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Abstract We revisit the gradient projection method in the framework of nonlinear
optimal control problemswith bang–bang solutions.We obtain the strong convergence
of the iterative sequence of controls and the corresponding trajectories. Moreover, we
establish a convergence rate, depending on a constant appearing in the correspond-
ing switching function and prove that this convergence rate estimate is sharp. Some
numerical illustrations are reported confirming the theoretical results.

Keywords Gradient projection method · Strong convergence · Convergence rate ·
Optimal control · Bang–bang control

Mathematics Subject Classification 47J20 · 49J15 · 49M05 · 90C25 · 90C30

1 Introduction

Numerical solution methods for various optimal control problems have been investi-
gated during the last decades [6,8–11]. However, in most of the literature, the optimal
controls are assumed to be at least Lipschitz continuous. This assumption is rather
strong, as whenever the control appears linearly in the problem, the lack of coer-
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civity typically leads to discontinuities of the optimal controls. Recently, optimal
control problems with bang–bang solutions attract more attention. Stability and error
analysis of bang–bang controls can be found in [14,26,32]. Euler discretizations for
linear–quadratic optimal control problems with bang–bang solutions were studied
in [1,2,5,29]. Higher order schemes for linear and linear–quadratic optimal control
problems with bang–bang solutions were developed in [24,27].

On the other hand, among many traditional solution methods in optimization,
projection-type methods are widely applied because of their simplicity and efficiency
[13,15,31].

Recently, the gradient projection method has been reconsidered for solving general
optimal control problems [22,28]. Under some suitable conditions, it was proved that
the control sequence converges weakly to an optimal control and the corresponding
trajectory sequence converges strongly to an optimal trajectory. However, no conver-
gence rate result has been established.

In this paper, we study the gradient projection method for optimal control problems
with bang–bang solutions. In particular we consider the following problem

minimize ψ(x, u) := g(x(T )) +
∫ T

0
h(t, x(t), u(t))dt (1.1)

subject to

ẋ(t) = f (t, x(t), u(t)) for a.e. t ∈ [0, T ], x(0) = x0, (1.2)

and

u(t) ∈ U := [−1, 1]m for a.e. t ∈ [0, T ]. (1.3)

Here [0, T ] is a fixed time horizon, admissible controls are all measurable functions
u : [0, T ] → U , while x(t) ∈ R

n denotes the state of the system at time t ∈ [0, T ]
and the functions f : R×R

n ×R
m → R

n, g : Rn → R and h : R×R
n ×R

m → R

are given.
Further we assume (see the next section for precise formulations) that the data are

smooth enough, that the problem (1.1)–(1.3) is convex and that for the (unique) optimal
control u∗ the objective function fulfills a certain growth condition. In particular we
show that this condition is satisfied in the bang–bang case if each component of the
associated switching function satisfies a growth condition as given in [25,29].

Under these assumptions, we prove that the control sequence actually converges
strongly to the solution. Moreover, the convergence rates for both controls and states
are provided, depending on the constant appearing in the growth condition for the
switching function. An example is analysed showing that the estimation for these
convergence rates is sharp.

The paper is organized as follows: In Sect. 2, we specify the assumptions we use
and recall some facts which will be useful in the sequel. Section 3 discusses the
convergence properties of the gradient projection method. Some numerical examples
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of linear–quadratic type are reported in Sect. 4 illustrating the results in the previous
section. Some final remarks are given in the last section.

2 Preliminaries

In this section, we will clarify the assumptions used and recall some important facts
which are necessary to establish our result.

By U := L2([0, T ],U ) we denote the set of all admissible controls and if not
stated otherwise ‖ · ‖ denotes the L2-norm. The first two assumptions guarantee that
the problem (1.1)–(1.3) is meaningful.

Assumption A1 For any given control u ∈ U there is a unique solution x = x(u) of
(1.2) on [0, T ].
Assumption A2 The problem (1.1)–(1.3) has a solution (x∗, u∗).

Now recall the Hamiltonian of (1.1)–(1.3) as

H(t, x, u, p) = 〈p, f (t, x, u)〉 + h(t, x, u).

