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On the Convergence of the Entropy-Exponential Penalty

Trajectories and Generalized Proximal Point Methods

in Semidefinite Optimization

Ferreira, O. P. ∗ Oliveira, P. R. † Silva, R. C. M.‡

June 02, 2007

Abstract

The convergence of primal and dual central paths associated to entropy and exponential
functions, respectively, for semidefinite programming problem are studied in this paper. As an
application, the proximal point method with the Kullback-Leibler distance applied to semidefi-
nite programming problems is considered, and the convergence of primal and dual sequences is
proved.

Keywords: generalized proximal point methods, Bregman distances, central path, semidef-
inite programming.

1 Introduction

The first purpose of this paper is to analyze the convergence of primal and dual central paths
associated to entropy and exponential functions, respectively, for semidefinite programming (SDP)
problem. To be more precise, let us consider IRn the n-dimensional Euclidean space, Sn the set of
all symmetric n × n matrices, Sn

+ the cone of positive semidefinite n × n symmetric matrices. Let
denote X � 0 to mean that X ∈ Sn

+, tr to mean the trace of n×n matrices and set X •Y = trXY
for all X, Y ∈ Sn. The primal SDP problem becomes

(P ) min {C • X : AX = b, X � 0} ,

∗IME, Universidade Federal de Goiás, Goiânia, GO 74001-970, BR (Email: orizon@mat.ufg.br). The author was
supported in part by CNPq Grant 302618/2005-8, PRONEX–Optimization(FAPERJ/CNPq) and FUNAPE/UFG.

†COPPE-Sistemas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21945-970, BR (Email:
poliveir@cos.ufrj.br). This author was supported in part by CNPq.

‡ICE, Universidade Federal de Amazonas, Manaus, AM 69077-000, BR (Email: rmesquita@ufam.edu.br). This
author was supported in part by CAPES-PICDT.

1



where the data consist of C ∈ Sn, b ∈ IRm and a linear operator A : Sn → IRm, the primal variable
is X ∈ Sn. Adding the entropy penalty function in the objective function of (P), we obtain its
penalized version

(Pµ) min {C • X + µX • ln(X) : AX = b, X ≻ 0} , µ > 0,

where X ≻ 0 means that X ∈ Sn
++. The associated dual problem to (P) is

(D) max
{

bT y : A∗y + S = C, S � 0
}

,

where A∗ : IRm → Sn denotes the adjoint application associated to A and (S, y) ∈ Sn × IRm are
the dual variables. Adding the exponential penalty function in the objective function of (D) we
obtain its penalized version

(Dµ) max
{

bT y − µ tr e−S/µ−I : A∗y + S = C
}

, µ > 0.

The feasible primal and dual sets are denoted by F(P ) = {X ∈ Sn : AX = b, X � 0} and
F(D) = {(S, y) ∈ Sn × IRm : A∗y + S = C, S � 0}, respectively. The interior of primal and dual
feasible sets are denoted by F0(P ) = {X ∈ Sn : AX = b, X ≻ 0} and F0(D) = {(S, y) ∈ Sn×IRm :
A∗y+S = C, S ≻ 0} respectively. We also write F∗(P ) and F∗(D) for the sets of optimal solutions
of (P ) and (D) respectively. Throughout this paper, we assume that the following two conditions
hold without explicitly mentioning them in the statements of our results.

A1) A : Sn → IRm is a surjective linear operator;

A2) F0(P ) 6= ∅ and F0(D) 6= ∅.

Assumption A1 is not really crucial for our analysis but it is convenient to ensure that the dual
variables S and y are in one-to-one correspondence. Assumption A2 ensures that both (P ) and (D)
have optimal solutions, the optimal values of (P ) and (D) are equal and the sets of their optimal
solutions F∗(P ) and F∗(D) are bounded (see, for example Todd (2001)). It is also important to
ensure the existence of the central path. Indeed, our first goal is to prove that assumption A2
implies that the problems (Pµ) and (Dµ) have unique solution X(µ) and (S(µ), y(µ)), respectively.
As a consequence, it is easy to see that X(µ) and S(µ) satisfy the equality

S(µ) = −µ ln(X(µ)) − µI, µ > 0.

The sets of points {X(µ) : µ > 0} and {S(µ) : µ > 0} denote the primal and dual central paths,
respectively. Also, we will prove that the primal and dual central paths converge to a solution of (P )
and (D), respectively, as µ goes to 0. So, we can think (Pµ) and (Dµ) as entropy and exponential
penalty methods, respectively, for solving SDP problems. Cominetti and San Mart́ın (1994) have
investigated the asymptotic behavior of the primal and dual trajectories associated to entropy and
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exponential penalty functions, respectively, in linear program. In particular, they have obtained
a characterization of its limit points. More generally, Iusem and Monteiro (2000) have given a
characterization of the limit point of the dual central path associated to a large class of penalty
functions, including exponential penalty function, for linearly constrained convex programming
problems. Study on central path associated to convex semidefinite programming problems with
more geral restritions can be found in Aulender and Héctor Ramı́rez (2006).

Ours second goal is to apply the results obtained about the primal and dual central paths to
study the generalized proximal point method to solve the problem (P). This method generates a
sequence {Xk} ⊂ Sn

++ with starting point X0 ∈ F0(P ) according to the iteration

Xk+1 = arg minX∈Sn

++
{C • X + λkD(X, Xk) : AX = b} , (1)

where the sequence {λk} ⊂ IR++ satisfies
∑∞

k=0 λk
−1 = +∞ and D : Sn

++ × Sn
++ → IR is the

Kullback-Leibler distance defined by

D(X, Y ) = X • ln(X) − X • ln(Y ) + trY − trX.

