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In this paper, we analyze the exponential method of multipliers for convex constrained minimization 

problems, which operates like the usual Augmented Lagrangian method, except that it uses an exponential 

penalty function in place of the usual quadratic. We also analyze a dual counterpart, the entropy 
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1. Introduction 

Let f : ~  n ~ (-oc, oe] and g~ :En ~ (-0% oc],j = 1 , . . . ,  m, be closed, proper, convex 

functions in En, the n-dimensional Euclidean space. Consider the following convex 

program associated with f and the g/s: 

(p) minimize f(x) 

subject to gj(x)<~O, j=l , . . . ,m.  (1.1) 

We make the following standing assumption about (P): 

Assumption A. (a) The optimal solution set for (P) is nonempty and bounded. 

(b) The effective domain off ,  that is, the set {xlf(x)<~} is contained in the 

effective domain {x I gj (x) < ~ ) of each gj. Furthermore, the relative interior of the 

effective domain of f is contained in the relative interior of the effective domain of 

each gj. 
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(c) There exists a vector ~ in the relative interior of the effective domain of f, 

which satisfies & ( 2 ) <  0 for all non-affine &. 

The boundedness assumption in part (a) of Assumption A will be needed to 

ensure that our method is well-defined. Part (b) of Assumption A is satisfied in 

particular if all the constraint functions are real-valued. Parts (b) and (c) of Assump- 

tion A are constraint qualification conditions, which are needed to guarantee the 

existence of a Kuhn-Tucker vector for the problem (see [25, p. 277]). 

We now describe the exponential multiplier method proposed by Kort and 

Bertsekas [ 15 ] for solving problem (P) (see also [ 5, Section 5.1.2 ] ). Let ~: ~ - ,  ~ be 

the exponential penalty function given by 

O(t) = e ' -  1. (1.2) 

We associate a multiplier /xj > 0 with the j th  constraint. The method performs a 

sequence of unconstrained minimizations, and iterates on the multipliers at the end 

of each minimization. At the kth iteration ( k ~ 0 )  we are given positive /x k, 

j = 1, . . . ,  m (with the ini t ial /x°, j  = 1 , . . . ,  m, chosen arbitrarily); we compute x k as 

xkc a r g m i n /  m k } f ( x ) +  Y, ~ ~b(c~&(x)) , (1.3) 
x ~ '  ~. j = l  Cj 

where each c~ is a positive penalty parameter, and then we update the multipliers 

according to 

k + l  . ,  (1.4) = e , ,  , j = l , . ,  m. 

Notice that for a fixed /z~> 0, as c~-+ o% the "penalty" term ( la . ) /c) )~(c)gj (x) )  

tends to oo for all infeasible x (&(x)> 0) and to zero for all feasible x (gj(x)<~ 0). 

On the other hand, for a fixed c), as / , ) -+  0 (which is expected to occur if the j th  

constraint is inactive at the optimum), the penalty term goes to zero for all x, feasible 

or infeasible. This is contrary to what happens in usual exterior penalty methods 

[11, 17], and for this reason, much of the standard analysis for exterior penalty and 

multiplier methods cannot be applied to the exponential method of multipliers. 

It can be shown that the minimum in (1.3) is attained for all k (see [5, p. 337]). 

For a brief justification, note that if this minimum were not attained, then f 

and the functions ga would share a direction of recession, in which case the 

optimal solution set of (P) is unbounded (see [25, Section 8]), thus contradicting 

Assumption A. 

We will consider two rules for choosing the penalty parameters e). In the first 

rule, which is common in muliplier methods, the c~'s are independent o f j  and are 

bounded from below, that is, 

c~=w k Vk, (1.5a) 

where {~o k} is some sequence of positive scalars satisfying 

w k >1 (h Vk, (1.5b) 
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with o3 a fixed positive scalar. Note that with this rule, we can still provide for 

different penalization of different constraints, by multiplying the constraints with 

different scaling constants at the start of the computation. 

In the second rule, the penalty parameters depend on the current values of the 

multipliers, becoming larger as these multipliers become smaller; for inactive con- 

straints for which the associated multipliers tend to zero, the corresponding penalty 

parameters tend to infinity. In particular, each c~ is set inversely proportional to 

/z~, that is, 

cf = c/Ix~ Vj, (1.6) 

where c is a fixed positive constant. The second rule is interesting because for linear 

programs, it leads to a superlinear rate of convergence, even though the penalty 

parameters corresponding to active constraints with positive multipliers remain 

bounded. 

The principal motivation for the exponential method of multipliers is that in 

contrast with the usual quadratic Augmented Lagrangian function for inequality 

constraints [26], the minimized function in (1.3) is twice differentiable if the functions 

f and gj are. As a result, Newton-type methods can be used for the corresponding 

unconstrained minimization more effectively, and with guaranteed superlinear con- 

vergence. This is not just a theoretical advantage; in the experience of the second 

author, serious difficulties arise with Newton's method when the usual quadratic 

Augmented Lagrangian method is used to solve linear programs [4]. By contrast, 

the exponential multiplier method has been used to solve fast and with consistency 

very large linear programs arising in production scheduling of power systems [ 1, 16]; 

simplex methods as well as the more recent interior point methods are unsuitable 

for the solution of these problems. 

Some aspects of the convergence analysis of the exponential multiplier method 

have proved surprisingly difficult, even though the method has been known to be 

reliable in practice [1]. For nonconvex problems under second order sufficiency 

conditions, convergence can be analyzed using fairly standard techniques; see [22]. 