Then by the Pontryagin maximum principle there is an absolutely continuous function
p∗ such that (x∗, u∗, p∗) solves the adjoint equation

ṗ(t) = −Hx (t, x(t), u(t)

= − fx (t, x(t), u(t))� p(t) − hx (t, x(t), u(t))� for a.e. t ∈ [0, T ]
p(T ) = ∇g(x(T )), (2.1)

and for every u ∈ U

〈Hu(t, x
∗(t), u∗(t), p∗(t)), u − u∗(t)〉 ≥ 0 for a.e. t ∈ [0, T ].

We define J : U → R via J (u) := ψ(x(u), u), where x(u) is the solution (1.2). Then
we have the following useful formula for the gradient of J (see, e.g. [22,31]).

∇ J (u)(t) = Hu(t, x(t), u(t), p(t))

= fu(t, x(t), u(t))� p(t) + hu(t, x(t), u(t))�, (2.2)

where x and p are the unique solution of (1.2) and (2.1) depending on u ∈ U .

Assumption A3 The objective function J is continuously differentiable on U with
Lipschitz derivative.

We denote by L the Lipschitz modulus of the gradient ∇ J of J and write
J ∗ := J (u∗) for its optimal value. The following result is well known (see e.g. [23,
Lemma 1.30]).
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Lemma 2.1 Suppose that A3 is fulfilled. Then for every u, v ∈ U the following esti-
mation holds

J (v) − J (u) − 〈∇ J (u), v − u〉 ≤ L

2
‖v − u‖2.

Assumptions A1–A3 are common in optimal control. For example the following
two Assumptions B1–B2 imply A1–A3 (cf. [22])

Assumption B1 The functions f and h are of the form f (t, x, u) = f0(x) + f1(x)u
and h(t, x, u) = h0(x) + 〈h1(x), u〉 respectively, where f0 : Rn → R

n, f1 : Rn →
R
n×m, h0 : Rn → R and h1 : Rn → R

m are twice continuously differentiable.

Assumption B2 There exists c ≥ 0 such that for every x ∈ R
n and u ∈ U :

〈x, f (t, x, u)〉 ≤ c(1 + |x |2).

Additionally we assume the following.

Assumption A4 The objective function J is convex.

Note that if the set F of admissible pairs is convex this assumption is equivalent to
the statement that the function ψ is convex on F . In particular this is the case if f is
affine (i.e. f is of the form f (t, x, u) = A(t)x + B(t)u + d(t)) as in [25,29].

Further we will assume a growth condition for J that is similar to (4.7) in [3].

Assumption A5 For a solution u∗ of (1.1)–(1.3) there are constants β > 0 and θ ≥ 0
such that for every u ∈ U we have

J (u) − J (u∗) ≥ β‖u − u∗‖2θ+2.

Note that in particular A5 implies that the solution u∗ is unique.

Remark 2.2 For coercive optimal control problems (in the sense of [12]) Assump-
tions A1–A4 are fulfilled as well as A5 for θ = 0. In these problems the objective
function J however is even strongly convex and therefore one can apply known results
(e.g. [21, Theorem 2.1.15]) directly to show linear convergence of the gradient pro-
jection method in this case.

In the following we will show that Assumption A5 is fulfilled for bang–bang con-
trols with no singular arcs. We recall that in the case of bang–bang controls the
function σ ∗ := Hu(·, x∗, u∗, p∗) is called switching function corresponding to the
triple (x∗, u∗, p∗). For every j ∈ {1, . . . ,m} denote by σ ∗

j its j-th component. The
following assumption says that the switching function σ ∗ satisfies a growth condition
around the switching points, which implies that u∗ is strictly bang–bang.

Assumption B3 There exist real numbers θ, α, τ > 0 such that for all j ∈ {1, . . . ,m}
and s ∈ [0, T ] with σ ∗

j (s) = 0 we have

|σ ∗
j (t)| ≥ α|t − s|θ ∀t ∈ [s − τ, s + τ ] ∩ [0, T ].

