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Abstract

Convergence of the ensemble Kalman filter in the limit for large ensembles to the Kalman filter is

proved. In each step of the filter, convergence of the ensemble sample covariance follows from a

weak law of large numbers for exchangeable random variables, the continuous mapping theorem

gives convergence in probability of the ensemble members, and Lp bounds on the ensemble then

give Lp convergence.
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1. Introduction

Data assimilation uses statistical estimation to update the state of a running model based on

new data. Data assimilation is of great importance and widely used in many disciplines

including numerical weather prediction [10], ocean modeling [7], remote sensing [17], and

image reconstruction [8]. In these applications, the dimension of the state is very high, often

millions and more, because the state consists of the values of a simulation on a

computational grid in a spatial domain. Consequently, the classical Kalman filter (KF),

which requires maintaining the state covariance matrix, is no longer feasible.

One of the most successful recent data assimilation methods for high-dimensional problems

is the ensemble Kalman filter (EnKF). EnKF is a Monte Carlo approximation of the KF,

with the covariance in the KF replaced by the sample covariance computed from an

ensemble of realizations. Because the EnKF does not need to maintain the state covariance

matrix, it can be implemented efficiently for high-dimensional problems. Although the

EnKF formulas rely on the assumption that the distribution of the state and the data

likelihood are normal, the ensemble can robustly describe an arbitrary state probability

distribution. Thus, in spite of errors such as smearing of the state distribution towards

normality [13], the EnKF is often used for nonlinear systems.

One of the reasons for the popularity of the EnKF in applications is that the convergence of

EnKF with the ensemble size tends to be quite fast and reasonably small ensembles
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(typically 25 to 100) are usually sufficient [7]. Convergence of the EnKF can be further

accelerated by localization, such as covariance tapering [9], which improves the accuracy of

the sample covariance. The EnKF converges rapidly in these applications because the state

vectors are not arbitrary; rather, they are discretizations of smooth functions on a spatial

domain, and so they are the states of an infinitely dimensional dynamical system. One

explanation is that the state moves along a low-dimensional attractor. Indeed, in weather

simulations, the EnKF performance can be further improved by a carefully chosen initial

ensemble, which approximately covers the attractor well [10]. Another explanation is that a

smooth random field can be well approximated by a linear combination of a small number of

smooth functions with random coefficients, such as a truncated random Fourier series or

Karhunen-Loève expansion. Indeed, if the state is not smooth enough, the convergence of

the EnKF deteriorates [3] and large ensembles would be needed for acceptable accuracy.

A large body of literature on the EnKF and variants exists, but rigorous probabilistic

analysis is lacking. It is commonly assumed that the ensemble is a sample (that is, i.i.d.) and

that it is normally distributed. Although the resulting analyses played an important role in

the development of EnKF, both assumptions are false. The ensemble covariance is

computed from all ensemble members together, thus introducing dependence, and the EnKF

formula is a nonlinear function of the ensemble, thus destroying the normality of the

ensemble distribution.

For example, the analysis in [5] is based on the comparison of the covariance of the analysis

ensemble and the covariance of the filtering distribution. The paper [9] notes that if the

ensemble sample covariance is a consistent estimator, then Slutsky's theorem yields the

convergence in probability of the gain matrix. The paper [12] studies the interplay of

numerical and stochastic errors. All of these analyses assume that the ensemble covariance

converges in some sense in the limit for large ensembles, but a rigorous justification has not

yet become available.

This paper provides a rigorous proof that the EnKF converges to the KF in the limit for large

ensembles and for normal state probability distributions and normal data likelihoods. The

present analysis does not assume that the ensemble members are independent or normally

distributed. The ensemble members are shown to be exchangeable random variables

bounded in all Lp, p ∈ [1, ∞), which provides properties that replace independence and

normality. An argument using uniform integrability and the continuous mapping theorem is

then possible.

The result is valid for the EnKF version of Burgers, van Leeuven, and Evensen [5] in the

case of constant state space dimension, a linear model, normal data likelihood and initial

state distributions, and ensemble size going to infinity. This EnKF version involves

randomization of data. Efficient variants of EnKF without randomization exist [2, 15], but

they are not the subject of this paper.