However, for convex problems, the sharpest result available so far, due to Kort and 

Bertsekas, and given in [5, p. 336], assumes (in addition to Assumption A) a mild 

but fairly complicated and hard to verify assumption, and asserts that when the 

penalty parameters c{' j are selected according to the first rule (1.5), all cluster points 

of {/z k} are optimal solutions of an associated dual problem. One of the contributions 

of the present paper, is to show using an unusual proof technique, that the entire 

sequence {k~ k} converges to an optimal solution of the dual problem, without 

assuming the complex assumption of [5]. The corresponding sequence {x k} is shown 

to approach optimality in an ergodic sense. As an indication of the difficulty of the 

analysis, we note that we have been unable to show a corresponding result when 

c~ is selected according to the second rule (1.6), even though the method in practice 

seems equally reliable with the rule ( 1.5 ) or ( 1.6 ). 
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A second contribution of the present paper is the analysis of the convergence 

rate of the exponential method of multipliers as applied to linear programs. The 

usual quadratic Augmented Lagrangian method converges in a finite number of 

iterations for linear programs, as shown independently by Poljak and Tretjakov 

[23], and Bertsekas [3] (see also [5, Section 5.4]). This is not true for the exponential 

method of multipliers, but we show that the rate of convergence is linear for the 

penalty parameter selection rule (1.5a), and quadratic for the rule (1.6). 

It has been shown by Rockafellar [27] that when the quadratic Augmented 

Lagrangian method is dualized using the Fenchel duality theorem, one obtains the 

proximal minimization algorithm of Martinet [21], which is a special case of the 

proximal point algorithm of Rockafellar [28]. By similarly dualizing the exponential 

method of  multipliers one obtains a method, called entropy minimization algorithm, 

which involves a logarithmic/entropy "proximal"  term; see Section 2. The entropy 

minimization algorithm is mathematically equivalent to the exponential method of 

multipliers, so it is covered by our convergence results. This equivalence is also 

used in a substantial way in our analysis similar to several past works, which have 

studied nonquadratic versions of Augmented Lagrangian, proximal minimization, 

and proximal point algorithms [5, 12, 15, 18, 19]. 

Several recent works have also drawn attention to nonquadratic proximal point 

algorithms and the entropy minimization algorithm in particular. In particular, 

Censor and Zenios [7], have proposed a broad class of algorithms generalizing the 

proximal minimization algorithm by using Bregman functions. Eckstein [10] has 

generalized in an analogous manner the proximal point algorithm; see also [13]. 

None of these works provides a convergence or rate of convergence result 

for the exponential method of multipliers or its equivalent entropy minimization 

algorithm, although some of the analysis of [7] and [10] was helpful to us (see 

Section 3). 1 

Regarding notation, all our vectors are column vectors, and superscript "T"  

denotes transposition. For a function h :Rn ~-~ N, we denote by Vh(x) and oh(x) 

the gradient and the subdifferential of h at the vector x, respectively. For any set S 

and any positive integer m, we denote by S"  the m-fold Cartesian product of S 

with itself. 

2. The entropy minimization algorithm 

In this section we focus on the dual interpretation of the exponential mutiplier 

method (1.3)-(1.4), as worked out in [5, pp. 315-327]. Let d : [0, oc) m -~ [ -ec ,  oo) be 

While this paper was under review, convergence results for the dual sequence {ix k }, which are similar 
to ours have been obtained by Censor and Zenios in a revision of their paper [7], and by Chen and 
Teboulle [8] by using different methods of analysis. These works have not considered rate of convergence 
issues or the convergence of the primal sequence {xk}. 
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the dual functional associated with (P) given by 

d(~)  = min I~jgj(x) . (2.1) 
x c ~ "  1 

The function d is closed, proper, and concave under Assumption A, and is the cost 

function of the dual problem of (P), given by 

(D) maximize d(~)  

subject to ~/>0. 

The weak duality theorem, asserts that the value d(/~) of any dual feasible vector 

is less than or equal to the cost f (x)  of any primal feasible vector x. Assumption 

A implies that there is no duality gap, that is, the optimal value of (D) is equal to 

f*, the optimal cost of (P); furthermore, there exists a dual optimal solution (see 

[25, Theorem 28.2]). 

The exponential method of multipliers (1.3) and (1.4) may be viewed alternatively 

as the following algorithm for solving the dual problem (D): 

"k+' = arg max/d(/~)-,>o ~ j=l~ ~--~-~ ~* (~.k) } ¢ '  , (2.2) 

where 4~* denotes the conjugate function of ~, which is the entropy function 

O*(s) = s ln(s) - s + 1. (2.3) 

It can be shown that the maximum is uniquely attained in (2.2) by using the strict 

convexity and differentiability of 0", and the fact lims~o Vq~*(s)= ~.  

One way to show the equivalence of the two methods is to use the Fenchel duality 

theorem. For a direct derivation, notice that, by definition, x k satisfies the Kuhn- 

Tucker optimality conditions for the minimization in ( 1.3 ), so 

Oc Of(xk)+ ~ I~Vt~(ckgj(xk))ogj(xk). 
j=l 

(This equation can be justified by using Assumption A; see the subgradient calculus 

developed in [25, Section 23].) Then, from the multiplier update formula (1.4), we 

obtain 

OcOf(xk)+ ~ I~k+'ogj(xk), 
j=l 

implying that x k attains the minimum in the dual function definition (2.1), with/~ 

set to/z k+l. Hence, 

d(I ~k+') =f(xk)+ ~ I-Lk+'gj(xk). (2.4) 
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Fur thermore ,  using the calculat ion 

d ( / x ) = m i n  x ) +  F, b~j&(x 
x c N  ~ j = l  

m 

<~f(xk) + E mgj(x k) 
j = l  

,.;+,g,(xk)+ 
j = l  j = l  

=d(~k+~)+ ~. (~j-~)+')gj(x '<) V ~ R ' ,  
j =  1 

we have 

I gl(xk) ] 
i eOd(~k+'). 

g~(x k) 

Also, f rom (1.4) and (2.3), it is seen that  

gs(x k) = ln(/x~+l//x~) = VO (tx s / t z s )  
J .i 

C o m b i n i n g  this with (2 .5)  yields 

* k + l  k k v4, (~, /~)/c, 
O<Od( t zk+~)_  • , 

~7 ~ k + l  k k 
4~ O* m / F, ~ ) / c m 

vj. 