123



On the convergence of the gradient projection method… 225

Assumption B3 plays the main role in the study of regularity, stability and error
analysis of discretization techniques for optimal control problems with bang–bang
solutions. Many variations of this assumption are used in the literature about bang–
bang controls. To our knowledge the first assumption of this type was introduced by
Felgenhauer [14] for continuously differentiable switching functions with θ = 1 to
study the stability of bang–bang controls. Alt et al. [1,2,4] used a slightly stronger
version of B3 with θ = 1, that additionally excludes the endpoints 0 and T as zeros
of the switching function, to investigate the error bound for Euler approximation of
linear–quadratic optimal control problems with bang–bang solutions. Quincampoix
and Veliov [26] used a rank condition which implies B3 (including cases where θ �= 1)
to obtain the metric regularity and stability of Mayer problems for linear systems.
Seydenschwanz [29], Preininger et al. [25], Pietrus, Scarinci and Veliov [24,27] used
this assumption in the study of metric (sub)-regularity, stability and error estimate
for discretized schemes of linear–quadratic optimal control problems with bang–bang
solutions.

To prove that B3 implies A5 we need the following lemma, which is a simplified
version of [29, Lemma 1.3] (see also, [1, Lemma 4.1]).

Lemma 2.3 Let Assumptions A1–A2 be fulfilled and let u∗ be a solution of (1.1)–
(1.3) such that B3 is fulfilled for some θ > 0. Then there exists constants β > 0 such
that for any feasible u ∈ U it holds

∫ T

0
σ ∗(t)T

(
u(t) − u∗(t)

)
dt ≥ β‖u − u∗‖θ+1

1 ,

where ‖ · ‖1 is the L1-norm.

Proposition 2.4 Let Assumptions A1, A2 and A4 be fulfilled and let u∗ be a solution
of (1.1)–(1.3) such that B3 is fulfilled. Then A5 holds.

Proof From Assumption A4 and (2.2) we obtain

J (u) − J (u∗) ≥ 〈∇ J (u∗), u − u∗〉 =
∫ T

0
σ ∗(t)T

(
u(t) − u∗(t)

)
dt. (2.3)

Since ‖ · ‖2 ≤ C‖ · ‖1 on U for some constant C > 0, from Lemma 2.3 there exists
β > 0 such that

∫ T

0
σ ∗(t)T

(
u(t) − u∗(t)

)
dt ≥ β‖u − u∗‖θ+1

1 ≥ β

Cθ+1 ‖u − u∗‖2θ+2. (2.4)

Combining (2.3) and (2.4) we obtain A5. ��
To define the gradient projection method in the next chapter we will need the

following notion of a projection. For each u ∈ U , there exists a unique point in U (see
[17, p. 8]), denoted by PU (u), such that

‖u − PU (u)‖ ≤ ‖u − v‖ ∀v ∈ U .
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It is well known [17, Theorem 2.3] that the projection operator can be characterized
by

〈u − PU (u), v − PU (u)〉 ≤ 0 ∀v ∈ U . (2.5)

Further to establish the convergence rate of the gradient projection method, we will
need the following lemmas.

Lemma 2.5 [18, Lemma 7.1] Let α > 0 and let {δk}∞k=0 and {sk}∞k=0 be two sequences
of positive numbers satisfying the conditions

sk+1(δks
α
k+1 + 1) ≤ sk ∀k ∈ N.

Then there is a number γ > 0 such that

sk ≤
(
s−α
0 + γ

k−1∑
i=0

min{δi , δ
α

α+1
i }

)− 1
α

∀k ∈ N.

In particular, we have limk→∞ sk = 0 whenever
∑∞

k=0 δk = ∞.

Lemma 2.6 [7, Lemma 3.2] Let {αk} , {sk} be sequences in R+ satisfying

∞∑
i=0

αksk < ∞,

the sequence {αk} is non-summable and the sequence {sk} is decreasing. Then

sk = o

(
1∑k

i=0 αi

)
,

where the o-notation means that sk = o(1/tk) if and only if limk→∞ sktk = 0.