Probabilistic analysis of the performance of the EnKF on nonlinear systems, for non-normal

state probability distributions, as well as analysis of the speed of convergence of the EnKF

to the KF and the dependence of the required ensemble size on the state dimension, are
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outside of the scope of this paper and left to future research. Some computational

experiments and heuristic explanations can be found in [3].

After the original preprint of this paper was completed [14], some related work became

available. The proof of EnKF convergence in [6] has a gap; it assumes that certain

covariances derived from the ensemble exist, which is not guaranteed without an L2 bound.

The proof in [11] is related and also uses a priori Lp bounds, but it appears to be much

longer and more complicated in order to obtain further analysis.

2. Preliminaries

The Euclidean norm of column vectors in , m ≥ 1, and the induced matrix norm are

denoted by ∥ · ∥, and T is the transpose. The stochastic Lp norm of a random element X is

∥X∥p = (E(∥X∥p))1/p. The j-th entry of a vector X is [X]j and the i, j entry of a matrix

 is [Y]ij. Convergence in probability is denoted by . We denote by

with various superscripts and for various m ≥ 1, an ensemble of N random elements in ,

called members. Thus, an ensemble is a random m × N matrix with the ensemble members

as columns. Given two ensembles XN and YN, the stacked ensemble [XN; YN] is defined as

the block random matrix

If all the members of XN are identically distributed, we write E(XN1) and Cov(XN1) for their

common mean vector and covariance matrix. The ensemble sample mean and ensemble

sample covariance matrix are the random elements  and

. All convergence is for N → ∞.

We will work with ensembles such that the joint distribution of the ensemble XN is invariant

under a permutation of the ensemble members. Such ensemble is called exchangeable. That

is, an ensemble XN, N ≥ 2, is exchangeable if and only if Pr(XN ∈ B) = Pr(XN Π ∈ B) for

every Borel set  and every permutation matrix . The covariance

between any two members of an exchangeable ensemble is the same, Cov(XNi, XNj) =

Cov(XN1, XN2), if i ≠ j.

Lemma 1. Suppose XN and DN are exchangeable, the random elements XN and DN are

independent, and YNi = F(XN, XNi, DNi), i = 1, . . . , N, where F is measurable and

permutation invariant in the first argument, i.e. F(XNΠ, XNi, DNi) = F(XN, XNi, DNi) for any

permutation matrix Π. Then YN is exchangeable.

Proof. Write YN = F(XN, DN), where
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Let Π be a permutation matrix. Then YNΠ = F(XNΠ, DNΠ). Because XN is exchangeable, the

distributions of XN and XNΠ are identical. Similarly, the distributions of DN and DNΠ are

identical. Since XN and DN are independent, the joint distributions of (XN, DN) and (XNΠ,

DNΠ) are identical. Thus, for any Borel set ,

where 1B stands for the characteristic function of B. Hence, YN is exchangeable.

We now prove a weak law of large numbers for nearly i.i.d. exchangeable ensembles.

Lemma 2. If for all N, XN, UN are ensembles of random variables, [XN; UN] is

exchangeable, Cov(UNi, UNj) = 0 for all i ≠ j, UN1 ∈ L2 is the same for all N, and XN1 →

UN1 in L2, then .

Proof. Since XN is exchangeable, Cov(XNi, XNj) = Cov(XN1, XN2) for all i, j = 1, . . . , N, i ≠ j.

Since XN – UN is exchangeable, also XN2 – UN2 → 0 in L2. Then, using the identity Cov(X,

Y) = E(XY) – E(X)E(Y) and the Cauchy inequality for the L2 inner product E(XY), we have

so Cov(XN1, XN2) → 0. By the same argument, Var(XN1) → Var(UN1) < ∞. Now E(X̄N) =

E(XN1) → E(UN1) from XN1 – UN1 → 0 in L2, and

and the conclusion follows from the Chebyshev inequality.

The convergence of the ensemble sample covariance follows.

Lemma 3. If for all N, XN, UN are ensembles of random elements in , [XN; UN] is

exchangeable, UN are i.i.d., UN1 ∈ L4 is the same for all N, and XN1 → UN1 in L4, then

 and .

Proof. From Lemma 2, it follows that  for each entry j = 1, . . . , n, so

. Let , so that . Each entry of

 satisfies the assumptions of Lemma 2, so
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. Convergence of the entries  to

 follows from the already proved convergence of X̄
N and the

continuous mapping theorem [16, p. 7]. Applying the continuous mapping theorem again,

we get .