(2.5) 

which is precisely the K u h n - T u c k e r  opt imal i ty  condi t ion for  /z k+~ to attain the 

m a x i m u m  in (2.2). 

We now derive some proper t ies  of  the en t ropy  funct ion that  will prove  useful in 

our  analysis.  Let q : [0, oo) x (0, oo) -~ E be the funct ion given by 

q(u ,  v) = u l n ( u /  v)  - u + v. (2.6) 

Then by using the fo rmula  O*(s)  = s in(s)  - s + 1 (cf. (2.3)), we have 

q(u ,  v ) =  q l * ( u / v ) v  

and the en t ropy  minimiza t ion  algori thm (2.2) can be rewrit ten as 

~ = arg max  - - -  q(/xj, tx~) • (2.7) 
/ x>0  j = l  C )  

The fol lowing l emma  gives some useful proper t ies  of  the funct ion q. 

Lemma 2.1. 

(a) q ( u , v ) = O * ( u ) - O * ( v ) - V O * ( v ) ( u - v )  Vu~>0, V v > 0 .  (2.8) 

(b) q is nonnegat ive  and  q(u ,  v)  = 0  i f  and  only i f  u = v. 
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(c) For any a >1 0 and any sequence o f  positive scalars {uk},q(a, u k) -~ 0 i f  and only 

i f  uk--> bl. 

(d) For any gt ~ O, the funct ion v ~ q(a, v) has bounded level sets. 

Proof. (a) Using the definitions of 6"  and q (cf. (2.3) and (2.6)), we have 

~ * ( u )  - 4~* (v )  - v ~ * ( v ) ( u  - v )  

= u ln(u) - u + 1 - (v In(v) - v + 1) - l n ( v ) ( u  - v) 

= u l n ( u ) - u + v - u  ln(v) 

= u l n ( u / v ) - u + v  

= ( ( u / v )  l n ( u / v ) -  ( u / v ) +  1)v = q(u, v). 

(b) Use part (a) and the strict convexity of 6"  (cf. (2.3)). 

(c) From (2.6), we have 

q(a, v) = a In(a) - a ln(v) - a + v Vv > 0. (2.9) 

There are two cases to consider. If 5 = 0, then (2.9) gives q(a, v )=  v, so the claim 

follows immediately. If  a >  0, then (2.9) shows that the function v ~  q(a, v) is 

continuous at a. The result follows from this continuity property, by using also part 

(b) to assert that q(a, v) = 0 if and only if v = a. 

(d) If v ~ 00, then v, the last term in the right-hand side of (2.9), dominates (since 

the other terms in the right-hand side of (2.9) either remain constant or grow 

logarithmically in v), so v is bounded from above whenever the left-hand side of 

(2.9) is bounded from above. 

Let D : [0, oo)m X (0, CO) rn --) [0, 00) be the function given by 

D(A,/z) = ~ q(Aj, m). (2.10) 
j--1 

The following lemma is due to Bregman [6], and asserts that D has properties of 

a distance function, much like those enjoyed by the Euclidean distance function. 

The proof  is included for completeness. 

Lemma 2.2. (a) D is nonnegative. 

(b) For any f i xed  ~ c [0, 00) m and any sequence {A k} ~ (0, 00) m, D(d~, A k) ~ 0 i f  and 

only i f  2k--~fZ. 

(C) For any f i xed  t2 c [0, oo) m, the function I~ ~ D ( ~ ,  Ix) has bounded level sets. 

(d) Let  M be any dosed  convex subset o f  [0, co) m having a nonempty intersection 

with (0, oo) m. Then, for  any /2  ~ M and any ~ ~ (0, oo) ~, we have 

D(~,/~ ' )  <~ D(/2,/z),  

where # ' =  arg minA~MD(h, Ix). 

Proof. Parts (a) to (c) follow readily from the definition (2.10) of D and parts (b) 

to (d) of  Lemma 2.1, respectively. 



D(A, IX) = h(3,) - h(ix) - V h ( I X ) T ( A  - IX), 

where h is the function 

rn 

h(ix)= Y O*(m)* 
j = l  

Since Vy/* exists on (0, oo ), we see from (2.11 ) and the definition ofh  that V~D(. ,#) 

(the partial derivative of D with respect to its first m arguments), exists on (0, co) m. 

Since M intersects (0, oo) 'n and bt' minimizes D(A, IX) over all A ~ M, we see from 

the properties of D t h a t / x ' > 0 ,  so VxD(IX', IX) exists and 

VAD(/x', IX)T(A --/x') >~ 0 VA~M. 

Substituting fi for 2 in the above relation, we obtain 

V~D(IX' ,  IX)T(~ -- IX') ~ 0, 

so (2.11) yields 

( v  h ( ~ ' )  - Vh( IX) )T(~  _ IX,)/> 0 

or, equivalently, 

- Vh(IX')T(~ -- IX') ~ -- Vh (IX)T(/~ -- IX) + Vh (IX)T(IX ' -  IX). 

Adding h0 / )  - h0x') to the left-hand side, and adding h ( f i )  - h ( ix )  + h(l~) - h(ix') 

to the right-hand side of the above relation, and then collecting terms using (2.11), 

we obtain 

D(12, Ix') <~ D ( f i ,  IX) - D(IX' ,  IX). 