3 Convergence analysis

We consider the following Gradient Projection Method (GPM):

Algorithm GPM

Step 0: Choose a sequence {λk} of positive real numbers and an initial control
u0 ∈ U . Set k = 0.
Step 1: Compute the gradient ∇ J (uk)(t) := fu(t, xk(t), uk(t))� pk(t) +
hu(t, xk(t), uk(t))� by solving the following differential equations

ẋk(t) = f (t, xk(t), uk(t)), xk(0) = x0;
ṗk(t) = − fx (t, xk(t), uk(t))

� pk(t) − hx (t, xk(t), uk(t))
�,

pk(T ) = ∇g(xk(T )). (3.1)
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Step 2: Compute

uk+1 = PU (uk − λk∇ J (uk)). (3.2)

Step 3: If uk+1 = uk then Stop. Otherwise replace k by k + 1 and go to Step 1.

It is known (see e.g. [21, Theorem 2.1.14]) that for J continuously differentiable
with Lipschitz derivative the gradient (projection) method has the convergence rate
O( 1k ) in terms of the objective value. I.e. that

J (uk) − J ∗ = O

(
1

k

)
. (3.3)

For the strongly convex objective function, it is known that the iterative sequence
{uk} converges linearly to the unique solution. However, it is not possible to show
convergence for the iterative sequence {uk} for the general convex case. Here, thanks
to Assumptions A1–A5, we are able to prove that the iterative sequence {uk} generated
by the GPM converges strongly to an optimal control. Moreover, the convergence rate
is established, depending on the constants θ appearing in Assumption A5.

The following estimate will be used repeatedly in our convergence analysis.

Proposition 3.1 Let Assumptions A1–A4 be satisfied, let u∗ be a solution of (1.1)–
(1.3) such that Assumption A5 is fulfilled with some θ > 0 and β > 0. Then for all
k ∈ N, the following estimate holds

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1 − λk L) ‖uk+1 − uk‖2
− 2λkβ‖uk+1 − u∗‖2θ+2. (3.4)

Proof Since uk+1 = PU (uk − λk∇ J (uk)), it follows from (2.5) that

〈uk − λk∇ J (uk) − uk+1, u − uk+1〉 ≤ 0 ∀u ∈ U . (3.5)

Substituting u = u∗ ∈ U into the latter inequality yields

〈uk − λk∇ J (uk) − uk+1, u
∗ − uk+1〉 ≤ 0,

or equivalently

〈uk − uk+1, u
∗ − uk+1〉 ≤ λk〈∇ J (uk), u

∗ − uk+1〉.

This implies that

‖uk+1 − u∗‖2 = ‖uk − u∗‖2 + 2
〈
uk − u∗, uk+1 − uk

〉 + ‖uk+1 − uk‖2
= ‖uk − u∗‖2 + 2

〈
uk+1 − u∗, uk+1 − uk

〉 − ‖uk+1 − uk‖2
≤ ‖uk − u∗‖2 + 2λk〈∇ J (uk), u

∗ − uk+1〉 − ‖uk+1 − uk‖2
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= ‖uk − u∗‖2

− 2λk

[
〈∇ J (uk), uk+1 − u∗〉 + L

2
‖uk+1 − uk‖2

+
(

1

2λk
− L

2

)
‖uk+1 − uk‖2

]

= ‖uk − u∗‖2 − (1 − λk L) ‖uk+1 − uk‖2

− 2λk

[
〈∇ J (uk), uk − u∗〉 + 〈∇ J (uk), uk+1 − uk〉

+ L

2
‖uk+1 − uk‖2

]
. (3.6)

Since J has Lipschitz derivative, we have from Lemma 2.1 that

J (v) − J (u) − 〈∇ J (u), v − u〉 ≤ L

2
‖v − u‖2 ∀u, v ∈ U .