We will prove that the sequence {Xk} is contained in the primal central path. As a consequence,
both converge to the same specific optimal solution, namely, the analytic center of the primal
optimal set with respect to the generalized distance. This idea has, at first, appeared in Iusem
et al. (1999), they proved this connection between the central path and the generalized proximal
point sequence in some special cases, including linear programming. On the other hand, Doljansky
and Teboule (1998) have introduced a generalized proximal method for convex SDP problems and
established its convergence properties. Besides, they study the correspondent dual augmented
Lagrangian method. Several works dealing with this issue include Auslender and Teboulle (2006)
and Mosheyev and Zibulevski (2000). So, we are bringing together the ideas of both Iusem et al.
(1999) and Doljansky and Teboule (1998).

The optimality condition for (1) determines the dual sequence {Sk} defined as

Sk = λk(ln(Xk) − ln(Xk+1)), k = 0, 1, 2, ....

From the dual sequence {Sk} we define the weighed dual sequence {S̄k} constructed as

S̄k =

k
∑

j=0

λj
−1µkSj , µk =





k
∑

j=0

λj
−1





−1

, k = 0, 1, 2, ....

We will prove that the sequence {S̄k} is contained in the dual central path. As a consequence,
it converges to a solution. Partial results regarding the behavior of the weighed dual sequence
in linear programming have been obtained in severals paper including Jensen and Polyak (1994),
Polyak and Teboulle (1997), Powell (1995) and Tseng and Bertsekas (1993). The full convergence
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of the weighed dual sequence, for Bregman distances including the Kullback-Leibler distance, for
linearly constrained convex programming problems has been obtained by Iusem and Monteiro
(2000).

The organization of our paper is as follows. In Subsection 1.1, we list some basic notation and
terminology used in our presentation. In Section 2, we present the well definedness of the primal-
dual central path and establish some results about it. In Section 3, we describe the proximal
point method and establish its connection with the central path. As a consequence, we prove the
convergence of the weighed dual sequence.

1.1 Notation and terminology

The following notations and results of matrix analysis are used throughout our presentation, they
can be found in Horn and Johnson (1985). IRn denotes the n-dimensional Euclidean space. IRn

+ =
{(x1, ..., xn) ∈ IRn; xi ≥ 0 ∀ i = 1, ..., n} and IRn

++ = {(x1, ..., xn) ∈ IRn; xi > 0 ∀ i = 1, ..., n}
denote nonnegative and positive orthant, respectively. The set of all n × m matrices is denoted
by IRn×m. The (i, j)-th entry of a matrix X ∈ IRn×m is denoted by Xij and the j-th column is
denoted by Xj . The transpose of X ∈ IRn×m is denoted by XT . The set of all symmetric n × n
matrices is denoted by Sn. The cone of positive semidefinite (resp., definite) n × n symmetric
matrices is denoted by Sn

+ (resp., Sn
++) and ∂Sn

+ denotes the boundary of Sn
+. X � 0 means that

X ∈ Sn
+ and X ≻ 0 means that X ∈ Sn

++. The trace of a matrix X ∈ IRn×n is denoted by
trX ≡

∑p
i=1 Xii. Given X and Y in IRn×m, the inner product between them is defined as X •Y ≡

trXT Y =
∑n,m

i=1,j=1 XijYij . The Frobenius norm of the matrix X is defined as ‖X‖ ≡ (X • X)1/2.
The submatrix XJK of X is the matrix whose entries lie in the rows of X indexed by the set J
and the columns indexed by the set K where J and K are two subsets of {1, . . . , n} . For square
matrices X, XJJ is called a principal submatrix of M, which is denoted simply by XJ .

For a linear operator A : Sn → IRm, its adjoint is the unique linear operator A∗ : IRm → Sn

satisfying 〈AX, y〉 = 〈X,A∗y〉 for all X and y. The image and null spaces of a linear operator A
will be denoted by Im(A) and Null(A), respectively.

The vector of eigenvalues of a n× n matrix X will be denoted by λ(X) = (λ1(X), ..., λn(X))T ,
where the eigenvalues are ordered as λ1(X) ≥ λ2(X) ≥ ... ≥ λn(X).

Lemma 1.1. For any X, Y ∈ Sn, X • Y 6 λ(X)T λ(Y ).

Proof. See, for example, Dym [7], Lemma 23.16, page 507.

2 Primal-Dual Central Path

In this section we study the convergence of primal and dual central paths associated to the entropy
and exponential penalty functions, respectively, for SDP problems. We are going to prove that
the central path is well defined, is an analytic curve, bounded and that all its cluster points are
solutions of the primal and dual problems, respectively.
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The primal central path to the Problem (P), with respect to the entropy penalty function
Sn

++ ∋ X 7→ X • ln(X), is the set of points {X(µ) : µ > 0} where X(µ) is defined as

X(µ) = argmin {C • X + µX • ln(X) : AX = b, X ≻ 0} , µ > 0, (2)

i.e. X(µ) is the solution of the problem (Pµ).

Theorem 2.1. The primal central path is well defined and is in F0(P ).

Proof. For each µ > 0 we define φµ : Sn
++ → IR by φµ(X) = C • X + µX • ln(X). The function

φµ(·) is strictly convex and extends continuously to Sn
+ with the convention that 0 ln 0 = 0. Its

gradient is given by ∇φµ(X) = C + µ ln(X) + µI and e−(C+µI)/µ ∈ Sn
++ is the unique minimizer.

Take X̃ ∈ F0(P ), thus L = {X ∈ Sn
+ : φµ(X) 6 φµ(X̃)} is bounded and nonempty and as φµ(·)

is continuous in Sn
+ we conclude that L is compact and nonempty. Because F(P ) is closed and

nonempty we have that L∩F(P ) is also compact and nonempty. Therefore, the strictly convexity
of φµ(·) implies that it has a unique minimizer X(µ) ∈ F(P ), which implies that the primal central
path is well defined.