Since the last term above is nonnegative by part (a), we obtain D(12, IX')<~ 

D(fi,/x). [] 
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To prove part (d), note that from the form (2.10) of D and Lemma 2.1(a), we have 

(2.11) 

3. Convergence analysis 

Let {x k} and {ix k} be the primal and dual sequences generated by the exponential 

method of multipliers (1.3) and (1.4) with the penalty parameters being equal for 

all constraints and bounded away from zero (cf. (1.5a)-(1.5b)). We prove in this 

section that {ixk} converges to an optimal solution of (D) (see Proposition 3.1). 

3.1. Convergence  o f  mult ipl iers 

Since {ixg} is equivalently given by (2.7), we have from (1.5a) that 

k+, q (IX~, Ixy) IX = a r gmax  d ( i x ) -  1 
/x~>0 ~--~j  1 

(3.1) 
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where D is the function defined by (2.10) and q is defined by (2.6). From (3.1), the 

nonnegativity of q, and the fact q(p~, p~) -- 0 (cf. Lemma 2.1(b)), it follows that 

d(k+~)~d( t z k+l )  - 1 ~ q ( l~+~, f f~ )~d(  k), (3.2) 
O) j =  l 

so {d(/~k)} is a monotonically nondecreasing sequence. Since {d(/zk)} is also 

bounded from above by the optimal primal value f* (by the weak duality theorem), 

we see that the limit 

d ° =  lira d(/z k) 

exists and is at most f*. Let 

M ° ° =  {t.~ E [ O, oo)" l d(i.~ ) >~ d°°}. (3.3) 

Note that M ~ is nonempty since d~°<~f * and as mentioned earlier, there exists an 

optimal dual solution under Assumption A. 

Part (a) of the following lemma is due to Censor and Zenios [73, and says that 

the "distance", measured in terms of the function D, from k to any element of 

M ~ is monotonically nonincreasing. From this, we can deduce convergence of the 

multipliers to a unique limit as pointed out by Eckstein [10]. The proof of these 

results is patterned after the one given in [2, p. 241], on the convergence of the 

proximal minimization algorithm, but with the quadratic "proximal" term therein 

replaced by D. 

Lemma 3.1. (a) For any fi c M ~, the sequence {D(fi,/zk)} is monotonically nonin- 

creasing. 

(b) {/k} converges to a limit. 

Proof. (a) From (3.1) we have 

d( /~k* l )  - l~ -D(p ,k+ ' , /~k)~>d( / .~) -  l~D(p~,/~k) V~>~0. 
6O 6O 

Hence, for all tz/> 0 with d(~) /> d(tzk+~), there holds D(ff  k+I, i~ k) ~ D(l~, t-~k), so 

that 

k-F1 
= arg rain D( /~ , /k) ,  

I ~ c M  k 

where M k is the set 

M k = {/~/> 01 d(/z )/> d(/zk+~)}. 

Since ~k+~e M k, M k makes a nonempty intersection with (0, oo) m. Any fi, in M °o 

is clearly in M k, so from Lemma 2.2(d), we obtain that 

D(lY, l~k+~)~ D(fi,  lzk ). 
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(b) For any optimal solution t2 of (D),  {D(fi,/zk)} is bounded by part (a), so 

Lemma 2.2(c) implies that {/x k} is bounded. Let tx ~ be the limit of a subsequence 

{txk}~, so by the upper semicontinuity of d, t x ~  Moo. Using /z °o in place of /2  in 

part (a), we obtain that {D(tx °°,/xk)} is monotonically decreasing. By Lemma 2.2(b), 

{D(tzoo, tXk)}K tends to zero, so the entire sequence {D(/x ~,/xk)} must converge to 

zero. Hence, by Lemma 2.2(b), /xk~/x ~. [] 

3.2. Convergence to optimality 

We now show that the limit to which {#k} converges (cf. Lemma 3.1 ) is indeed an 

optimal dual solution. We remark that the standard convergence proof for multiplier 

methods does not apply here, owing to the ill behaviour of V 0 * ( s ) = l n ( s )  at the 

boundary point of its domain. Instead, we employ a novel proof  technique, showing 

that the primal sequence {x k} approaches the primal feasible set in an ergodic sense 

(see Lemma 3.3). This enables us to establish convergence of the multiplier sequence 

{/x k} to an optimal dual solution in Proposition 3.1. 

We begin our proof with the following lemma stating certain properties of the 

sequences {x k} and {/xk}. This lemma is based on the proof of a proposition from 

[5] (see p. 336 therein), and in fact holds for more general multiplier iterations. 

The proof of the lemma makes use of the boundedness of {ix k} shown in Lemma 

3.1(b), as well as certain properties of the exponential function 0 and the multiplier 

iteration (1.3)-(1.4). 

Lemma 3.2. (a) d(/xk) ~ < d(lxk+l)<~f * for all k. 
(b) For all j, tx~ql(wkgj(xk))/w k -- Iz~gj(x k) ~ O. 

(C) For all j, ix~g~(x k) ~ O. 

(d) d(Ixk)-f(xk)-->O. 

Proof. (a) This was shown earlier; cf. (3.2). 

(b) Let L denote the Lagrangian 

L(x, tx) = f ( x )  + ~ I~jgj(x), 
j=l 

and let L~o denote the Augmented Lagrangian 

L~o(x, I x) = f ( x ) +  1 ~ IxjtO(wg)(x)). 
(/) j = l  

Then, we have 

d(fk) ~L(xk, #k) <~Lo)k(x k, #k) <~d(#~+x ), (3.4) 

where the first inequality follows from the observation d(ixk)=minxL(x,  ix k) 

(cf. (2.1)), the second inequality follows from the observation t<-O(t) for 

all t (cf. (1.2)), the third inequality follows from d(i ~k+l) = 

f(xk)+Y~jm~ tx~VO(~okg~(x~))gj(x k) (cf. (1.4), (1.5a), and (2.4)) and the observation 
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O( t) <~ VO( t)t  for all t (cf. (1.2)). Hence Lo?(x k, l~ k) - L ( x  k, # k ) ~  O, which together 

with the fact O(tokgj(xk))/to k >I gj(x k) for al l j  (cf. t ~< 0(t)  for all t) implies our claim. 