Substituting u = uk and v = uk+1 into the last inequality yields

− 〈∇ J (uk), uk+1 − uk〉 − L

2
‖uk+1 − uk‖2 ≤ J (uk) − J (uk+1). (3.7)

Moreover, since J is convex, we obtain

− 〈∇ J (uk), uk − u∗〉 ≤ J (u∗) − J (uk) (3.8)

Combining (3.6), (3.7) and (3.8) gives

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1 − λk L) ‖uk+1 − uk‖2
− 2λk

(
J (uk+1) − J (u∗)

)
. (3.9)

Using Assumption A5 we obtain

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1 − λk L) ‖uk+1 − uk‖2
− 2λkβ‖uk+1 − u∗‖2θ+2,

which is (3.4). ��
We are now in the position to establish the strong convergence and the convergence

rate of {uk} to a solution.
Theorem 3.2 Let AssumptionsA1–A4 be satisfied, let u∗ be a solution of (1.1)–(1.3)
such that AssumptionA5 is fulfilled with some θ > 0. Let the sequence {λk} be chosen
such that

0 < λmin ≤ λk ≤ 1

L
∀k ∈ N.
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Then we have

(i) ‖uk − u∗‖2 ≤ ηk− 1
θ , for all k, where η > 0 is a constant;

(ii) The sequence {J (uk)} is monotonically decreasing. Moreover
∑∞

k=0 (J (uk)
−J (u∗)) < +∞.

Proof We first prove that {uk} converges strongly to u∗. From (3.4) and 0 < λmin ≤
λk ≤ 1

L , the sequence {‖uk − u∗‖} is decreasing and bounded from below by 0, and
therefore it converges. Moreover, since

2λminβ‖uk+1 − u∗‖2θ+2 ≤ ‖uk − u∗‖2 − ‖uk+1 − u∗‖2 (3.10)

we conclude that {‖uk − u∗‖} converges to 0, which means {uk} converges strongly
to u∗.

Now we can apply Lemma 2.5 for sk = ‖uk − u∗‖2, α = θ and δk = 2λminβ to
obtain the convergence rate (i) for {‖uk − u∗‖}.

Substituting u = uk in (3.5) implies

λk〈∇ J (uk), uk − uk+1〉 ≥ ‖uk+1 − uk‖2. (3.11)

Combining (3.7) and (3.11) we get

J (uk+1) − J (uk) ≤
(
L

2
− 1

λk

)
‖uk+1 − uk‖2 ≤ 0. (3.12)

Hence the sequence {J (uk)} is monotonically decreasing. Now from (3.9) and 0 <

λmin ≤ λk ≤ 1
L we have

2λmin
(
J (uk) − J (u∗)

) ≤ ‖uk−1 − u∗‖2 − ‖uk − u∗‖2 ∀k ∈ N.

Summing this inequality from 0 to i − 1 we obtain

i−1∑
k=0

(
J (uk) − J (u∗)

) ≤ 1

2λmin

(
‖u0 − u∗‖2 − ‖ui − u∗‖2

)
.

Finally, taking the limit as i → ∞, we obtain (i i). ��
Remark 3.3 From (ii) in Theorem 3.2, we can conclude that J (uk) − J (u∗) = o( 1k ),
which significantly improves the error estimate J (uk) − J (u∗) = O( 1k ) in (3.3).

The following example illustrates that the estimation (i) in Theorem 3.2 cannot be
improved when λk is bounded from below by a constant λmin.

Example 3.4 Consider the following optimal control problem

minimize
∫ T

0
σ(t)u(t)dt
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subject to u(t) ∈ U := [−1, 1]m, (3.13)

where σ is any continuous function fulfilling Assumption B3. Then ∇ J (u)(t) = σ(t)
is independent of u and the optimal control is given by u∗(t) = −sgn(σ (t)). Starting
the GPM with u0 ≡ 0 and λk = λ for some λ ∈ R

+ we get

uk(t) =

⎧⎪⎨
⎪⎩
1, if − kλσ(t) > 1,

−kλσ(t), if − 1 ≤ −kλσ(t) ≤ 1,

−1, if − kλσ(t) < −1.

In the special case σ(t) = tθ , we therefore have uk(t) = max{−1,−kλtθ }. This
implies that for k > 1

λT θ , we have

‖uk(t) − u∗(t)‖2 =
∫ (kλ)

− 1
θ

0
(1 − kλtθ )2dt

= (kλ)−
1
θ

(
1 − 2

θ + 1
+ 1

2θ + 1

)

= Ck− 1
θ .