It remains to show that X(µ) ∈ F0(P ). Assume by contradiction that X(µ) ∈ ∂F(P ) = {X ∈
Sn : AX = b, X � 0, det X = 0}, where det X denotes the determinant of the matrix X. Define

Zε = (1 − ε)X(µ) + εX̃,

where ε ∈ (0, 1). Then, as X̃ ∈ F0(P ), X(µ) ∈ ∂F (P ), ε ∈ (0, 1) and F 0(P ) is convex, we conclude
that Zε ∈ F 0(P ) for all ε ∈ (0, 1). Now combining definitions of X(µ) and Zε with convexity of
φµ(·) after some algebraic manipulation we obtain

0 6 φµ(Zε) − φµ(X(µ)) 6 ∇φµ(Zε) • (Zε − X(µ)) =
ε

1 − ε
∇φµ(Zε) • (X̃ − Zε),

which implies 0 6 ∇φµ(Zε) • (X̃ − Zε). So, from Lemma 1.1

0 6 ∇φµ(Zε) • (X̃ − Zε) = (C + µ ln(Zε) + µI) • (X̃ − Zε)

= µ ln(Zε) • X̃ − C • Zε − µ ln(Zε) • Zε − µI • Zε + (C + µI) • X̃

6 µ

n
∑

i=1

λi(X̃)λi(ln(Zε)) − φµ(Zε) − µI • Zε + (C + µI) • X̃.

Since above inequality holds for all ε ∈ (0, 1), letting ε goes to 0 we obtain an absurd. Indeed, as
we are under the hypothesis X(µ) ∈ ∂F(P ), using the fact that Zε goes to X(µ), µ > 0, X̃ ≻ 0
and the function φµ is continuous, the right side of the above inequality goes to −∞. Therefore,
this absurd implies the desired result.

5



Applying Lagrange theorem to (Pµ) we obtain that X(µ), as defined in (2), satisfies the system

AX = b, X ≻ 0,
A∗y + S = C,
S + µ ln(X) + µI = 0, µ > 0.

(3)

for some (S(µ), y(µ)) ∈ Sn × IRm. Note that Theorem 2.1 implies that (3) has unique solution.
Moreover, (3) also gives necessary and sufficient condition for optimality in the dual. So,

S(µ) = −µ ln(X(µ)) − µI, µ > 0, (4)

is the unique solution of (Dµ), for some y(µ) ∈ IRm, i.e.,

S(µ) = argmax
{

bT y − µ tr e−S/µ−I : A∗y + S = C
}

, µ > 0. (5)

The dual central path associated to (P) is the set of points {S(µ) : µ > 0}, where S(µ) satisfies
(5), or equivalently (4), and the set of points {(X(µ), y(µ), S(µ)) : µ > 0} denotes the primal-dual
central path which is the unique solution of (4). Now, we are going to prove that the primal-dual
central path is an analytic curve. It will follows from a straightforward application of the implicit
function theorem that deals with analytic functions, as given, e.g., in Dieudonné (1960), Theorem
10.2.4, page 268.

Theorem 2.2. The primal-dual central path is an analytic curve contained in Sn
++ × IRm × Sn.

Proof. First of all, we introduce the map Ψ : Sn
++ × IRm ×Sn × IR++ → IRm ×Sn ×Sn defined by

Ψ(X, y, S, µ) =
(

AX − b, A∗y + S − C, µ∇ϕ(X) + S
)

,

where ϕ : Sn
++ → IR is given by ϕ(X) = X • ln(X). Note that Ψ(X, y, S, µ) = 0 is equivalent

to the system (3). Since the central path is the unique solution of the system (3) we have that
Ψ(X(µ), y(µ), S(µ), µ) = 0, for all µ > 0. So, as Ψ is an analytic function the statement follows from
the implicit function theorem by showing that its derivative with respect to (X, y, S) is nonsingular
everywhere. To show that the derivative of Ψ is nonsingular it is sufficient to prove that its null-
space is the trivial one. Assume that

∇(X,y,S)Ψ(X, y, S, µ)(U, v,W ) = 0,

equivalently,
AU = 0,

A∗v + W = 0,
µ∇2ϕ(X(µ))U + W = 0.

(6)

Last equation of (6) implies that W = −µ∇2ϕ(X(µ))U. Substituting in the second equation of
(6) we obtain µU = (∇2ϕ(X(µ)))−1A∗v and in view of first equation A(∇2ϕ(X(µ)))−1A∗v = 0.
Finally, as ∇2ϕ(X(µ)) is positive definite and A is surjective we have that A(∇2ϕ(X(µ)))−1A∗ is
nonsingular, thus latter equality implies that v = 0 and consequently W = U = 0 . Therefore, the
derivative of Ψ is nonsingular and the statement follows.
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The Theorem 2.1 implies that the primal central path is well defined and is in F0(P ). So, for
all µ > 0, we have from (3) that

µ ln(X(µ)) + µI = −C + A∗y(µ), (7)

for some y(µ) ∈ IRm.

Proposition 2.1. The the following statements hold:

(i) the function 0 < µ 7→ X(µ) • ln(X(µ)) is non-increasing;

(ii) the set {X(µ) : 0 < µ ≤ µ̄} is bounded, for each µ̄ > 0;

(iii) all cluster points of the primal central path are solutions of the Problem (P).