(c) By (3.4), we have d ( l ~ k + l ) - L ( x  k, p,k)-+ 0, SO the formulas for d(/~ k+l) and 
rn 

L(x  k, k )  given in the proof of part (b) yield ~j=l FZ~gj(xk)(vcJ(tokgj(xk))- 1)-->0. 

We have t<~VO(t)t  for all t, so every term inside the preceding summation is 

nonnegative, and we obtain that, for each j, 

I.*kgj( xk ) ( v  tp( tokgj( xk) ) -- 1)~ 0. 

Fix any j. It is readily seen from the properties of 0 (cf. (1.2)) that V 0 ( t ) -  1 = 0 if 

and only if t = 0. Therefore, if there existed a subsequence K c {0, 1, . . .  ) and an 

e > 0 such that 

Iix~gj(xk)l>~ e V k c  K, (3.5) 

then {VO(tokgj(xk))}K-~ 1 and {tokgi(Xk)}K-->0. Since (o k is bounded away from 

zero (cf. (1.5b)), it follows that {gj(xk)}x ~ 0 ,  and from (3.5), {[/~jkl}K ~eC. This 

contradicts the fact that/z~ converges (cf. Lemma 3.1(b)). Hence ix~g~(x k) ~ O. 

(d) By (3.4), d(~t ~) --L(xk,#k) ~0 .  Since, by part (c), L(xk,Ctk)- f (xk)  -,0, it fol- 

lows that d(/2 k ) - f ( X k ) ~ O .  [] 

For each k, we define yk to be the following weighted average (i.e. linear convex 

combination) of Xk, . . . ,  X°: 

yk tokXk +" " "+to°x° 
- ( 3 . 6 )  

tok + . . . + too 

If {yk} converges, then {x k} is said to converge ergodieally. We have the following 

key lemma, which says that {yk} approaches the primal feasible set. 

Lemma 3.3 (ergodic feasibility). For j = 1 , . . . ,  m, we have 

lira sup gj(Yk) <~ O. 
k ~ o c  

Proof. Since each gj is convex, it suffices to show (cf. (3.6)) that 

t okg j ( xk )+ ' ' '+ to°g j (x° )  ~O, j = l , . . . , m .  
lim sup k 0 

k ~  to + ' ' ' + t o  

We will argue by contradiction. If the above relation does not hold, then there 

would exist some j c  {1 , . . . ,  m}, a scalar 0 > 0, and a subsequence K of {0, 1 , . . .  } 

such that 

7k>~o V k ~ K ,  

where we denote 

y k _ w kgj( xk) + " " " + toOgj( x°) 
k 0 to + . . . + t o  
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~'£jk+l .~- iZ ) eO~%(x ~ ) =_ tzJ° eW%(x~)+ ' +'°°g*(x°) : /z j° e(~Ok+...+wo)~, k 

o e(k+l)o,o >~ ~j Vk  c K, 

(cf. (1.2), (1.4), (1.5)). Hence, {/,~+I}K-~ O0, a contradiction of Lemma 3.1(b). [] 

By combining Lemma 3.1(b), Lemma 3.2(a), Lemma 3.2(d), and Lemma 3.3, we 

can establish the main result of this section. 

Proposition 3.1. Let {/z k} be a sequence generated by the exponential multiplier method 

(1.3) and (1.4) with the penalty parameters chosen according to the rule (1.5a)-(1.5b). 

Then {/k} converges to an optimal dual solution. Furthermore, the sequence {yk} of 

(3.6) is bounded and each of  its cluster points is an optimal primal solution. 

Proof. By Lemma 3.1(b), {/x k} converges to some limit, say iz ~. Since f is convex, 

we have from (3.6) that 

f ( yk )  < 09kf( xk ) + " "  + 09°f(x°) 
k 0 Vk, 

to + . . . + 0 9  

so it follows from parts (a) and (d) of Lemma 3.2 that 

lira sup f ( y  k) ~< lira d(/x k) ~<f*. (3.7) 

Since the optimal solution set of (P) is bounded (cf. Assumption A(a)), f and the 

gj's do not share a direction of recession, so the above relation together with Lemma 

3.3 implies that {yk} lies in a compact set. Let y~ be any cluster point of {yk}. Since 

f and the gj's are closed, the above relation together with Lemma 3.3 yield 

f (y~)<-f* ,  gj(y~)<~O, j = l , . . . , m .  

Since f*  is the optimal cost of (P), it follows that y~ is an optimal solution of (P) 

and 

f ( y~)  =f* .  (3.8) 

The lower semicontinuity o f f  implies that f (y~)<, lim s u p k ~ f ( y k ) ,  and (3.7) and 

(3.8) yield l i m k ~  d(tx k) =f* .  Hence using the upper sernicontinuity of d, we obtain 

that d(/~ ~) >~f*. By weak duality, it follows that d(/~ ~) = f* .  [] 

4. Rate of convergence analysis for linear programs 

In this section we consider a special case where (P) is a linear program. In particular, 

we assume that f is the polyhedral function 

f ( x ) = { ~ x  i f x c X ,  (4.1) 
otherwise, 
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were b is a vector in ~n, X is a polyhedral set in Bq n, and &, j =  1 ..... m, are affine 

functions, i.e., 

• = a - ATx, (4.2) 

gin(x) 

with A an m × n matrix and a a vector in W". We will exploit the affine structure 

of the problem in analyzing the corresponding rate of convergence of the exponential 

multiplier method. 