For the objective value we get

J (uk) − J (u∗) =
(

1

θ + 1
− 1

2θ + 1

)
(kλ)−1− 1

θ , (3.14)

which is stronger than (ii). It remains unknown whether in the general case the esti-
mation (ii) can be improved to an estimation similar to (3.14).

Using the stronger Assumptions B1–B2 the convergence rate of the corresponding
trajectories can be obtained as a corollary of Theorem 3.2 and [22, Lemma 2].

Corollary 3.5 Let Assumptions B1, B2 and A4 be satisfied and let (x∗, u∗) be a
solution of (1.1)–(1.3) such that Assumption A5 is fulfilled with some θ > 0. Further
suppose that λk ∈ [λmin, 1/L] ⊂ (0, 1/L]. Then the sequence {xk(t)} of trajectories
converges strongly to the solution x∗. Moreover, there exists a positive constant C
such that for all k it holds,

‖xk − x̂‖c ≤ Ck− 1
2θ ,

where ‖x(·)‖c = maxt∈[0,T ] |x(t)|.
When the Lipschitz modulus L is difficult to estimate, one can consider the non-

summable diminishing stepsizes as follow.

Theorem 3.6 Let AssumptionsA1–A4 be satisfied, let u∗ be a solution of (1.1)–(1.3)
such that AssumptionA5 is fulfilled with some θ > 0. Let the sequence {λk} be chosen
such that
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lim
k→∞ λk = 0,

∞∑
k=0

λk = ∞.

Then the sequence {uk} converges strongly to u∗. Moreover there exists N > 0 such
that for all k ≥ N, it holds

(i) ‖uk − u∗‖2 ≤ Cμ
− 1

θ

k

(ii) J (uk) − J (u∗) = o
(

1
μk

)
,

where μk := ∑k−1
i=N λi and C is a constant.

Proof Let β > 0 be as in Proposition 3.1. Since limk→∞ λk = 0, there exists N > 0
such that for all k ≥ N we have 1− λk L > 0 and 2λkβ < 1. From (3.4) we have that
{‖uk − u∗‖} is decreasing, therefore it converges. Moreover

2λkβ‖uk+1 − u∗‖2θ+2 ≤ ‖uk − u∗‖2 − ‖uk+1 − u∗‖2 ∀k ≥ N .

Using Lemma 2.5 with sk = ‖uk+N − u∗‖2, α = θ and δk := 2λk+Nβ we get that
there exists γ > 0 such that

‖uk − u∗‖2 ≤
(

‖uN − u∗‖−2θ + γ

k−1∑
i=N

λi

)− 1
θ

∀k ≥ N ,

which shows (i).
From (3.9), we have

2λk
(
J (uk+1) − J (u∗)

) ≤ ‖uk − u∗‖2 − ‖uk+1 − u∗‖2 ∀k ≥ N .

leading to

∞∑
k=N

λk
(
J (uk+1) − J (u∗)

)
< ∞.

Applying Lemma 2.6 with αk = λN+k and sk = J (uN+k) − J (u∗) we obtain (ii). ��
Using the same example as above we can again show that the estimation (i) cannot

be improved.

Example 3.7 Consider the problem (3.13) with σ(t) := tθ again. As before we use
GPM with u0 ≡ 0 but now with non-constant λk . Denoting μk := ∑k−1

i=0 λi we get
uk(t) = max{−1,−μk tθ }. Hence for k big enough such that μk > 1

T θ we have

‖uk(t) − u∗(t)‖2 =
∫ μ

− 1
θ

k

0
(1 − μk t

θ )2dt
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= μ
− 1

θ

k

(
1 − 2

θ + 1
+ 1

2θ + 1

)

= Cμ
− 1

θ

k

and

J (uk) − J (u∗) =
(

1

θ + 1
− 1

2θ + 1

)
μ

−1− 1
θ

k .

Similar to Corollary 3.5 we obtain

Corollary 3.8 Let Assumptions B1, B2 and A4 be satisfied and let (x∗, u∗) be a
solution of (1.1)–(1.3) such that Assumption A5 is fulfilled with some θ > 0. Further
let the sequence {λk} be chosen such that

lim
k→∞ λk = 0,

∞∑
k=0

λk = ∞.