Proof. To simplify the notations let ϕ : Sn
++ → IR be given by ϕ(X) = X • ln(X). So, (7) is

equivalent to
µ∇ϕ(X(µ)) = −C + A∗y(µ). (8)

Take µ1, µ2 > 0 with µ1 < µ2. Since ϕ is convex, see the Appendix, and X(µ1) − X(µ2) ∈ NullA
we have from (8) that

µ1(ϕ(X(µ1) − ϕ(X(µ2)) 6 µ1∇ϕ(X(µ1)) • (X(µ1) − X(µ2)) = −C • (X(µ1) − X(µ2))

and

µ2(ϕ(X(µ2) − ϕ(X(µ1)) 6 µ2∇ϕ(X(µ2)) • (X(µ2) − X(µ1)) = −C • (X(µ2) − X(µ1)).

Now, combining the latter two equations we obtain that (µ1 − µ2)(ϕ(X(µ1) − ϕ(X(µ2)) 6 0 and
as µ1 < µ2 we have that ϕ(X(µ2)) 6 ϕ(X(µ1)). So, the statement (i) is established.

Now, fix µ̄ > 0. Similar argument used to prove item (i) implies that

µ(ϕ(X(µ) − ϕ(X(µ̄)) 6 −C • (X(µ) − X(µ̄)),

for all 0 < µ < µ̄. From item (i) we have that 0 6 ϕ(X(µ)) − ϕ(X(µ̄)), for all 0 < µ < µ̄, then
above equation implies that C • X(µ) 6 C • X(µ̄), for all 0 < µ < µ̄. So,

{X(µ) : 0 < µ < µ̄} ⊂ {X ∈ F(P ) : C • X 6 C • X(µ̄)} .

Since the function F(P ) ∋ X 7→ C•X is convex and has a sub-level F∗(P ) non-empty and bounded,
all its sub-level are bounded. So, the sub-level set {X ∈ F(P ) : C • X 6 C • X(µ̄)} is bounded.
Therefore, the statement (ii) follows from the last inclusion.

Let X̄ be a cluster point of {X(µ) : µ > 0}. First, note that AX̄ = b and X̄ � 0 , i.e., X̄ ∈ F(P ).
Let {µk} be a sequence of positive numbers such that limk→+∞ µk = 0 and limk→+∞ X(µk) = X̄.
Take X∗ a solution of the Problem (P) and X ∈ F0(P ). For ǫ > 0, define

Y (ǫ) = (1 − ǫ)X∗ + ǫX.
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Due the fact that X∗ ∈ ∂F0(P ), X ∈ F0(P ) and F0(P ) is convex we have Y (ǫ) ∈ F0(P ), for
ǫ ∈ (0, 1]. From (2) we have

C • X(µk) + µkϕ(X(µk)) 6 C • Y (ǫ) + µkϕ(Y (ǫ)),

or,
µk(ϕ(X(µk)) − ϕ

(

Y (ǫ)
)

) 6 C • (Y (ǫ) − X(µk)).

Now, since ϕ is convex and Y (ǫ) ∈ F0(P ), it easy to conclude from above inequality that

µk∇ϕ(Y (ǫ)) • (X(µk) − Y (ǫ)) 6 C • (Y (ǫ) − X(µk)).

Thus, taking limits in the latter inequality as k goes to +∞ we obtain 0 6 C • (Y (ǫ)− X̄). In this
inequality, if ǫ tends to 0, it gives

0 6 C • (X∗ − X̄), or equivalently, C • X̄ 6 C • X∗.

Therefore, as X∗ is a solution of the Problem (P) and X̄ ∈ F(P ), we have from above equation
that X̄ is also solution of the Problem (P) and the proof of the statement (iii) is concluded.

Theorem 2.3. Let Xc ∈ Sn
+ be the analytic center of F∗(P ), i.e., the unique point satisfying

Xc = argmin {X • ln(X) : X ∈ F∗(P )} . (9)

Then limµ→0 X(µ) = Xc.

Proof. To simplify the notations let ϕ : Sn
++ → IR the function defined in the proof of the above

proposition. Using the convention 0 ln 0 = 0, it is not hard to see that ϕ is continuous in Sn
+.

Take X̄ a cluster point of the primal central path and a sequence of positive numbers {µk} such
that limk→+∞ µk = 0 and limk→+∞ X(µk) = X̄. Note that, from Proposition 2.1(iii), implies that
X̄ ∈ F∗(P ). So, it is feasible for the problem in (9). Now, we are going to prove that X̄ is a solution
to the problem in (9). From (3) we have C + µk∇ϕ (X(µk)) = A∗y(µk), for some y(µk) ∈ IRm. So,

µk∇ϕ (X(µk)) • (X − X(µk)) = (A∗y(µk) − C) • (X − X(µk)),

for all X ∈ F∗(P ). Using the convexity of ϕ and the fact that X − X(µk) ∈ Null(A) the latter
equation becomes

µk(ϕ (X(µk)) − ϕ(X)) 6 C • X − C • X(µk).

Because X ∈ F∗(P ) and µk > 0, it follows from the latter inequality that ϕ (X(µk)) 6 ϕ(X).
Now, as ϕ is continuous we can take limits, as k goes to +∞, in this inequality to conclude that
ϕ(X̄) 6 ϕ(X), i.e., X̄ • ln(X̄) 6 X • ln(X), for all X ∈ F∗(P ). Thus, any cluster point of the primal
central path satisfies (9). Now, since F∗(P ) is compact and the function Sn

++ ∋ X 7→ X • ln(X)
is strictly convex, see the Appendix, the problem in (9) has unique solution Xc. So, the primal
central path has unique cluster point. Therefore, the primal central path converges to Xc and the
theorem is proved.
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In the next proposition our goal is to state and prove that the dual central path is bounded, as
µ goes to 0, and all its cluster points are solutions of the problem (D).