The dual functional d given by (2.1), is a concave polyhedral function• In the 

special case where X = R", d has the form 

d( /~)=J 'a t /~  if A l ~ = b  and/ ,~>0,  
(4•3) [-oo otherwise, 

and the corresponding dual problem is the classical linear program in standard 

form (see [9, 17]). We will need the following two technical lemmas for our analysis• 

The first gives a power series expansion of the "proximal"  entropy term q: 

Lemma 4.1. For any u e [0, oo) and any v c (0, oo), there holds 

1 ( u - v )  2 1 ( u - v ) 3 +  1 ( u - v )  4 

q ( u , v )  2 v 6 (v) 2 12 (v) 3 + 

(--1) k+l (U - -  V )  k + l  
q - - -  + . . . .  

k ( k + l )  (v) k 

Proof. From (2.6), we have q(u, v) = u(ln(u) - l n ( v ) )  - u + v. Replacing u(ln(u) - 1) 

by its Taylor series expansion around v (which can be seen to be absolutely 

convergent over the interval [0, 2v]), and collecting terms, the result follows. [] 

The second lemma will be used to relate the 11 distance of the dual iterates from 

the optimal dual solution set with the corresponding dual function values. This 

lemma depends on the affine structure of the problem. The proof  is given in the 

Appendix. 

Lemma 4.2. Let {A k} be a sequence o f  dual feasible vectors (i.e., d(A k) > -oo) that 

converges to some point A ~, and is such that d(A k) ~< d(A °~) for  all k. For each k, let 

£k be an element o f  the set 

M~° = {A c [0, oo)m J d(A) = d(A°°)} 

satisfying 

oo kl<~lAo~_Akl for  al l j} ,  (4.4) ,(ke a rgmin{ l lA-ak l l , [ a  e M  , l a j - a j  

where " IJl is the usual Ii norm in R". (Notice that there exists at least one minimizing 

vector £k in (4.4).) Then, there exists a scalar C1 > 0 and an integer k such that 

C, Ilak--Zkll,<~d(Yk)--d(ak) V k > k .  
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4.1. Linear and superlinear convergence 

The following proposition derives the convergence rate of the method for the case 

where the penalty parameter is the same for all constraints: 

Proposition 4.1. Let {l~ k} be a sequence generated by the exponential multiplier method 

(1.3) and (1.4) with the penalty parameters chosen according to (1.5a) and (1.5b). 

Then, {/k} converges to an optimal dual solution at least linearly. I f  in addition the 

penalty parameters tend to o0, then {pk} converges superlinearly. 

Proof. Let M denote the set of optimal dual solutions. Then, by Proposition 3.1, 

there exists a p ~ e  _M such that tz /~ . For each k, let fik be an element of _M 

satisfying 

- k  ~ k 
tz e a r g m i n { l [ ~ - ~ k I F l l ~ c M ,  Im-~ f l<~ l~ j  - ~ j l  for all j}. (4.5) 

Then by Lemma 4.2, there exists a scalar C1 and an integer/~ such that 

C, II~k-~klll~d(lik)-d(I ~k) Vk>~Fc (4.6) 

S i n c e / k  _, ~ a n d / k  > 0 for all k, there exists an integer k~ ~/~ such that 

/zj 

- k  k < :  co k 
which together with the relation ~j - /~j  ~ /zj - ~ j  for all j (cf. (4.5)), implies 

- k  k 

k 

P-j 

Fix any k>~kl and any o~ [0,1 ]. Then the above relation, together with Lemma 

4.1, yields 

q(/z~ + -k k ), 

[ , ] 
2 - k  k 1 1 1 ) 

21 - k  kl 

where we let C~=~+g+~+t  ~ . .  .. We then have from the nonnegativity of D (cf. 

Lemma 2.2(a)) and (3.1)-(3.2) that 

d(/  ~+,) ~ d(/zk+l) __ 1 ~ q(p,~+,,/x~) 
O9 j = l  

(.0 j = l  

2 m 
O/ 

~> d ( ~ "  + ~ ( ~ -  ~ ) )  - C = ~  Z I~j-~ - ~j" I 
0.) j = l  

2 

= d(/z ~ + a (/2 ~ - /x~))  - C= a 11/2 ~ _ #~ [I,, 
O9 k 
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so (4.6) yields, using also the concavity of d, 

k C2 0'2 
d(tzk+') >~ d(lxk + ce(12k -- tz ) ) + ~  -~# ( d(I-~k) - d(fik) ) 

C2 °12 k 
= ( l - a )  d(tzk)+ o~ d(t2k)+--~-~ (d(tz )--d(fik)) 

=d(~k) -  ~ C, (d("~)-d(g~))" 

Since fik ~ ~ ,  we have d(fi k) =f* ,  which in turn implies that 

C2 a~\ 
d(/zk+l) --f* ~ 

C, w ) / (d(lzk)-f*)" 1 - a  +------# 

We can choose a anywhere in [0, 1], so we let 

f G k~ 
°~=min t l , ~  w ~, 

yielding 

15 

d ( t z k + ' ) - f * > ~ t l - m i n t l , ~ z w  ~ - m i n  (/ k ) _ f , ) .  

(4.7) 

Since the above relation holds for all k/> kl, and by (1.5b), {w k} is bounded away 

from zero, it follows that {d (/~ k)} converges at least linearly to f*. (4.6) then implies 

that {/k} approaches M at the rate of a geometric progression. If  ~o k ~ ,  then 

min{1,(C1/2C2)oJk}~ 1 and min{C2/(Clwk),½}~O, so (4.7) yields 

d(/~ k+') - f *  
-> O, 

d(~ k) -f* 

implying that {d(/zk)} converges to f*  superlinearly. It follows from (4.6) that {/z k} 

also approaches 3~ superlinearly. [] 

4.2. Quadratic convergence 

In this subsection we consider the exponential multiplier method with the penalty 

parameters chosen dynamically according to the rule (1.6). Although we do not 

have a convergence proof for this version of the method, in practice convergence 

seems to occur always. An important advantage of this version of the method is 

that locally it attains a quadratic rate of convergence without requiring the penalty 

parameters to tend to oo. We state this result below. Its proof, based on Lemmas 

4.1 and 4.2, is very similar to that of Proposition 4.1. 
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Proposition 4.2. Let {Ix k} be a sequence generated by the exponential multiplier method 

(1.3)-(1.4) with the penalty parameters chosen according to (1.6). Suppose that {/x k} 

converges to some point ~ .  Then {t xk} converges at least quadratically. 