Then the sequence {xk(t)} of trajectories converges strongly to the solution x∗. More-
over, there exists a positive constant C such that for all k it holds,

‖xk − x̂‖c ≤ Cμ
− 1

2θ
k .

4 Numerical illustrations

In this section, we present some numerical experiments for a class of optimal control
problems with bang–bang solutions namely linear–quadratic problem, described as
follow.

minimize ψ(x, u)

subject to ẋ(t) = A(t)x(t) + B(t)u(t) + d(t), t ∈ [0, T ],
u(t) ∈ U := [−1, 1]m,

x(0) = x0,

(4.1)

where

ψ(x, u) := 1

2
x(T )Qx(T ) + q�x(T ) +

∫ T

0

(
1

2
x(t)�W (t)x(t)

+ x(t)�S(t)u(t)
)
dt.

Here we use the classical Euler discretization where the error estimate can be found
in [1,2,5]. We choose a natural number N and define the mesh size h := T/N . Since
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the optimal control is assumed to be bang–bang, we identify the discretized control
uN := (u0, u1, . . . , uN−1) with its piece-wise constant extension:

uN (t) = ui for t ∈ [
ti , ti+1) , i = 0, 1, . . . , N − 1.

Moreover, we identify the discretized state xN := (x0, x1, . . . , xN ) and costate pN :=
(p0, p1, . . . , pN ) with its piece-wise linear interpolations

xN (t) = xi + t − ti
h

(xi+1 − xi ) , for t ∈ [
ti , ti+1) , i = 0, 1, . . . , N − 1

and

pN (t) = pi + ti − t

h
(pi−1 − pi ) , for t ∈ (ti−1, ti

]
, i = N , N − 1, . . . , 1.

The Euler discretization of (1.1) is given by

minimize ψN (xN , uN )

subject to xNi+1 = xNi + h
[
A(ti )xNi + B(ti )uN

i + d(ti )
]
,

xN (0) = x0,
uN
i ∈ U,

(PN )

where ψN is the cost function defined by

ψN (xN , uN ) := 1

2
x�
N QxN + q�xN + h

N−1∑
i=0

[
1

2
xTi W (ti )xi + xTi S(ti )ui

]
.

Observe that (PN ) is a quadratic optimization problem over a polyhedral convex
set, where the gradient projectionmethod converges linearly, see e.g., [30]. Thismeans
that for each N , there exists ρN ∈ (0, 1) such that

∥∥∥uN
k+1 − uN∗

∥∥∥ ≤ ρN

∥∥∥uN
k − uN∗

∥∥∥ , ∀k ∈ N.

In the following examples, we will consider various values of N which suggest that

lim
N→∞ ρN = 1.

This will confirm the sublinear rate obtained in Theorem 3.2. The codes are imple-
mented inMatlab.We perform all computations on awindows desktopwith an Intel(R)
Core(TM) i7-2600 CPU at 3.4 GHz and 8.00 GB of memory. Since ∇ J is linear in u,
one can roughly estimate its Lipschitz constant by L = ‖∇ J (u0)‖/‖u0‖. We choose
starting control u0(t) = 1∀t ∈ [0, T ] and stepsize λk = λ < 1/L . The stopping
condition is ‖uN

k − uN
k−1‖ ≤ ε, where ε = 10−10.

The following example is taken from [27].
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Table 1 Convergence rates for
Example 4.1

N 10 20 50 100 200 500

ρN 0.7701 0.9181 0.9839 0.9902 0.9964 0.9976

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

u
k
( t
),
u

∗ (
t)

u k(t)
u * (t)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

t
x(
t)

x1(t)
x2(t)

Fig. 1 Optimal control (left) and optimal states (right) for N = 50

Example 4.1

minimize −by(1) + ∫ 1
0

1
2 (x(t))2 dt

subject to ẋ(t) = y(t), x(0) = a
ẏ(t) = u(t), y(0) = 1.
u(t) ∈ [−1, 1].

(4.2)

Here, with appropriate values of a and b, there is a unique optimal solution u∗ with
a switch from − 1 to 1 at time τ , which is a solution of the equation

−5τ 4 + 24τ 3 − (12a + 36)τ 2 + (24a + 20)τ + 24b − 12a − 3 = 0.