Proposition 2.2. The following statements hold:

(i) the set {S(µ) : 0 < µ ≤ µ̄} is bounded, for each µ̄ > 0;

(ii) all cluster points of the dual central path are solutions of the problem (D).

Proof. To prove item (i), let X0 and S0 be strictly feasible for (P) and (D), respectively. Orthog-
onality relation implies that

(

X(µ) − X0
)

•
(

S(µ) − S0
)

= 0, µ > 0.

Since X(µ) ≻ 0 and S0 ≻ 0, simple algebraic manipulations in above equation yield X0 • S(µ) ≤
X(µ) • S(µ) + X0 • S0. Now, combining this inequality with (4) we obtain

X0 • S(µ) ≤ −µX(µ) • ln(X(µ)) − µ tr(X(µ)) + X0 • S0.

Then, as X(µ) ≻ 0, use Proposition 2.1(i) and µ > 0 in the last inequality to get

X0 • S(µ) ≤ −µX(µ̄) • ln(X(µ̄)) + X0 • S0, (10)

for all 0 < µ ≤ µ̄. We remark that if S(µ) is positive semidefinite for all µ ∈ (0, µ̄] then we are
done, but we cannot ensure it, so, we have to go further. First, as X(µ) ∈ Sn

++ there exists an
orthogonal matrix Q(µ) such that

X(µ) = QT (µ)Λ(µ)Q(µ),

where Λ(µ) ∈ Sn
++ is a diagonal matrix whose diagonal elements are the eigenvalues of X(µ). From

(4), we obtain
S(µ) = QT (µ) (−µ(ln(Λ(µ)) + I))Q(µ), (11)

where −µ (ln (Λ(µ)) + I) = diag (−µ (ln (λ1(X(µ)) + 1) , ...,−µ (ln (λn(X(µ)) + 1)) . Let Xc ∈ Sn
+

be the analytic center of F∗(P ) and let

B := {j : λj(X
c) > 0} and B̃ := {j : λj(X

c) = 0} .

From Theorem 2.3 we have that Xc = limµ→0 X(µ). So, it is easy to show that

lim
µ→0

−µ (ln(Λ(µ)B) + IB) = 0, (12)

and there exists µ̃ > 0 such that for all 0 < µ < µ̃ ≤ µ̄ there holds

−µ
(

ln(Λ(µ)B̃) + IB̃

)

≻ 0. (13)

9



Combining equations (11), (12) and (13) it simple to conclude that for all 0 < µ < µ̃ ≤ µ̄

S(µ) = QT (µ) (−µ(ln(Λ(µ)) + I))Q(µ) � 0. (14)

Set Σ(µ) := −µ (ln (Λ(µ)) + I) . Thus, (12) implies that Σ(µ)B goes to the null matrix, as µ goes to
0, and (13) implies that Σ(µ)B̃ is positive definite. It follows from (11) that S(µ) = QT (µ)Σ(µ)Q(µ),
hence

X0 • S(µ) =
(

Q(µ)X0QT (µ)
)

B
• Σ(µ)B +

(

Q(µ)X0QT (µ)
)

B̃
• Σ(µ)B̃.

As Σ(µ)B̃ ≻ 0 and (QT (µ)X0Q(µ))B̃ ≻ 0 we have that

λmin

(

(Q(µ)X0QT (µ))B̃

)

‖Σ(µ)B̃‖ 6 (Q(µ)X0QT (µ))B̃ • Σ(µ)B̃.

Thus, combining the above equation with λmin(X
0) ≤ λmin((Q(µ)X0QT (µ))B̃) (see in Horn and

Johnson (1985), Theorem 4.3.15, page 189) we obtain

‖Σ(µ)B̃‖ ≤
X0 • S(µ) − (Q(µ)X0QT (µ))B • Σ(µ)B

λmin(X0)
.

Because Σ(µ)B goes to the null matrix as µ goes to 0 and Q(µ) is an orthogonal matrix, last
inequality together with (10) imply that Σ(µ)B̃ is bounded as µ goes to 0. Therefore, as

‖S(µ)‖2 = ‖Σ(µ)B‖
2 + ‖Σ(µ)B̃‖

2,

Σ(µ)B and Σ(µ)B̃ are bounded as µ goes to 0, we conclude that {S(µ) : 0 < µ ≤ µ̄} is bounded.
So, the statement (i) is established.

For proving item (ii), let S̄ be a cluster point of the dual central path. Note that it is sufficient
to show that

A∗ȳ + S̄ = C, X∗S̄ = 0, S̄ � 0, (15)

for some ȳ ∈ IRm and X∗ ∈ F∗(P ). Since the dual central path satisfies the second equation in
(3) we just have to show that S̄ satisfies the last two equations in (15). Let {µk} be a sequence
such that limk→+∞ µk = 0 and S̄ = limk→+∞ S(µk). First note that X(µ) ln(X(µ)) is bounded as
µ goes to 0 and from Theorem 2.3 we have that Xc = limµ→0 X(µ). Thus it follows from (4) that

XcS̄ = lim
k→+∞

X(µk)S(µk) = − lim
k→+∞

(µkX(µk) ln(X(µk)) + µkX(µk)) = 0.

As Xc ∈ F∗(P ) the second relation in (15) holds. Finally, it remains to show the third relation in
(15). Using the same notation to prove item (i), we have from (11) that

S̄ = lim
k→+∞

S(µk) = lim
k→+∞

(

QT (µk)(−µk(ln(Λ(µk)) + I)Q(µk)
)

. (16)

10



Because Q(µk) is orthogonal for all k, we can assume without loss of generality that limk→+∞ Q(µk) =
Q. Since −µk(ln(Λ(µk)) + I) converges as k goes to +∞, thus we conclude from (14) that

S̄B = lim
k→+∞

S(µk)B = 0, S̄B̃ = lim
k→+∞

S(µk)B̃ � 0.