Proof. Let d °°= d(/x °°) and let 

m~=- {ix c [O, oo)m l d(ix ) -- d°~ }. 

By using (2.7), we have analogously to (3.2) that d(/x k+l) ~> d(i xk) for all k, so by 

the upper  semicontinuity of d, we have d°~>~ d(ix k) for all k. For each k, let fik be 

an element of  M °~ satisfying 

/2k ~ arg min {ll/x _/xklll i/x ~ MOO, i/xs _/x~l ~< 00 k I/xs - /xs l  for all j}. (4.8) 

Then by Lemma 4.2, there exists a scalar C1 and an integer /~ such that 

C l l [ ~ " - ¢ k l l l < ~ d ( ¢ " ) - d ( ~  ~) Vk>~Fc (4.9) 

Since /x k ~ / x  °~ and /x  k > 0 for all k, there exists an integer kl >//~such that  

which together with I/2 k - / ~ ; ]  <~ 1~9-~;I for all j (cf. (4.8)/, implies that 

I~ ; -~ ;1~ ;  vs, Vk>~k~. (4.10) 

Fix any k ~  > k~. We have from Lemma 4.1 and (4.10) that 

_ -k k 1 t / x j - / x j )  
q(fi~',/z~) (/2~ ~J(): 1 ( . t - / z g ) +  + . . .  

- /~j  6 /x~ 12 ( . ~ , ) 2  

n~ ( ~ + ~ + ~ + )  

= c  ( n ~ - ~ )  ~ ~ , 

! -±_~±~_ . .  This, together with the nonnegativity of  q (cf. Lemma where C2 = 2 - 6 - ~ 2 -  '. 

2.1(b)) and (2.7) and (1.6), yield 

d( k+l)>~d(k+,) _ ~  1 k+l 
j =  1 ' 

/> d(¢k ) ~ 1 
~=1 c] q(;';' ";) 

C 2  - k  k 2 >~d(;~)-~=, ~ ~(~-"~) 

C j : l  

>1 d(fik ) _ C~ i1¢~_~112 1-  
C 
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Using (4.9) and the fact d(f i  k) = d  ~ for all k (cf. (4.8) and the definition of M~),  

we obtain 

C2 (d(txk)_dOO):. (4.11) d(tx k+') - d°O>~ _ e(C1)~ 

Since the choice of  k above was arbitrary, (4.11) holds for all k ~> kl and hence 

{d(~k)} converges to d °° at least quadratically. Then, by (4.9), {/x k} converges to 

M °~ at least quadratically. [] 

Appendix. Proof of Lemma 4.2 

Let us express the polyhedral  set X in (4.1) as 

X={xlBx>~c}, 

for some p x n matrix B and some vector c c R p. The proof  hinges on a result of  

Hoffman [14] on a certain upper  Lipschitzian property of the solution set of  a linear 

system with respect to perturbations in the right-hand side. 

We argue by contradiction. Suppose that the claim does not hold. Then, there 

would exist a subsequence K c {1, 2, . . .  } such that 

/ 
[iA k ,  3~k i[ 1 j K ~ 0 .  (A.1) 

Fix any k ~ K. Since d(A k) > - o o  the minimum in the dual functional definition 

d(A k) = min {bTx + (A k)T(a -- ATx)} (A.2) 
x E X  

must be attained at some yk C X. By using (A.1), we obtain from the Kuhn-Tucker  

conditions for the above minimization that A k and yk, together with some multiplier 

vector ~r k associated with the constraints Bx >~ c, satisfy 

d(  A k) = b ryk + ( A k)T(a -- A'Cy k), (A.3) 

and 

AA k + BTTrk = b, (A.4) 

By k >1 c, rr k >i O, (A.5) 

Biyk=ci  V i i i  k, rr/k=0 V i ~  I k, (A.6) 

for some subset I k c { l , . . . , p } ,  where Bi is the ith row of B, and ci is the ith 

component  of  c. In addition, we have 

d(A k) = (b - AA k)Tyk + (A k)Ta = (BT~rk)Vy k + aTA k = (~rk)T c + aTA k, 

(1.7) 

where the first equality is due to (A.3), the second equality follows from (A.4), and 

the last equality follows from (A.6). 
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Fix any I for which the index set KI = {k ~ K IIk = 1} is infinite. For each k ~ Kx, 

consider  the following linear system in (y, vr): 

B V v r = b - A A  k, By>~c, ~>~0, 7 rTc=d(Ak) - -aTA  k, 

B iy=ci  V i c I ,  ~ri=O Vi;~L 

This system is consistent since it has a solution (yk, ir k) (cf. (A.4)-(A.7) and I k = I).  