As in [27], we choose a = 1, b = 0.1, then τ = 0.492487520 is a simple zero of the
switching function. Therefore, θ = 1 and the exact optimal control is

u∗(t) =
{

−1 if t ∈ [0, τ ]
1 if t ∈ (τ, 1].

The convergence results for Example 4.1 with some different values of N are
reported in Table 1. We can see that when N increases, ρN also increases and
approaches 1. This means that we can only guarantee the sublinear convergence for
the continuous problem. Figure 1 displays the optimal control and the optimal states
when the discretized size N = 50.

The following second example is taken from [1, Example 6.1]
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Table 2 Convergence rates for
Example 4.2

N 10 20 50 100 200 500

ρN 0.9625 0.9724 0.9905 0.9937 0.9943 0.9944

0 1 2 3 4 5
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−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t
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k
(t
),
u

∗ (
t)

uk(t)
u* (t)

0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

6

7

t
x(
t)

x1(t)
x2(t)

Fig. 2 Optimal control (left) and optimal states (right) for Example 4.2 when N = 50

Example 4.2

minimize 1
2

(
(x1(5))2 + (x2(5))2

)
subject to ẋ1(t) = x2(t),

ẋ2(t) = u(t), ∀t ∈ [0, 5].
x1(0) = 6, x2(0) = 1,
u(t) ∈ [−1, 1].

(4.3)

The exact optimal control is given by

u∗(t) =
{
1 if t ∈ (τ, 5]
−1 if t ∈ (0, τ ],

where τ = 3.5174292.
The convergence results for Example 4.2 with some different values of N are

reported in Table 2. Again, we see that when N increases, ρN also increases and
approaches 1. Figure 2 displays the optimal control and the optimal states for N = 50.

In the next example, we consider a problem in which Assumption A5 is satisfied
for θ �= 1 (see also [27,29]).

Example 4.3 Here we present experiments with a family of problems satisfying
Assumption A5 with various values of θ , given in [29]. Below, the time-interval is
[0, 1], the dimension of the state is n = θ + 1 and the dynamics system depends on
parameters s j :
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Table 3 Convergence rates for
Example 4.3

N 10 20 50 100 200 500

θ = 2

ρN 0.9418 0.9686 0.9865 0.9962 0.9953 0.9947

θ = 3

ρN 0.9245 0.9781 0.9936 0.9922 0.9968 0.9986

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

uk(t)

0 0.2 0.4 0.6 0.8 1
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−0.8

−0.6
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0.4

0.6

0.8

1

t

u
k
(t)

Fig. 3 Approximate optimal controls after 1000 iterations when θ = 2 (left) and θ = 3 (right) for
Example 4.3 with N = 500

minimize x1(1)
subject to ẋ j (t) = s j x j+1(t) + u(t), j = 1, . . . , θ

ẋθ+1(t) = u(t),
x(0) = 0,
u(t) ∈ [−1, 1].

(4.4)

For any natural number θ , the values of the parameters s j are chosen as

s j := −2(θ − j + 1) j = 1, . . . , θ.

Then Assumption A5 is satisfied with the constant θ [29] and exact optimal control is
given by

u∗(t) =
{
1 if t ∈ [0, 1/2]
−1 if t ∈ (1/2, 1]

if θ is odd, and u∗(t) = −1 if θ is even. The convergence results for Example 4.3 when
θ = 2, 3 with some different values of N are reported in Table 3. Figure 3 displays
the approximate optimal controls after 1000 iterations for N = 500. It seems like the
optimal control has θ switching points. This is to be expected since σ ∗ has a zero of
order θ at 1/2.
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5 Concluding remarks

Note that the main results in Theorems 3.2 and 3.6 use Assumption A5 which is more
general than just the bang–bang case. For example Assumption A5 is also satisfied in
the strongly convex case, where even better convergence results are known. Further it
would be interesting to see under what assumptions our results still apply in the case
of singular arcs. This is challenging due to the fact that currently there is no condition
similar to the bang–bang Assumption B3 that ensures Assumption A5 and therefore
remains as a topic for future research.
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