Hence, from last equation and (16) we have that S̄ � 0. Therefore, the third relation in (15) is
proved and statement (ii) is established.

The Proposition 2.2 extends to semidefinite programming the Proposition 3.1 of Cominetti and
San Mart́ın (1994). Now, we are going to prove the convergence of the primal-dual central path
using result of the theory of semianalytic sets due to Lojasiewicz (1965). It is worth pointing out
that in our proof the key arguments are the same of Halická el at. (2002).

Definition 2.1. A subset W ⊆ IRn is called a semianalytic set if it is described by a finite union
of sets

{x ∈ IRn : f1(x) = 0, . . . , fm(x) = 0, g1(x) > 0, . . . , gl(x) > 0},

where f1, . . . , fm, g1, . . . , gl are real analytic functions.

Lemma 2.1. (Curve selection lemma) Let W ⊆ IRn be a semianalytic set. If 0 ∈ W − W, where
W is the closure of W , then there exists some ε > 0 and a real analytic curve α : [0, ε) → W with
α(0) = 0 and α(t) ∈ W for t ∈ (0, ε).

Proof. See, Lojasiewicz (1965), Proposition 2, page 103.

A particular version of this lemma was used by Kojima et al. (1991) and Halická el at. (2002),
to prove the convergence of the central path, in a different setting. Other applications of this lemma
in mathematical programming can be found in Bolte et al. (2005) and Papa Quiroz and Roberto
Oliveira (2006). This lemma has been used in other contexts, see for example Kurdyka et al. (2000)
and its references. For a more general version of this lemma, see Shiota (1997), property I.2.1.7 on
page 42.

Lemma 2.2. Let f : I → IR be an analytic function such that f(x) = 0 for all x ∈ U , where
U ⊂ I, is a set with a cluster point x0 ∈ I. Then f(x) = 0 for all x ∈ I.

Proof. See, for example, Krantz (1992), Corollary 1.2.6, page 14.

Theorem 2.4. The primal-dual central path converges.

Proof. From Proposition 2.1 and Proposition 2.2 we have that primal-dual central path is bounded.
Take (X∗, y∗, S∗) a cluster point of the primal-dual central path and let {µk} be a sequence of
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positive numbers such that limk→+∞ µk = 0 and limk→+∞(X(µk), y(µk), S(µk)) = (X∗, y∗, S∗).
Let W be a semianalytic set defined by

W =























(X̄, ȳ, S̄, µ) ∈ Sn
++ × IRm × Sn × IR++ :

AX̄ = 0
A∗ȳ + S̄ = 0

(S̄ + S∗) + µ ln(X̄ + X∗) + µI = 0
X̄ + X∗ ≻ 0

µ > 0























.

Note that the zero element belongs to W − W. Indeed, consider the sequence

(X̄k, ȳk, S̄k, µk) := (X(µk) − X∗, y(µk) − y∗, S(µk) − S∗, µk).

Obviously, (X̄k, ȳk, S̄k, µk) ∈ W. Thus, as limk→+∞(X(µk), y(µk), S(µk)) = (X∗, y∗, S∗) we have
that

lim
k→+∞

(X̄k, ȳk, S̄k, µk) = (0n×n, 0m, 0n×n, 0).

So, Lemma 2.1 implies the existence of an ε > 0 and an analytic function α : [0, ε) 7→ W with
α(0) = 0 and α(t) = (X̄(t), ȳ(t), S̄(t), µ(t)) ∈ W for t ∈ (0, ε). Now, since the system that defines
the central path has a unique solution, it easy to see that the system that defines W also has a
unique solution given by

X̄(t) = X(µ(t)) − X∗, ȳ(t) = y(µ(t)) − y∗, S̄(t) = S(µ(t)) − S∗, µ(t) > 0,

for t > 0. As µ(0) = 0, limk→+∞ µk = 0 and limk→+∞(X(µk), y(µk), S(µk)) = (X∗, y∗, S∗) above
equalities imply

lim
t↓0

X(µ(t)) = X∗, lim
t↓0

y(µ(t)) = y∗, lim
t↓0

S(µ(t)) = S∗, lim
t↓0

µ(t) = 0.

Since µ : [0, ε) 7→ IR is a real analytic function satisfying µ(t) > 0 on (0, ε) and µ(0) = 0, we must
have that µ′(0) > 0. Thus, we have two possibilities:

i) µ′(0) > 0;

ii) µ′(0) = 0.

If µ′(0) > 0, there exists an interval (0, δ) where µ′(t) > 0. In this case, µ is increasing which
implies that it is invertible in this interval. Now, if µ′(0) = 0 we claim that there exists an interval
(0, δ) where µ′(t) > 0 . Otherwise, there exists a sequence {tk} in (0, ε) such that limk→∞ tk = 0
and µ′(tk) = 0. As µ is a analytic we obtain from Lemma 2.2 that µ′(t) = 0 for all t ∈ [0, ε) or
equivalently µ is constant in [0, ε). Because, µ(0) = 0 we conclude µ(t) = 0 for all t ∈ [0, ε), but
this is an absurd. So, the claim is established. As a consequence µ is invertible in this interval.
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Therefore, in any of the two possibilities, there exists the inverse function µ−1 : [0, µ(δ)) → [0, δ)
with µ−1(0) = 0. This implies that

lim
s→0+

X(s) = lim
s→0+

X(µ(µ−1(s))) = lim
s→0+

X̄(µ−1(s)) + X∗ = X∗.

Similarly, lims→0+ y(s) = y∗, lims→0+ S(s) = S∗ and the result follows.