3. Formulation of the EnKF

Consider an initial state given as the random variable U(0). In step k, the state U(k–1) is

advanced in time by applying the model M(k) to obtain U(k)f = M(k)(U(k–1)), called the prior

or the forecast, with probability density function (pdf) pU
(k),f. The data in step k are given as

measurements d(k) with a known error distribution, and expressed as the data likelihood

p(d(k)|u). The new state U(k) conditional on the data, called the posterior or the analysis, then

has the density pU
(k) given by the Bayes theorem,

where ∝ means proportional. This is the discrete-time filtering problem. The distribution of

U(k) is called the filtering distribution.

Assume that U(0) ~ N(u(0), Q(0)), the model is linear, , and the data

likelihood is normal conditional on given state u(k),f,

where H(k) is the given observation matrix and R(k) is the given data error covariance. The

data error is assumed to be independent of the model state. Then the filtering distribution is

normal, U(k) ~ N(u(k), Q(k)), and it satisfies the KF recursions [1]

(3.1)

(3.2)

where the Kalman gain matrix K(k) is given by

(3.3)

The EnKF is obtained by replacing the exact covariance Q(k) by the ensemble sample

covariance and adding noise to the data in order to avoid a shrinking of the ensemble spread

and to obtain the correct filtering covariance [5], cf. Lemma 4 below.
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Let  and  be independent for all k, i ≥ 1. Given

N, choose the initial ensemble and the perturbed data as the first N terms of the respective

sequence, , , i = 1, . . . , N, k = 1, 2, . . .The ensembles

produced by EnKF are  and

(3.4)

(3.5)

where  is the ensemble sample gain matrix,

(3.6)

Our analysis of the EnKF is based on the observation that the ensembles  are a

perturbation of auxiliary ensembles . The ensembles  are obtained from the same

initial ensemble by applying the KF formulas to each ensemble member separately and

using the same corresponding member of perturbed data,

(3.7)

(3.8)

The auxiliary ensembles  are introduced for theoretical purposes only and they do not

play any role in the EnKF algorithm. The next lemma shows that  is a sample from the

filtering distribution.

Lemma 4. For all  is i.i.d. and .

Proof. The statement is true for k = 0 by definition of . Assume that it is true for k – 1 in

place of k. The ensemble  is i.i.d. and normally distributed, because it is an image under

a linear map of the normally distributed i.i.d. ensemble with members

. Further,  and  are independent, so from [5, eq. (15)

and (16)],  has the correct mean and covariance, which uniquely determines the normal

distribution of .
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4. Convergence analysis

Lemma 5. There exist constants c(k, p) for all k and all p ∈ [1, ∞) such that

 and  for all N.

Proof. For k = 0, each  is normal. Assume  for all N. Then

By Jensen's inequality, for any XN,

This gives  and

since from the Cauchy inequality,

(4.1)

for any compatible random matrices W and Z. Since  is symmetric positive

semidefinite and R(k) is symmetric positive definite, it holds that

which, together with the bound on , gives

Finally, we obtain the desired bound

using again (4.1).
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Theorem 1. For all k, [XN; UN] is exchangeable and  in Lp for all p ∈ [1, ∞),

where UN is i.i.d. with the filtering distribution.

Proof. The ensembles  are obtained by linear mapping of the i.i.d. initial ensemble ,

so they are i.i.d. For k = 1, we have  is exchangeable, and XNi = UNi.

Suppose the statement holds for k – 1 in place of k. The ensemble members are given by a

recursion of the form

The ensemble sample covariance matrix  is invariant to a permutation of

ensemble members, so  is exchangeable by Lemma 1. Since  and 

satisfy the assumptions of Lemma 3, it follows that  and

. Thus, comparing (3.5) and (3.8), we have that , by the

continuous mapping theorem. Let p ∈ [1, ∞). Since the sequence  is bounded in

Lp by Lemma 5 and , it follows that  in Lq for all 1 ≤ q < p by

uniform integrability [4, p. 338].

Using Lemma 3 and uniform integrability again, it follows that the ensemble mean and

covariance converge to the filtering mean and covariance.

Corollary 1.  and  in Lp for all p ∈ [1, ∞), where u(k) and Q(k)

are the mean and the covariance of the filtering distribution.
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