By a result due to Hoffman [14] (see also [20], and [24]), it has a solution 09k, ~.k) 

whose norm is bounded  by some constant  (depending on B and c only) times the 

norm of  the r ight-hand side. This r ight-hand side is clearly bounded  (recall that 

{A k} converges),  so the sequence {(yk, ~k)}Kl is also bounded.  Since A k--> A m, every 

cluster point  0 ;°°, ~oo) of  this sequence satisfies 

B T ~ = _ b - A A  °°, Bf~>~c, Fr~> ~O,  (~r~)Tc=d°°--aT2~,  

B3°C:Ci V i c I ,  ¢ri = 0  Vi;~L 

Hence,  for  each k ~ KI, the following linear system in (A, y, vr): 

oo k 

Aj 0 and IAj-AyI<-IA: -Ajl Vj, 

AA + BT~  = b, By ~ c, 77" ~ O, "rrTc q- aTA = d ~, 

B iy=ci  V i i i ,  ~ ' i=0  Vi~_l, 

is consistent.  Moreover ,  it is not difficult to see that the first m components  of  any 

solution o f  this system form an element  of  M ~. By compar ing the above linear 

system with (A.4)-(A.7) (and using the fact I = Ik),  we see that (A k, yk, vr k) is almost 

a solution of  the above system, except for  a difference in the right side of  the last 

equali ty (d(2  k) instead of  d°°). By using the same result of  Hof fman  invoked earlier, 

we conclude that there exists a solution of  the above system, denoted  (£k)~k, &k), 

whose distance to (A k, yk, 7rk) is bounded  by the difference in the r ight-hand side, 

that is, 

for  some scalar ~- depending  only on A, B, a, and c. The last equation,  in view of  

(A.1), implies that for  any k ~ KI sufficiently large, there holds 

1[£ k -Akll l  < 1]£ k - A kl[,, 

a contradict ion of  our  choice of  £k (cf. (4.4)). [] 

References 

[1] D.P. Bertsekas, G.S. Lauer, N.R. Sandell, Jr. and T.A. Posbergh, "Optimal short term scheduling 
of large-scale power systems," IEEE Transactions on Automatic Control AC-28 (1982) 1-11. 

[2] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods (Pren- 
tice-Hall, Englewood Cliffs, N J, 1989). 



P. Tseng, D.P. Bertsekas/Exponential multiplier method 19 

[3] D.P. Bertsekas• ``Necessary and suf•cient c•nditi•ns f•r a pena•ty meth•d t• be exact••• Mathematical 

Programming 9 (1975) 87-99. 

[4] D.P. Bertsekas, "Newton's method for linear optimal control problems," in: Proceedings of the 

Symposium on Large Scale Systems (Udine, 1976 ) pp. 353-359. 

[5] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Academic Press, New 

York, 1982). 

[6] L.M. Bregman, "The relaxation method of finding the common point convex sets and its application 

to the solution of problems in convex programming," USSR Computational Mathematics and 

Mathematical Physics 7 (1967) 200-217, 

[7] Y. Censor and S.A. Zenios, "The proximal minimization algorithm with D-functions," ( 1989 ), to 

appear in: Journal o f  Optimization Theory and Applications. 

[8] G. Chen and M. Teboulle, "Convergence analysis of a proximal-like minimization algorithm using 

Bregman functions," (1990), to appear in: SIAM Journal on Optimization. 

[9] G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton, N J, 1963). 

[ 10] J. Eckstein, "Nonlinear proximal point algorithms using Bregman functions, with appIications to 

convex programming," ( 1990 ), to appear in: Mathematics of  Operations Research. 

[ 11] A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization 

Techniques (Wiley, New York, 1968). 

[12] E.G. Golshtein and N.V. Tretjiakov, "Modified Lagrangians in convex programming and their 

generalizations," Mathematical Programming Studies 10 (1979) 86-97. 

[13] C.D. Ha, "A generalization of the proximal point algorithm," SIAM Journal on Control and 

Optimization 28 (1990) 503-512. 

[14] A.J. Hoffman, "On approximate solutions of systems of linear inequalities," Journal of  Research 

of the National Bureau of Standards 49 (1952) 263-265. 

[15] B.W. Kort and D.P. Bertsekas, "A new penalty function method for constrained minimization," 

in: Proceedings of the 1972 IEEE conference on decision and control (New Orleans, 1972) pp. 162-166. 

[16] G.S. Lauer, D.P. Bertsekas, N.R. Sandell, Jr. and T.A. Posbergh, "Optimal solution of large-scale 

unit commitment problems," IEEE Transactions on Power Systems and Apparatus 101 (1981) 79-86. 

[17] D.G. Luenberger, Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1984). 

[18] F.J. Luque, "Nonlinear proximal point algorithms," Ph.D. Thesis, Department of Civil Engineering 

and Operations Research Center, Massachusetts Institute of Technology (Cambridge, MA, 1984). 

[19] F.J. Luque, "The nonlinear proximal point algorithm," Report LIDS-P-1598, Laboratory for 

Information and Decision Systems, Massachusetts Institute of Technology (Cambridge, MA, 1986). 

[20] O.L. Mangasarian and T.- H. Shiau, "Lipschitz continuity of solutions of linear inequalities, programs 

and complementarity problems," SIAM Journal of Control and Optimization 25 (1987) 583-595. 

[21] B. Martinet, "Regularisation d'in~quations variationelles par approximations successives," Revue 

Fran~aise d' Automatique et Informatique Recherche Op~rationalle 4 (1970) 154-159. 

[22] V.H. Nguyen and J.J. Strodiot, "On the convergence rate of a penalty function method of exponential 

type," Journal of Optimization Theory and Applications 27 (1979) 495-508. 

[23] B.T. Poljak and N.V. Tretjakov, "An iterative method for linear programming and its economic 

interpretation," Matecon 10 (1974) 34-46. 

[24] S.M. Robinson, "Bounds for errors in the solution set of a perturbed linear program," Linear 

Algebra and its Applications 6 (1973) 69-81. 

[25] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, N J, 1970). 

[26] R.T. Rockafellar, "New applications of duality in convex programming," in: Proceedings of  the Con- 

ference on Probability ( Braso v, 1971 ) pp. 73-81. 

[27] R.T. Rockafellar, "A dual approach to solving nonlinear programming problems by unconstrained 

minimization," Mathematical Programming 5 (1973) 354-373. 

[28] R.T. Rockafellar, "Monotone operators and the proximal point algorithm," SIAM Journal on 

Control and Optimization 14 (1976) 877-898. 