Cominetti and San Martin (1994) have obtained the characterization of the limit point of the
primal-dual central path associated to the entropy-exponential penalty in linear programming. The
above theorem guarantees the convergence of the primal-dual central path to SDP. In Theorem 2.3
above the characterization of the limit point is obtained only with respect to primal central path.
The characterization of the limit point for the dual central path is an open problem.

3 Central paths and generalized proximal point methods

In this section we study a generalized proximal point method to solve the problem (P) and present
some convergence results for it. In particular, we are going to prove that the primal and weighed
dual sequences are contained in the primal and dual central paths, respectively. Consequently,
both converge. It is worthwhile to mention that our goal in this section is to bring to semidefinite
programming context the ideas of Iusem et al. (1999) and Iusem and Monteiro (2000).

We begin with the Kullback-Leibler distance D : Sn
++ × Sn

++ → IR given by

D(X, Y ) = X • ln(X) − X • ln(Y ) + trY − trX.

The last function can also be seen as a Bregman distance associated to the entropy barrier ϕ(X) =
X • ln(X) considered in Doljansky and Teboule (1998).

Remark 3.1. For each fixed Y ∈ Sn
++ it is to easy see that D(., Y ) is C2, strictly convex and can

be continuously extended to Sn
+ with the convention 0 ln 0 = 0.

The primal central path to the Problem (P), with respect to the function D(., X0), is the set of
points {X(µ) : µ > 0}, where X(µ) is defined as

X(µ) = argminX∈Sn

++
{C • X + µD(X, X0) : AX = b} , µ > 0. (17)

Theorem 3.1. The following statements hold:

(i) the primal central path with respect to the function D(., X0) is well defined and is in F0(P );

(ii) if X̂ ∈ Sn
+ is the analytic center of F∗(P ), i.e., the unique point satisfying

X̂ = argmin {D(X, X0) : X ∈ F∗(P )} ,

then limµ→0 X(µ) = X̂.
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Proof. (i) and (ii) follow from Remark 3.1 and similar arguments used to prove Theorem 2.1 and
Theorem 2.3, respectively.

The Theorem 3.1 (i) guarantees that the primal central path to the Problem (P), with respect
to the function D(., X0), is well defined and is in F0(P ). So, for all µ > 0, we have from (17) that

C + µ(ln(X(µ) − ln(X0)) = A∗y(µ),

for some y(µ) ∈ IRm.
The dual central path associated to the Problem (P), with respect to the function D(., X0), is

the set of points {S(µ) : µ > 0}, where S(µ) satisfies

S(µ) = −µ(ln(X(µ)) − ln(X0)), µ > 0,

or equivalently, (S(µ), y(µ)) is the unique solution of the optimization problem

max
{

bT y − µ tr e−S/µ+ln(X0) : A∗y + S = C
}

, µ > 0.

The set {(X(µ), y(µ), S(µ)) : µ > 0} denotes the primal-dual central path with respect to the
function D(., X0), and it is the unique solution of the following system of nonlinear equations

AX = b, X ≻ 0,
A∗y + S = C,
S + µ ln(X) − µ ln(X0) = 0, µ > 0.

(18)

Remark 3.2. Similarly to the proof of the Theorem 2.2 we can prove that the primal-dual central
path, with respect to the function D(., X0), is an analytic curve contained in Sn

++ × IRm × Sn.

Theorem 3.2. The primal-dual central path with respect to the function D(., X0) converges.

Proof. The proof follows similar arguments used to prove the Theorem 2.4.

The proximal point method with the generalized distance D, for solving the problem (P ),
generates a sequence {Xk} ⊂ Sn

++ with starting point X0 ∈ F0(P ) and

Xk+1 = arg minX∈Sn

++
{C • X + λkD(X, Xk) : AX = b} , (19)

where the sequence {λk} ⊂ IR++ satisfies

∞
∑

k=0

λk
−1 = +∞. (20)

From now on we refer to the above sequence {Xk} as primal proximal point sequence with respect
to D, associated to {λk} and starting point X0. The Remark 3.1 and a similar argument used
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in the proof of Theorem 2.1 allow to prove the well-definedness of the proximal point sequence.
Moreover, (19) implies that {Xk} satisfies

C + λk (ln(Xk+1) − ln(Xk)) = A∗zk, (21)

for some sequence {zk} in IRm and k = 0, 1, 2, · · · . Also, the optimality condition for (19) determines
the dual sequence {Sk} defined as

Sk = λk(ln(Xk) − ln(Xk+1)), k = 0, 1, 2, .... (22)

From the dual sequence {Sk} we define the weighed dual proximal sequence {S̄k} constructed as

S̄k =

k
∑

j=0

λj
−1µkSj , (23)

where

µk =





k
∑

j=0

λj
−1





−1

,

for k = 0, 1, 2, ....

Theorem 3.3. Let {X(µ) : µ > 0} and {S(µ) : µ > 0} be the primal and dual central paths
associated to D(., X0), respectively. Suppose given a sequence {λk} ⊂ IR++ satisfying (20), and the
sequence {µk} defined as

µk =





k
∑

j=0

λj
−1





−1

, for k = 0, 1, 2 · · · . (24)

Then Xk+1 = X(µk) and S̄k = S(µk) for k = 0, 1, 2 · · · , where {Xk} and {S̄k} are the primal and
weighed dual sequences associated to {λk}, respectively. As a consequence,

lim
k→+∞

(Xk, S̄k) = (X∗, S∗),

where (X∗, S∗) = limµ→0(X(µ), S(µ)).

