanoseconds, can already provide a reason-
able definition of the essential and near constraints sub-
spaces, valid beyond the nanoseconds range. Finally it is
important to note that the observed convergence for the
essential and near constraints subspaces does not imply a
good sampling of the configurational space, but simply
means that the trajectory had time enough for covering a

large amplitude in the essential subspace. In fact simula-
tions in the nanoseconds time scale provide a good sam-
pling only for the near constraints subspace while the
essential subspace still remains poorly filled in by the
trajectory, and the total fluctuation (trace of the covariance
matrix), as well as the exact definition (i.e., with a 1-dimen-
sional subspace sensitivity) of each single eigenvector are
still not well converged in the nanoseconds time range.3,6,7

On the contrary the typical time for a simulation to
discriminate between the essential and the near con-
straints subspaces is within a few hundreds of picoseconds
as clearly shown in this article.
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