Proof. Let {Xk } and {Sk} be the primal and dual sequences, respectively. Now, From (19), (21)
and (22) we have that Xk and Sk satisfies

AXk+1 = b, Xk+1 ≻ 0,
A∗zk + Sk = C,
Sk = λk(ln(Xk) − ln(Xk+1)), λk > 0
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for some sequence {zk} in IRm and k = 0, 1, 2, .... From the last equation of the previous system,
it follows that

∑k
j=0(1/λj)Sj = (ln(X0) − ln(Xk+1)). Last expression together with (23) and (24)

imply that
S̄k = −µk(ln(Xk+1) − ln(X0)).

So, it is easy to conclude that Xk and S̄k satisfies

AXk+1 = b, Xk+1 ≻ 0,
A∗ȳk + S̄k = C,
S̄k + µk ln(Xk+1) − µk ln(X0) = 0, µk > 0.

for ȳk = µk
∑k

j=0(1/λj)zj , k = 0, 1, 2, .... So, the previous system and (18) imply that Xk+1 =

X(µk), ȳk = y(µk) and S̄k = S(µk). As {λk} satisfies (20) we have that limk→+∞ µk = 0. Now, use
the fact that limµ→0(X(µ), S(µ)) = (X∗, S∗) to conclude that limk→+∞(Xk, S̄k) = (X∗, S∗), and
the proof is complete.

With similar arguments used in the proof of Theorem 3 of Iusem et al. (1999) we can prove that,
for each positive decreasing sequence {µk}, there exists a sequence {λk} ⊂ IR++ satisfying (20)
such that the primal sequence {Xk} and the weighed dual sequence {S̄k} associated to it satisfy
Xk+1 = X(µk) and S̄k = S(µk), where {X(µ) : µ > 0} and {S(µ) : µ > 0} are the primal and dual
central paths associated to D(., X0), respectively.

4 Final Remarks

In this paper we have studied the convergence of primal and dual central paths associated to the
entropy and exponential functions, respectively, for SDP problems. Cominetti and San Martin
(1994) have investigated the asymptotic behavior of the primal and dual trajectories associated
to the entropy and exponential penalty functions, respectively, in linear program. In particular,
they have obtained a characterization of its limit points. More generally, Iusem and Monteiro
(2000) have given a characterization of the limit of the dual central path associated to a large
class of penalty functions, including exponential penalty function, for linear constrained convex
programming problems. Partial characterizations of the limit point of the central path with respect
to the log-barrier function for semidefinite programming problems have been obtained by Sporre
and Forsgren (2002), Halická et al. (2005) and da Cruz Neto et al. (2005). For more general
functions, including the exponential penalty function, the characterization of the limit point of the
dual central path associated to them is an open problem.

As an application of study of primal and dual central paths we have shown the convergence
of the primal and weighed dual proximal sequences associated to the Kullback-Leibler distance,
in SDP. This is a natural extension of the result obtained by Iusem et al. (1999) and Iusem and
Monteiro (2000), respectively, in linear program. Although we have obtained the convergence of
the weighed dual sequence, the full convergence of the dual proximal sequence is an open problem.
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5 Appendix

Let f : (0,+∞) → IR a analytical function having the following expansion by power series

f(x) =

∞
∑

i=0

ai x
i. (25)

So, we define the function of matrix ϕ : Sn
++ → IR as follows ϕ(X) = tr f(X), or equivalently,

ϕ(X) =

∞
∑

i=0

ai trXi. (26)

Therefore, the gradient of ϕ is given by ∇ϕ(X) = f ′(X), i. e.,

∇ϕ(X) =

∞
∑

i=1

ai ∇ trXi =

∞
∑

i=1

i ai Xi
i−1. (27)

Indeed, as X is a symmetric matrix it easy to see that ∇ trXi = iXi−1, for all i = 0, 1, 2, . . ..
Hence, because ϕ is an analytical function, taking derivative in (26) we conclude that (27) holds.

Letting f(x) = x ln(x), in this case, ϕ(X) = X • ln(X) and we obtain that

∇ϕ(X) = ln(X) + I.

Let X, Y ∈ Sn
++ with X 6= Y . Using last equality we have, after simples manipulation, that

ϕ(X) − ϕ(Y ) −∇ϕ(Y ) • (X − Y ) = X • ln(X) − X • ln(Y ) + I • Y − I • X. (28)

On the other hand, as X, Y ∈ Sn
++, there exist Q and R orthonormal matrices and Λ = diag(λ1, . . . , λn),

Ω = diag(ω1, . . . , ωn) diagonal matrices, satisfying λ1 ≥ ... ≥ λn and ω1 ≥ ... ≥ ωn, such that

X = QT ΛQ, Y = RT ΩR. (29)

Hence, Lemma 1.1 implies that X • ln(Y ) ≤
∑n

i=1 λi ln(ωi). Thus, it follows from (28) and (29)
that

ϕ(X) − ϕ(Y ) −∇ϕ(Y ) • (X − Y ) ≥
n

∑

i=1

λi ln(λi) −
n

∑

i=1

λi ln(ωi) +
n

∑

i=1

ωi −
n

∑

i=1

λi.

Now, let h : IRn
++ → IRn the entropy function h(x1, . . . , xn) =

∑n
i=1 xi ln(xi). As h is strictly

convex, gradient inequality gives

0 < h(λ) − h(ω) −∇h(ω) • (λ − ω) =
n

∑

i=1

λi ln(λi) −
n

∑

i=1

λi ln(ωi) +
n

∑

i=1

ωi −
n

∑

i=1

λi,

where λ = (λ1, . . . , λn) and ω = (ω1, . . . , ωn). So, combining two above equation we conclude that

ϕ(X) > ϕ(Y ) + ∇ϕ(Y ) • (X − Y ), X, Y ∈ Sn
++, X 6= Y.

and therefore we have that ϕ is strictly convex.
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